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Abstract

Aspect-category sentiment analysis provides
granular insights by identifying specific themes
within product reviews that are associated with
particular opinions. Supervised learning ap-
proaches dominate the field. However, data
is scarce and expensive to annotate for new
domains. We argue that leveraging large lan-
guage models in a zero-shot setting is benefi-
cial where the time and resources required for
dataset annotation are limited. Furthermore,
annotation bias may lead to strong results using
supervised methods but transfer poorly to new
domains in contexts that lack annotations and
demand reproducibility. In our work, we pro-
pose novel techniques that combine multiple
chain-of-thought agents by leveraging large lan-
guage models’ token-level uncertainty scores.
We experiment with the 3B and 70B+ param-
eter size variants of Llama and Qwen models,
demonstrating how these approaches can fulfil
practical needs and opening a discussion on
how to gauge accuracy in label-scarce condi-
tions.

1 Introduction

Tracking customer satisfaction is critical for organ-
isations aiming to improve their products and ser-
vices. However, traditional supervised approaches
require bespoke datasets, necessitating time and
human labour (Pustejovsky and Stubbs, 2013).
The costs of annotation can be a significant chal-
lenge for many organisations, prohibiting access to
adapted state-of-the-art solutions, and even to eval-
uation. Hence, in this paper, we explore and com-
pare two popular large language models (LLMs)
across various low-training scenarios, specifically
zero-shot, for analysing customer satisfaction.
Sentiment analysis approaches are commonly
used to classify feedback as positive, neutral, or
negative for customer satisfaction, but this method
often lacks granularity. A single piece of feedback

can express multiple sentiments targeting differ-
ent product or service aspects, leading to ambigu-
ous classifications and limiting actionable insights.
To address this, aspect-based sentiment analysis
(ABSA) methodologies (Zhang et al., 2023) have
been developed to more accurately capture the nu-
anced sentiments present in customer feedback.

In our study, we investigated the ABSA task of
aspect category sentiment analysis (ACSA), a type
of ABSA. For a given piece of text, ACSA consid-
ers the aspect categories and sentiment polarities,
as shown in Figure 1. The categories are a set of
classes which are predefined by domain experts or
stakeholders. Characteristically, in the figure, the
example demonstrates two tuples from the same
text. Firstly, the review found the pepperoni pizza,
a type of #Food (Category), to be delicious, repre-
senting a positive sentiment (Polarity). Secondly,
the review found the service to be terrible, repre-
senting negative polarity.

ACSA Tuple Example

Input: The pepperoni pizza was
delicious but the service was terrible
though.

Category
#Food
#Service

Polarity
positive
negative

Output:

Figure 1: An ACSA example where a review results in
two category-sentiment polarity pairs.

Supervised learning approaches hold the state of
the art for ACSA tasks (Cai et al., 2020; Ping et al.,
2024; Xu et al., 2025). In contrast, we explore the
zero-shot setting, which eliminates the need for
labelled instances and allows us to experiment with
LLM agents on novel datasets. This approach is
particularly compelling in real-world applications,
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as organisations and firms often lack the resources
or time required to annotate large datasets.

In this paper, we propose a novel approach that
integrates multiple LLM agents, each utilising a
distinct chain-of-thought (CoT) reasoning process.
Prior research (Fei et al., 2023; Wang and Luo,
2023) has introduced a sequential CoT approach,
where aspects are first identified, followed by opin-
ions and then polarities. In our experiments, we
adapt this framework to the ACSA task and crit-
ically evaluate the assumptions underlying CoT
by exploring alternative reasoning sequences. Ad-
ditionally, we introduce mechanisms to combine
the outputs of each CoT agent through aggrega-
tion techniques that make use of the LLMs’ token
confidence scores, also referred to as token-level
uncertainty.

The primary contributions of this study are enu-
merated below:

1. We experimented with how the ordering of
CoT prompt elements affects LLMs’ perfor-
mance across datasets.

2. We compared multiple aggregation methods
for effectively combining outputs from multi-
ple CoT agents.

3. We benchmark our approach against a previ-
ously published zero-shot method, reproduced
and evaluated on new datasets.

2 Related Work

ABSA has emerged as a particularly interesting
research topic due to its increasing popularity and
widespread applicability across various domains
Rink et al., 2024; Namee et al., 2023; Kit and
Joseph, 2023; Arianto and Budi, 2020; Chu et al.,
2022; Yu et al., 2023 inter alia).

In this paper, we address the ACSA task, a type
of ABSA. The ACSA task is especially relevant
for industry applications, as it involves associating
predefined category terms with corresponding sen-
timent polarities, which can be readily quantified
and analysed (more on Section 3.2).

Although a few studies have considered the
ACSA task from a supervised learning perspec-
tive (Cai et al., 2020; Ping et al., 2024; Xu et al.,
2025), it would be beneficial to address it in an
unsupervised manner because annotation requires
considerable time and human labour, and may also
obfuscate reproducibility, as discussed later in this

paper.

Zero-shot and few-shot methodologies have
been employed for the broader ABSA task. For
instance, Hellwig et al. (2025) use LLMs with
a few-shot in-context learning (ICL) approach,
while Wang and Luo (2023) evaluate different
prompting techniques for sentiment analysis using
LLMs. Fei et al. (2023) investigated a multi-hop
CoT approach, and Bai et al. (2024) introduced
ChatABSA, an ICL few-shot prompt framework
for ABSA that also extends to the ACSA task we
address.

In our paper, we aim to push the boundaries of
zero-shot learning by examining the use of multiple
LLM agents provided with no prior knowledge.
More agents can yield better results; indeed, Li et al.
(2024) discuss how employing additional agents
and subsequently performing majority voting can
improve outcomes.

To the best of our knowledge, there is no prior
work on multi-agent collaboration for ACSA. We
therefore experiment with this approach, inspired
by previous ABSA research on CoT (Fei et al.,
2023; Wang and Luo, 2023), and we investigate dif-
ferent aggregation techniques that leverage token-
level uncertainty in LLMs (Shorinwa et al., 2024).

3 Methodology

3.1 Problem Statement

Our problem statement aligns with prior work on
ACSA. Given a text (whether a single sentence
from a review or an entire review) our goal is to
extract one or more pairs, each consisting of a cat-
egory and its corresponding polarity, as depicted
in Figure 1. While the order of the pairs may vary
due to the generative nature of the models used, the
internal structure of each pair must remain consis-
tent: the category always precedes the sentiment
polarity. This ensures clarity and uniformity in the
extracted results. Such as:

Q = {(ci,pi)}is (1)

where () represents the set of pairs, ¢; is the
category, and p; is the polarity for the i-th pair, and
n is the number of pairs extracted from the text. In
the following subsections, we describe the different
methods utilised in our experiments.

