
Proceedings of the The 19th International Workshop on Semantic Evaluation (SemEval-2025), pages 726–742
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

G-MACT at SemEval-2025 Task 8: Exploring Planning and Tool Use
in Question Answering over Tabular Data

Wei Zhou1,2 Mohsen Mesgar1 Annemarie Friedrich2 Heike Adel3
1Bosch Center for Artificial Intelligence, Renningen, Germany

2University of Augsburg, Germany 3Hochschule der Medien, Stuttgart, Germany
{wei.zhou|mohsen.mesgar}@de.bosch.com

annemarie.friedrich@uni-a.de adel-vu@hdm-stuttgart.de

Abstract

This paper describes our system submitted to
SemEval-2025 Task 8 “Question Answering
over Tabular Data.” The shared task focuses
on tackling real-life table question answering
(TQA) involving extremely large tables with
the additional challenges of interpreting com-
plex questions. To address these issues, we
leverage a framework of Multi-Agent Collab-
oration with Tool use (MACT), a method that
combines planning and tool use. The planning
module breaks down a complex question by de-
signing a step-by-step plan. This plan is trans-
lated into Python code by a coding model, and
a Python interpreter executes the code to gener-
ate an answer. Our system demonstrates com-
petitive performance in the shared task and is
ranked 5th out of 38 in the open-source model
category. We provide a detailed analysis of our
model, evaluating the effectiveness and the ef-
ficiency of each component, and identify com-
mon error patterns. Our paper offers essential
insights and recommendations for future ad-
vancements in developing TQA systems.

1 Introduction

Table question answering (TQA) focuses on ad-
dressing questions related to tables. It has been
widely studied across domains (Zhu et al., 2021;
Lu et al., 2023; Katsis et al., 2022) and languages
(Zheng et al., 2023; Pal et al., 2024; Jun et al.,
2022). Current TQA datasets predominantly fea-
ture tables from Wikipedia (Pasupat and Liang,
2015; Zhang et al., 2023), resulting in an over-
simplified task setup characterized by small, clean
tables with limited diversity in data types. To
promote studies in real-life TQA, Osés-Grijalba
et al. (2025) propose DataBench, an English TQA
dataset consisting of 65 tables and around 1300
manually created questions spanning various do-
mains. Based on this dataset, the SemEval-2025
Task 8 “Question Answering over Tabular Data”

encourages TQA modeling in a more realistic and
challenging setup. It consists of two subtasks: ALL,
where original long tables are used and LITE, in
which only the first 20 rows of a table are used.

There are two main challenges in the task: (1) the
large table size makes direct inference using large
language models (LLMs) difficult due to their lim-
ited input lengths and problems of being lost in
the middle (Liu et al., 2024). (2) The complexity
of questions requires multiple steps to be solved.
For instance, to answer the question in Figure 1,
a system should first filter for employees who are
working in sales and then calculate the average of
working years among those employees.

To address these challenges, we propose G-
MACT, a method combining Global planning with
Multi-Agent Collaboration with Tool use (Zhou
et al., 2025). G-MACT comprises two modules:
a global and an iterative planning module. The
global planning module takes in the first several
rows of a table alongside a question, and generates
a step-by-step plan. By doing this, we break down
a complex question into easier sub-steps. A coding
agent translates this plan into pandas-based Python
code,1 which is executed using a Python interpreter
to derive an answer.

Despite being efficient, the global planning mod-
ule may encounter difficulties in formulating an
optimal plan when it relies solely on a partial table
and a question. To enhance the robustness of plan
generation by conditioning it also on past observa-
tions, we apply the iterative planning framework
MACT whenever the global planning module does
not yield an answer. The framework generates one
step of a plan in each iteration, considering past
steps and observations. We ensemble results from
four models for our final submission. Our method
ranks 5th among 38 open-weight systems in the
challenging ALL setup.

1https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.html

726

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Planning
Agent Mp

Q: What is the average number of total
working years for employees who are
working in Sales?

a1: Operate[Retrieve the rows where the
department is Sales.]

o1:

Age department ...

41 Sales ...

49 Research & Development ...

a1(1), ..., a1(k)

1. Action
Generation 2. Action

Selection

5. Memory State
Update

a1: Intent [Instruction]
a1: Operate [Retrieve the rows

where the department is Sales.]

4. Observation
Computation

def func (df):
...

exec

A

Memory S

Age Department ...

41 Sales ...

35 Sales ...

Global planning

remaining 1468 rows not shown due to
large table size

1. Filter for rows where the 'Department' is 'Sales'.

2. Extract the working years from the filtered rows.

3. Calculate the average of the extracted values.

3. Code
generation

and Tool Use

... (444 further rows) ...

Age Department ...

41 Sales ...

35 Sales ...

o1:

... (444 further rows) ...

Coding
Agent Mc

Figure 1: G-MACT illustration. It leverages both global planning (shown in purple) and iterative planning (shown in
orange).Iterative planning is applied if Python fails to compile and no answer is obtained.

We thoroughly analyze G-MACT from three per-
spectives: effectiveness of the global and iterative
planning modules, efficiency, as well as error pat-
terns. We find that most instances in DataBench
can be solved by global planning and tool use alone.
However, the iterative planning module proves es-
sential for instances where global planning fails
to yield an answer. Additionally, our findings un-
derscore the significance of selecting an optimal
ensemble method. We observe for around 91% of
the cases, at least one model predicted the correct
answer, while the ensemble method used in our
approach only achieves around 86% of exact match
(EM) accuracy. This discrepancy highlights a clear
need for exploring more sophisticated ensembling
techniques. Lastly, through an error analysis, we
find that developing a good planning agent that
can understand table semantics and has access to
factual and domain-specific knowledge is of vital
importance for further enhancing a model’s perfor-
mance. We make our system publicly available.2

2 Related Work

The main methodologies used by G-MACT are
planning and tool use. Both have been employed
in TQA to facilitate more fine-grained problem
solving, thus improving model performance (Zhao
et al., 2024; Wu and Feng, 2024; Zhou et al., 2025;
Wang et al., 2024). Current research either utilizes
global planning (Zhao et al., 2024) or iterative plan-
ning (Wang et al., 2024; Zhou et al., 2025). Global
planning involves generating a plan consisting of
multiple steps in a single iteration, conditioned
solely on a question and a table. Iterative planning
conditions the generation of the next step of a plan

2https://github.com/boschresearch/MACT

on previous observations and steps. While global
planning tends to be more efficient, iterative plan-
ning offers more fine-grained plan generation. In
G-MACT, we integrate both planning methods.

