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Abstract
Red-teaming has become a critical component
of Large Language Models (LLMs) security
amid increasingly sophisticated adversarial
techniques. However, existing methods
often depend on hard-coded strategies that
quickly become obsolete against novel attack
patterns, requiring constant updates. Moreover,
current automated red-teaming approaches
typically lack effective reasoning capabilities,
leading to lower attack success rates and
longer training times. In this paper, we
propose RedHit, a multi-round, automated,
and adaptive red-teaming framework that
integrates Monte Carlo Tree Search (MCTS),
Chain-of-Thought (CoT) reasoning, and Direct
Preference Optimization (DPO) to enhance the
adversarial capabilities of an Adversarial LLM
(ALLM). RedHit formulates prompt injection
as a tree search problem, where the goal is
to discover adversarial prompts capable of
bypassing target model defenses. Each search
step is guided by an Evaluator module that
dynamically scores model responses using
multi-detector feedback, yielding fine-grained
reward signals. MCTS is employed to explore
the space of adversarial prompts, incrementally
constructing a Prompt Search Tree (PST)
in which each node stores an adversarial
prompt, its response, a reward, and other
control properties. Prompts are generated via
a locally hosted IndirectPromptGenerator
module, which uses CoT-enabled prompt
transformation to create multi-perspective,
semantically equivalent variants for deeper
tree exploration. CoT reasoning improves
MCTS exploration by injecting strategic
insights derived from past interactions,
enabling RedHit to adapt dynamically to
the target LLM’s defenses. Furthermore,
DPO fine-tunes ALLM using preference
data collected from previous attack rounds,
progressively enhancing its ability to generate
more effective prompts. RedHit leverages the

Garak framework to evaluate each adversarial
prompt and compute rewards, demonstrating
robust and adaptive adversarial behavior
across multiple attack rounds. The source
code of the RedHit is publicly available at:
https://github.com/CyberScienceLab/
Our-Papers/tree/main/RedHit.

1 Introduction

LLMs such as GPT-4 and LLaMA have demon-
strated remarkable capabilities in understanding
and generating coherent, context-sensitive text in
a wide array of applications, including machine
translation, summarization, code generation, and
conversational agents (OpenAI, 2023; Gu et al.,
2025). These models have shown human-like flu-
ency and reasoning capabilities, enabling them to
power both commercial and open-source AI sys-
tems. However, their growing capabilities come
with an expanding set of safety and security chal-
lenges (Weidinger et al., 2022). LLMs are suscep-
tible to producing unsafe content, disclosing sen-
sitive information, or being manipulated through
adversarial messages, raising substantial concerns
about trust, safety, and deployment in real-world
scenarios (Weidinger et al., 2021; Shelby et al.,
2023). One prominent threat to LLM safety is
the phenomenon of prompt injection attacks, in
which adversarial users craft input sequences to
circumvent safety filters, jailbreak models, or elicit
harmful, biased, or restricted outputs. As LLMs
are increasingly integrated into search engines, pro-
ductivity tools, customer service bots, and decision-
support systems, the impact of such attacks grows
significantly. For example, attackers may exploit
LLMs to bypass content moderation, extract pri-
vate training data, or subtly manipulate the model’s
behavior in multi-turn dialogues. These vulnerabil-
ities are not merely theoretical; several real-world
instances of prompt injection and model misuse
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have already been documented (Zou et al., 2023;
Perez et al., 2022).

Red-teaming has emerged as a core strategy to
identify and mitigate such vulnerabilities during
development. Red-teaming involves simulating ad-
versarial behavior by designing malicious or prob-
ing inputs to test how models respond under unsafe
or manipulative conditions. Traditionally, this has
been performed manually by expert annotators or
security researchers who craft edge-case prompts
and evaluate outputs for policy violations or harm
(Weidinger et al., 2021; Shelby et al., 2023). While
this approach is invaluable, it is inherently resource-
intensive, requiring extensive time, domain exper-
tise, and iteration to explore the high-dimensional
space of adversarial behaviors effectively. Manual
red-teaming suffers from several key limitations.
First, it does not scale well. The ever-growing
range of use cases and the rapid evolution of LLMs
have made the space of potential vulnerabilities
vast and constantly shifting. Relying solely on
human experts to explore this space leads to bot-
tlenecks. Second, human-crafted attacks may fall
behind the sophistication of both LLMs and their
defense mechanisms. Third, human evaluators in-
troduce subjectivity, inconsistency, and potential
oversight, especially when assessing nuanced harm-
ful outputs.

