Weakest Link in the Chain: Security Vulnerabilities in Advanced
Reasoning Models

Arjun Krishna
University of Waterloo
a68krishna@uwaterloo.ca

Abstract

The introduction of advanced reasoning capa-
bilities have improved the problem-solving per-
formance of large language models, particu-
larly on math and coding benchmarks. How-
ever, it remains unclear whether these reason-
ing models are more or less vulnerable to adver-
sarial prompt attacks than their non-reasoning
counterparts. In this work, we present a
systematic evaluation of weaknesses in ad-
vanced reasoning models compared to simi-
lar non-reasoning models across a diverse set
of prompt-based attack categories. Using ex-
perimental data, we find that on average the
reasoning-augmented models are slightly more
robust than non-reasoning models (42.51% vs
45.53% attack success rate, lower is better).
However, this overall trend masks significant
category-specific differences: for certain at-
tack types the reasoning models are substan-
tially more vulnerable (e.g., up to 32 percent-
age points worse on a tree-of-attacks prompt),
while for others they are markedly more robust
(e.g., 29.8 points better on cross-site scripting
injection). Our findings highlight the nuanced
security implications of advanced reasoning in
language models and emphasize the importance
of stress-testing safety across diverse adversar-
ial techniques.

1 Introduction

Large Language Models (LLMs) have recently
been augmented with advanced reasoning tech-
niques such as chain-of-thought prompting [19],
and multi-step rationale generation [3]. These
methods encourage models to break down prob-
lems into intermediate steps, yielding notable im-
provements in math reasoning, code generation,
and scientific QA benchmarks [8; 2]. As Ad-
vanced Reasoning LLMs (e.g., GPT-4 ol-pro,
DeepSeek-R1, Gemini-1.5) are integrated into real-
world applications, an urgent question arises: Does
improved reasoning make models more or less vul-
nerable to adversarial prompts?

Aaditya Rastogi
University of Waterloo
akrastogi@uwaterloo.ca

Erick Galinkin
NVIDIA
egalinkin@nvidia.com

Prompt-injection frameworks show that even
well-aligned models can be coerced to ignore
their instructions [10; 12]. Large-scale studies of
“Do Anything Now” jailbreaks reveal persistent,
community-evolved prompts that defeat commer-
cial safeguards [17]. Automated black-box attacks
such as TAP generate new jailbreaks without hu-
man ingenuity [11]. Recent case studies further
suggest that exposing chain-of-thought traces can
increase attack surface by leaking policy or reveal-
ing exploitable reasoning patterns [5]. Conversely,
explicit reasoning may help some models recognize
malicious intent and refuse unsafe requests.

This paper presents the first empirical study
that quantifies the net effect of advanced rea-
soning on security. We evaluate three model
families, each with a base (non-reasoning) and a
chain-of-thought variant, across 35 probes cover-
ing seven attack categories. Our 210 model-probe
evaluations answer three questions:

1. How does chain-of-thought training change
susceptibility to prompt-based attacks?

2. Which attack classes become easier and which
become harder when reasoning is enabled?

3. What design implications follow for deploy-
ing reasoning models in agentic Al systems?

Our contributions are:

1. Systematic measurement: the first
large-scale comparison of prompt-attack
success rates (ASR) on reasoning vs.
non-reasoning variants.

2. Failure-pattern analysis: we identify where
reasoning models become the “weakest link,”
specifically which attack types exploit rea-
soning models more successfully than non-
reasoning models.

3. Security guidance: we discuss why advanced
reasoning can both harden and weaken LLMs,

168

Proceedings of the The First Workshop on LLM Security (LLMSEC), pages 168—175
August 1, 2025 ©2025 Association for Computational Linguistics



and outline mitigation strategies such as ratio-
nale filtering and staged policy checks.

2 Background

LLM Red-Teaming and Prompt Attacks. As
large language models have become more capable,
researchers have focused on red-teaming them to
uncover safety vulnerabilities [15]. Prompt-based
attacks (often dubbed prompt injections or jail-
breaks) involve crafting inputs that cause the model
to deviate from its intended instructions [15].