3 System Overview

Given a table T and a question Q, a TQA sys-
tem aims to address Q and return an answer A.
Our proposed system G-MACT combines global
planning with the iterative approach of multi-agent
collaboration with tool use (Zhou et al., 2025) in a
pipeline manner as illustrated in Figure 1. In this
section, we introduce the global planning module,
the iterative planning module, and the ensemble
method used to create the submission results.

3.1 Global Planning

Our global planning module comprises a planning
agent Mp and a coding agent Mc with a Python
interpreter. As shown in Figure 1, Mp takes in
the first two rows of a table and a question, then
generates a step-by-step plan. This can be repre-
sented as: P ∼ Mp(P |Q,T ′, ϕp, τp), where T ′

is a subpart of a table. ϕp and τp are the prompt
(provided in A.1) and the temperature of the LLM
used for Mp, respectively. We pass only the first
two rows of a table because (1) LLMs have been
shown to struggle with long tables (Zhou et al.,
2024) and (2) plan generation requires mainly in-
formation about the table columns and data types,
which can be derived from the columns and first
two rows of the table. We utilize in-context learn-
ing to prompt Mp to generate a step-by-step plan,
providing instructions to solve a question, without
intermediate results. An example is shown in the
purple box of Figure 1. Given a plan P , a cod-

727

https://github.com/boschresearch/MACT

ing agent Mc generates Python code using pandas:
ci ∼ Mc(ci|P, T ′, Q, ϕc, τc). We sample k times
from Mc to increase the robustness of the system
against generated syntax errors, resulting in a set
of code snippets C = {cni }n≤k. A Python inter-
preter is run on each ci, creating a set of executed
solutions Â = {âni }n≤k . The final answer A is the
most frequent answer in Â.

3.2 Iterative Planning

The global planning module can be very efficient
since each question requires only one LLM call to
generate a plan. However, it is still possible that
no prediction is given by the module, namely if no
code generated from Mc is successfully executed.
To mitigate the impact of failed execution, we re-
sort to an iterative planning module if no answer is
given by the global planning module. The design of
the module is based on MACT (Zhou et al., 2025).
The framework takes in a TQA problem, i.e., a full
table and a question, and returns a prediction. This
is achieved by breaking down a complex problem
into fine-grained steps and addressing each step
with two agents (a planning Mp, a coding agent
Mc) and a toolset. Zhou et al. (2025) define each
step as an intent and an instruction. An intent en-
codes the purpose of a step and the instruction
provides detailed specifications of the intent. For
addressing each step, Mp and Mc perform two lay-
ers of collaboration: (1) Mc takes in instructions
given by Mp for code generation. (2) The final
step solution is determined as the most frequent
result from {ôni }n≤k ∪ Ĉ, where {ôni }n≤k are step
solutions generated by Mp and Ĉ is based on ex-
ecuting Python code generated by Mc. Note that
in MACT, the generation of a next step depends on
previous steps, thus being iterative and more com-
putationally expensive. To boost efficiency, MACT
features an efficiency optimization module, where
simple questions are directly answered by Mp with-
out going into the iterative loop. Zhou et al. (2025)
approximate question complexity by the confidence
of Mp in directly solving a TQA problem: a con-
fident model will output more agreed predictions
and this suggests the problem is less complex.

We adapt MACT for the shared task as follows:
(1) MACT requires a whole table as input. As this
is not possible with large tables, we only pass the
first two rows for each step and code generation.
Accordingly, we adapt the prompts for Mp and Mc

used in the iterative planning module. These are

presented in Appendix A.1. (2) We remove the
efficiency module in MACT. This module requires
a full table to generate the final answer. In our case,
since only the first two table rows are passed to the
system, the answer predicted by the efficiency mod-
ule cannot be trusted. (3) We remove the layer of
collaboration where step solutions are determined
by both Mp and Mc and select the most frequent
observation from Ĉ, as step solutions generated
by Mp might not be correct given only two table
rows. (4) We merge the intent Retrieve and Calcu-
late into Operate to increase efficiency since both
use Python and Mc in this case. We remove intents
Search and Read where Wikipedia search and LLM
extraction over texts happen, as DataBench does
not have additional text input and does not feature
open-domain TQA. If no answer is obtained from
the iterative planning module, we return none as
the final answer.

3.3 Ensemble Method
For our submissions, we ensemble results from
four different Mp and one Mc. Since each Mp and
Mc combination yields an answer A for a TQA
instance, we have four predictions for an instance.
We design our ensemble method as a combina-
tion of self-consistency (sc)(Wang et al., 2023) and
LLM-as-judge (Yao et al., 2023): If more than 60%
of the predicted answers are the same, we use the
most agreed answer as the final answer (sc). If less
than 60% of the predicted answers are the same,
we prompt an LLM to select the most reasonable
plan. Prompts can be found in Appendix A.1. The
corresponding answer obtained by executing the
selected plan is chosen as the final answer.

4 Experimental Setup

We present details on our experimental setup.

