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Abstract

This paper describes our system submitted to
SemEval-2025 Task 8 “Question Answering
over Tabular Data.” The shared task focuses
on tackling real-life table question answering
(TQA) involving extremely large tables with
the additional challenges of interpreting com-
plex questions. To address these issues, we
leverage a framework of Multi-Agent Collab-
oration with Tool use (MACT), a method that
combines planning and tool use. The planning
module breaks down a complex question by de-
signing a step-by-step plan. This plan is trans-
lated into Python code by a coding model, and
a Python interpreter executes the code to gener-
ate an answer. Our system demonstrates com-
petitive performance in the shared task and is
ranked 5th out of 38 in the open-source model
category. We provide a detailed analysis of our
model, evaluating the effectiveness and the ef-
ficiency of each component, and identify com-
mon error patterns. Our paper offers essential
insights and recommendations for future ad-
vancements in developing TQA systems.

1 Introduction

Table question answering (TQA) focuses on ad-
dressing questions related to tables. It has been
widely studied across domains (Zhu et al., 2021;
Lu et al., 2023; Katsis et al., 2022) and languages
(Zheng et al., 2023; Pal et al., 2024; Jun et al.,
2022). Current TQA datasets predominantly fea-
ture tables from Wikipedia (Pasupat and Liang,
2015; Zhang et al., 2023), resulting in an over-
simplified task setup characterized by small, clean
tables with limited diversity in data types. To
promote studies in real-life TQA, Osés-Grijalba
et al. (2025) propose DataBench, an English TQA
dataset consisting of 65 tables and around 1300
manually created questions spanning various do-
mains. Based on this dataset, the SemEval-2025
Task 8 “Question Answering over Tabular Data”

encourages TQA modeling in a more realistic and
challenging setup. It consists of two subtasks: ALL,
where original long tables are used and LITE, in
which only the first 20 rows of a table are used.

There are two main challenges in the task: (1) the
large table size makes direct inference using large
language models (LLMs) difficult due to their lim-
ited input lengths and problems of being lost in
the middle (Liu et al., 2024). (2) The complexity
of questions requires multiple steps to be solved.
For instance, to answer the question in Figure 1,
a system should first filter for employees who are
working in sales and then calculate the average of
working years among those employees.

To address these challenges, we propose G-
MACT, a method combining Global planning with
Multi-Agent Collaboration with Tool use (Zhou
et al., 2025). G-MACT comprises two modules:
a global and an iterative planning module. The
global planning module takes in the first several
rows of a table alongside a question, and generates
a step-by-step plan. By doing this, we break down
a complex question into easier sub-steps. A coding
agent translates this plan into pandas-based Python
code,1 which is executed using a Python interpreter
to derive an answer.

Despite being efficient, the global planning mod-
ule may encounter difficulties in formulating an
optimal plan when it relies solely on a partial table
and a question. To enhance the robustness of plan
generation by conditioning it also on past observa-
tions, we apply the iterative planning framework
MACT whenever the global planning module does
not yield an answer. The framework generates one
step of a plan in each iteration, considering past
steps and observations. We ensemble results from
four models for our final submission. Our method
ranks 5th among 38 open-weight systems in the
challenging ALL setup.

1https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.html
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Figure 1: G-MACT illustration. It leverages both global planning (shown in purple) and iterative planning (shown in
orange).Iterative planning is applied if Python fails to compile and no answer is obtained.

We thoroughly analyze G-MACT from three per-
spectives: effectiveness of the global and iterative
planning modules, efficiency, as well as error pat-
terns. We find that most instances in DataBench
can be solved by global planning and tool use alone.
However, the iterative planning module proves es-
sential for instances where global planning fails
to yield an answer. Additionally, our findings un-
derscore the significance of selecting an optimal
ensemble method. We observe for around 91% of
the cases, at least one model predicted the correct
answer, while the ensemble method used in our
approach only achieves around 86% of exact match
(EM) accuracy. This discrepancy highlights a clear
need for exploring more sophisticated ensembling
techniques. Lastly, through an error analysis, we
find that developing a good planning agent that
can understand table semantics and has access to
factual and domain-specific knowledge is of vital
importance for further enhancing a model’s perfor-
mance. We make our system publicly available.2

2 Related Work

The main methodologies used by G-MACT are
planning and tool use. Both have been employed
in TQA to facilitate more fine-grained problem
solving, thus improving model performance (Zhao
et al., 2024; Wu and Feng, 2024; Zhou et al., 2025;
Wang et al., 2024). Current research either utilizes
global planning (Zhao et al., 2024) or iterative plan-
ning (Wang et al., 2024; Zhou et al., 2025). Global
planning involves generating a plan consisting of
multiple steps in a single iteration, conditioned
solely on a question and a table. Iterative planning
conditions the generation of the next step of a plan

2https://github.com/boschresearch/MACT

on previous observations and steps. While global
planning tends to be more efficient, iterative plan-
ning offers more fine-grained plan generation. In
G-MACT, we integrate both planning methods.