3.2 CoT Agents

Previous research on related ABSA tasks (Fei et al.,
2023; Wang and Luo, 2023) have typically fol-
lowed an intuitive sequence: first extracting aspects,
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and then identifying opinions and their correspond-
ing polarities. However, in our experiments, we
challenge this conventional approach by exploring
alternative reasoning pathways. Specifically, we
design and evaluate multiple LLM agents, each
guided by a distinct prompt that dictates a unique
CoT process for extracting category-polarity pairs.

To better understand the ACSA task, let us break
it down step by step. In a review, aspect terms
are the words or phrases that refer to specific fea-
tures of a product or service, such as “pepperoni
pizza” in our example in Figure 1. While these
aspect terms are helpful, they are not always ideal
for quantitative analysis. For instance, rather than
analysing sentiment for individual dishes (e.g., pep-
peroni pizza, pasta) that may vary across restau-
rants, it is more meaningful to map these terms
to broader categories, such as “Food”, to measure
overall sentiment on food for each restaurant. Sim-
ilarly, opinions like “delicious” provide qualitative
insights but are not easily quantifiable. Mapping
these opinions to sentiment polarities—positive,
neutral, or negative—enables more actionable and
comparative analytics.

In our CoT experiments, we prompted the LLMs
to detect one element at a time, ultimately gener-
ating category-polarity pairs. We systematically
permutated the order of the three elements: as-
pect terms, aspect categories, and opinions. Senti-
ment polarity was always derived from the opinion
generated at the end of the prompt. For example,
one agent might follow the sequence aspects —
categories — opinions, while another might use
opinions — aspects — categories. For simplic-
ity, we refer to the entities in the CoT sequences
(i.e., aspects, categories, and opinions) as “ele-
ments”. This systematic variation of element or-
dering enables us to investigate how reasoning se-
quences affect the accuracy of sentiment analysis
prediction.

3.2.1 Prompt Crafting

Our next step involved designing the necessary
prompts to chain the reasoning elements effectively.
Previous research has explored multi-hop CoT ap-
proaches Fei et al. (2023); Wang and Luo (2023),
where the process involves using a prompt to re-
quest each element from the LLM sequentially
with a new call. However, in our preliminary ex-
periments (see Appendix H), we found that this
multi-hop approach did not yield superior results
compared to consolidating all instructions into a

single prompt providing enumerated instructions.
Consequently, we adopted an enumerated CoT rea-
soning process within a single prompt. Examples
of our prompts are illustrated in Appendix E, and
our multi-hop CoT prompts adjusted for our exper-
iments are in Appendix F.

The enumerated instructions inside the prompt
were manually crafted in an imperative language,
inspired by previous research in the space (Fei et al.,
2023; Wang and Luo, 2023; Bai et al., 2024). To
ensure that our final prompts are reasonably robust,
we evaluated them on the inter-prompt stability
score (Barrie et al., 2025), using the 3B Llama
model as a reference. We noticed our prompt main-
tained a constant inter-prompt stability score across
different ranges of temperatures (0.1, 0.5, 1.0, 2.0,
5.0) for paraphrasing the prompt with the encoder-
decoder PEGASUS model (Zhang et al., 2020),
where stability across temperatures for paraphras-
ing is optimal, whereas if it deviates, is not (Barrie
et al., 2025).

In the last part of the prompt, we instructed the
LLM to format the output as Python code, specif-
ically as a list of pairs. Each pair consists of two
elements: the category and the sentiment polarity.
Additionally, we incorporated a system instruction,
following the approach of prior research (Wang
and Luo, 2023), which served as a role-playing
mechanism. This instruction constrained the LLM
to generate the most probable answers only, min-
imising verbosity.

3.2.2 Post-Processing

From the LLM’s text-generated response, we
would parse the output string into Python code,
neglecting any text generated outside the list. Then,
we would use the native’s Pyhon diff lib library'
to map the category from the generated text to the
list of potential categories. This was done to avoid
discrepancies and spelling mistakes in generation
when classifying the category-polarity pairs.

3.3 CoT Aggregation Techniques

After we obtained each agent’s results, we explored
various techniques and algorithms for aggregating
the resulting pairs of each agent. For most of our
algorithms, we would rely on the token-level un-
certainty produced by the LLMs.

Specifically, during generation, the LLMs as-
sign each token a logarithmic probability based

IThe difflib library works by finding the longest continuous
characters between strings.
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on the conditional distribution given all preceding
tokens. For convenience, we convert these loga-
rithmic values into probabilities. Subsequently, we
extract the category and sentiment polarity words
for each pair, omitting any special characters (i.e.
the Python brackets), and compute the average of
the probabilities of these words to obtain the final
probability score for each pair, also referred to as
the pair’s confidence score. Below we list the algo-
rithms, where a list refers to a list of pairs generated
by the language models:

1. Highest probability list Given that each
agent has generated a list of pairs, we would
acquire the top list in confidence score from
the pool of agents, based on the averaged pair
probabilities for a given list.

2. Most common list We acquire the most com-
mon list of pairs between agents. If there is
no majority, then pick the agent(s) pairs with
the highest confidence score.

3. Highest probability pairs We get the top n
most probable pairs across all lists (i.e. across
all agents). We also evaluated different tech-
niques for setting the n for each prediction.
More on that can be found in the Appendix A.

4. Clustered pairs After obtaining the number
of pairs n, identically to the above algorithm,
we cluster all the unique pairs from all the
agents based on their category word embed-
dings into n clusters using the k-means algo-
rithm from the Scikit-learn library (Pedregosa
etal., 2011). These embeddings are generated
by the RoBERTa encoder model (Liu et al.,
2019), fine-tuned in a semantic textual similar-
ity sentence setting (Reimers and Gurevych,
2019). Then, we select the pair with the high-
est probability score from each cluster. We
chose a sentence embedding model as op-
posed to a word embedding one since one
category can be multiple tokens, for instance,
the category “performance#sizing/fit” from
the Shoes dataset.

5. Most confident agent We select the agent
whose predictions yield the highest sum of list
confidence across the dataset, where the list
confidence is again the average pair probabili-
ties in that list.

In Figure 2 we show the workflow from the various
CoT agents to funnelling through an aggregation
technique to get the end list of pairs.