Data and Evaluation. DataBench (Osés-
Grijalba et al., 2025) includes 65 English tables
from diverse domains, with an average of over
3,200 rows and 1,600 columns. Each table is
accompanied by more than 20 manually created
questions, resulting in approximately 1,300
questions in total. The questions vary in terms of
answer types including boolean, category, number,
list[category], and list[number]. We use only the
test set of DataBench, which contains 15 tables
and 522 questions. Detailed statistics are presented
in Appendix A.2. We use exact match (EM) as
evaluation metric, which counts the percentages of

728

Models
ALL LITE

Avg Bool Ctg Num [ctg] [num] Avg Bool Ctg Num [ctg] [num]

522 129 74 156 72 91 522 129 74 156 72 91

Qwen-2 (72B) 80.1 89.1 75.7 81.4 69.4 76.9 78.5 89.1 77.0 78.8 66.7 73.6
Deepseek (14B) 81.6 88.4 81.1 85.3 69.4 75.8 81.8 86.8 79.7 84.6 72.2 79.1
Mistral (13B) 75.5 89.1 70.3 77.6 56.9 71.4 78.0 87.6 73.0 81.4 69.4 69.2
LlaMA-3 (8B) 70.1 89.1 66.2 67.3 59.7 59.3 74.7 90.7 74.3 76.3 61.1 60.4

Ensemble 86.0 91.5 82.4 78.2 73.6 80.2 84.5 89.1 86.5 85.9 73.6 82.4

Table 1: Exact Match of G-MACT using different models as the planning agent in terms of answer category. Ctg and
Num stand for category and number, respectively. [x] refers to a list with items of type x. We report the instance
number of each answer type at the top part of the table.

predicted and reference answers that match exactly.
We use the official evaluation scripts provided by
Osés-Grijalba et al. (2025).

Models and Parameters. We use four dif-
ferent LLMs as planning agents: Qwen-2-int4
(72B) (Yang et al., 2024a), Mistral Nemo (13B),3

Deepseek-R1-distill-Qwen (14B) (DeepSeek-AI
et al., 2025), and LlaMA 3 (8B) (Dubey et al.,
2024). As coding agent, we use Qwen-2.5-coder
(32B) (Yang et al., 2024b). This results in four
possible pairs of planning and coding agents. We
set the sampling number k to 5. The temperature
is set to 0.6. To speed up inference, we use vllm4

to run Mp. Mc is deployed with SGLang.5 We
use Deepseek-R1-distll-Qwen (32B) (Yang et al.,
2024b) as the judge to choose the best plan in the
ensemble method.

Baselines. We compare G-MACT with top four
systems in the open-weight model category in
SemEval-2024 Task 8, with a focus on the more
challenging ALL setup. In addition, we compare
our method with the baseline reported by Osés-
Grijalba et al. (2025), where stable-code6 is used
to generate code and a Python interpreter executes
the code to obtain an answer.

5 Results

Figure 2 shows the performance of G-MACT com-
pared with top four systems and the baseline re-
ported in Osés-Grijalba et al. (2025) for the more
challenging ALL setup. Our ensemble model out-
performs the baseline method by a large margin.
However, there is still a gap between our method
and the best-performing system in the shared task.

3https://mistral.ai/news/mistral-nemo/
4https://github.com/vllm-project/vllm
5https://github.com/sgl-project/sglang
6https://huggingface.co/TheBloke/

stable-code-3b-GGUF

20 40 60 80 100

Tele AI

SRPOL AIS

AILS-NTUA

HITSZ-HLT

G-MACT

Baseline

95

90

87

87

86

26

EM (%)

m
o
d
el

Figure 2: Comparing G-MACT with top four systems
in the open-weight model category in the ALL setup.
We also report baselines (ranked 33) provided by Osés-
Grijalba et al. (2025). The red dotted line (72.4) indi-
cates the median performance.

Table 1 shows results using different planning
models in ALL and LITE settings (see columns title
Avg). We find: (1) Ensemble results from different
models improve overall performances. (2) Using
Deepseek-Distill-Qwen (14B) as planning agent
leads to the best results among individual planning-
coding agent pairs. This might be attributed to the
model’s recency, its training mechanism, and its
pretraining data (DeepSeek-AI et al., 2025). When
looking at break-down results in terms of answer
categories, we find that for almost all models and
settings, questions that require a list of categori-
cal values as answers pose the biggest challenges.
This is followed by questions that ask for a list of
numbers as answers. In contrast, questions with
boolean answers are the easiest. Osés-Grijalba et al.
(2025) report similar observations. This suggests
that multi-value prediction poses unique challenges
to current TQA systems.

6 Analysis and Discussion

We analyze G-MACT in terms of planning, ensem-
bling, efficiency, and errors, and summarize key
insights for future studies.

729

https://mistral.ai/news/mistral-nemo/
https://github.com/vllm-project/vllm
https://github.com/sgl-project/sglang
https://huggingface.co/TheBloke/stable-code-3b-GGUF
https://huggingface.co/TheBloke/stable-code-3b-GGUF

ALL LITE
EM Global% EM Global%

Global 76.4 100 77.8 100
Iterative 64.2 0 63.4 0
Both 81.6 91.0 81.8 92.0

Table 2: Exact Match (EM) of each single module
and combined, as well as the percentages of instances
addressed by using the global planning module with
Deepseek-Distill-Qwen (14B) as the planning agent.

ALL LITE

80%

85%

90%

81.8
82.6

80.5

82

86

84.5

90.8 90.8

E
M

sc llm sc-llm oracle

Figure 3: Exact Match (EM) of using different ensemble
methods. sc=self-consistency. llm=LLM-as-a-judge.
oracle=an ensemble method that always selects correct
answers as final predictions if there are any.

Effectiveness of Global/Iterative Planning. To
assess the effectiveness of the global/iterative plan-
ning modules, we experiment with using each mod-
ule independently. We also calculate the propor-
tion of instances that are successfully addressed by
only applying the global planning module. These
are shown in Table 2. Results are obtained using
Deepseek-Distill-Qwen (14B) model, as it demon-
strates the best overall performances in both ALL

and LITE settings among investigated planning
models. We find that most instances can be ad-
dressed using only the global planning module.
However, incorporating the iterative module sig-
nificantly enhances performance by 9.6% and 6.7%
in the ALL and LITE settings, respectively. This
proves the effectiveness of combining both mod-
ules. Despite these gains, we observe that the itera-
tive planning module alone results in lower perfor-
mances compared to the global planning approach.