Automated red-teaming has been proposed as a
promising alternative to address these challenges.
One stream of research trains reward models that
approximate human judgment, enabling large-scale
preference modeling and automated scoring of
model outputs (Bai et al., 2022; Ouyang et al.,
2022; Sorkhpour et al., 2024). These models help
reduce reliance on human annotators for output
evaluation. However, generating high-quality ad-
versarial prompts—especially ones that adapt to
model defenses—still largely depends on human
creativity and intuition. Recent works have ex-
plored automated systems that use language mod-
els themselves to generate adversarial prompts. For
example, some approaches fine-tune models to be-
have as adversarial agents, iteratively optimizing
prompts to maximize unsafe completions (Gre-
shake Tzovaras et al., 2023; Perez et al., 2022).
However, these systems often suffer from brittle-
ness, overfitting to specific targets, or poor general-
ization across different LLMs. Furthermore, they
frequently lack strategic reasoning and adaptabil-
ity, making them ineffective at discovering newly
emerging failure modes.

A critical limitation in existing automated red-
teaming frameworks is their use of static or greedy
generation strategies. These systems typically lack
mechanisms for exploration and strategic refine-
ment. As a result, they may become stuck in sub-
optimal attack patterns and fail to uncover subtle
or novel vulnerabilities. Moreover, most frame-
works do not incorporate learning from feedback in
a structured and long-term way—each generation
is treated independently, without memory of past
successes or failures.

To bridge these gaps, we propose RedHit, a
novel framework for progressive, automated, and
adaptive red-teaming of LLMs. RedHit intro-
duces a synergistic integration of three core compo-
nents: MCTS, CoT reasoning, and DPO. Together,
these techniques enable RedHit to generate high-
quality adversarial prompts that evolve over mul-
tiple rounds, guided by both strategic exploration
and preference feedback. At the heart of RedHit is
the formulation of prompt injection as a tree search
problem. Each node in the search tree represents
a candidate adversarial prompt, its corresponding
model response, a reward (evaluated via an exter-
nal reward model), and relevant metadata. Red-
Hit uses a configurable MCTreeSearch module that
controls search depth, iteration count, and branch-
ing breadth to systematically expand the prompt
search space. The model responses are evaluated
by an Evaluator module that aggregates multi-
detector results to compute a fine-grained reward
signal. Adversarial prompts are generated using
the IndirectPromptGenerator, a locally-hosted
Chain-of-Thought-based rewriter that transforms
prompts into strategically deceptive alternatives,
boosting the diversity and stealth of attacks.

To further enhance the strategic depth of MCTS,
we incorporate Chain-of-Thought reasoning dur-
ing prompt generation. CoT provides intermedi-
ate reasoning steps, helping the ALLM generate
prompts that are not only more coherent but also
more tactically sound. This improves the likeli-
hood of successfully bypassing target defenses and
allows the model to reflect on past attack paths to re-
fine future ones (Wei et al., 2022). Finally, RedHit
employs DPO to continuously fine-tune the adver-
sarial LLM based on feedback from previous attack
rounds. Unlike supervised fine-tuning, which re-
quires labeled data, DPO directly optimizes the
model’s parameters to prefer high-reward prompts
over low-reward ones, using the output evaluations
from each tree traversal (Rafailov et al., 2023). This
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iterative learning enables the ALLM to become
progressively better at generating effective adver-
sarial prompts tailored to the evolving defenses of
the target LLM. Our main contributions are sum-
marized as follows:

• We introduce RedHit, a novel automated red-
teaming framework that integrates MCTS,
CoT reasoning, and DPO to progressively gen-
erate adaptive adversarial prompts. RedHit is
implemented using a modular design that sup-
ports local LLMs and is fully integrated with
the DSPy framework (Khattab et al., 2023).

• Prompt injection is formulated as a tree search
problem, and a PST is constructed where
each node encodes an adversarial prompt,
model response, reward, and auxiliary meta-
data—enabling efficient exploration and learn-
ing. Prompt exploration is driven by a con-
figurable MCTreeSearch module that sup-
ports depth-controlled, breadth-aware, reward-
guided rollouts.