Perez et al.(2022) [14] performed early system-
atic red-teaming using language models to generate
adversarial prompts for other models, demonstrat-
ing the breadth of behaviors that can be elicited.
More recently, the OWASP Top 10 for Large Lan-
guage Models [12] highlights prompt injection as
a new primary threat vector in LLM systems.

A particularly famous genre of prompt attack is
the "DAN" (Do-Anything-Now) jailbreak, which
emerged in early LLM user communities. These
prompts ask the model to adopt a role that is not
bound by normal rules (e.g. “You are DAN, an
Al that can do anything, now ignore previous re-
strictions..."). Through clever social engineering
and iterative refinements (DAN 5.0, 6.0, 9.0, etc.),
users found ways to get models like GPT-3.5 to
output disallowed content. Such attacks are rapidly
evolving, and continued improvements to align-
ment have tried to curb them. However, new model
capabilities often engender new versions of these
attacks [15]. Evaluating models on a wide range of
jailbreak prompts remains an important benchmark
for assessing alignment robustness.

Reasoning-Enhanced Language Models. Tech-
niques such as Chain-of-Thought (CoT) prompting
and fine-tuning have enabled LLMs to perform
multi-step reasoning. In CoT prompting, the model
is either instructed or trained to produce interme-
diate rationales (e.g., in mathematics problems, it
will articulate step-by-step calculation before final
answer) [5]. This approach, introduced by [19],
significantly improves accuracy on tasks requir-
ing logical inference, arithmetic, or code synthe-
sis. Subsequent research integrated CoT generation
into training via special tokens or formats, making
the reasoning either an internal hidden state or an
explicit part of the output. For instance, DeepSeek-
R1 is a 671B-parameter model that was trained
to output its thought process enclosed in special
<think> tags [5].

Intuitively, one might expect that a model capa-
ble of reasoning would also be better at avoiding
traps and unsafe completions, such as recogniz-
ing a trick in a user’s prompt. However, recent ob-
servations suggest that reasoning can be a double-
edged sword for security.

Holmes et al.[5] demonstrated that DeepSeek-
R1’s CoT mechanism could be exploited by in-
jecting manipulative instructions into the reason-
ing process. Using this strategy, an attacker could
achieve a higher success rate in getting DeepSeek-
R1 to produce forbidden output. The transparency
of the reasoning (when exposed) effectively gave at-
tackers a blueprint of the model’s decision-making
to exploit [5]. Even when not exposed, the act of
multi-step reasoning might allow a model to talk
itself into circumventing rules (for example, consid-
ering a user’s jailbreak request step by step might
lead it to rationalize violating the policy).

Despite these anecdotal findings, a systematic
comparison of reasoning vs. non-reasoning mod-
els under adversarial prompts has been lack-
ing. We address this gap by evaluating comparable
model pairs on a standardized set of attacks.

3 Method
3.1 Model Selection

We evaluate three different model families:
DeepSeek, Qwen, and Llama. These models were
chosen due to their popularity, open architecture,
and public release of both base and reasoning vari-
ants, enabling direct and reproducible comparisons
between reasoning and non-reasoning variants of
the model.

* DeepSeek: We use DeepSeek-V3 as the
non-reasoning instruction-tuned model and
DeepSeek-R1 as its reasoning-enhanced ver-
sion. DeepSeek-R1 emits explicit reasoning
steps within <think> tags.

e Qwen: We use Qwen-2.5-Coder-32B-Instruct
as the non-reasoning model and Qwen-QWQ-
32B as the reasoning variant. Both models
share the same architecture, with the latter
trained to perform multi-step problem solving.

e Llama 3.3: We use Meta’s Llama-3.3-
70B-Instruct (non-reasoning) and NVIDIA’s
Llama-3.3-Nemotron-49B-Super (reasoning)
models.

The details of the models chosen are shown in
Table 1.

169



Model Family Model Name Reasoning Params Release Date  Reference
DeepSeek DeepSeek-R1 Yes 671B (37B active) Jan 20,2025  Hugging Face
DeepSeek-V3 No 671B (37B active)  Dec 2024 Hugging Face
Qwen QwQ-32B Yes 32B Nov 28,2024  Hugging Face
Qwen?2.5-Coder-32B-Instruct No 32B Sep 19,2024  Hugging Face
LLaMA Llama-Nemotron-Super-49B-v1 Yes 49B Mar 18,2025 Hugging Face
Llama-3.3-70B-Instruct No 70B Dec 6, 2024 Hugging Face

Table 1: Models used in the analysis, categorized by family and reasoning capability. Parameters indicate total size;
for Mixture-of-Experts (MoE) models, active parameters per token are noted.