4 Experiments

4.1 Datasets

For our experiments, we included four datasets.
We opted for the Laptop16 (Pontiki et al., 2016),
Restaurant16 (Pontiki et al., 2016), MAMS (Jiang
et al., 2019) and Shoes (Peper et al., 2024). All
of these datasets were developed for the ACSA
task, apart from the Shoes one, which was devel-
oped with an aspect-sentiment quad prediction task
(Aspect, Category, Opinion, Sentiment) in mind,
which we repurposed for ACSA (using only the
Category and Sentiment labels).

Large-scale LLMs are known to be trained on
existing code repositories and the open internet,
which may include pre-existing datasets (Samuel
et al., 2025). We purposely included the recent
Shoes dataset since the LLM models do not exhibit
any knowledge of this dataset, making it an ideal
case to analyse performance on the totally “unseen”
dataset. Moreover, the Shoes dataset is the only one
which considers whole reviews as input, whereas
the other datasets have segmented the reviews into
sentences. In Appendix B, Table 2, we provide
the number of instances for each data fold and the
number of categories.

4.2 LLM Models

For our experiments, we used the 72B and 3B
Qwen model (Qwen et al., 2025) and Llama 3B
and 72B model (Llama et al., 2024). Since we
want to compare the probabilities between tokens,
we opted for the greedy search decoding strategy.
The detailed versions of our models are listed in
Listing 1.

— Qwen/Qwen2.5-72B-Instruct

— Qwen/Qwen2.5-3B-Instruct

— meta—llama/Llama-3.3-70B-Instruct
— meta—llama/Llama-3.2-3B-Instruct

Listing 1: LM versions used in our experiments.

4.3 Evaluation

The ACSA task focuses solely on extracting the
category and polarity tuples. This task is best char-
acterised as a multi-label classification problem, as
the categories are predefined per domain and the
polarity values range across positive, neutral, and
negative. We adhere to the same micro-F1 metric as
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Figure 2: On the left side, we present the various CoT agents derived from the same LLM, each employing a
different CoT extraction order. The letters C, A, and O denote Category, Aspect, and Opinion respectively, while
the chevrons between them indicate their extraction sequence. The outputs from these agents are subsequently
post-processed and passed through an aggregation technique to obtain the final set of ACSA pairs.

those used in the previously mentioned evaluations,
as disclosed in Cai et al. (2020).

4.4 Baseline

For benchmarking, we utilise the ChatABSA
method (Bai et al.,, 2024). The authors of
ChatABSA have designed a prompt specifically for
the ACSA task, allowing the inclusion of a certain
number of ICL samples as few-shot demonstrations.
In our experiments, we adopt the zero-sample set-
ting, as our goal is to perform comparisons in a
zero-shot scenario.

5 Results & Discussion

Element Order Debunking We tested three el-
ement permutations for each LLM model (i.e., as-
pect, category and opinion). Our experiments on
the four datasets demonstrated that the order of the
three elements between the two larger LLM mod-
els was fairly consistent, but it differed for each
dataset. For instance, order 1) Opinion 2) Category
3) Aspect produced higher F1 scores for the Lap-
top16 dataset, whereas order 1) Category 2) Aspect
3) Opinion was best for the MAMS dataset. For
the other two datasets, although they differed, the
position of the Opinion and the Categories always
followed the same pattern, indicating a CoT trend
per dataset.

When comparing the 3B LLMs, we notice the
same pattern in that the CoT element order stays
fairly consistent across each dataset. Moreover, for
all the LLMs, we did not notice any CoT agent that
consistently underperformed; similarly, it varied
across datasets but not across the models. Thus,

we draw two conclusions from our experiments.
Firstly, as opposed to previous research (Fei et al.,
2023; Wang and Luo, 2023), starting from the as-
pects in the CoT prompts does not always provide
optimal results. Secondly, the order is rather data-
dependent and stays consistent across our four mod-
els. In the case of our multi-hop CoT preliminary
experiments, the best-performing agents always
had the Opinion preceding the Category and As-
pect, see Table 3. For more detailed results across
the agents per model and dataset, one can look in
the Appendix C.

Joined CoT Agent We combined all pairs gener-
ated by the six CoT agents and refer to this combi-
nation as the joined CoT agent. The results indicate
that, as expected, precision decreased, but recall
was higher than that of any individual CoT agent.
Notably, for our models with 70B+ parameters,
the average recall improvement was approximately
20% across all datasets, except for the Restaurant16
dataset, since in that particular dataset, prediction
scores were already relatively high. The 3B models
did not substantially lag behind in recall scores with
their larger counterparts. These findings illustrate
the potential benefit of leveraging multiple agents
from different CoT chains to enhance performance
in ABSA tasks.

To better understand the performance of each
LLM, we looked at all the aggregated pairs. It was
evident that the smaller language models produced
many more pairs, many of which were irrelevant.
Especially the 3B Llama produced in one dataset
6x the number of pairs than its bigger 70B sibling,
as seen in Figure 3. Moreover, we counted the num-
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Figure 3: The average number of pairs generated for each model for each dataset. These refer to the Joined CoT
Agent, the pairs are summed. In dark grey is the average number of the ground truth for each dataset.

ber of pairs where the category was the same, but
there was more than one sentiment polarity with
the same category. The 3B models, with Llama
leading, demonstrated many more conflicting cate-
gories, whereas the larger ones were at a minimum,
suggesting that the smaller LLMs struggled to de-
lineate the polarities. One can view the number
with conflicting pairs in Appendix D.

CoT Aggregation Techniques Subsequently, we
compared the various aggregation techniques, as
enumerated in Section 3.3. The average results
are presented in Table 1. It can be observed from
the table that the highest probability list provided
the best overall results amongst all the aggregation
techniques. These results suggest that the confi-
dence provided by the LLMs can be useful.

Following this, the most common tuples among
agents scored second, suggesting that relying on
confidence scores is better than majority voting.
Unfortunately, selecting pairs apart from the lists
was not the most effective strategy: any strategy in
this category—highest probability pairs and clus-
tered pairs with any n technique—underperformed
compared to the two strategies that left the lists
intact, although they appeared to achieve higher
scores in the 3B model space. We speculate that
this is because LLMs inherently can approximate
the ground truth list of pairs, but they may deviate
due to different interpretations that stray from the
ground truth.

LLMs Confidence Interpretation The highest
confidence list consistently emerged as the top ag-
gregate technique when using the 72B Qwen; only,
in Llama’s 70B case in the Restaurant-16 dataset,
the most common list proved a better strategy. Con-
versely, while the lowest confidence list underper-
formed significantly with Qwen, it did not score as
poorly with Llama. Moreover, when scoring the
most confident agent amongst the datasets, Qwen’s
agents two times matched the top performant agent,
whereas in LLlama’s case, it was once. These ob-
servations could suggest that the log probabilities
provided by Qwen are more informative than those
from Llama. The Qwen model is slightly larger,
with 72 billion parameters compared to Llama’s 70
billion, but it is unclear if this is the sole reason for
the observed differences.