• CoT reasoning is embedded within
MCTS rollouts to guide strategic and
context-aware adversarial generation
paths. Prompts are rewritten using a local
IndirectPromptGenerator that produces
semantically aligned but more evasive
versions of the base prompt using CoT-based
transformations.

• We implement a continual preference-based
fine-tuning loop using DPO, allowing the ad-
versarial LLM to improve its effectiveness
over multiple attack rounds.

• We evaluate RedHit using the Garak frame-
work and demonstrate that it achieves higher
attack success rates, broader coverage of vul-
nerabilities, and stronger adaptability com-
pared to existing baselines. A dedicated
Evaluator module aggregates the outcomes
of multiple detectors to compute fine-grained
reward scores, enabling more precise learning
signals.

The remainder of this paper is organized as fol-
lows. Section 2 reviews recent advances in auto-
mated red-teaming and adversarial prompt gener-
ation for LLMs. Section 3 introduces the RedHit
framework in detail, describing the integration of

MCTS, CoT reasoning, and DPO. Section 4 out-
lines our experimental setup, evaluation metrics,
and our baseline, followed by extensive empiri-
cal results. Finally, Section 5 concludes with a
summary of our findings and discusses promising
future directions for adaptive and scalable LLM
red-teaming research.

2 Related Work

The growing capabilities of LLMs have ampli-
fied the need to rigorously evaluate their robust-
ness against misuse and adversarial exploitation
(Yazdinejad et al., 2024; Sorkhpour et al., 2025).
Early efforts in this space relied mainly on man-
ual red-teaming, where human annotators crafted
commands to probe model vulnerabilities (Touvron
et al., 2023; Zou et al., 2023). While valuable, this
approach is inherently limited by scalability, sub-
jectivity, and cost, often requiring large annotation
teams to identify unsafe behavior through exten-
sive trial-and-error. To mitigate the inefficiency
of human evaluation, reward models trained on
human preferences have been introduced to au-
tomate the assessment of model responses (Bai
et al., 2022; Ouyang et al., 2022). These models ap-
proximate human judgment and provide feedback
signals for fine-tuning, enabling scalable learning
from preferences. However, the generation of high-
quality adversarial prompts remains predominantly
human-driven, limiting the overall scalability of
red-teaming pipelines.

In response, recent work has explored the use of
language models themselves to generate adversar-
ial prompts. For instance, Perez et al. (2022) intro-
duced a framework that trains adversarial LLMs
to red-team other models, demonstrating the fea-
sibility of LLMs as both attackers and defenders.
However, these approaches often rely on static at-
tack strategies or fine-tuned behaviors that do not
generalize well across evolving LLMs. As target
models improve, adversarial agents must also dy-
namically adapt to more sophisticated and subtle
defense mechanisms. To address the challenge of
evolving vulnerabilities, Greshake Tzovaras et al.
(2023) proposed leveraging GPT-based adversaries
to automatically jailbreak models. Their findings
highlight the potential of autoregressive LLMs to
discover and exploit security flaws, yet also reveal
the brittleness of such systems when deployed in
multi-turn or adaptive contexts. Similarly, Chen
et al. (2023) introduced MART, a hybrid framework
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that combines automated adversarial prompt gen-
eration with safe response modeling to enhance ro-
bustness and adaptability in red-teaming pipelines.
Other methods like JailbreakBench and Prompt-
Bench have also aimed to standardize red-teaming
evaluations, though they typically lack iterative rea-
soning or self-improving feedback loops. Despite
these advances, existing automated red-teaming
frameworks often suffer from several limitations.
Many adopt single-step or greedy strategies that
fail to account for long-term planning or strategic
exploration. Additionally, few systems integrate
structured feedback mechanisms to continuously
improve adversarial capabilities over time. More-
over, most prior work underutilizes search-based
optimization and reasoning-enhanced generation,
both of which are critical for uncovering subtle
or evasive vulnerabilities. A fully automated and
adaptive red-teaming framework must be capable
of both uncovering current vulnerabilities and antic-
ipating emergent failure patterns through iterative
interaction.