Ensemble Methods. We report EM achieved by
our ensemble method combining sc and LLM-as-
judge, as well as each individual method in Figure
3. We present an EM upper bound of ensembling

the four models, which is calculated as the percent-
age of correct answers in any of the four models’
predictions. We find that combining both sc and
LLM-as-judge leads to better results than using
them alone. However, there is still a gap between
our ensemble method and the potential best en-
semble approach (oracle), indicating that a better
confidence estimation for the answers provided by
each individual component of the ensemble could
lead to considerable improvements.

Efficiency Analysis. The global planning mod-
ule requires six LLM calls (one for planning and
five for code generation) for each instance. As
shown in Table 2, most instances can be addressed
by applying global planning alone. For those re-
quiring additional iterative planning, we observe
that most instances can be addressed within two
iterations. This is shown in Appendix A.3). This
means most instances only require 15 LLM calls.7

Error Analysis. We manually analyze and sum-
marize error types among instances whose pre-
dicted answers are wrong by all four models in
both settings. This results in 96 instances in to-
tal. Around 50% of errors are caused by wrong
plan generation, which includes incorrect ques-
tion interpretation (e.g., selecting wrong features
for computing), failure to understand table seman-
tics (e.g., the column Tier 1 is the parent node
of the column Tier 2), and incorporating factual
or domain-specific knowledge (e.g., in basketball,
OREB stands for offensive rebounds, where the
ball is recovered by the offensive side and does not
change possession). Another 20% of the errors can
be attributed to incorrect semantic matching be-
tween questions and tables, e.g., the entities men-
tioned in the question might not exactly match the
entities in the tables. Using only the first two rows
of a table can exacerbate the problem of match-
ing semantically similar entities in a question and
a table, e.g., “books about computer science” in
the question and “Computer Science & Engineer-
ing” in the table. The challenge can be addressed
by utilizing more flexible row selection methods.
For instance, instead of passing the first two rows
where no category name of computer science is
shown, one can use semantic matching between a
question and rows to select the most relevant rows
that contain “Computer Science & Engineering”.

75*2=10 LLM calls for iterative planning. For code gen-
eration, only 5 LLM calls are needed since the last iteration
does not require tool calling and only returns a final answer.

730

By doing this, the coding model is more likely to
generate correct filtering conditions. Similar ideas
have been explored in Chen et al. (2024). Due to
limited time, we leave this for future exploration.
Interestingly, fewer errors are caused by code gen-
eration and execution (10%) and most of them
can be solved by data cleaning beforehand, e.g.,
aligning the categories encoded in a categorical
header with the values in the column. This might
be because code about common table operations,
e.g., filtering, is easy to generate given clear tex-
tual instructions. Lastly, around 20% of the errors
come from question ambiguity. We provide error
examples for each category in Appendix A.4.

Takeaway Messages. Combining global and iter-
ative planning in TQA is effective and worth explor-
ing. Designing a good planner that understands ta-
ble semantics and has access to factual and domain-
specific knowledge is crucial. Ensembling different
models increases overall performance. Moreover,
how to select the best model/plans is decisive for
improving ensemble results.

7 Conclusion

In this paper, we introduce G-MACT, a pipeline
framework combining planning and tool use, de-
veloped for the SemEval-2025 Task 8. Our method
ranks 5th among all approaches using open-weight
models, with no training involved. We carefully
analyze our system in terms of the effectiveness of
each module, efficiency, and error patterns. We pro-
vide key insights for future work to address real-life
table question answering.

Acknowledgments

This work was partially supported by the EU
Project SMARTY (GA 101140087).

References
Si-An Chen, Lesly Miculicich, Julian Martin Eisen-

schlos, Zifeng Wang, Zilong Wang, Yanfei Chen,
Yasuhisa Fujii, Hsuan-Tien Lin, Chen-Yu Lee, and
Tomas Pfister. 2024. Tablerag: Million-token table
understanding with language models.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao
Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xi-
aokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin
Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin
Liu, Bing Xue, Bing-Li Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng,

Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao,
Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei
Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu,
Junlong Li, Jiong Cai, Jiaqi Ni, Jian Liang, Jin Chen,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang
Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia,
Mingchuan Zhang, Minghua Zhang, M. Tang, Meng
Li, Miaojun Wang, Mingming Li, Ning Tian, Pan-
pan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe
Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shao-
Kang Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang,
Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang,
W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang,
Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu,
Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyu Jin,
Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaox-
iang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan
Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia
He, Yunfan Xiong, Yu-Wei Luo, Yu mei You, Yux-
uan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang,
Yao Li, Yi Zheng, Yuchen Zhu, Yunxiang Ma, Ying
Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren,
Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhen
guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan,
Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang,
Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Au-
rélien Rodriguez, Austen Gregerson, Ava Spataru,
Bap tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Cantón Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Raden-
ovic, Frank Zhang, Gabriele Synnaeve, Gabrielle

731

http://arxiv.org/abs/2410.04739
http://arxiv.org/abs/2410.04739
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:275789950

Lee, Georgia Lewis Anderson, Graeme Nail, Gré-
goire Mialon, Guanglong Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-
abel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade
Copet, Jaewon Lee, Jan Laurens Geffert, Jana Vranes,
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya
Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Ji-
awen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
Spisak, Jongsoo Park, Joseph Rocca, Joshua John-
stun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Al-
wala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591
neth Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla,
Lauren Rantala-Yeary, Laurens van der Maaten,
Lawrence Chen, Liang Tan, Liz Jenkins, Louis Mar-
tin, Lovish Madaan, Lubo Malo, Lukas Blecher,
Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Babu Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Mathew Oldham, Mathieu
Rita, Maya Pavlova, Melissa Hall Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri S. Chat-
terji, Olivier Duchenne, Onur cCelebi, Patrick Al-
rassy, Pengchuan Zhang, Pengwei Li, Petar Vasić, Pe-
ter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen
Krishnan, Punit Singh Koura, Puxin Xu, Qing He,
Qingxiao Dong, Ragavan Srinivasan, Raj Gana-
pathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohit Girdhar,
Rohit Patel, Ro main Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabas-
appa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Chandra Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu,
Wenhan Xiong, Wenyin Fu, Whit ney Meers, Xavier
Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zhengxu Yan, Zhengx-
ing Chen, Zoe Papakipos, Aaditya K. Singh, Aaron
Grattafiori, Abha Jain, Adam Kelsey, Adam Shajn-
feld, Adi Gangidi, Adolfo Victoria, Ahuva Gold-
stand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan,
Ankit Ramchandani, Annie Franco, Aparajita Saraf,
Arkabandhu Chowdhury, Ashley Gabriel, Ashwin

Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau
James, Ben Maurer, Ben Leonhardi, Po-Yao (Bernie)
Huang, Beth Loyd, Beto De Paola, Bhargavi Paran-
jape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,
Bram Wasti, Brandon Spence, Brani Stojkovic, Brian
Gamido, Britt Montalvo, Carl Parker, Carly Burton,
Catalina Mejia, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris
Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-
land, Edward Dowling, Eissa Jamil, Elaine Mont-
gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzm’an,
Frank J. Kanayet, Frank Seide, Gabriela Medina
Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Govind Thattai, Grant Herman,
Grigory G. Sizov, Guangyi Zhang, Guna Lakshmi-
narayanan, Hamid Shojanazeri, Han Zou, Hannah
Wang, Han Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Igor
Molybog, Igor Tufanov, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff
Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizen-
stein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi
Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg,
Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan
Saxena, Karthik Prasad, Kartikay Khandelwal, Katay-
oun Zand, Kathy Matosich, Kaushik Veeraragha-
van, Kelly Michelena, Keqian Li, Kun Huang, Ku-
nal Chawla, Kushal Lakhotia, Kyle Huang, Lailin
Chen, Lakshya Garg, A Lavender, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,

732

Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy
Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Sung-Bae Cho, Sunny Virk, Suraj Subramanian,
Sy Choudhury, Sydney Goldman, Tal Remez, Tamar
Glaser, Tamara Best, Thilo Kohler, Thomas Robin-
son, Tianhe Li, Tianjun Zhang, Tim Matthews, Timo-
thy Chou, Tzook Shaked, Varun Vontimitta, Victoria
Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Andrei
Poenaru, Vlad T. Mihailescu, Vladimir Ivanov, Wei
Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xia Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. ArXiv, abs/2407.21783.

Changwook Jun, Jooyoung Choi, Myoseop Sim, Hyun
Kim, Hansol Jang, and Kyungkoo Min. 2022.
Korean-specific dataset for table question answering.
In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 6114–6120, Mar-
seille, France. European Language Resources Asso-
ciation.

Yannis Katsis, Saneem Chemmengath, Vishwajeet Ku-
mar, Samarth Bharadwaj, Mustafa Canim, Michael
Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen,
Karthik Sankaranarayanan, and Soumen Chakrabarti.
2022. AIT-QA: Question answering dataset over
complex tables in the airline industry. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Industry
Track, pages 305–314, Hybrid: Seattle, Washington
+ Online. Association for Computational Linguistics.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Xinyuan Lu, Liangming Pan, Qian Liu, Preslav Nakov,
and Min-Yen Kan. 2023. SCITAB: A challenging
benchmark for compositional reasoning and claim
verification on scientific tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 7787–7813, Singapore.
Association for Computational Linguistics.

Jorge Osés-Grijalba, Luis Alfonso Ureña-López, Euge-
nio Martínez Cámara, and Jose Camacho-Collados.
2025. SemEval-2025 task 8: Question answering
over tabular data. In Proceedings of the 19th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2025), Vienna, Austria. Association for Computa-
tional Linguistics.

Vaishali Pal, Evangelos Kanoulas, Andrew Yates, and
Maarten de Rijke. 2024. Table question answering
for low-resourced Indic languages. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 75–92, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
ICLR.

Zirui Wu and Yansong Feng. 2024. ProTrix: Building
models for planning and reasoning over tables with
sentence context. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
4378–4406, Miami, Florida, USA. Association for
Computational Linguistics.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024a. Qwen2 technical
report. ArXiv, abs/2407.10671.

Qwen An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-
yang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin
Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu
Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan,

733

https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://aclanthology.org/2022.lrec-1.657/
https://doi.org/10.18653/v1/2022.naacl-industry.34
https://doi.org/10.18653/v1/2022.naacl-industry.34
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2023.emnlp-main.483
https://doi.org/10.18653/v1/2024.emnlp-main.5
https://doi.org/10.18653/v1/2024.emnlp-main.5
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://doi.org/10.18653/v1/2024.findings-emnlp.253
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307

and Zekun Wang. 2024b. Qwen2.5 technical report.
ArXiv, abs/2412.15115.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of Thoughts: Deliberate
problem solving with large language models.

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou.
2023. CRT-QA: A dataset of complex reasoning
question answering over tabular data. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2131–2153,
Singapore. Association for Computational Linguis-
tics.

Yilun Zhao, Lyuhao Chen, Arman Cohan, and Chen
Zhao. 2024. TaPERA: Enhancing faithfulness and in-
terpretability in long-form table QA by content plan-
ning and execution-based reasoning. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12824–12840, Bangkok, Thailand. Association
for Computational Linguistics.

Mingyu Zheng, Yang Hao, Wenbin Jiang, Zheng Lin,
Yajuan Lyu, QiaoQiao She, and Weiping Wang. 2023.
IM-TQA: A Chinese table question answering dataset
with implicit and multi-type table structures. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 5074–5094, Toronto, Canada. Associ-
ation for Computational Linguistics.

Wei Zhou, Mohsen Mesgar, Heike Adel, and Annemarie
Friedrich. 2024. FREB-TQA: A fine-grained robust-
ness evaluation benchmark for table question answer-
ing. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pages 2479–2497,
Mexico City, Mexico. Association for Computational
Linguistics.