One question that we posed to answer was
whether the LLM’s top performant CoT agent was
also the most confident agent (i.e. the agent with
the sum of highest probability scores). Our results
show that although the most confident agent would
always be amongst the first, it was not always the
top performer. In Llama’s case, the 70B model
only in the MAMS dataset, the top performer was
also the most confident, and in Qwen’s 72B, two
out of four datasets, the top performer was also the
most confident. It certainly demonstrates notable
consistency, given that there are six different CoT
agents that can achieve the highest score. Then,
for the 3B LLMs, we got more fuzzy results, with
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LLM Configuration

Qwen2.5-72B-Instruct Qwen2.5-3B-Instruct Llama-3.3-70B-Instruct Llama-3.2-3B-Instruct

ChatABSA fs:0 48.5% 27.3% 50.4% 10.5%
Highest prob. list ?55.5% '36.7% ?54.3% 23.4%
Most conf. agent 54.2% *35.0% 53.2% 28.5%
Most common. list *54.4% 34.0% *53.9% 129.7%
Highest prob. pairs alpha:1 52.9% 33.0% 50.5% 26.3%
Highest prob. pairs alpha:0.9 52.9% 32.8% 50.5% 26.8%
Highest prob. pairs alpha:mean 51.9% 31.0% 49.7% 25.6%
Highest prob. pairs alpha:max 51.4% 234.4% 50.0% 227.2%
Top performant agent '56.6% 36.0% '54.6% 26.8%

Table 1: The table demonstrates the F1 scores averages in percentages for each model averaged on our four datasets.
The first one, Chat-ABSA, in the zero-shot setting, is our baseline. Following are our top 7 aggregation techniques,
and lastly is the CoT agent, which scored the highest on each dataset, and then averaged. The top three F1 scores
for each model are coloured in podium finish and annotated with superscripts ('gold, *silver, and *bronze) for

accessibility.

Llama having three out of four and Qwen none out
of the four datasets.

To better understand the token-level confidence
allocation of each LLM, we analysed the confi-
dence scores of the two larger LLMs. We aver-
aged the probabilities of each pair and then calcu-
lated the Spearman correlation (Spearman, 1904)
between the scores averaged by each agent and the
corresponding F1-score; we performed the same
analysis using variance instead of averages. We
observed a positive correlation between the aver-
aged probabilities across agents and the F-scores,
suggesting that confidence scores indeed reflect
a perceived measure of accuracy (see Figure 4).
Characteristically, Llama exhibited the highest cor-
relation, achieving nearly 60% correlation on cer-
tain datasets. The scores on the MAMS dataset
demonstrated a weaker correlation; this could be
attributed to the more challenging examples, where
sentences contain multiple aspects expressing con-
flicting emotions (Jiang et al., 2019).

Moreover, as shown in Figure 5, the variance of
probabilities across agents exhibited precisely the
same trend as the averaged scores, but inverted.
This observation suggests that greater variance
among agents is likely associated with a lower F-
score.

Few Shot CoT We evaluated the performance
of ChatABSA with 10 few-shot demonstrations
against CoT combined with the same 10 few-shot
examples. In Appendix G, we provide further de-
tails on how we adapted our CoT prompt to accom-
modate these few-shot examples.

As expected, when we added 10 examples
to ChatABSA, the F-score percentage increased
across all datasets. When averaged and compared

—e— Qwen F-score
== - Qwen Correlation

—e— Llama F-score
=m- [lama Correlation
0.8

0.0 — T T T
Laptop 16 Restaurant 16 MAMS Shoes

Dataset

Figure 4: Comparison of F-score and Spearman cor-
relation on averaged confidence and F-Score for two
LLM models across datasets. Shaded areas represent
the difference between the two metrics.

—ea— Qwen F-score
-m- Qwen Correlation

—e— |lama F-score
-m- Llama Correlation

0.8

0.0 — T T T
Laptop 16 Restaurant 16 MAMS Shoes

Dataset

Figure 5: Comparison of F-score and Spearman cor-
relation on confidence variance and F-Score for two
LLM models across datasets. Shaded areas represent
the difference between the two metrics. The values of
the correlation here are swapped with positives. Hence,
a correlation in the positive of 0.4 would mean -0.4.
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to Table 1, ChatABSA exhibited notable improve-
ments, particularly for the Llama models, with the
3B version increasing by 38% and the 70B version
by 15%. For the Qwen models, we observed in-
creases of 22% for the 3B model and 11% for the
72B model. However, incorporating examples into
the CoT resulted in only modest changes: a 4%
increase for Llama 70B, a 3% decrease for Llama
3B, a 2% increase for Qwen 72B, and an 8% in-
crease for Qwen 3B. We observed that the Llama
models benefited more substantially from the few-
shot demonstrations alone, while the combination
of elaborate CoT prompts and examples appeared
to “confuse” the 3B Llama model. Notably, the
Llama 70B model became the only case in which
ChatABSA surpassed CoT when averaged across
datasets, given the same ten examples as demon-
strations.

We hypothesise that the advantage of clear few-
shot demonstrations without CoT is that it allows
“the LLMs to focus” directly on the provided ex-
amples and any biases they may introduce without
the additional cognitive load imposed by the CoT
process, which may divert the model’s attention
from effectively processing these examples.

CoT Prompt Stability Validation We conducted
a validation experiment to see the effect of the
prompt, comparing the engineered version of the
few-shot CoT but without examples (see Ap-
pendix G) to the previously mentioned CoT prompt
version (see Appendix E). We ran all models across
all datasets with the same system instruction. We
observed that, even after changing the prompt, the
F1 scores of the 70B+ models remained consistent,
differing only from the third decimal point onward.
In contrast, for the 3B models, differences appeared
from the second decimal point.

Practical Insights From Table 1, we can see that
the Top performant agent for each dataset domi-
nates in the higher parameter size LLM models.
However, without labelled data, evaluating which
CoT order sequence works best for a dataset would
be difficult. Following, the Highest probability list
demonstrated favourable results, indicating that
this would be a good choice if no labelled data is
available.

We would recommend using various CoT agents
and checking the consistency on an unexplored
dataset. In Paragraph 5, we demonstrated that
high confidence variance between the agents
indicates a more challenging task. One could

leverage this insight to identify challenging reviews
within their dataset and examine why the agents’
confidence scores deviate among them.