To bridge these gaps, we propose RedHit, a
multi-round, progressive, and adaptive red-teaming
framework. RedHit combines MCTS (Browne
et al., 2012), CoT reasoning (Wei et al., 2022), and
DPO (Rafailov et al., 2023) to construct an ALLM
capable of dynamically generating increasingly ef-
fective attack prompts. The framework formulates
prompt injection as a tree search problem, where
MCTS guides the exploration of adversarial paths,
CoT enhances strategic reasoning during prompt
generation, and DPO fine-tunes the ALLM based
on feedback from prior attacks. Unlike earlier ap-
proaches, RedHit maintains a Prompt Search Tree
across rounds, allowing it to retain memory of prior
attempts, adapt search directions, and improve
long-term attack efficacy. Through this integra-
tion, RedHit moves beyond static prompt crafting
or single-step adversarial generation. It constructs
a PST, where each node contains an adversarial
prompt, corresponding model response, reward
(measured via an external evaluation framework
such as Garak), and control metadata. This de-
sign allows RedHit to support dynamic exploration,
structured optimization, and CoT-guided reasoning
in a unified, automated red-teaming pipeline.

3 Proposed Method

RedHit is an automated and multi-round red-
teaming framework designed to uncover vulner-

abilities in target large language models (TLLMs)
through adaptive adversarial prompt generation. It
treats prompt injection as a structured exploration
problem, constructing a dynamic PST where nodes
represent prompts, responses, and reward scores.
Figure 1 illustrates the overall RedHit workflow.
The ALLM generates CoT-guided prompt can-
didates, which are evaluated against the TLLM.
The resulting responses are scored via an external
evaluation framework, and the highest-performing
prompts are retained in the PST for policy refine-
ment. This closed-loop architecture, driven by
MCTS-based exploration, CoT-based prompt gen-
eration, and reward-guided optimization, enables
RedHit to progressively adapt and improve over
multiple attack rounds. Let T LLM denote the
target LLM under audit and ALLM be an adver-
sarial LLM capable of generating attack prompts.
At each time step t, the adversary generates a can-
didate prompt xt using its current policy. The
prompt is submitted to T LLM, producing a re-
sponse rt = T LLM(xt), which is scored by a
reward function st = Reward(xt, rt) computed via
an external framework (e.g., Garak). The goal is
to iteratively improve ALLM such that it maxi-
mizes the expected cumulative reward

∑
t st, cor-

responding to the generation of increasingly effec-
tive adversarial prompts. The overall process is
summarized in Algorithm 1, which outlines Red-
Hit’s multi-round exploration and optimization pro-
cedure across search, evaluation, and preference-
driven fine-tuning.

3.1 Tree-based Prompt Exploration with CoT
Guidance

RedHit employs MCTS as its core search mecha-
nism to explore the space of adversarial prompts.
Each node in the PST stores a tuple (x, r, s), repre-
senting the adversarial prompt, the response from
T LLM, and the resulting reward. The MCTS
algorithm balances exploration and exploitation
using the Upper Confidence Bounds for Trees
(UCT) criterion to traverse promising branches.
The tree search is implemented via a configurable
MCTreeSearch class that supports iterative rollouts
with adjustable depth, breadth, and final expan-
sion rounds. Prompt generation is handled by
the IndirectPromptGenerator, which wraps a
locally hosted DSPy program that transforms a
base prompt into multiple indirect adversarial vari-
ants using Chain-of-Thought reasoning. These re-
worded prompts form the candidate branches dur-
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Figure 1: Overview of the RedHit framework. An ALLM explores adversarial prompt space through MCTS,
guided by CoT reasoning and iteratively fine-tuned using DPO. The PST encodes prompt-response-reward tuples,
evaluated by the Garak framework.

Algorithm 1 RedHit Workflow
Require: Target LLM T LLM, adversarial LLM ALLM,

reward model R (e.g., Garak), number of rounds N , roll-
out budget B

1: Initialize Prompt Search Tree T with root node and empty
result buffer

2: for i = 1 to N do
{Attack rounds} for j = 1 to B do {Tree rollouts}

3:4: Select node n in T using UCB traversal policy
5: Retrieve base prompt xbase

j from node n
6: Generate CoT reasoning trace τj using ALLM
7: Generate prompt set {x1

j , . . . , x
m
j } from τj using

IndirectPromptGenerator
8: for each prompt xk

j do
9: Query T LLM to get response rkj =

T LLM(xk
j )