Wei Zhou, Mohsen Mesgar, Annemarie Friedrich, and
Heike Adel. 2025. Efficient multi-agent collabora-
tion with tool use for online planning in complex
table question answering.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

734

https://api.semanticscholar.org/CorpusID:274859421
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2024.acl-long.692
https://doi.org/10.18653/v1/2023.acl-long.278
https://doi.org/10.18653/v1/2023.acl-long.278
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2024.naacl-long.137
https://doi.org/10.18653/v1/2024.naacl-long.137
http://arxiv.org/abs/2412.20145
http://arxiv.org/abs/2412.20145
http://arxiv.org/abs/2412.20145
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254

0 20 40 60 80 100

Qwen-2

Deepseek-Distill

Mistral-Nemo

LlaMA-3

percentage

m
o
d
el

3 2 1

Figure 4: Average iteration distribution over settings.

A Appendix

A.1 Prompts
We show prompts used for a planning agent in the
global and iterative planning modules in Figure 5
and Figure 6, respectively. We show prompts used
for a coding agent in the global and iterative plan-
ning modules in Figure 7 and Figure 8, respectively.
Lastly, we show the prompt used to select the best
plan in our ensemble method in Figure 9.

A.2 Data Statistics
Table 3 shows statistics about the test set of
DataBench.

A.3 Efficiency Analysis
We plot the number of steps required in the iterative
planning module to solve a question, averaging
over two settings in Figure 4.

A.4 Error Examples
We show four concrete examples of errors made
using G-MACT in Figure 10, 11, 12 and 13, with
each mapping an aforementioned category.

735

You are an expert in analyzing table data and generate step-by-step plans to solve any questions related to long
tables.
The following table only shows the first three rows of the table due to its large size.
Please generate a step-by-step plan to address the question, following the below requirement:
1. A plan should contain no more than 4 steps.
2. Each step should be in one line.
3. Return only the step-wise plan and nothing else.
4. No repetition of the plan.
Please return only a plan and nothing else.
Following are three examples:
Table:
| rank | personName | age | finalWorth | category | source | country |…
| 1 | Elon Musk | 50.0 | 219000 | Automotive | Tesla, SpaceX | United States |…
| 2 | Jeff Bezos | 58.0 | 171000 | Technology | Amazon | United States ...
…[remaining 2665 rows unshown due to large table size]...
Context: Table caption: Forbes Billionaires 2022.
Question: How many billionaires are there from the 'Technology' category?
Plan: 1. I need to filter the table to get all billionaires from the 'Technology' category.
2: Then I need to count the number of retrieved entries.
3. The answer to the question is the number of retrieved entries in the second step, and I will return this value as
the final answer.

Table:
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...
Context: Table caption: NYC 311 Calls
Question: Mention the 2 most common weekdays for complaints.
Plan: 1. I need to count the frequency of each unique weekday in the column 'weekday_name'.
2. I will create an additional dataframe with two columns to store the results from the first step, with one column
being the name of the weekday, and one being the frequency of that weekday.
3. I will sort the dataframe I made in step 2 in descending order.
4. The question asks 2 most common weekdays, this corresponds to the weekday values of the top two rows. I
will retrieve the weekday values of the top two rows, store them in a list and return the list as the answer.

Table:
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...

Context: Table caption: NYC Taxi Trips.
Question: Are there any trips with a total distance greater than 30 miles?
Plan: 1. I need to count the number of entries whose 'trip_distance' is larger than 30.
2. If the value from step 1 is larger than 0, then the answer is 'True', otherwise, it is 'False'.
3. I will create a variable name after 'final_result' to store the boolean answer and return the variable as final
answer.

Now generate a plan for to address the following question and table. The plan should contain maximum 4 steps,
with each step one line.
Table: {table}
Context: {context}
Question: {question}

Figure 5: A prompt for a planning agent in the global planning module.Caption

736

Solve a table question answering task with interleaving Thought, Action, Observation steps. Thought can reason about
the current situation, and Action can be two types:
(1) Operate[instruction], which carries out operations such as information retrieval or calculations based on the
instruction and returns the retrieved or calculated results.
(2) Finish[answer], which returns the answer and finishes the task.
You may take as many steps as necessary.
Here are some examples:
Table:
| rank | personName | age | finalWorth | category | source | country |…
| 1 | Elon Musk | 50.0 | 219000 | Automotive | Tesla, SpaceX | United States |…
| 2 | Jeff Bezos | 58.0 | 171000 | Technology | Amazon | United States |...
…[remaining 2665 rows unshown due to large table size]...
Context: Table caption: Forbes Billionaires 2022.
Question: How many billionaires are there from the 'Technology' category?
Thought 1: I need to count the number of billionaires from the 'Technology' category.
Action 1: Operate[count the number of entries whose category is Technology]
Observation 1: 343
Thought 2: In observation 1, 343 billionaires are from the 'Technology' category, therefore, the answer is 343.
Action 2: Finish[343]

Table:
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...
Context: Table caption: NYC Taxi Trips.
Question: Are there any trips with a total distance greater than 30 miles?
Thought 1: I need to count the number of entries whose 'trip_distance' is larger than 30.
Action 1: Operate[count the number of entries whose 'trip_distance' is larger than 30.]
Observation 1: 0
Thought 2: In observation 1, there is 0 entry whose trip distance is larger than 30. Therefore, the answer is False.
Action 2: Finish[False]

Table:
| segmentation_1 | descriptor | complaint_type | created_date |…
| [] | Business not in compliance | NonCompliance with Phased Reopening | 2020-10-02 11:50:27+00:00 |…
| [] | ENTIRE BUILDING | HEAT/HOT WATER | 2021-11-03 06:48:49+00:00 |…
...[remaining 99997 rows unshown due to large table size]...
Context: Table caption: NYC 311 Calls
Question: Mention the 2 most common weekdays for complaints.
Thought 1: I need to count the frequency of each unique weekday in the column 'weekday_name'.
Action 1: Operate[count the frequency of each unique weekday in the column 'weekday_name'.]
Observation 1: {'Tuesday': 15847, 'Monday': 15816, 'Wednesday': 15445, 'Thursday': 14978, 'Friday': 14707,
'Saturday': 11781, 'Sunday': 11426}
Thought 2: The question ask for 2 most common weekdays. From observation 1, we find Tuesday and Monday have
the largest frequencies and they are weekdays. Therefore, the answer is ["Tuesday", "Monday"]
Action 2: Finish[["Tuesday", "Monday"]]
(END OF EXAMPLES)
Now generating the Thought, Action, Observation for the following instance:
Table:
{table}
Context: {context}
{question}
{scratchpad}"""

Figure 6: A prompt for a planning agent in the iterative planning module.