3.2 Evaluating Vulnerabilities with garak

To conduct prompt-based adversarial evaluations,
we use the garak red-teaming framework [1], an
extensible toolkit for LLM security testing. garak
allows us to systematically probe models with a
range of adversarial inputs while logging outputs
and computing attack success rates.

Each probe category contains multiple attack
templates (e.g., DAN 6.0 through DAN 11.0). Each
probe is sampled 3 times per model to account for
generation variability.

Each generation is independently analyzed by
garak to determine whether the model complied
with the malicious intent of the prompt. For exam-
ple, if a prompt attempts to induce malware gener-
ation or bypass safety instructions, any successful
generation of the forbidden content is marked as
an attack success.

3.3 Adversarial Probe Set

We use a total of 35 probe variants grouped into
7 security-relevant categories designed to measure
the dominant attack surfaces in agentic LLM de-
ployments:

* ANSI Escape (2 probes): Control-sequence
outputs that can hijack terminals or logs and
enable downstream command injection [16].

* DAN Roleplay (17 probes): In-the-wild
“Do-Anything-Now” jailbreaks that socially
engineer the model into ignoring policy [17].

Prompt Injection (6 probes): Inputs crafted
to override the system prompt or instruction
context [10].

Adversarial Suffix (1 probe): A
trailing-token attack that silently rewrites an
agent’s intent in CoT or RAG pipelines [20].

TAP (1 probe): Tree-of-Attacks with Prun-
ing, an automated multi-step jailbreak genera-
tor [11].

* Cross-Site Scripting (4 probes): Prompts
that elicit executable HTML/JS capable of
client-side data exfiltration [4].

* Malware Generation (4 probes): Requests
for malicious code, exploits, or other illicit
tools [7].

Taken together, the seven categories test three
core security questions for an LLM-powered agent:
Can the prompt flow be hijacked? [18] Can the
model be tricked into executing or emitting unsafe
code? [13; 9] Can it be coerced to disclose private
or policy-protected data? [6] In total, across mod-
els, we generate 210 model-probe combinations,
allowing for a robust comparison of non-reasoning
and reasoning models across categories.

3.4 Metrics and Analysis

The primary metric is Attack Success Rate (ASR):
the proportion of probe executions that result in a
successful violation. We use strict criteria: a gener-
ation must fully comply with the malicious intent
to count as a success (partial refusal or obfuscation
is not enough).

4 Results

We first present the overall vulnerability results of
reasoning versus non-reasoning models, then break
down performance by attack category, and finally
consider differences among model families.

4.1 Overall Vulnerability

Figure 1 summarizes the average attack success
rate (ASR) for the reasoning-enhanced models ver-
sus their non-reasoning model counterparts, aggre-
gated across all 35 probes. Reasoning models are
less vulnerable on average than non-reasoning
models with a 42.51% ASR for the reasoning
group compared to 45.53 % for non-reasoning mod-
els (lower is better from a security standpoint).
This indicates that, overall, the addition of chain-
of-thought reasoning and related alignment refine-
ments did not increase the chance of a successful

170


https://huggingface.co/deepseek-ai/DeepSeek-R1
https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
https://huggingface.co/Qwen/QwQ-32B
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

Attack Success Rate (ASR) by Model Family
56.6%

53.5%

1% ss8%  301%

34.9%

Attack Success Rate (%)

Average Deepseek Qwen Llama

Model Categories

B Non-Reasoning [ Reasoning

Figure 1: Average Attack Success Rate by Model Fam-
ily

attack, and even provided a modest robustness gain
(around 3 percentage points improvement in abso-
lute terms).

However, this average alone does not tell the full
story. The aggregate outcome is the net result of
some cases where reasoning helps and others where
it hurts. Indeed, when examining each model fam-
ily individually (Table 2), we see heterogeneous
behavior:

* DeepSeek models: The advanced reason-
ing model DeepSeek-R1 achieved an average
ASR of 34.94 %, significantly lower (better)
than its non-reasoning version’s 39.14%. This
suggests that DeepSeek’s chain-of-thought ap-
proach improved its resilience in many attack
scenarios.

