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Abstract

Constituency parsers have improved markedly
in recent years, with the F1 accuracy on the
venerable Penn Treebank reaching 96.47, half
of the error rate of the first transformer model
in 2017. However, while dependency parsing
frequently uses transition-based parsers, it is un-
clear whether transition-based parsing can still
provide state-of-the-art results for constituency
parsing. Despite promising work by Liu and
Zhang in 2017 using an in-order transition-
based parser, recent work uses other methods,
mainly CKY charts built over LLM encoders.
Starting from previous work, we implement
self-training and a dynamic oracle to make a
transition-based constituency parser, and test it
on seven languages. Using Electra embeddings
as the input layer on Penn Treebank, with a
self-training dataset built from Wikipedia, our
parser achieves a new SOTA F1 of 96.61.

1 Introduction

This work examines whether it is still possible to
build a state of the art constituency parser using
transition-based parsing.

Recent years have seen strong progress in both
dependency and constituency parsers. Models for
both of these tasks have progressed from using cat-
egorical features in PCFG models or shift-reduce
parsers, to word embeddings, to transformers. Up-
grading to a transformer can have a dramatic effect
on the quality of the results (Nguyen et al., 2021;
Vaswani et al., 2017).

While transition-based parsing is a widely used
technique for dependencies, in recent years it has
been less common for constituency parsing. There
are still models built on transitions which are quite
successful, such as Yang and Deng (2020), which
uses an attention mechanism to predict how and
where to attach the next word of a sentence. How-
ever, most state of the art models use a derivative
of the CKY algorithm (Younger, 1967). For exam-
ple, the current state of the art uses bidirectional
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attention as part of the encoder for a chart parser
(Kim et al., 2023).

In this work, we revisit older transition schemes
and show that they can be used to build a state-of-
the-art model. We improve on existing dynamic
oracle methods (Ferndndez-Gonzélez and Gémez-
Rodriguez, 2018), allowing the model to better
learn the state space after an error. Furthermore,
we explore self-training using a method inspired by
active learning (Swayamdipta et al., 2020; Karam-
cheti et al., 2021), and present a simple way to
ensemble transition models with the same structure.
We present state of the art results on 6 languages.
Using Electra embeddings with the Penn Treebank,
our parser achieves a new SOTA F1 of 96.61.

All models and code described are publicly re-
leased in the (anonymous) software package.

2 Experimental Setup

We experiment on Penn Treebank 3 for English
(Marcus et al., 1999) and the Chinese Treebank
5.1 for Simplified Chinese (Xue et al., 2005). We
also report results for German, Indonesian, Ital-
ian, Japanese, and Vietnamese (Brants et al., 2001;
Suan Lim et al., 2023; Delmonte et al., 2007; Thu
et al., 2016; Ha et al., 2022). See table 1 for details.
See Appendix B for the hyperparameters used
when training the model, and Appendix C for a
more complete description of the datasets used.
Scores are reported as averages of 5 models.

Lang  Dataset  [Trainl [Devl [Testl
EN PTB 3 39832 1700 2416
ZH CTBS5.1 45893 2040 2725
DE Tiger 40472 5000 5000
ID ICON 8000 1000 1000
IT VIT 7875 683 1042
JA ALT 17195 934 931
VI  VLSP22 8160 n/a 1204

Table 1: Datasets used in this work
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3 Model Improvements

Improvements to Base Model. The parser builds
from a base of the LSTM in-order transition-based
parser of Liu and Zhang (2017), which itself builds
from Dyer et al. (2015). Several specific improve-
ments to this model improved scores slightly.

The first is that the original LSTM between
the word embeddings and the classification layers
was a unidirectional LSTM but using a bi-LSTM
instead slightly improves performance. As we
use self-training to boost performance, rather than
reranking, we do not need an autoregressive parser.

Another minor improvement is to follow Bauer
et al. (2023) in building the encoding of a new
constituent by using max over the embeddings of
the children. This is simpler and more effective
than the Bi-LSTM labeled with the subtree used in
Dyer et al. (2016) and Liu and Zhang (2017).

Pretrained Embeddings. In (Liu and Zhang,
2017), the standard at the time was to use pretrained
word embeddings such as those from word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), or fasttext (Bojanowski et al., 2017). Later
work incorporated character models (Akbik et al.,
2018). The well-known Berkeley Neural Parser
uses XLNet (Yang et al., 2019). We find that for
English, Electra-Large (Clark et al., 2020) works
best of the currently available pretrained word em-
beddings. Following best practices, we finetuned
the embeddings and transformers for the parsing
task. For release as FOSS, we found that PEFT,
from Mangrulkar et al. (2022), reduces download
size for a single model and VRAM when used in
an ensemble without sacrificing model quality.