737

You are an expert in python code generation.
Write a python function named 'target_function' according to the given plan using pandas dataframe.
The given dataframe shows only two records of the original data due to its large size. The main goal of showing the
dataframe is to show the data type associated to each column.
However, you should not operate any code based on the given dataframe, since it does not contain all information
about the table.
Below are two examples
Plan: 1. I need to filter the table to get all billionaires from the 'Technology' category.
2: Then I need to count the number of retrieved entries.
3. The answer to the question is the number of retrieved entries in the second step, and I will return this value as
the final answer.
Dataframe code for the first two records: import pandas as pd
data={'rank':[1.0, 2.0],'personName':['Elon Musk', 'Jeff Bezos'],'age':[50.0, 58.0],'finalWorth':[219000.0,
171000.0],'category':['Automotive', 'Technology'],'source':['Tesla, SpaceX', 'Amazon'],'country':['United States',
'United States’],…}
df=pd.DataFrame(data)
Code: ```Python
def target_function(dataframe):
 # filter the table for 'Technology' as the category and count the number of the entries
 technology_entries_count = len(dataframe[dataframe['category'] == 'Technology])
 # return the result as final answer
 return technology_entries_count

```

Plan: 1. I need to retrieve the first five values from the 'Gold' columns.
2. To calculate the average number, I will sum the retrieved values and divide the sum by 5.
3. The answer to the question is the result from step 2. I will return that value as the final answer.
Dataframe code for the first two records: import pandas as pd
data={"Rank": ["1", "2"], "Nation": ["United States", "Jamaica"], "Gold": ["5", "4"], "Silver": ["6", "1"], "Bronze": ["5", 
"1"], "Total": ["16", "6"]}
df=pd.DataFrame(data)
Code: ```Python
def target_function(dataframe):
  # retrieve the top 5 gold medals values from the table
  top_5_medals = dataframe["Gold"].astype(int).tolist()[:5]
  # get the average number of the gold medal
  final_result = sum(top_5_medals) / 5
  # return the result
  return final_result

```
Now generate the python function according to the given plan.
Plan: {instruction}
Dataframe code for the first two records: {table_df}
Code:

Figure 7: A prompt for a coding agent in the global planning module.

738

According to the instruction, write a function named after 'target_function' in one python code block to perform
calculations on a dataframe object. The given dataframe shows only two records of the original data due to its
large size. However, you should be able to infer the data type based on the given dataframe. Return only the
python function without any execution and do not use print statement in the code block.
Below are two examples:
Instruction: count the number of entries whose category is Technology
Dataframe code for the first two records: import pandas as pd
data={'rank':[1.0, 2.0],'personName':['Elon Musk', 'Jeff Bezos'],'age':[50.0, 58.0],'finalWorth':[219000.0,
171000.0],'category':['Automotive', 'Technology'],'source':['Tesla, SpaceX', 'Amazon'],'country':['United States',
'United States’],…]}
df=pd.DataFrame(data)
Code: ```Python
Define the function to count entries with category "Technology"
def target_function(dataframe):
 technology_entries_count = len(dataframe[dataframe['category'] == 'Technology])
 return technology_entries_count

```

Instruction: calculate the average of gold medals for the top 5 nations.
Dataframe code for the first two records: import pandas as pd
data={"Rank": ["1", "2"], "Nation": ["United States", "Jamaica"], "Gold": ["5", "4"], "Silver": ["6", "1"], "Bronze": 
["5", "1"], "Total": ["16", "6"]}
df=pd.DataFrame(data)
Code: ```Python
# average number of gold medals for the top 5 nations in the dataframe
def target_function(dataframe):
  top_5_medals = dataframe["Gold"].astype(int).tolist()[:5]
  final_result = sum(top_5_medals) / 5
  return final_result

```
Now generate python code according to the following instruction.
Instruction: {instruction}
Dataframe code for the first two records: {table_df}
Code:

Figure 8: A prompt for a coding agent in the iterative planning module.

Given a question, the first two rows of a table, and four plans to solve the question, determine
which plan is the most promising in terms of solving the question. Return only "The best path is
{s}", where s the integer id of a plan.

Figure 9: A prompt LLM-as-judge to select the best plan.

739

Question: List the 5 largest non-unique (they can be repeated) offering Ids.
Plan:

1. Group the data by 'offering_id' and count the number of entries in each group.
2. Sort the groups in descending order based on the count.
3. Select the top 5 'offering_id' values.
4. Return the list of the top 5 'offering_id' values.

Code:
Def target_function(dataframe):

Group the data by 'offering_id' and count the number of entries in each group
offering_counts = dataframe.groupby('offering_id').size()
Sort the groups in descending order based on the count
sorted_offering_counts = offering_counts.sort_values(ascending=False)
Select the top 5 'offering_id' values
top_5_offering_ids = sorted_offering_counts.head(5).index.tolist()
Return the list of the top 5 'offering_id' values

 return top_5_offering_ids

Prediction: [82443, 84087, 93340, 93889, 94354]

ratings title text author date_stayed
offering
_id

num_he
lpful_vo
tes

date id via_mobile

{'service': 5.0,
'cleanliness':
5.0, 'overall'...

“Very nice
experience
for a
country boy
going ...

Being from a small
town in Tennessee, I
was ve...

{'username':
'Tucker124',
'num_reviews': 1, 'i...

October
2010

111492 2
2010-10-25
00:00:00+00:
00

84800976 False

{'service': 5.0,
'cleanliness':
5.0, 'overall'...