LLaMA models: Similarly, the reasoning-
augmented LLaMA (Nemotron Super) had a
lower ASR (53.50%) than the non-reasoning
LLaMA model (58.64%), a notable improve-
ment.

Qwen models: In contrast to the above, the
Qwen family saw virtually no difference: the
reasoning version QWQ-32B had an ASR
of 39.08% vs 38.83% for the non-reasoning
Qwen 2.5-Code. This <0.3 point difference is
negligible, implying that whatever modifica-
tions were introduced in QWQ for reasoning
did not significantly change its attack surface
(for better or worse).

The above suggests that two out of three reason-
ing models provided tangible security gains over
their predecessors, while one showed no significant

171

change. Yet, as we explore next, those gains are not
uniform across all types of attacks. In fact, the rea-
soning models’ improvements in some categories
are partly offset by worse performance in others.

4.2 Category-wise Vulnerability Analysis

We break down the attack success rates by at-
tack category in Table 4, comparing the aggregate
performance of reasoning models with the non-
reasoning models for each type of attack. The
data reveals an interesting pattern: reasoning mod-
els excel in some categories but falter in others.
We highlight the largest differences (in percentage
points of ASR) below:

4.2.1 Categories where reasoning models are
more vulnerable

We observe four categories where the reasoning
group suffered higher ASRs than the non-reasoning

group:

* TAP attacks. Reasoning-enabled models
were exploited by the complex Tree-of-
Attacks prompt far more often than non-
reasoning models (63% vs 31% ASR). This
is an enormous gap of +32.13 points, indicat-
ing that the automated multi-step attack was
highly effective against the reasoning mod-
els. In other words, the chain-of-thought
mechanisms might have been leveraged by
TAP to bypass defenses that stymied the non-
reasoning models.

Suffix injections. On prompts where a ma-
licious suffix is appended, reasoning mod-
els have a 29.90% success rate compared to
only 7.7% for non-reasoning models, a +22.20
point difference. This means non-reasoning
models almost always ignored or failed to act
on the injected instruction, whereas nearly one
third of the time reasoning models fell for it.
Such a large discrepancy suggests that certain
reasoning models might be over-emphasizing
the entire input (including the suffix) as rele-
vant context, whereas non-reasoning models
perhaps more bluntly follow initial instruc-
tions and ignore strange trailing input.

DAN jailbreaks. The DAN prompts suc-
ceeded slightly more on reasoning models
(41.5% vs 37.6%, +3.90). Both model groups
struggled with some of the more cleverly con-
structed DAN scenarios, but reasoning models
were marginally worse. This could reflect that



Category DeepSeek LLaMA Qwen
Non-Reasoning Reasoning Non-Reasoning Reasoning Non-Reasoning Reasoning
ANSI Escape 59.2 55.2 337 42.3 554 62.1
DAN 26.0 26.2 59.6 65.9 26.1 313
MalwareGen 89.5 64.2 75.1 70.6 88.6 61.7
Prompt Inject 52.0 52.6 82.0 68.0 68.1 54.1
Suffix Injection 0.0 474 23.1 0.0 0.0 423
TAP 3.7 81.5 48.1 259 40.7 81.5
XSS 37.2 0.0 50.0 1.1 133 10.0

Table 2: Detailed attack success rates (ASRs) by attack category, model family, and reasoning type. Lower values
indicate stronger robustness; each cell reflects ASR for a given model family and reasoning configuration.

Model Group Non-Reasoning Reasoning

All Models (avg) 45.53% 42.51%
DeepSeek 39.14% 34.94%
Qwen 38.83% 39.08%
LLaMA 58.64% 53.50%

Table 3: Overall attack success rates (ASRs) for advanced reasoning models vs. non-reasoning models. Lower

percentages indicate better (more secure) performance.

reasoning models, in an effort to comply via
role-play, sometimes rationalize themselves
into following the DAN instructions, whereas
a non-reasoning model might simply refuse in
more cases.