3 System Overview

Given a table T and a question Q, a TQA sys-
tem aims to address Q and return an answer A.
Our proposed system G-MACT combines global
planning with the iterative approach of multi-agent
collaboration with tool use (Zhou et al., 2025) in a
pipeline manner as illustrated in Figure 1. In this
section, we introduce the global planning module,
the iterative planning module, and the ensemble
method used to create the submission results.

3.1 Global Planning

Our global planning module comprises a planning
agent Mp and a coding agent Mc with a Python
interpreter. As shown in Figure 1, Mp takes in
the first two rows of a table and a question, then
generates a step-by-step plan. This can be repre-
sented as: P ∼ Mp(P |Q,T ′, ϕp, τp), where T ′

is a subpart of a table. ϕp and τp are the prompt
(provided in A.1) and the temperature of the LLM
used for Mp, respectively. We pass only the first
two rows of a table because (1) LLMs have been
shown to struggle with long tables (Zhou et al.,
2024) and (2) plan generation requires mainly in-
formation about the table columns and data types,
which can be derived from the columns and first
two rows of the table. We utilize in-context learn-
ing to prompt Mp to generate a step-by-step plan,
providing instructions to solve a question, without
intermediate results. An example is shown in the
purple box of Figure 1. Given a plan P , a cod-
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ing agent Mc generates Python code using pandas:
ci ∼ Mc(ci|P, T ′, Q, ϕc, τc). We sample k times
from Mc to increase the robustness of the system
against generated syntax errors, resulting in a set
of code snippets C = {cni }n≤k. A Python inter-
preter is run on each ci, creating a set of executed
solutions Â = {âni }n≤k . The final answer A is the
most frequent answer in Â.

3.2 Iterative Planning

The global planning module can be very efficient
since each question requires only one LLM call to
generate a plan. However, it is still possible that
no prediction is given by the module, namely if no
code generated from Mc is successfully executed.
To mitigate the impact of failed execution, we re-
sort to an iterative planning module if no answer is
given by the global planning module. The design of
the module is based on MACT (Zhou et al., 2025).
The framework takes in a TQA problem, i.e., a full
table and a question, and returns a prediction. This
is achieved by breaking down a complex problem
into fine-grained steps and addressing each step
with two agents (a planning Mp, a coding agent
Mc) and a toolset. Zhou et al. (2025) define each
step as an intent and an instruction. An intent en-
codes the purpose of a step and the instruction
provides detailed specifications of the intent. For
addressing each step, Mp and Mc perform two lay-
ers of collaboration: (1) Mc takes in instructions
given by Mp for code generation. (2) The final
step solution is determined as the most frequent
result from {ôni }n≤k ∪ Ĉ, where {ôni }n≤k are step
solutions generated by Mp and Ĉ is based on ex-
ecuting Python code generated by Mc. Note that
in MACT, the generation of a next step depends on
previous steps, thus being iterative and more com-
putationally expensive. To boost efficiency, MACT
features an efficiency optimization module, where
simple questions are directly answered by Mp with-
out going into the iterative loop. Zhou et al. (2025)
approximate question complexity by the confidence
of Mp in directly solving a TQA problem: a con-
fident model will output more agreed predictions
and this suggests the problem is less complex.

We adapt MACT for the shared task as follows:
(1) MACT requires a whole table as input. As this
is not possible with large tables, we only pass the
first two rows for each step and code generation.
Accordingly, we adapt the prompts for Mp and Mc

used in the iterative planning module. These are

presented in Appendix A.1. (2) We remove the
efficiency module in MACT. This module requires
a full table to generate the final answer. In our case,
since only the first two table rows are passed to the
system, the answer predicted by the efficiency mod-
ule cannot be trusted. (3) We remove the layer of
collaboration where step solutions are determined
by both Mp and Mc and select the most frequent
observation from Ĉ, as step solutions generated
by Mp might not be correct given only two table
rows. (4) We merge the intent Retrieve and Calcu-
late into Operate to increase efficiency since both
use Python and Mc in this case. We remove intents
Search and Read where Wikipedia search and LLM
extraction over texts happen, as DataBench does
not have additional text input and does not feature
open-domain TQA. If no answer is obtained from
the iterative planning module, we return none as
the final answer.