Attention Layer. Multiple past works on CKY
constituency parsing add a specialized attention
layer after the transformer, such as Partitioned At-
tention (Kitaev and Klein, 2018), Label Attention
(Mrini et al., 2020), and Bi-Directional Attention
(Kim et al., 2023).

Here, we combine ideas from Bi-Directional At-
tention with Streaming LLM (Xiao et al., 2024).
Bi-Directional attention computes attention layers
twice, alternatively masking forwards and back-
wards directions. Streaming LLM uses a win-
dowed attention layer with attention sinks to im-
prove NLG. We find that a single layer of win-
dowed attention in both the forwards and back-
wards directions improves scores on lower resource
constituency datasets, with insignificant effects on

27

Lang No Attn  Attn
EN 96.40  96.37
ZH 95.16  95.07
DE 95.68  95.77
ID 89.22  89.28
IT 83.68 83.87
JA 93.06  93.28
VI 82.80  83.30

Table 2: Dev set scores w/ and w/o attn layer

Lang No Attn  Attn
EN 95.46 95.51
ZH 94.19 94.49
DE 94.09 94.27
ID 88.76 89.03
IT 83.41 83.59
JA 92.06 92.31
VI 82.33 82.86

Table 3: Dev scores w/ and w/o attn, 5000 sentences

larger datasets (table 2).

To explore how the resource size affects these
scores, we reran the experiment with a randomly
selected 5000 sentences for each language (table 3).
In this case, the attention layer has a much more
pronounced effect. We hypothesize that more data
enables the LSTM layer of the encoder to capture
the same information extracted by the attention
layer in lower data settings.

Ensemble. We investigated the gains that are pos-
sible by ensembling multiple parsing models (at
the cost of more computation). For chart parsing,
a common technique is to use a high-accuracy lan-
guage model to rerank many outputs of a single
parser model, as in (Choe and Charniak, 2016). For
transition-based parsing, there is a simpler mecha-
nism for combining the results of multiple models.
Instead of choosing a transition by taking the maxi-
mum scoring legal transition from one model, we
first add the logits from several models, then use
the transition with the maximum sum.

It is necessary to build models with different re-
sults in order to successfully ensemble them. We
explore three methods of achieving the necessary
differentiation: (i) initializing each model’s lay-
ers with a different random seed (varied seed),
(i1) using different numbers of layers from the
transformer for the input embedding (mixed lay-
ers), or (iii) randomly reweighting the training
trees while keeping the structure the same, ensuring
training proceeds differently (random reweighting).
Each method produced useful gains versus a single
model, without much or consistent differentiation
between them; see table 4.



Model ID Icon DE Tiger
single model 89.12 95.76
mixed layers ensemble 89.86 95.93
varied seed ensemble 89.74 95.95
random reweighting ensemble 89.82 95.89

Table 4: When combining models to make an ensem-
ble, different methods for building base models in the
ensemble have roughly equivalent dev scores

4 Training Improvements

Oracle. The standard oracle training for transi-
tion parsers is teacher forcing: backpropagate the
errors from the prediction of a transition, apply the
correct transition, and repeat. The limitation of this
approach is, at runtime, the model will naturally
make errors, resulting in a state which does not
directly correspond to any training state.

An improvement is to update the remaining tran-
sitions to build the best result still possible after
an error. This technique is a dynamic oracle, in-
troduced in Goldberg and Nivre (2012) for de-
pendency parsers. This technique works for con-
stituency parsing as well, as shown in the bottom-
up parser of Ferndndez-Gonzdlez and Goémez-
Rodriguez (2019) or the discontinuous parser of
Coavoux and Cohen (2019).

Fernandez-Gonzédlez and Goémez-Rodriguez
(2018) further explored this concept for top-down
and in-order parsers. After each training error, the
oracle used the first possible transition which mini-
mized subsequent errors in the tree. However, this
is a potentially ambiguous solution, as some transi-
tion sequences have multiple fixes which result in
the same number of errors.

An example of an ambiguous transition is the
subtree in figure 1 from Marcus et al. (1993). In
both the in-order and top-down schemes, the cor-
rect transition is to close the ADJP after the word
“rolled”. If the Close is missed, the dynamic oracle
can correct the sequence equally well by closing
after “sheet” or after “steel”.

We ran an experiment using multiple different
types of ambiguous top-down dynamic oracle re-
pairs (see Appendix E). When run over multiple
languages, we found that not using a dynamic or-
acle when the optimal repair is ambiguous works
better than choosing either randomly or determinis-
tically; see table 5. Attempting to continue using
the dynamic oracle by using the first valid repair,
the last valid repair, or using the model itself to
predict the repair were each less effective than us-
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Figure 1: Example of an ambiguous repair

ing teacher forcing specifically for the ambiguous
errors.