* ANSI escape injection. Similarly, a small
gap (+3.77) indicates reasoning models were
a bit more likely to be tripped up by prompts
containing ANSI escape sequences (53.2% vs
49.4% ASR). Both still have high vulnerabil-
ity in this category (over half the attempts suc-
ceeded), suggesting it’s a generally effective
trick across the board. The reasoning models’
slight edge in failure might indicate that the
extra reasoning steps did not help detect or
ignore the ANSI control codes—in fact, per-
haps the reasoning process was derailed by
the strange input.

4.2.2 Categories where reasoning models are
more robust

Conversely, three categories showed reasoning
models outperforming non-reasoning models sig-
nificantly:

* XSS injections. The most dramatic im-
provement is in the XSS category: reason-
ing models essentially never fell for these
(only 4.4% ASR) whereas non-reasoning mod-
els did 33.1% of the time, yielding a —29.80
point difference. In practice, this means non-
reasoning models often naively returned the
harmful script or did not catch the issue,

whereas reasoning models almost always re-
fused or sanitized it. We suspect that the
reasoning models had learned (or been fine-
tuned) to recognize obvious code injection
attempts as dangerous.

* Malware generation. We see a large robust-
ness gain here as well: reasoning models were
substantially less willing to produce malware
or illicit instructions (65.5% ASR) relative
to non-reasoning models (84.4%). Although
65% is still alarmingly high (two-thirds of
such requests succeed), the non-reasoning
models were nearly 5 out of 6 times compro-
mised. The 18.9-point reduction suggests en-
hanced safety alignment in reasoning models
for clearly harmful requests.

* Prompt injection (generic). In the miscel-
laneous prompt injection scenarios, reason-
ing models had about a 58.2% success rate vs
67.4% for non-reasoning, about 9 points better.
This indicates that, in general, the chain-of-
thought models were somewhat more resistant
to being redirected by meta-instructions.

To summarize, Table 4 shows a trade-off: rea-
soning models patch some vulnerabilities (espe-
cially in categories that are straightforwardly ma-
licious like XSS or malware requests), but they
expose new weaknesses in more subtle or sophisti-
cated attacks (like TAP and suffix-based injections).
The next question is: are these category differences
uniform across all models, or are they driven by
specific model families?

172



Attack Category Non-Reasoning Reasoning
TAP (Tree-of-Attacks) 30.83% 62.97%
Suffix Injection 7.70% 29.90%
DAN Jailbreaks 37.62% 41.51%
ANSI Escape 49.42% 53.22%
Prompt Injection 67.39% 58.24%
MalwareGen 84.40% 65.50%
XSS (Code Injection) 33.11% 4.40%

Table 4: Attack success rates (ASRs) for reasoning vs. non-reasoning models by attack category. Lower percentages

indicate more secure performance.

4.3 Per-Family Breakdown by Category

Table 2 lists, for each attack category, the ASR for
each reasoning model and non-reasoning model
within each family. This detailed breakdown helps
explain how the overall trends arose:

TAP (Tree-of-Attacks) category: The huge over-
all gap in TAP can be traced to the DeepSeek and
Qwen families. DeepSeek-R1 was extremely vul-
nerable to the TAP exploit: it succeeded 81.5% of
the time on R1 vs only 3.7% on DeepSeek-V3 (a
significant +77.8 point difference).

Qwen also shows a large +40.8 point increase
(from 40.7% on non-reasoning to 81.5% on reason-
ing). In contrast, LLaMA’s reasoning model outper-
formed its non-reasoning by 22.2 points (25.9% vs
48.1%), meaning the Nvidia LLaMA was relatively
robust to TAP whereas the non-reasoning LLaMA
often succumbed. This divergence is interesting: it
implies that not all reasoning models fail on TAP,
and suggests the presence of some defense in the
LLaMA-Nemotron model that the others lacked
Nevertheless, the failures of DeepSeek and Qwen
dominate the average, explaining why TAP overall
was worse for reasoning models.