3.3 Ensemble Method
For our submissions, we ensemble results from
four different Mp and one Mc. Since each Mp and
Mc combination yields an answer A for a TQA
instance, we have four predictions for an instance.
We design our ensemble method as a combina-
tion of self-consistency (sc)(Wang et al., 2023) and
LLM-as-judge (Yao et al., 2023): If more than 60%
of the predicted answers are the same, we use the
most agreed answer as the final answer (sc). If less
than 60% of the predicted answers are the same,
we prompt an LLM to select the most reasonable
plan. Prompts can be found in Appendix A.1. The
corresponding answer obtained by executing the
selected plan is chosen as the final answer.

4 Experimental Setup

We present details on our experimental setup.

Data and Evaluation. DataBench (Osés-
Grijalba et al., 2025) includes 65 English tables
from diverse domains, with an average of over
3,200 rows and 1,600 columns. Each table is
accompanied by more than 20 manually created
questions, resulting in approximately 1,300
questions in total. The questions vary in terms of
answer types including boolean, category, number,
list[category], and list[number]. We use only the
test set of DataBench, which contains 15 tables
and 522 questions. Detailed statistics are presented
in Appendix A.2. We use exact match (EM) as
evaluation metric, which counts the percentages of
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Models
ALL LITE

Avg Bool Ctg Num [ctg] [num] Avg Bool Ctg Num [ctg] [num]

522 129 74 156 72 91 522 129 74 156 72 91

Qwen-2 (72B) 80.1 89.1 75.7 81.4 69.4 76.9 78.5 89.1 77.0 78.8 66.7 73.6
Deepseek (14B) 81.6 88.4 81.1 85.3 69.4 75.8 81.8 86.8 79.7 84.6 72.2 79.1
Mistral (13B) 75.5 89.1 70.3 77.6 56.9 71.4 78.0 87.6 73.0 81.4 69.4 69.2
LlaMA-3 (8B) 70.1 89.1 66.2 67.3 59.7 59.3 74.7 90.7 74.3 76.3 61.1 60.4

Ensemble 86.0 91.5 82.4 78.2 73.6 80.2 84.5 89.1 86.5 85.9 73.6 82.4

Table 1: Exact Match of G-MACT using different models as the planning agent in terms of answer category. Ctg and
Num stand for category and number, respectively. [x] refers to a list with items of type x. We report the instance
number of each answer type at the top part of the table.

predicted and reference answers that match exactly.
We use the official evaluation scripts provided by
Osés-Grijalba et al. (2025).

Models and Parameters. We use four dif-
ferent LLMs as planning agents: Qwen-2-int4
(72B) (Yang et al., 2024a), Mistral Nemo (13B),3

Deepseek-R1-distill-Qwen (14B) (DeepSeek-AI
et al., 2025), and LlaMA 3 (8B) (Dubey et al.,
2024). As coding agent, we use Qwen-2.5-coder
(32B) (Yang et al., 2024b). This results in four
possible pairs of planning and coding agents. We
set the sampling number k to 5. The temperature
is set to 0.6. To speed up inference, we use vllm4

to run Mp. Mc is deployed with SGLang.5 We
use Deepseek-R1-distll-Qwen (32B) (Yang et al.,
2024b) as the judge to choose the best plan in the
ensemble method.

Baselines. We compare G-MACT with top four
systems in the open-weight model category in
SemEval-2024 Task 8, with a focus on the more
challenging ALL setup. In addition, we compare
our method with the baseline reported by Osés-
Grijalba et al. (2025), where stable-code6 is used
to generate code and a Python interpreter executes
the code to obtain an answer.

5 Results

Figure 2 shows the performance of G-MACT com-
pared with top four systems and the baseline re-
ported in Osés-Grijalba et al. (2025) for the more
challenging ALL setup. Our ensemble model out-
performs the baseline method by a large margin.
However, there is still a gap between our method
and the best-performing system in the shared task.

3https://mistral.ai/news/mistral-nemo/
4https://github.com/vllm-project/vllm
5https://github.com/sgl-project/sglang
6https://huggingface.co/TheBloke/
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Figure 2: Comparing G-MACT with top four systems
in the open-weight model category in the ALL setup.
We also report baselines (ranked 33) provided by Osés-
Grijalba et al. (2025). The red dotted line (72.4) indi-
cates the median performance.