10: Evaluate reward skj = R(xk
j , r

k
j ) via

Evaluator
11: Expand T by adding node (xk

j , r
k
j , s

k
j ) under n

12: Store (xk
j , r

k
j , s

k
j ) in result buffer

13: end for
14: end for
15: Construct preference pairs from result buffer
16: Fine-tune IndirectPromptGenerator using DPO
17: Clear result buffer
18: end for
19: return Top-k adversarial prompts from T ranked by

reward

ing tree expansion. Each prompt is executed using
the target LLM through a standard interface, and
the response is passed into an Evaluator module.
This evaluator aggregates the detection results from
multiple detectors and normalizes the score over
the number of generations and detectors, yielding a
soft reward signal. This fine-grained reward is crit-
ical for driving effective policy updates and deeper
exploration. The evaluator is automatically initial-
ized per probe within the ProbeWrapper, enabling
seamless integration into the red-teaming loop.

3.2 Reward-driven Optimization and Policy
Refinement

Following each attack round, RedHit uses the accu-
mulated interactions to construct preference pairs
from the PST. These are used to fine-tune ALLM
via DPO, aligning the adversary’s generation policy
to favor high-reward prompts. After each round,
high-reward outputs are stored and sampled for
continued learning or offline optimization. This
allows training to persist across multiple execution
sessions. By iteratively refining the adversarial pol-
icy through structured exploration (MCTS), CoT,
and preference-based optimization (DPO), RedHit
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overcomes the limitations of static or brittle red-
teaming strategies. It adapts to increasingly robust
defenses in T LLM, discovers both common and
subtle vulnerabilities, and supports diverse, high-
reward adversarial strategies across multiple inter-
action rounds. Unlike prior frameworks, RedHit
supports local model hosting, reasoning-driven gen-
eration, and modular policy training—all within a
scalable and extensible DSPy-based environment.

3.3 Indirect Prompt Generator
To circumvent the TLLMs guardrails and deceive
them into generating specific rogue strings, we em-
ploy an Indirect Prompt Generator function. This
function constructs a partially dynamic prompt to
produce persuasive prompts that indirectly elicit the
desired malicious outputs from the TLLMs. The
static part of this prompt contains predefined in-
structions for the ALLM, while the dynamic part
consists of the history of previous prompts. This
strategy can be regarded as a form of few-shot
prompting. The ALLM is explicitly instructed to
follow a set of techniques designed to craft mali-
ciously persuasive prompts. These techniques, pre-
sented in the static section of the prompt, include:
Psychological Manipulation, Misdirection, Ethical
Dilemmas, Emotional Provocation, Hypothetical
Scenarios, Emotionally Charged Language, and
Conflicting Directives. For each technique, we first
provide a brief explanation and an illustrative ex-
ample. The ALLM then generates a new prompt
using either a single technique or a random combi-
nation of multiple techniques, taking into account
the dynamic prompt history.

3.4 Reward Formulation
To apply MCTS, we need to define a reward func-
tion to learn a policy through an iterative process.
MCTS updates the rewards of tree nodes during
the backpropagation step, which is executed af-
ter each simulation. To compute the rewards, we
used Garak’s detector, which generates multiple
responses using T LLM for each generation and
determines whether each response passes the test.
Accordingly, we define the reward for each node
as the proportion of successful prompt injections
among the generated responses:

R(n) =

∑
r∈Gn

δ(r)

|Gn|
(1)

where Gn denotes the set of responses generated
at node n, and δ(r) = 1 if the response r is flagged

as a successful injection by the detector, and 0
otherwise.

4 Experimental Evaluation

To evaluate the effectiveness of the RedHit frame-
work, we conduct a comprehensive set of experi-
ments across multiple LLMs. The adaptability of
RedHit allows us to apply it to all target LLMs us-
ing a variety of prompt injection strategies. In this
section, we present our evaluation methodology,
describe the experimental setup, and analyze the
results to assess RedHit’s performance and robust-
ness compared to existing approaches.