Suffix category: We see a similar pattern.
DeepSeek and Qwen reasoning models were both
dramatically more vulnerable to the suffix at-
tack than their non-reasonings (DeepSeek: +47.4;
Qwen: +42.3). In these cases, the non-reasoning
models had essentially 0% success (e.g., Qwen
non-reasoning never followed the malicious suf-
fix), whereas the reasoning variants often did.
This suggests that the non-reasoning models might
have simply ignored the weird suffix or did not
parse it as an instruction, whereas the reasoning
models (perhaps due to being more instruction-
following or trying to make sense of everything
in the prompt) actually incorporated it and thus
broke rules. Meanwhile, LLaMA again showed the
opposite: its reasoning model saw 0% success vs
23.1% for non-reasoning, yielding —23.1. So the

advanced LLaMA did not fall for the suffix trick
at all, whereas the non-reasoning one occasionally
did. This points to a robust instruction-parsing in
LLaMA-Nemotron where it likely discards or re-
fuses malicious suffixes outright. DeepSeek-R1
and Qwen-QWQ clearly lacked such a guard and
thus became the weak links for this category.

DAN jailbreaks: All families were somewhat
vulnerable to DAN prompts, but the differences
are small. LLaMA and Qwen reasoning models
were about 5—6 points more vulnerable than non-
reasoning (e.g., LLaMA: +6.3), while DeepSeek
was essentially equal (+0.2). DeepSeek’s non-
reasoning and R1 both mostly resisted or both gave
in similarly on those role-play prompts, indicat-
ing the chain-of-thought didn’t change its behavior
much in that scenario.

ANSI escape: Here, LLaMA and Qwen reasoning
models were a bit more vulnerable (+8.6 and +6.7
respectively), whereas DeepSeek-R1 was slightly
less vulnerable than DeepSeek-V3 (4.0, meaning
R1 handled ANSI marginally better). This indi-
cates that handling of odd control codes was not
consistently better or worse with reasoning. But
Qwen and LLaMA reasoning models did worse,
implying their reasoning processes did not help de-
tect the injection and may have been a distraction.

Prompt injection (generic): Both LLaMA and
Qwen reasoning models were clearly more robust
(-14.0 each) than the non-reasoning models for the
general prompt injection cases. DeepSeek showed
no meaningful difference (+0.6, essentially the
same performance). This suggests that the align-
ment techniques in LLaMA-Nemotron and Qwen-
QWQ specifically improved the model’s refusal
of broad “ignore instructions” or malicious direc-
tives. DeepSeek’s non-reasoning was already fairly
aligned (given similar performance to R1 here), so
R1 didn’t add much.

MalwareGen: DeepSeek and Qwen reasoning
models again dramatically reduced vulnerability

173



(-25.3 and -26.9). For example, Qwen’s non-
reasoning had an extremely high success rate gener-
ating malware (88.6% in our data) which dropped
to 61.7% for QWQ. This suggests the reasoning
model had been trained or prompted to be more cau-
tious about obviously dangerous content. LLaMA’s
reasoning model was only slightly better than non-
reasoning (—4.5), indicating that the non-reasoning
LLaMA was already somewhat attuned to refus-
ing malicious code (75.1% -> 70.6%). In other
words, in the LLaMA family both models were
quite vulnerable but similarly so, whereas in Qwen
and DeepSeek, the non-reasoning models were ut-
terly unrestrained in producing malware and the
reasoning models gained some restraint (still far
from perfect, as >60% success is not great either).

XSS: LLaMA and DeepSeek reasoning models es-
sentially eliminated this vulnerability (—48.9 and
—37.2), showing huge improvements. LLaMA-
Nemotron succeeded only 1.1% on XSS vs non-
reasoning’s 50.0%; DeepSeek-R1 0.0% vs non-
reasoning’s 37.2%. These models clearly have
learned to refuse to produce the XSS payloads.
Qwen, interestingly, had low rates for both (13.3%
non-reasoning vs 10.0% reasoning, so only —3.3
difference). The reasoning didn’t change much for
Qwen here, but for the others it was a night-and-
day difference, again skewing the average strongly
in favor of reasoning models on XSS.