Another valuable metric to include in one’s
evaluation repertoire is the extent to which dif-
ferent CoT agents produce conflicting categories
(e.g., a category that one agent detects as positive
while another agent detects it as negative). As
observed, smaller models exhibit this issue more
frequently, whereas larger LLMs tend to generate
fewer conflicts and consequently achieve higher
performance.

Relying on CoT reasoning without input exam-
ples offers several advantages over few-shot ICL
and fully-supervised approaches. One key benefit
is the reduction of biases that can arise from select-
ing examples. Popular publicly available datasets
annotated by multiple crowd-sourced annotators of-
ten suffer from annotation bias (Geva et al., 2019;
Gururangan et al., 2018; Paullada et al., 2021).
Moreover, within large organisations, if an indi-
vidual sets the initial examples to address specific
cases, these examples may not remain relevant over
time. In a dynamic business environment, prod-
ucts, their aspects, and even the workforce evolve,
leading to changes in the context and nature of
customer feedback. If the initial examples are not
regularly updated, they can introduce biases or lead
to outdated groupings, ultimately compromising
the accuracy and relevance of the analysis.

By contrast, the zero-shot approaches do not
rely on predefined examples, allowing the model
to adapt flexibly to changing contexts. This
approach promotes a more generalised and ro-
bust framework for sentiment analysis, reducing
the risk of biases and ensuring that the model re-
mains aligned with the current business environ-
ment. This adaptability is particularly valuable in
scenarios where frequent updates to training data
or examples are impractical or resource-intensive.

Another important consideration when apply-
ing a zero-shot LLM approach to the ACSA task
is avoiding overlapping categories in their an-
notation schema. It became evident that certain
labels tend to be confused; for instance, contexto-
Sfuse#purchase_context with general in the Shoes
dataset, miscellaneous with food in MAMS, lap-
top#miscellaneous with laptop#general in Lap-
topl6, and food#style options with food#quality
in Restaurant16, among numerous other examples.
These overlaps suggest that it is challenging to
delineate whether a detected category should fall
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under an umbrella term (e.g., general) or among
the more specific labels without access to annota-
tion guidelines or a view of the possible annotators’
biases. We recommend that distinct labelling with
non-overlapping categories be required when im-
plementing a zero-shot approach.

The advantage of few-shot or fully supervised
learning is that it can capture annotators’ biases
and label the data accordingly. However, we raise
the question of how practical this approach is for
industry stakeholders who lack the resources to
annotate data extensively and require rapid and
reproducible results. Therefore, we advocate for
the adoption of zero-shot implementations.

6 Future Direction

The results demonstrated that the joined CoT
agents achieved quite high recall, outperforming
any individual CoT agent. This demonstrates that
there is potential for improvement in the use of
agents. One possible direction for future research
could be to iteratively guide the inference pro-
cess until a satisfactory summed log probability
is reached. Moreover, one can try combining other
CoT agents to evaluate possible improvements. Or
utilising other aggregating techniques to filter the
pairs.

Research has raised concerns regarding the re-
liability of token-level uncertainty, as token con-
ditional distributions may sometimes be mislead-
ing. This issue arises particularly in cases where
an initial token is incorrect, yet all subsequent to-
kens appear highly probable given that initial to-
ken (Shorinwa et al., 2024). Investigating more
robust methods for estimating token-level confi-
dence scores could improve the downstream ACSA
performance or other tasks as well.

7 Conclusion

In our experiments, we evaluated two larger (70B+)
LLMs, Qwen and Llama, along with their smaller
3B parameter-size counterparts. We observed that
the optimal CoT order for the ACSA task is rather
dataset-dependent. Additionally, we found that em-
ploying a multi-hop CoT approach does not yield
better results compared to our enumerated CoT ver-
sion. Furthermore, confidence scores derived from
token-level uncertainty proved somewhat informa-
tive, appearing to be a more effective strategy than
relying solely on majority voting among agents.
Moreover, we discovered that using the variance in

confidence between agents can be a good indicator
to view challenging examples. Intuitively, larger
models tend to produce more reliable confidence
estimates. Given the high recall achieved by our
combined CoT aggregation method, we suggest
there remains considerable room for improvement,
potentially through exploring alternative aggrega-
tion techniques or developing more accurate token-
level uncertainty estimation methods.

8 Limitations

One limitation is the primacy bias or order bias
effect (Wang et al., 2023). LLMs’ generation may
get biased towards an earlier exposed option when
asked, rather than a later one. This bias is particu-
larly prevalent in category selection; when we ask
the LLM which categories are mentioned in the
text, it may have a tendency to select options pre-
sented at the beginning, ideally, we would need to
change the order of the categories, but this would
be computationally expensive to investigate.

9 [Ethical Statement

LLMs, due to their training on extensive amounts
of internet data, may inadvertently perpetuate and
amplify biases present in the source material. This
could result in biased or unfair outcomes in ABSA
tasks, particularly in sensitive domains such as so-
cial media monitoring.

Our research contributes to the enhancement
of sentiment analysis techniques, which can be
beneficial in various fields such as marketing, cus-
tomer service, and social sciences. By providing
more accurate sentiment analysis, organisations
and researchers can make better-informed deci-
sions based on public and customer opinions.

However, there is a risk that enhanced ABSA
techniques could be misused for unethical purposes,
such as manipulating public opinion or spreading
misinformation. We advocate for responsible use
and adherence to ethical standards in deploying
such technologies.

References

Dian Arianto and Indra Budi. 2020. Aspect-based
sentiment analysis on Indonesia’s tourism destina-
tions based on Google maps user code-mixed reviews
(study case: Borobudur and prambanan temples). In
Proceedings of the 34th Pacific Asia Conference on
Language, Information and Computation, pages 359—
367, Hanoi, Vietnam. Association for Computational
Linguistics.

317


https://aclanthology.org/2020.paclic-1.41
https://aclanthology.org/2020.paclic-1.41
https://aclanthology.org/2020.paclic-1.41
https://aclanthology.org/2020.paclic-1.41

Yinhao Bai, Zhixin Han, Yuhua Zhao, Hang Gao,
Zhuowei Zhang, Xunzhi Wang, and Mengting Hu.
2024. Is compound aspect-based sentiment analysis
addressed by LLMs? In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
7836-7861, Miami, Florida, USA. Association for
Computational Linguistics.

Christopher Barrie, Elli Palaiologou, and Petter Torn-
berg. 2025. Prompt stability scoring for text an-
notation with large language models. Preprint,
arXiv:2407.02039.

Hongjie Cai, Yaofeng Tu, Xiangsheng Zhou, Jianfei
Yu, and Rui Xia. 2020. Aspect-category based senti-
ment analysis with hierarchical graph convolutional
network. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 833—
843, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

M. Chu, Y. Chen, L. Yang, and J. Wang. 2022. Lan-
guage interpretation in travel guidance platform: Text
mining and sentiment analysis of tripadvisor reviews.
Frontiers in Psychology, 13.