Table 1 shows results using different planning
models in ALL and LITE settings (see columns title
Avg). We find: (1) Ensemble results from different
models improve overall performances. (2) Using
Deepseek-Distill-Qwen (14B) as planning agent
leads to the best results among individual planning-
coding agent pairs. This might be attributed to the
model’s recency, its training mechanism, and its
pretraining data (DeepSeek-AI et al., 2025). When
looking at break-down results in terms of answer
categories, we find that for almost all models and
settings, questions that require a list of categori-
cal values as answers pose the biggest challenges.
This is followed by questions that ask for a list of
numbers as answers. In contrast, questions with
boolean answers are the easiest. Osés-Grijalba et al.
(2025) report similar observations. This suggests
that multi-value prediction poses unique challenges
to current TQA systems.

6 Analysis and Discussion

We analyze G-MACT in terms of planning, ensem-
bling, efficiency, and errors, and summarize key
insights for future studies.

729

https://mistral.ai/news/mistral-nemo/
https://github.com/vllm-project/vllm
https://github.com/sgl-project/sglang
https://huggingface.co/TheBloke/stable-code-3b-GGUF
https://huggingface.co/TheBloke/stable-code-3b-GGUF


ALL LITE
EM Global% EM Global%

Global 76.4 100 77.8 100
Iterative 64.2 0 63.4 0
Both 81.6 91.0 81.8 92.0

Table 2: Exact Match (EM) of each single module
and combined, as well as the percentages of instances
addressed by using the global planning module with
Deepseek-Distill-Qwen (14B) as the planning agent.

ALL LITE

80%

85%

90%

81.8
82.6

80.5

82

86

84.5

90.8 90.8

E
M

sc llm sc-llm oracle

Figure 3: Exact Match (EM) of using different ensemble
methods. sc=self-consistency. llm=LLM-as-a-judge.
oracle=an ensemble method that always selects correct
answers as final predictions if there are any.

Effectiveness of Global/Iterative Planning. To
assess the effectiveness of the global/iterative plan-
ning modules, we experiment with using each mod-
ule independently. We also calculate the propor-
tion of instances that are successfully addressed by
only applying the global planning module. These
are shown in Table 2. Results are obtained using
Deepseek-Distill-Qwen (14B) model, as it demon-
strates the best overall performances in both ALL

and LITE settings among investigated planning
models. We find that most instances can be ad-
dressed using only the global planning module.
However, incorporating the iterative module sig-
nificantly enhances performance by 9.6% and 6.7%
in the ALL and LITE settings, respectively. This
proves the effectiveness of combining both mod-
ules. Despite these gains, we observe that the itera-
tive planning module alone results in lower perfor-
mances compared to the global planning approach.

Ensemble Methods. We report EM achieved by
our ensemble method combining sc and LLM-as-
judge, as well as each individual method in Figure
3. We present an EM upper bound of ensembling

the four models, which is calculated as the percent-
age of correct answers in any of the four models’
predictions. We find that combining both sc and
LLM-as-judge leads to better results than using
them alone. However, there is still a gap between
our ensemble method and the potential best en-
semble approach (oracle), indicating that a better
confidence estimation for the answers provided by
each individual component of the ensemble could
lead to considerable improvements.

Efficiency Analysis. The global planning mod-
ule requires six LLM calls (one for planning and
five for code generation) for each instance. As
shown in Table 2, most instances can be addressed
by applying global planning alone. For those re-
quiring additional iterative planning, we observe
that most instances can be addressed within two
iterations. This is shown in Appendix A.3). This
means most instances only require 15 LLM calls.7

Error Analysis. We manually analyze and sum-
marize error types among instances whose pre-
dicted answers are wrong by all four models in
both settings. This results in 96 instances in to-
tal. Around 50% of errors are caused by wrong
plan generation, which includes incorrect ques-
tion interpretation (e.g., selecting wrong features
for computing), failure to understand table seman-
tics (e.g., the column Tier 1 is the parent node
of the column Tier 2), and incorporating factual
or domain-specific knowledge (e.g., in basketball,
OREB stands for offensive rebounds, where the
ball is recovered by the offensive side and does not
change possession). Another 20% of the errors can
be attributed to incorrect semantic matching be-
tween questions and tables, e.g., the entities men-
tioned in the question might not exactly match the
entities in the tables. Using only the first two rows
of a table can exacerbate the problem of match-
ing semantically similar entities in a question and
a table, e.g., “books about computer science” in
the question and “Computer Science & Engineer-
ing” in the table. The challenge can be addressed
by utilizing more flexible row selection methods.
For instance, instead of passing the first two rows
where no category name of computer science is
shown, one can use semantic matching between a
question and rows to select the most relevant rows
that contain “Computer Science & Engineering”.