“Great
Courtyard”

I stayed at this
courtyard for 2 nights
. Ever...

{'username':
'bimbotrip',
'num_reviews': 1, 'i...

October
2009

108562 0
2009-10-14
00:00:00+00:
00

46861760 False

…remaining 18 rows not shown…

.

Figure 10: An example of planning agent error.

Question: Provide me with a list containing all the lengths of the books about computer science.
Plan:

1. Filter the table to include only rows where the 'Category' is 'Computer Science‘.
2. Extract the 'Book Length (Pages)' values from the filtered rows.
3. Compile these values into a list.
4. Return the list as the final answer.

Code:
Def target_function(dataframe):
 # Filter the table to include only rows where the 'Category' is 'Computer Science'
 filtered_df = dataframe[dataframe['Category'] == 'Computer Science']
 # Extract the 'Book Length (Pages)' values from the filtered rows
 book_lengths = filtered_df['Book Length (Pages)'].tolist()
 # Return the list of book lengths as the final answer
 return book_lengths

Prediction: []

Book Title Author Category
Price
(TK)

Stock
Status

Copies
Left

Book
Length
(Pages)

Edition Publication
Wished
Users

Discount
Offer

Ratings Reviews

Sapiens A
Brief

History Of
Humankind

Yuval Noah
Harari

History and
Tradition

1.258 In Stock 4.0 498 1st Published
Vintage Books

(India)
386.0 Yes 39.0 16.0

The
Intelligent
Investor

Benjamin
Graham

Business,
Investment

and
Economics

1.598 In Stock 6.0 640
8th

Impression

Harpercollins
Publishers

(India)
531.0 Yes 30.0 25.

…remaining 18 rows not shown…

Figure 11: An example of semantic matching error.

740

Question: List highest 3 different revenues a given transaction has yielded?
Plan:

1. Group the table by 'transaction_id' and calculate the sum of 'Revenue' for each group.
2. Sort the grouped table in descending order by the sum of 'Revenue’.
3. Select the top 3 unique 'Revenue' values from the sorted table.
4. Return the list of the top 3 different revenues."

Code:
Def target_function(dataframe):

Remove the dollar sign and comma from 'Revenue' and convert to float
dataframe['Revenue'] = dataframe['Revenue'].str.replace(',', '').str.replace('US$', '').astype(float)
Group the dataframe by 'transaction_id' and calculate the sum of 'Revenue' for each group
grouped_revenue = dataframe.groupby('transaction_id')['Revenue'].sum().reset_index()
Sort the grouped dataframe in descending order by 'Revenue’
sorted_revenue = grouped_revenue.sort_values(by='Revenue', ascending=False)
Select the top 3 unique 'Revenue' values
top_3_revenues = sorted_revenue['Revenue'].unique()[:3]
Return the list of the top 3 different revenues

 return top_3_revenues.tolist()

Prediction: [900.0, 700.0, 620.0]

transaction_
id

transaction_
qty

store_id
store_loca
tion

product_
id

unit_p
rice

product_ca
tegory

product_type product_detail Revenue Month Month_1 Weekday
Weekd
ay_1

Hour

1 2 5
Lower
Manhatta
n

32 3.00 Coffee
Gourmet
brewed coffee

Ethiopia Rg 6,00 US$ 1 Jan 7 Sun 7

2 2 5
Lower
Manhatta
n

57 3.10 Tea Brewed Chai tea
Spicy Eye
Opener Chai Lg

6,20 US$ 1 Jan 7 Sun 7

…remaining 18 rows not shown…

.

Figure 12: An example of code generation error.

Question: List the 5 most common ages of our employees.
Answer: [38, 32, 29, 36, 22]
Prediction: [38, 29, 32, 41, 49]
Frequency of each Age (code executed): {32: 2, 38: 2, 29: 2, 41: 1, 49: 1, 37: 1, 33: 1, 27: 1,
59: 1, 30: 1, 36: 1, 35: 1, 31: 1, 34: 1, 28: 1, 22: 1, 53: 1}

Age Attrition BusinessTravel DailyRate Department DistanceFromHome
…29 columns

unshown…

41 Yes Travel_Rarely 1102 Sales 1 …

49 No Travel_Frequently 279
Research &

Development
8 …

...18 rows unshown…

Figure 13: An example of an ambiguous question

741

TL #Q #QT #Row #Col #A
Bool Ctg Num [Ctg] [Num]

066_IBM_HR 39 10.0 1470 35 9 7 10 6 7
067_TripAdvisor 29 11.3 20000 10 9 1 13 3 3

068_WorldBank_Awards 34 12.4 239461 20 8 7 7 6 6
069_Taxonomy 35 12.5 703 8 9 7 8 8 3

070_OpenFoodFacts 29 10.8 9483 11 8 5 8 5 3
071_COL 36 12.7 121 8 8 7 8 6 7

072_Admissions 39 13.8 500 9 9 0 17 0 13
073_Med_Cost 32 10.5 1338 7 10 7 9 2 4

074_Lift 35 11.2 3000 5 9 4 10 6 6
075_Mortality 29 11.4 3000 5 9 4 10 6 6

076_NBA 36 13.0 8835 30 8 7 9 7 5
077_Gestational 31 13.0 1012 7 8 0 14 0 9

078_Fires 39 12.1 517 15 9 4 12 7 7
079_Coffee 38 12.5 149116 15 9 8 9 6 6
080_Books 41 12.9 40 13 8 5 14 7 7

DataBench_test 522 12.0 29066.4 13.3 129 74 156 72 91

Table 3: Statistics of DataBench test set. We present the names of each table in the TL column. #Q and #QT show
and numbers of questions and the averaged numbers of question tokens (separated by white space) respectively.
#Row and #Col show the averaged numbers of table rows and columns respectively. #A shows the numbers of
answers. We categorize answer types into Boolean (Bool), Category (Ctg), Number (Num), a list of categorical
values ([Ctg]) and a list of numerical values ([Num]) following Osés-Grijalba et al. (2025).

742

