1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning

Wenkai Li, Liwen Sun, Zhenxiang Guan, Xuhui Zhou, Maarten Sap


Abstract
Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources. Building on the theory of contextual integrity, we introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks—extraction, classification—reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. Experiments on the ConfAIde benchmark with two LLMs (GPT-4, Llama3) demonstrate that our multi-agent system substantially reduces private information leakage (36% reduction) while maintaining the fidelity of public content compared to a single-agent system, showing the promise of multi-agent frameworks towards contextual privacy with LLMs.
Anthology ID:
2025.llmsec-1.9
Volume:
Proceedings of the The First Workshop on LLM Security (LLMSEC)
Month:
August
Year:
2025
Address:
Vienna, Austria
Editor:
Jekaterina Novikova
Venues:
LLMSEC | WS
SIG:
SIGSEC
Publisher:
Association for Computational Linguistics
Note:
Pages:
115–128
Language:
URL:
https://preview.aclanthology.org/corrections-2025-08/2025.llmsec-1.9/
DOI:
Bibkey:
Cite (ACL):
Wenkai Li, Liwen Sun, Zhenxiang Guan, Xuhui Zhou, and Maarten Sap. 2025. 1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning. In Proceedings of the The First Workshop on LLM Security (LLMSEC), pages 115–128, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning (Li et al., LLMSEC 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/corrections-2025-08/2025.llmsec-1.9.pdf
Supplementarymaterial:
 2025.llmsec-1.9.SupplementaryMaterial.txt