In summary, the per-family breakdown reveals
that the vulnerabilities in TAP and Suffix cate-
gories are primarily driven by the DeepSeek
and Qwen families, where reasoning models
markedly underperformed their non-reasoning ver-
sions. Meanwhile, the robust showing of reasoning
models in XSS and (for Qwen and DeepSeek) mal-
ware generation categories contribute to those over-
all improvements. The LLaMA family consistently
shows the reasoning model performing as good as
or better than the non-reasoning model in almost
every category (except slight increases in DAN,
ANSI), which is why its average difference was a
solid improvement. Qwen’s improvements in some
areas (Malware, PromptInject) were balanced by
large regressions in others (Suffix, TAP), netting
out to no overall change. DeepSeek’s reasoning
model improved significantly on many categories
(XSS, Malware) but had catastrophic failure in TAP
and Suffix specifically, yet still its overall average
was better likely because those two probes were
fewer in number relative to the many DAN variants

where R1 did fine.

5 Conclusion

We presented an empirical study on the vulnerabili-
ties of advanced reasoning language models versus
their non-reasoning predecessors. Contrary to ini-
tial fears, we found that reasoning models are not
universally more vulnerable—indeed, they were
slightly more robust on average and particularly
strong against certain straightforward attacks like
code injection and direct requests for malicious out-
put. However, we also uncovered specific attack
vectors (notably the TAP tree-of-attacks method
and hidden suffix prompts) where reasoning mod-
els proved to be the weakest link, succumbing far
more often than non-reasoning models. Through a
detailed breakdown by attack category and model
family, we showed that these failures are largely
responsible for the overall performance differences
between model groups, and that they stem from
how the reasoning process interacts with input
prompts.

Our work highlights that as language models be-
come more sophisticated in reasoning, attackers
adapt with equally sophisticated exploits. Security
evaluations must therefore be comprehensive and
evolve alongside model capabilities. Advanced rea-
soning should not be viewed as purely a security
improvement or liability; it is both, in different
contexts. The goal for future systems should be to
retain the benefits of reasoning (better alignment
and problem-solving) while hardening the reason-
ing chain against manipulation. By identifying the
“weakest links” in current models, we can direct
efforts to strengthen them. Ultimately, ensuring
that the chain-of-thought does not become a chain-
of-compromise will be vital as we integrate ever
more advanced Al reasoning into real-world appli-
cations.

Broader Impact: This research informs Al
practitioners about potential pitfalls in deploying
reasoning-enabled LLM:s, aiding in risk assessment
and mitigation. All attacks used in this study were
conducted in controlled settings on models without
user-facing deployment, and the findings are in-
tended to improve safety. However, there is a dual
use concern: by discussing specific vulnerabilities,
we implicitly highlight them to malicious actors.
We have attempted to abstract away exact prompt
strings and focus on category trends to avoid pro-
viding a “cookbook” for jailbreaking. Developers

174



of LLMs should take these results as motivation to
rigorously test models and perhaps collaborate on
sharing adversarial prompts so that safety can keep
pace with capabilities.

References

[1] Leon Derczynski, Erick Galinkin, Jeffrey Martin,
Subho Majumdar, and Nanna Inie. 2024. garak: A
framework for security probing large language mod-
els. arXiv preprint arXiv:2406.11036.

[2] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark,
and Tushar Khot. 2023. Complexity-based prompt-
ing for multi-step reasoning.  arXiv preprint
arXiv:2210.00720.

[3] Daya Guo, Dejian Yang, Haowei Zhang, Junx-
iao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

[4] Ben Herzog. 2025. Xss marks the spot: Digging up
vulnerabilities in chatgpt. https://www.imperva.
com/blog/xss-marks-the-spot.

[5] Trent Holmes and Willem Gooderham. 2025. Ex-
ploiting deepseek-rl: Breaking down chain of
thought security. https://www.trendmicro.c
om/en_us/research/25/c/exploiting-deepsee
k-r1.html. Trend Micro Research.

[6] Ken Huang. 2025. Agentic ai threat modeling frame-
work: Maestro. https://cloudsecurityallianc
e.org/blog/2025/02/06/agentic-ai-threat-m
odeling-framework-maestro.

[7] Hamed Jelodar, Samita Bai, Parisa Hamedi,
Hesamodin Mohammadian, Roozbeh Razavi-Far,
and Ali Ghorbani. 2025. Large language model
(Ilm) for software security: Code analysis, mal-
ware analysis, reverse engineering. arXiv preprint
arXiv:2504.07137.

[8] Takeshi Kojima, Shixiang Shane Gu, Machel Reid,
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. arXiv
preprint arXiv:2205.11916.