75*2=10 LLM calls for iterative planning. For code gen-
eration, only 5 LLM calls are needed since the last iteration
does not require tool calling and only returns a final answer.
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By doing this, the coding model is more likely to
generate correct filtering conditions. Similar ideas
have been explored in Chen et al. (2024). Due to
limited time, we leave this for future exploration.
Interestingly, fewer errors are caused by code gen-
eration and execution (10%) and most of them
can be solved by data cleaning beforehand, e.g.,
aligning the categories encoded in a categorical
header with the values in the column. This might
be because code about common table operations,
e.g., filtering, is easy to generate given clear tex-
tual instructions. Lastly, around 20% of the errors
come from question ambiguity. We provide error
examples for each category in Appendix A.4.

Takeaway Messages. Combining global and iter-
ative planning in TQA is effective and worth explor-
ing. Designing a good planner that understands ta-
ble semantics and has access to factual and domain-
specific knowledge is crucial. Ensembling different
models increases overall performance. Moreover,
how to select the best model/plans is decisive for
improving ensemble results.

7 Conclusion

In this paper, we introduce G-MACT, a pipeline
framework combining planning and tool use, de-
veloped for the SemEval-2025 Task 8. Our method
ranks 5th among all approaches using open-weight
models, with no training involved. We carefully
analyze our system in terms of the effectiveness of
each module, efficiency, and error patterns. We pro-
vide key insights for future work to address real-life
table question answering.
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Figure 4: Average iteration distribution over settings.

A Appendix

A.1 Prompts
We show prompts used for a planning agent in the
global and iterative planning modules in Figure 5
and Figure 6, respectively. We show prompts used
for a coding agent in the global and iterative plan-
ning modules in Figure 7 and Figure 8, respectively.
Lastly, we show the prompt used to select the best
plan in our ensemble method in Figure 9.

A.2 Data Statistics
Table 3 shows statistics about the test set of
DataBench.

A.3 Efficiency Analysis
We plot the number of steps required in the iterative
planning module to solve a question, averaging
over two settings in Figure 4.

A.4 Error Examples
We show four concrete examples of errors made
using G-MACT in Figure 10, 11, 12 and 13, with
each mapping an aforementioned category.
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You are an expert in analyzing table data and generate step-by-step plans to solve any questions related to long 
tables.
The following table only shows the first three rows of the table due to its large size.
Please generate a step-by-step plan to address the question, following the below requirement:
1. A plan should contain no more than 4 steps.
2. Each step should be in one line.
3. Return only the step-wise plan and nothing else.
4. No repetition of the plan.
Please return only a plan and nothing else.
Following are three examples:
Table: 
| rank | personName | age | finalWorth | category | source | country |…
| 1 | Elon Musk | 50.0 | 219000 | Automotive | Tesla, SpaceX | United States |…
| 2 | Jeff Bezos | 58.0 | 171000 | Technology | Amazon | United States ...
…[remaining 2665 rows unshown due to large table size]...
Context: Table caption: Forbes Billionaires 2022.
Question: How many billionaires are there from the 'Technology' category?
Plan: 1. I need to filter the table to get all billionaires from the 'Technology' category.
2: Then I need to count the number of retrieved entries.
3. The answer to the question is the number of retrieved entries in the second step, and I will return this value as 
the final answer.

Table: 
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...
Context: Table caption: NYC 311 Calls
Question: Mention the 2 most common weekdays for complaints.
Plan: 1. I need to count the frequency of each unique weekday in the column 'weekday_name'.
2. I will create an additional dataframe with two columns to store the results from the first step, with one column 
being the name of the weekday, and one being the frequency of that weekday.
3. I will sort the dataframe I made in step 2 in descending order.
4. The question asks 2 most common weekdays, this corresponds to the weekday values of the top two rows. I 
will retrieve the weekday values of the top two rows, store them in a list and return the list as the answer.

Table: 
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...

Context: Table caption: NYC Taxi Trips.
Question: Are there any trips with a total distance greater than 30 miles?
Plan: 1. I need to count the number of entries whose 'trip_distance' is larger than 30.
2. If the value from step 1 is larger than 0, then the answer is 'True', otherwise, it is 'False'.
3. I will create a variable name after 'final_result' to store the boolean answer and return the variable as final 
answer.