4.1 Experimental Setup

We evaluate RedHit against original and dis-
tilled version state-of-the-art LLMs serving as
target models (T LLM), including LLaMA 3
(Grattafiori et al., 2024), Gamma-3 (Team et al.,
2025) , Mistral7B (Jiang et al., 2023), DeepSeek-
R1-Distill-Qwen-7B (Guo et al., 2025), Phi-4 (Ab-
din et al., 2024). Table 1 demonstrates the details
of the LLMs we used for evaluate the proposed
method.

The adversarial agent ALLM is initialized
using a 4-bit quantized LLaMA3 8B model
and interacts with the target model through
multi-round attacks. Prompt generation is
performed using a Chain-of-Thought-enabled
IndirectPromptGenerator, which rephrases
prompts into more evasive variants during MCTS
exploration. Model responses are scored using a
custom Evaluator class that aggregates the out-
puts of multiple detectors implemented within the
Garak framework (Ranta et al., 2023). All experi-
ments are conducted offline within a modular, re-
producible environment using RedHit’s local exe-
cution pipeline. RedHit runs for N = 100 attack
rounds, with a rollout budget B = 5 per round, and
each prompt tree is expanded up to a configurable
depth. We ran RedHit on a 24GB NVIDIA A30
GPU that hosted ALLM via the VLLM frame-
work, and we also applied 4-bit quantization to
ALLM using the bitsandbytes library.

4.2 Evaluation Metrics

The Attack Success Rate (ASR) metric is used to
evaluate the effectiveness of RedHit’s adversarial
prompts. ASR is defined as the percentage of gener-
ated responses that violate policy due to successful
prompt injection. Since Garak generates a fixed
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Table 1: Model Specifications

Model Architecture Parameters Context Length Embedding
Length

Quantization

DeepSeek-R1 qwen2 7.6B 131072 3584 Q4_K_M
llama3 llama 8.0B 8192 4096 Q4_0
gemma3 gemma3 4.3B 131072 2560 Q4_K_M
mistral llama 7.2B 32768 4096 Q4_0
phi4 phi3 14.7B 16384 5120 Q4_K_M

number of responses (by default, 5) for each harm-
ful prompt, we applied a slight modification for
enable a more comprehensive evaluation of our
proposed method. In our approach, an attack is
considered successful for a given prompt if the
proportion of successful attack responses meets or
exceeds a specified threshold (default: 0.5). We
modified the default settings by changing the num-
ber of generations to 6 and ran RedHit across 10
thresholds ranging from 0.1 to 1.0.

ASR =
Nsuccess

Ntotal
(2)

where Nsuccess is the number of successful attacks
and Ntotal is the total number of prompts issued.

4.3 Threshold-Based Evaluation of ALLM
Since the MCTS reward ranges from 0.0 to 1.0, we
use it as a threshold to determine when a generated
prompt is considered a successful prompt injec-
tion. We evaluate the proposed method across 10
threshold levels, from 0.1 to 1.0. A threshold of 1.0
indicates that a prompt injection is deemed success-
ful only if all six responses from the target LLM
are fully influenced by ALLM prompt. Figure
2 shows the results of our custom threshold-based
experiments.

Result Comparison. To contextualize the per-
formance of RedHit, we compare it against the
Garak framework, a widely used and highly re-
garded baseline for adversarial prompt evaluation.
Garak attempts to bypass safety filters through auto-
matically generated prompt injections and serves as
a meaningful benchmark for measuring adversarial
success. In this experiment, we generate 100 mali-
cious prompts using the trained adversarial model
ALLM and then re-evaluate these prompts using
the Garak framework for direct comparison.

Comparative Summary Across Models. To
consolidate the performance analysis across target
LLMs, we present a summary in Table 2. This
table highlights the ASR achieved by both RedHit
and Garak across models, the relative performance

Figure 2: This figure shows how the number of success-
ful outputs declines across five LLMs as the accuracy
threshold increases, providing a comparative view of
each model’s robustness.

gain, and qualitative observations on adaptability
and generalization. The ASR values confirm Red-
Hit’s consistent superiority across most models,
particularly LLaMA3 and DeepSeek-R1. While
Garak shows higher ASR on Gemma3, this likely
reflects that simpler injection patterns are more ef-
fective on less robust models—underscoring Red-
Hit’s ability to adapt more effectively against
stronger defenses. Although runtime profiling was
not the primary objective of this study, we include
architectural metadata to support reproducibility
and future benchmarking efforts.