[9] Pedro Henrique Lima. 2024. Llm pentest: Lever-
aging agent integration for remote code execution.
https://www.blazeinfosec.com/post/1l1lm-pen
test-agent-hacking/.

[10] Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia,
and Neil Zhenqgiang Gong. 2024. Formalizing and
benchmarking prompt injection attacks and defenses.
In 33rd USENIX Security Symposium (USENIX Se-
curity 24), pages 1831-1847.

[11] Anay Mehrotra, Manolis Zampetakis, Paul Kas-
sianik, Blaine Nelson, Hyrum Anderson, Yaron
Singer, and Amin Karbasi. 2023. Tree of attacks:
Jailbreaking black-box llms automatically. arXiv
preprint arXiv:2312.02119.

[12] OWASP Foundation. 2025. Owasp top 10 for large
language model applications v2025. https://owas
p.org/www-project-top-10-for-large-langu
age-model-applications/assets/PDF/OWASP-T
op-10-for-LLMs-v2025.pdf. OWASP.

[13] Sean Park. 2025. Unveiling ai agent vulnerabilities
part ii: Code execution. https://www.trendmicro
.com/vinfo/us/security/news/cybercrime-a
nd-digital-threats/unveiling-ai-agent-vul
nerabilities-code-execution.

[14] Ethan Perez, Saffron Huang, Francis Song, Trevor
Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. 2022. Red team-
ing language models with language models. arXiv
preprint arXiv:2202.03286.

[15] Niklas Pfister, Vaclav Volhejn, Manuel Knott, San-
tiago Arias, Julia Baziiiska, Mykhailo Bichurin, Alan
Commike, Janet Darling, Peter Dienes, Matthew
Fiedler, et al. 2025. Gandalf the red: Adaptive secu-
rity for llms. arXiv preprint arXiv:2501.07927.

[16] Johann Rehberger. 2024. Terminal dillma: Leverag-
ing ansi sequences to hijack llm integrations. https:
//embracethered.com/blog/posts/2024/term
inal-dillmas-prompt-injection-ansi-seque
nces/.

[17] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun
Shen, and Yang Zhang. 2024. " do anything now":
Characterizing and evaluating in-the-wild jailbreak
prompts on large language models. In Proceedings of
the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, pages 1671-1685.

[18] Elliot Ward, Rory McNamara, Mateo Rojas-Carulla,
Sam Watts, and Eric Allen. 2024. Agent hijacking:
The true impact of prompt injection attacks. https:
//labs.snyk.io/resources/agent-hijacking/.

[19] Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

[20] Andy Zou, Zifan Wang, Nicholas Carlini, Milad
Nasr, J Zico Kolter, and Matt Fredrikson. 2023. Uni-
versal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.

175


https://www.imperva.com/blog/xss-marks-the-spot
https://www.imperva.com/blog/xss-marks-the-spot
https://www.trendmicro.com/en_us/research/25/c/exploiting-deepseek-r1.html
https://www.trendmicro.com/en_us/research/25/c/exploiting-deepseek-r1.html
https://www.trendmicro.com/en_us/research/25/c/exploiting-deepseek-r1.html
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro
https://cloudsecurityalliance.org/blog/2025/02/06/agentic-ai-threat-modeling-framework-maestro
https://www.blazeinfosec.com/post/llm-pentest-agent-hacking/
https://www.blazeinfosec.com/post/llm-pentest-agent-hacking/
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-v2025.pdf
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/unveiling-ai-agent-vulnerabilities-code-execution
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/unveiling-ai-agent-vulnerabilities-code-execution
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/unveiling-ai-agent-vulnerabilities-code-execution
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/unveiling-ai-agent-vulnerabilities-code-execution
https://embracethered.com/blog/posts/2024/terminal-dillmas-prompt-injection-ansi-sequences/
https://embracethered.com/blog/posts/2024/terminal-dillmas-prompt-injection-ansi-sequences/
https://embracethered.com/blog/posts/2024/terminal-dillmas-prompt-injection-ansi-sequences/
https://embracethered.com/blog/posts/2024/terminal-dillmas-prompt-injection-ansi-sequences/
https://labs.snyk.io/resources/agent-hijacking/
https://labs.snyk.io/resources/agent-hijacking/