Now generate a plan for to address the following question and table. The plan should contain maximum 4 steps, 
with each step one line.
Table: {table}
Context: {context}
Question: {question} 

Figure 5: A prompt for a planning agent in the global planning module.Caption
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Solve a table question answering task with interleaving Thought, Action, Observation steps. Thought can reason about 
the current situation, and Action can be two types: 
(1) Operate[instruction], which carries out operations such as information retrieval or calculations based on the 
instruction and returns the retrieved or calculated results.
(2) Finish[answer], which returns the answer and finishes the task.
You may take as many steps as necessary.
Here are some examples:
Table:
| rank | personName | age | finalWorth | category | source | country |…
| 1 | Elon Musk | 50.0 | 219000 | Automotive | Tesla, SpaceX | United States |…
| 2 | Jeff Bezos | 58.0 | 171000 | Technology | Amazon | United States |...
…[remaining 2665 rows unshown due to large table size]...
Context: Table caption: Forbes Billionaires 2022.
Question: How many billionaires are there from the 'Technology' category?
Thought 1: I need to count the number of billionaires from the 'Technology' category.
Action 1: Operate[count the number of entries whose category is Technology ]
Observation 1: 343
Thought 2: In observation 1, 343 billionaires are from the 'Technology' category, therefore, the answer is 343.
Action 2: Finish[343]

Table: 
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...
Context: Table caption: NYC Taxi Trips.
Question: Are there any trips with a total distance greater than 30 miles?
Thought 1: I need to count the number of entries whose 'trip_distance' is larger than 30.
Action 1: Operate[count the number of entries whose 'trip_distance' is larger than 30.]
Observation 1: 0
Thought 2: In observation 1, there is 0 entry whose trip distance is larger than 30. Therefore, the answer is False.
Action 2: Finish[False]

Table: 
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...
Context: Table caption: NYC 311 Calls
Question: Mention the 2 most common weekdays for complaints.
Thought 1: I need to count the frequency of each unique weekday in the column 'weekday_name'.
Action 1: Operate[count the frequency of each unique weekday in the column 'weekday_name'.]
Observation 1: {'Tuesday': 15847, 'Monday': 15816, 'Wednesday': 15445, 'Thursday': 14978, 'Friday': 14707, 
'Saturday': 11781, 'Sunday': 11426}
Thought 2: The question ask for 2 most common weekdays. From observation 1, we find Tuesday and Monday have 
the largest frequencies and they are weekdays. Therefore, the answer is ["Tuesday", "Monday"]
Action 2: Finish[["Tuesday", "Monday"]]
(END OF EXAMPLES)
Now generating the Thought, Action, Observation for the following instance:
Table: 
{table}
Context: {context}
{question}
{scratchpad}"""

Figure 6: A prompt for a planning agent in the iterative planning module.
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You are an expert in python code generation. 
Write a python function named 'target_function' according to the given plan using pandas dataframe. 
The given dataframe shows only two records of the original data due to its large size. The main goal of showing the 
dataframe is to show the data type associated to each column. 
However, you should not operate any code based on the given dataframe, since it does not contain all information 
about the table. 
Below are two examples
Plan: 1. I need to filter the table to get all billionaires from the 'Technology' category.
2: Then I need to count the number of retrieved entries.
3. The answer to the question is the number of retrieved entries in the second step, and I will return this value as 
the final answer.
Dataframe code for the first two records: import pandas as pd
data={'rank':[1.0, 2.0],'personName':['Elon Musk', 'Jeff Bezos'],'age':[50.0, 58.0],'finalWorth':[219000.0, 
171000.0],'category':['Automotive', 'Technology'],'source':['Tesla, SpaceX', 'Amazon'],'country':['United States', 
'United States’],…}
df=pd.DataFrame(data)
Code: ```Python 
def target_function(dataframe): 
  # filter the table for 'Technology' as the category and count the number of the entries
  technology_entries_count = len(dataframe[dataframe['category'] == 'Technology])
  # return the result as final answer
  return technology_entries_count

```

Plan: 1. I need to retrieve the first five values from the 'Gold' columns.
2. To calculate the average number, I will sum the retrieved values and divide the sum by 5.
3. The answer to the question is the result from step 2. I will return that value as the final answer.
Dataframe code for the first two records: import pandas as pd
data={"Rank": ["1", "2"], "Nation": ["United States", "Jamaica"], "Gold": ["5", "4"], "Silver": ["6", "1"], "Bronze": ["5", 
"1"], "Total": ["16", "6"]}
df=pd.DataFrame(data)
Code: ```Python
def target_function(dataframe):
  # retrieve the top 5 gold medals values from the table
  top_5_medals = dataframe["Gold"].astype(int).tolist()[:5]
  # get the average number of the gold medal
  final_result = sum(top_5_medals) / 5
  # return the result
  return final_result

```
Now generate the python function according to the given plan.
Plan: {instruction}
Dataframe code for the first two records: {table_df}
Code: 