Figure 3 shows the performance of Garak across
different models, while Figure 4 shows the RedHit
performance. When comparing Garak and Red-
hit across the same set of models, the differences
in ASR highlight Redhit’s consistent performance.
Redhit outperforms Garak by a 20.7% difference on
LLaMA3, a 1.65% difference on Mistral-7B, and a
15.6% difference on DeepSeek-R1. Additionally,
Redhit shows a 4.35% improvement over Garak
on Phi4. While Redhit has a 12.2% lower ASR on
Gemma3, indicating Garak’s better performance on
more vulnerable models, the overall trends demon-
strate that Redhit provides a more nuanced and
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Table 2: Functional evaluation of RedHit vs. Garak across multiple LLMs. We report RedHit’s ASR, relative
improvement over Garak, and qualitative insights into adaptability and prompt generalization effectiveness.

Model RedHit ASR (%) Garak ASR (%) ASR Gain (%) Adaptability to
Defenses

Notes

LLaMA3 85.2 64.5 +20.7 High Robust against
safety filters

Mistral-7B 76.4 74.75 +1.65 Moderate Comparable perfor-
mance

DeepSeek-R1 82.3 66.7 +15.6 High Excels in CoT-
based attacks

Phi-4 79.1 74.75 +4.35 Moderate Performs well with
long context

Gemma3 75.2 87.4 12.2 Low Simpler prompts
are more effective

Table 3: Ablation study showing the effect of disabling each core component (MCTS, CoT, DPO) in RedHit on
ASR. Columns MCTS, CoT, and DPO.

Variant MCTS CoT DPO ASR (%) on LLaMA3 ASR (%) on DeepSeek-R1

Full RedHit ✓ ✓ ✓ 85.2 82.3
w/o CoT ✓ ✗ ✓ 78.4 74.6
w/o MCTS ✗ ✓ ✓ 73.9 69.2
w/o DPO ✓ ✓ ✗ 75.1 71.5
w/o MCTS, CoT, DPO ✗ ✗ ✗ 68.2 64.0

Figure 3: This chart illustrates the ASR of Garak across
different language models. The results indicate that
Gemma 3 is significantly more vulnerable to adversarial
prompt injections compared to the other models, achiev-
ing an ASR of 87.4%.

Figure 4: Redhit shows superior performance on
LLaMA3, Mistral-7B, DeepSeek-R1, and Phi4. These
results show its effectiveness across multiple models.

precise evaluation. The targeted approach of the
method proves to be particularly effective against
models designed to resist basic adversarial attacks.
Overall, Redhit’s ability to consistently achieve
competitive or superior results across various mod-
els emphasizes its value as a reliable and refined
red-teaming tool.

Ablation Study. To assess the individual contri-
butions of RedHit’s core components, we perform
an ablation study on two representative models:
LLaMA3 and DeepSeek-R1. As shown in Table 3,
removing any single component—MCTS, CoT rea-
soning, or DPO—leads to a notable drop in ASR.
The absence of MCTS has the largest impact, high-
lighting the importance of a structured search in
adversarial exploration. Disabling CoT leads to
weaker strategic prompt generation, while omit-
ting DPO reduces RedHit’s ability to fine-tune its
adversarial policy across rounds. When all compo-
nents are removed, ASR drops by more than 17%,
demonstrating the synergistic necessity of RedHit’s
integrated architecture.

5 Conclusion

We presented RedHit, a fully automated and adap-
tive red-teaming framework that leverages MCTS,
CoT reasoning, and DPO to iteratively generate
high-quality adversarial prompts. RedHit treats
prompt injection as a structured search problem,
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systematically exploring and expanding a prompt
search tree while refining its generation policy
through preference-based optimization. Our im-
plementation integrates reasoning-driven prompt
rewording, multi-detector evaluation, and modular
fine-tuning, enabling RedHit to adapt over rounds
and uncover both common and subtle vulnerabil-
ities. Experimental evaluations compare RedHit
against strong baselines, with ablations confirm-
ing the contribution of each component. Results
demonstrate superior attack success, diversity, and
efficiency. RedHit advances scalable LLM auditing
and offers a blueprint for combining search, reason-
ing, and learning in adversarial generation. Future
work will explore multi-agent extensions, domain-
specific reasoning, and integration with defenses to
support closed-loop safety evaluation.
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