Hao Fei, Bobo Li, Qian Liu, Lidong Bing, Fei Li, and
Tat-Seng Chua. 2023. Reasoning implicit sentiment
with chain-of-thought prompting. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 1171-1182, Toronto, Canada. Association for
Computational Linguistics.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 1161-1166, Hong Kong, China. Association
for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107-112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Nils Constantin Hellwig, Jakob Fehle, Udo Kruschwitz,
and Christian Wolff. 2025. Do we still need hu-
man annotators? prompting large language mod-
els for aspect sentiment quad prediction. ArXiv,
abs/2502.13044.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and
Min Yang. 2019. A challenge dataset and effec-
tive models for aspect-based sentiment analysis. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 6280—
6285, Hong Kong, China. Association for Computa-
tional Linguistics.

Brentton Wong Swee Kit and Minnu Helen Joseph.
2023. Aspect-based sentiment analysis on movie re-
views. In 2023 15th International Conference on De-
velopments in eSystems Engineering (DeSE), pages
237-243.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and De-
heng Ye. 2024. More agents is all you need. Preprint,
arXiv:2402.05120.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Llama, :, Aaron Grattafiori, Abhimanyu Dubey, Abhi-
nav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan
Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, and 77 others.
2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Khanista Namee, Jantima Polpinij, and Bancha Luaphol.
2023. A hybrid approach for aspect-based sentiment
analysis: A case study of hotel reviews. Current
Applied Science and Technology, 23(2):Published:
Aug 15, 2022.

Amandalynne Paullada, Inioluwa Deborah Raji,
Emily M. Bender, Emily Denton, and Alex Hanna.
2021. Data and its (dis)contents: A survey of dataset
development and use in machine learning research.
Patterns, 2(11):100336.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine learning in python. J. Mach. Learn. Res.,
12:2825-2830.

Joseph J Peper, Wenzhao Qiu, Ryan Bruggeman,
Yi Han, Estefania Ciliotta Chehade, and Lu Wang.
2024. Shoes-ACOSI: A dataset for aspect-based sen-
timent analysis with implicit opinion extraction. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 15477-15490, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Zhichao Ping, Guoming Sang, Zhi Liu, and Yijia Zhang.
2024. Aspect category sentiment analysis based
on prompt-based learning with attention mechanism.
Neurocomputing, 565.

318


https://doi.org/10.18653/v1/2024.findings-emnlp.460
https://doi.org/10.18653/v1/2024.findings-emnlp.460
https://arxiv.org/abs/2407.02039
https://arxiv.org/abs/2407.02039
https://doi.org/10.18653/v1/2020.coling-main.72
https://doi.org/10.18653/v1/2020.coling-main.72
https://doi.org/10.18653/v1/2020.coling-main.72
https://doi.org/10.3389/fpsyg.2022.1029945
https://doi.org/10.3389/fpsyg.2022.1029945
https://doi.org/10.3389/fpsyg.2022.1029945
https://doi.org/10.18653/v1/2023.acl-short.101
https://doi.org/10.18653/v1/2023.acl-short.101
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://api.semanticscholar.org/CorpusID:276421825
https://api.semanticscholar.org/CorpusID:276421825
https://api.semanticscholar.org/CorpusID:276421825
https://doi.org/10.18653/v1/D19-1654
https://doi.org/10.18653/v1/D19-1654
https://doi.org/10.1109/DeSE58274.2023.10099815
https://doi.org/10.1109/DeSE58274.2023.10099815
https://arxiv.org/abs/2402.05120
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2407.21783
https://doi.org/10.55003/cast.2022.02.23.008
https://doi.org/10.55003/cast.2022.02.23.008
https://doi.org/10.1016/j.patter.2021.100336
https://doi.org/10.1016/j.patter.2021.100336
https://doi.org/10.18653/v1/2024.findings-emnlp.907
https://doi.org/10.18653/v1/2024.findings-emnlp.907
https://doi.org/10.1016/j.neucom.2023.126994
https://doi.org/10.1016/j.neucom.2023.126994

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ton Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud Maria Jiménez-Zafra, and Giilsen Eryigit.
2016. SemEval-2016 task 5: Aspect based sentiment
analysis. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 19-30, San Diego, California. Association for
Computational Linguistics.

J. Pustejovsky and Amber Stubbs. 2013. Natural lan-
guage annotation for machine learning. O’Reilly
Media, Inc.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Lois Rink, Job Meijdam, and David Graus. 2024.
Aspect-based sentiment analysis for open-ended HR
survey responses. In Proceedings of the First Work-
shop on Natural Language Processing for Human Re-
sources (NLP4HR 2024), pages 16-26, St. Julian’s,
Malta. Association for Computational Linguistics.

Vinay Samuel, Yue Zhou, and Henry Peng Zou. 2025.
Towards data contamination detection for modern
large language models: Limitations, inconsistencies,
and oracle challenges. In Proceedings of the 31st
International Conference on Computational Linguis-
tics, pages 5058-5070, Abu Dhabi, UAE. Associa-
tion for Computational Linguistics.

Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z. Ren,
and Anirudha Majumdar. 2024. A survey on un-
certainty quantification of large language models:
Taxonomy, open research challenges, and future di-
rections. Preprint, arXiv:2412.05563.

Charles Spearman. 1904. The proof and measurement
of association between two things. American Journal
of Psychology, 15:72—-101.

Yajing Wang and Zongwei Luo. 2023. Enhance multi-
domain sentiment analysis of review texts through
prompting strategies. In 2023 International Confer-
ence on High Performance Big Data and Intelligent
Systems (HDIS), pages 1-7.

Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang,
and Bryan Hooi. 2023. Primacy effect of ChatGPT.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
108-115, Singapore. Association for Computational
Linguistics.

Guixian Xu, Zhe Chen, and Zixin Zhang. 2025. Aspect
category sentiment analysis based on pre-trained bil-
stm and syntax-aware graph attention network. Sci-
entific Reports, 15.

Yang Yu, Duy-Tai Dinh, Ba-Hung Nguyen, Fangyu Yu,
and Van-Nam Huynh. 2023. Mining insights from
esports game reviews with an aspect-based sentiment
analysis framework. IEEE Access, 11:61161-61172.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020. JMLR.org.

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing,
and Wai Lam. 2023. A survey on aspect-based senti-
ment analysis: Tasks, methods, and challenges. IEEE
Transactions on Knowledge and Data Engineering,
35.