Figure 7: A prompt for a coding agent in the global planning module.
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According to the instruction, write a function named after 'target_function' in one python code block to perform 
calculations on a dataframe object. The given dataframe shows only two records of the original data due to its 
large size. However, you should be able to infer the data type based on the given dataframe. Return only the 
python function without any execution and do not use print statement in the code block.
Below are two examples:
Instruction: count the number of entries whose category is Technology
Dataframe code for the first two records: import pandas as pd
data={'rank':[1.0, 2.0],'personName':['Elon Musk', 'Jeff Bezos'],'age':[50.0, 58.0],'finalWorth':[219000.0, 
171000.0],'category':['Automotive', 'Technology'],'source':['Tesla, SpaceX', 'Amazon'],'country':['United States', 
'United States’],…]}
df=pd.DataFrame(data)
Code: ```Python
# Define the function to count entries with category "Technology" 
def target_function(dataframe): 
  technology_entries_count = len(dataframe[dataframe['category'] == 'Technology])
  return technology_entries_count

```

Instruction: calculate the average of gold medals for the top 5 nations.
Dataframe code for the first two records: import pandas as pd
data={"Rank": ["1", "2"], "Nation": ["United States", "Jamaica"], "Gold": ["5", "4"], "Silver": ["6", "1"], "Bronze": 
["5", "1"], "Total": ["16", "6"]}
df=pd.DataFrame(data)
Code: ```Python
# average number of gold medals for the top 5 nations in the dataframe
def target_function(dataframe):
  top_5_medals = dataframe["Gold"].astype(int).tolist()[:5]
  final_result = sum(top_5_medals) / 5
  return final_result

```
Now generate python code according to the following instruction.
Instruction: {instruction}
Dataframe code for the first two records: {table_df}
Code: 

Figure 8: A prompt for a coding agent in the iterative planning module.

Given a question, the first two rows of a table, and four plans to solve the question, determine 
which plan is the most promising in terms of solving the question. Return only "The best path is 
{s}", where s the integer id of a plan.

Figure 9: A prompt LLM-as-judge to select the best plan.

739



Question: List the 5 largest non-unique (they can be repeated) offering Ids.
Plan: 

1. Group the data by 'offering_id' and count the number of entries in each group.
2. Sort the groups in descending order based on the count.
3. Select the top 5 'offering_id' values.
4. Return the list of the top 5 'offering_id' values.

Code: 
Def target_function(dataframe):  

# Group the data by 'offering_id' and count the number of entries in each group 
offering_counts = dataframe.groupby('offering_id').size()
# Sort the groups in descending order based on the count 
sorted_offering_counts = offering_counts.sort_values(ascending=False) 
# Select the top 5 'offering_id' values 
top_5_offering_ids = sorted_offering_counts.head(5).index.tolist()
# Return the list of the top 5 'offering_id' values

   return top_5_offering_ids

Prediction: [82443, 84087, 93340, 93889, 94354]

ratings title text author date_stayed
offering
_id

num_he
lpful_vo
tes

date id via_mobile

{'service': 5.0, 
'cleanliness': 
5.0, 'overall'...

“Very nice 
experience 
for a 
country boy 
going ...

Being from a small 
town in Tennessee, I 
was ve...

{'username': 
'Tucker124', 
'num_reviews': 1, 'i...

October 
2010

111492 2
2010-10-25 
00:00:00+00:
00

84800976 False

{'service': 5.0, 
'cleanliness': 
5.0, 'overall'...

“Great 
Courtyard”

I stayed at this 
courtyard for 2 nights 
. Ever...

{'username': 
'bimbotrip', 
'num_reviews': 1, 'i...

October 
2009

108562 0
2009-10-14 
00:00:00+00:
00

46861760 False

…remaining 18 rows not shown…

. 

Figure 10: An example of planning agent error.

Question: Provide me with a list containing all the lengths of the books about computer science.
Plan: 

1. Filter the table to include only rows where the 'Category' is 'Computer Science‘. 
2. Extract the 'Book Length (Pages)' values from the filtered rows.
3. Compile these values into a list.
4. Return the list as the final answer.

Code: 
Def target_function(dataframe):  
    # Filter the table to include only rows where the 'Category' is 'Computer Science'  
    filtered_df = dataframe[dataframe['Category'] == 'Computer Science']  
    # Extract the 'Book Length (Pages)' values from the filtered rows 
    book_lengths = filtered_df['Book Length (Pages)'].tolist()  
   # Return the list of book lengths as the final answer  
   return book_lengths

Prediction: []

Book Title Author Category
Price 
(TK)

Stock 
Status

Copies 
Left

Book 
Length 
(Pages)

Edition Publication
Wished 
Users

Discount 
Offer

Ratings Reviews

Sapiens A 
Brief 

History Of 
Humankind

Yuval Noah 
Harari

History and 
Tradition

1.258 In Stock 4.0 498 1st Published
Vintage Books 

(India)
386.0 Yes 39.0 16.0

The 
Intelligent 
Investor

Benjamin 
Graham

Business, 
Investment 

and 
Economics

1.598 In Stock 6.0 640
8th 

Impression

Harpercollins 
Publishers 

(India)
531.0 Yes 30.0 25.

…remaining 18 rows not shown…

Figure 11: An example of semantic matching error.

740



Question: List highest 3 different revenues a given transaction has yielded? 
Plan: 

1. Group the table by 'transaction_id' and calculate the sum of 'Revenue' for each group.
2. Sort the grouped table in descending order by the sum of 'Revenue’.
3. Select the top 3 unique 'Revenue' values from the sorted table.
4. Return the list of the top 3 different revenues."

Code: 
Def target_function(dataframe):  

# Remove the dollar sign and comma from 'Revenue' and convert to float
dataframe['Revenue'] = dataframe['Revenue'].str.replace(',', '').str.replace('US$', '').astype(float)
# Group the dataframe by 'transaction_id' and calculate the sum of 'Revenue' for each group
grouped_revenue = dataframe.groupby('transaction_id')['Revenue'].sum().reset_index()
# Sort the grouped dataframe in descending order by 'Revenue’
sorted_revenue = grouped_revenue.sort_values(by='Revenue', ascending=False)
# Select the top 3 unique 'Revenue' values
top_3_revenues = sorted_revenue['Revenue'].unique()[:3]
# Return the list of the top 3 different revenues

       return top_3_revenues.tolist()

Prediction: [900.0, 700.0, 620.0] 

transaction_
id

transaction_
qty

store_id
store_loca
tion

product_
id

unit_p
rice

product_ca
tegory

product_type product_detail Revenue Month Month_1 Weekday
Weekd
ay_1

Hour 

1 2 5
Lower 
Manhatta
n

32 3.00 Coffee
Gourmet 
brewed coffee

Ethiopia Rg 6,00 US$ 1 Jan 7 Sun 7

2 2 5
Lower 
Manhatta
n

57 3.10 Tea Brewed Chai tea
Spicy Eye 
Opener Chai Lg

6,20 US$ 1 Jan 7 Sun 7

…remaining 18 rows not shown…

. 

Figure 12: An example of code generation error.

Question: List the 5 most common ages of our employees. 
Answer:  [38, 32, 29, 36, 22] 
Prediction: [38, 29, 32, 41, 49]
Frequency of each Age (code executed):  {32: 2, 38: 2, 29: 2, 41: 1, 49: 1, 37: 1, 33: 1, 27: 1, 
59: 1, 30: 1, 36: 1, 35: 1, 31: 1, 34: 1, 28: 1, 22: 1, 53: 1} 

Age Attrition BusinessTravel DailyRate Department DistanceFromHome
…29 columns 

unshown…

41 Yes Travel_Rarely 1102 Sales 1 …

49 No Travel_Frequently 279
Research & 

Development
8 …

...18 rows unshown…

Figure 13: An example of an ambiguous question
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TL #Q #QT #Row #Col #A
Bool Ctg Num [Ctg] [Num]

066_IBM_HR 39 10.0 1470 35 9 7 10 6 7
067_TripAdvisor 29 11.3 20000 10 9 1 13 3 3

068_WorldBank_Awards 34 12.4 239461 20 8 7 7 6 6
069_Taxonomy 35 12.5 703 8 9 7 8 8 3

070_OpenFoodFacts 29 10.8 9483 11 8 5 8 5 3
071_COL 36 12.7 121 8 8 7 8 6 7

072_Admissions 39 13.8 500 9 9 0 17 0 13
073_Med_Cost 32 10.5 1338 7 10 7 9 2 4

074_Lift 35 11.2 3000 5 9 4 10 6 6
075_Mortality 29 11.4 3000 5 9 4 10 6 6

076_NBA 36 13.0 8835 30 8 7 9 7 5
077_Gestational 31 13.0 1012 7 8 0 14 0 9

078_Fires 39 12.1 517 15 9 4 12 7 7
079_Coffee 38 12.5 149116 15 9 8 9 6 6
080_Books 41 12.9 40 13 8 5 14 7 7

DataBench_test 522 12.0 29066.4 13.3 129 74 156 72 91

Table 3: Statistics of DataBench test set. We present the names of each table in the TL column. #Q and #QT show
and numbers of questions and the averaged numbers of question tokens (separated by white space) respectively.
#Row and #Col show the averaged numbers of table rows and columns respectively. #A shows the numbers of
answers. We categorize answer types into Boolean (Bool), Category (Ctg), Number (Num), a list of categorical
values ([Ctg]) and a list of numerical values ([Num]) following Osés-Grijalba et al. (2025).
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