A Number of Pair Estimation - Alpha

For the aggregation techniques highest probability
pairs and clustered pairs described in Section 3.3,
we developed several methods to determine the
number of pairs to collect from the CoT agents
for a given instance; we denote this variable as a.
These methods are enumerated as follows:

Float Variable Given a float variable, it would
act as a variable of bias between the number of
pairs produced by the CoT agents and the global
average of the number of pairs produced in the
whole dataset. In the below equation, the u repre-
sents the median of all the pairs on all the instances
produced by the CoT agents, and the left part of the
equation represents the average number of pairs for
the current instance.

N
1
round (a N Z;npairs,i +(1-a)- M)
1=

In our study, we experimented with the values
0.9 and 1.

String Variable The other process involves first
computing the average (list) probability for each
agent and then associating this average with the
number of pairs the agent produces. For instance,
if an agent produces two pairs and has an average
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probability of 0.9, we record the mapping (2, 0.9).
Once we collect these (number of pairs: average
log probability) mappings for all agents, we sub-
sequently apply either the mean or max operation
to the mapped probabilities. Finally, we select the
number of pairs with the highest value. This il-
lustrates how the mean and max variables operate
when configuring the alpha score.

B Dataset Statistics

In Table 2 we show the dataset statistics.

C CoT Agent Performance

In Figures 6, 7, 8, 9 we show the various CoT F1
scores per dataset, as shown in the legend. Each
figure is a different model. The letters A, C and O
stand for Aspects, Category and Opinion, respec-
tively and the arrows in between denote their order
in the CoT prompt.

—e— Laptop 16
—m— Restaurant 16
——  MAMS
—— Shoes

OrA>C CrO>A

>Ap>O

A>rCprO OrCprA

Figure 6: Radar plot comparing F-scores across differ-
ent datasets and element orders for the Qwen 3B model.

D Joined CoT Agents

Below, in Figure 10, we report the number of con-
flicting pairs for each dataset, after combining the
pairs produced by the CoT agents, also referred to
as the Joined CoT Agent.

CrOrA

ArCr>O OrCrA

Figure 7: Radar plot comparing F-scores across dif-
ferent datasets and element orders for the Qwen 72B
model.

>Ap>O

Figure 8: Radar plot comparing F-scores across differ-
ent datasets and element orders for the Llama 3B model.

Figure 9: Radar plot comparing F-scores across dif-
ferent datasets and element orders for the Llama 70B
model.
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Datasets

Laptop 16 Restaurant 16 MAMS Shoes

N. train samples
N. val samples
N. test samples
N. categories

2468 1954 3149 906
n/a n/a 400 116
579 571 400 125
67 12 8 21

Table 2: Dataset statistics for the four datasets employed in our study. The number of instances comes after
pre-processing, omitting any examples with conflicting labels. Laptop16 and Restaurant16 do not have a validation

dataset.

1200 4 B llama-3.3-70B

e Uama-3.2-3B
BN Qwen2.5-72B
== Qwen2.5-3B

1000

800

600

Number of Pairs in Conflict

200 4

Laptop 16

Restaurant 16 MAMS Shoes
Datasets

Figure 10: Number of conflicting pairs for each dataset per model for the Joined CoT Agent.
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E CoT Prompt

The prompts of our CoT agents are compositional
in the sense that each element has its own template,
whether it is the first or a subsequent element in
the chain. As previously discussed, we have three
element permutations consisting of the aspect term,
aspect category, and sentiment polarity. Thus, we
have 3 x 2 = 6 templates, which we chain ac-
cording to the given order to form the CoT agent’s
prompt. Below, we provide an example of the As-
pect — Opinion — Category ordering. As shown,
the instructions for each element are numbered and
presented sequentially. The prompt for the first
element differs in that it includes the review text
and begins with the phrase “Given the following
text”. After these instructions, we prompt the LLM
to provide answers by enumerating the elements
and including blanks for the LLM to fill in. Finally,
we instruct the model to produce the ACSA tuples
formatted as a Python list of tuples.

We obtained more stable results by using differ-
ent types of brackets when specifying the output,
i.e., square brackets and parentheses, rather than
nested square brackets. The same logic applies to
quotation marks: to avoid obfuscating the instruc-
tions, we use double quotes around the example
demonstration list of tuples and enclose the strings
within single quotes.

Additionally, we first present the system instruc-
tion used in our study, adapted from (Wang and
Luo, 2023), which employs a role-playing format
and constrains the LLM to generate the most prob-
able answers while controlling their verbosity.

The fonts in the examples are for illustration
purposes only.

System Instruction

You are a Natural Language Processing assistant,
expert in Aspect-Based Sentiment Analysis. |
want you to force yourself to pick words that
you are being asked and only them, without
explanations or reasoning. If you are unsure, put
the most probable. Now follow the following
steps:

CoT Prompt

1. Given the following text, list all word se-
quences that denote an aspect term of the restau-
rant domain:

“We went again and sat at the bar this time, [
had 5 pints of guinness and not one buy-back, 1
ordered a basket of onion rings and there were
about 5 in the basket, the rest was filled with
crumbs, the chili was not even edible.”

2. List all word sequences that denote or link to
an opinion from the aspects detected.

3. List the categories from the opinions de-
tected. The list of possible categories is:
[menu, service, price, ambience,
place, staff, miscellaneous, food].

1. Aspects:
2. Opinions:
3. Categories:

Lastly, please provide one Python-type list of
tuples such as

"'[('example\_category_1', 'positive'),
('example_category_2', 'negative'), ...]1"'

where the categories are provided above and the
sentiment is either positive, neutral, or negative,
based on the extracted opinions.
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F Multi-Hop CoT Prompt

To compare with previous CoT research in the
ABSA domain, we adapted the multi-hop approach
of Fei et al. (2023); Wang and Luo (2023) to our
ACSA context. Unlike Fei et al. (2023), who first
provide the aspect term to search, then ask the LLM
to identify it from the text, and subsequently use
this answer to extract the opinion from the text,
which they finally feed into the last prompt to de-
termine the sentiment polarity, we do not assume
prior knowledge of the targets. Instead, we fol-
low the same sequential approach as illustrated in
our examples in Appendix E, but in a multi-hop
manner. After each step, we pose a question to
the LLM, and the retrieved answer is added to the
message history using the chat template. Below,
we demonstrate an example using the 3B Llama
model as the assistant, which ultimately provides
the ACSA tuples as a Python-style list of tuples
for post-processing. Consequently, we make four
calls to the LLM for one prediction. Additionally,
we would use the same system instruction as in
Appendix E.

CoT Multi-Hop Thread

User:

Given the following text, list all word se-
quences that denote an aspect term of the
restaurant domain:

“We went again and sat at the bar this time, I
had 5 pints of guinness and not one buy-back,
I ordered a basket of onion rings and there
were about 5 in the basket, the rest was filled
with crumbs, the chili was not even edible.”

Assistant:

bar, onion, rings, chili

User:

List all word sequences that denote or link to
an opinion from the aspects detected.

Assistant:

not, even, edible

User:

List the categories from the opinions detected.
The list of possible categories is:

['menu', 'service', 'price',

'ambience', 'place', 'staff',
'miscellaneous', 'food']

Assistant:

['menu', 'food']

User:

Lastly, please provide one Python type list of
tuples such as:
[('example_category_1', 'positive'),
('example_category_2', 'negative'), ...]
that you identified. Where the categories are
provided above and the sentiment is either *pos-
itive’, 'neutral’ or ’negative’, based on the ex-
tracted opinions.

Assistant:

[('menu', 'negative'),
('food', 'negative')]

G Few Shot CoT

The prompt used to construct the few-shot CoT
prompt, incorporating ten examples from the train-
ing dataset, required careful engineering. Within
the CoT, the elements—aspect terms, opinions,
and categories—are enumerated in varying orders.
However, since the datasets employed in this study
are ACSA-type, the ground-truth annotations con-
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tain only categories and polarities without explicit
annotations for aspect terms and opinions. Con-
sequently, the prompt was designed to explicitly
illustrate the internal CoT reasoning steps that the
LLM should follow between clearly defined BE-
GIN COT and END COT markers, subsequently
instructing the model to output the final result ex-
plicitly as a Python list. Given the complexity and
detailed nature of this prompt, additional precision
was required, including explicit reminders to out-
put the Python list after completing the CoT rea-
soning steps; this explicit instruction was deemed
particularly necessary for the 3B parameter models.
Below is a prompt containing two examples.

Few Shot CoT Prompt (1/2)

Given the following text, list all word sequences that
denote an aspect term of the restaurant domain:

"Worst Service I Ever Had"

List all word sequences that denote or link to an opinion
from the aspects detected.

List the categories from the opinions detected. The list of
possible categories is:
['FOOD#QUALITY', 'AMBIENCE#GENERAL',

' SERVICE#GENERAL ', 'RESTAURANT#PRICES',
'DRINKS#QUALITY', 'FOOD#PRICES',
'"RESTAURANT#MISCELLANEOUS', 'LOCATION#GENERAL',
'DRINKS#STYLE_OPTIONS', 'DRINKS#PRICES',
'FOOD#STYLE_OPTIONS', 'RESTAURANT#GENERAL']J.

* The reasoning must appear only between BEGIN COT
and END COT.

BEGIN COT
Aspects: ...
Opinions: ...
Categories: ...
END COT

* Outside those markers print one PYTHON LIST of
tuples, exactly like

[('example_category_1', 'negative'),
('example_category_2', 'positive')] that you iden-
tify in your three step COT reasoning.

* Where the categories derive from step 3 Categories in
COT and each associated category’s sentiment is either
’positive’, ’neutral’ or ’negative’, based on step 2 the
extracted Opinions.

Few Shot CoT Prompt (2/2)

324

EXAMPLES

Example 1

Review: "Service was wonderful;"

BEGIN COT

Aspects: ...

Opinions: ...

Categories: ...

END COT

PYTHON LIST: [('SERVICE#GENERAL', 'positive')]
Example 2

Review: "My mom originally introduced me to this place,
but even she (being Indian) feels the food can be some-
what over the top spicy and far too oily."

BEGIN COT
Aspects: ...
Opinions: ...
Categories: ...
END COT

PYTHON LIST: [('FOOD#QUALITY', 'negative')]

NOW SOLVE THE NEW REVIEW

* Please complete the below CoT and end it with END
COT.

Given the following text, list all word sequences that
denote an aspect term of the restaurant domain:

"Worst Service I Ever Had"

List all word sequences that denote or link to an opinion
from the aspects detected.

List the categories from the opinions detected. The list of
possible categories is:
['FOOD#QUALITY', 'AMBIENCE#GENERAL',

' SERVICE#GENERAL ', 'RESTAURANT#PRICES',
'DRINKS#QUALITY', 'FOOD#PRICES',
'RESTAURANT#MISCELLANEOUS', 'LOCATION#GENERAL',
'DRINKS#STYLE_OPTIONS', 'DRINKS#PRICES',
'FOOD#STYLE_OPTIONS', 'RESTAURANT#GENERAL']J.

¢ After completing the three step COT reasoning and clos-
ing it with END COT, print the PYTHON LIST of tuples,
exactly like [('example_category_1', 'negative'),
('example_category_2', 'positive')] that you iden-
tify in your three step COT reasoning.

¢ Where the categories derive from step 3 Categories in
COT and each associated category’s sentiment is either
’positive’, ’neutral’ or ’negative’, based on step 2 the
extracted Opinions.

¢ DO NOT FORGET the PYTHON LIST.

BEGIN COT

Aspects: ...




H CoT versus Multi-Hop CoT

We conducted experiments using the 3B LLMs to
determine whether enumerating tasks within a sin-
gle CoT prompt (see example in Appendix E) or
using four separate calls via the multi-hop CoT
approach (see example in Appendix F) yields
higher prediction scores. Table 3 presents the best-
performing CoT agent for each approach, organised
by LLM and dataset. Recall that we have six differ-
ent agents, each varying the order of elements. As
shown in the table, one notable characteristic of the
multi-hop CoT approach is that Opinions always
precede Categories and Aspect terms.
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Datasets Laptop 16 Restaurant16 MAMS Shoes
3B LLM models Qwen Llama Qwen Llama Qwen Llama Qwen Llama
Enumerated CoT O )C)A:20.3 O)A)C:19.1 O)C)A:60.0 O)A)C:43.1 A)C)0:266 C)A)0:21.0 A)C)0:371 A)C)0:242
Multi-hop CoT 0)C)A:159 O)C)A:17.1 0O)C)A:56.5 O)C)A:525 O)C)A:281 O)C)A:291 O)C)A:292 O)A)C:29.2

Table 3: The enumerated single prompt CoT against the multi-hop CoT. The table shows the F1 score in percentages
across the four datasets and the 3B Qwen and Llama models. The O, C, and A stand for Opinion, Category and
Aspect terms accordingly. They show the order of the elements from left to right. Each cell has the top performant
element order measured for that dataset and LLM. On the right of the element order is depicted the F1 score, bold
shows the higher percentage between Enumerated CoT and Multi-hop CoT.
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