Lang nooracle w/oamb w/amb
EN (no trans) 92.24 92.68 92.68
ZH 90.96 91.41 91.37
DE 95.76 95.81 95.79
ID 88.75 89.13 88.89
IT 83.62 84.00 84.04
VI 82.60 82.92 82.90
avg A —0.34 —0.05

Table 5: Dev set scores for the top-down model show
that leaving out ambiguous repairs is slightly helpful

Self-Training. We generalized the methods of
McClosky et al. (2006) and Choe and Charniak
(2016) to build a corpus of silver trees for self-
training for each of the languages studied. Those
works used multiple types of parsers to find higher
quality parses of a large corpus of newswire. In
this work, we use active learning to select higher
quality silver trees.

The inspiration for our method comes from
Swayamdipta et al. (2020) and Karamcheti et al.
(2021), who explore the idea that a high quality
dataset has two general traits, high accuracy and
high difficulty.

To produce silver parses for a given language,
we use two ensembles (see 3), one of top-down
parsers and the other of in-order parsers, and parse
Wikipedia for that language. By only keeping the
trees where the two ensembles agree, although not
guaranteed to filter only correct parses, we build
a dataset of silver trees with higher accuracy than
either ensemble can produce by itself.

Such a silver dataset does not use the idea of dif-
ficulty from the active learning work, though. We
can extend this by noting that the individual parsers



in those ensembles do not always agree, with less
agreement occurring on “harder” parses. For each
silver parse, we tally how many of those individ-
ual parsers return that exact parse. Using only the
parses with the least agreement in an ensemble pro-
duces a silver dataset which is both accurate and
difficult, improving the overall results. As shown
in figure 2, using trees with full agreement pro-
duced little effect, and the dataset with zero or one
agreeing parsers were too small to use by them-
selves.!? Table 6 shows the fraction of trees built
from Wikipedia which had all 10 models agree,
along with the improvement after discarding the
full agreement trees.

English Silver Improvements

96.6

96.4

Dev F1

96.2

NO12345678910
Number of Agreeing Subparsers

Figure 2: All silver datasets showed an improvement
compared to the baseline N, but the smallest one was
too small and the full agreement portion was too easy

Lang Agreement W/O  With
EN 0.688 96.40 96.61
ZH 0.208 93.25 93.50
DE 0.626 93.06 93.34
ID 0.419 88.68  89.01
IT 0.305 84.18 84.80
JA 0.257 93.28 93.43
VI 0.325 7891  79.66

Table 6: In-order test scores improve for each dataset
with added silver data

5 Results

In table 7, we test these techniques on 7 languages
to explore a mixture of word orders and dataset
sizes. For English, we investigate multiple trans-
formers to make a fair comparison to past work,
and find that Electra gives the best result for this

'Tt is possible for zero parsers to agree if each sub-model
disagrees with the other nine on different transitions.

This experiment in other languages showed the same
effect.
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model. We find that ensembling gives an average
gain of 0.56 F1, and self training gives an average
gain of 0.37 F1. Using an approximate random-
ization test’, each of leaving out ambiguous oracle
repairs and the windowed attention layer give sta-
tistically significant gains with p < 0.05.

en_ptb3
Kim et al. (2023) Bert 95.86
Yang and Tu (2022) Bert 96.01
Ours Bert 95.95
Ours - ensemble Bert 96.13
Kim et al. (2023) XLNet 96.47
Ours Electra 96.40
Ours - ensemble Electra 96.61
Ours - self Electra 96.61
Ours - self ensemble Electra 96.70
zh_ctb51
Kim et al. (2023) Bert 94.15
Ours Electra 93.25
Ours - ensemble 93.71
Ours - self 93.50
Ours - self ensemble 93.66
de_tiger
Kitaev et al. (2019) XLM-R 92.10
Ours Electra 93.06
Ours - ensemble 93.47
Ours - self 93.34
Ours - self ensemble 93.66
id_icon
Suan Lim et al. (2023) IndoSpanBERT  88.85
Ours Indobert 88.68
Ours - ensemble 88.99
Ours - self 89.01
Ours - self ensemble 89.45
it_vit
Ours Electra 84.18
Ours - ensemble 84.97
Ours - self 84.80
Ours - self ensemble 85.35
ja_alt
Ours Roberta 93.28
Ours - ensemble 94.06
Ours - self 9343
Ours - self ensemble 94.12
vi_vlsp22
Bauer et al. (2023) PhoBert 78.73
Ours PhoBert 78.91
Ours - ensemble 79.90
Ours - self 79.66
Ours - self ensemble 80.18

Table 7: Bracket F1 for the in-order model compared to
previous results. Individual scores are the average of 5
models, and ensembles are those 5 models ensembled
together. EN with Bert is included to provide a fair
comparison to previous work with bert-large. ZH does
not show an improvement compared to previous work.
DE, ID, and VI all demonstrate large improvements.
For notes on the datasets and the transformers used, see
Appendix C

3https: //github.com/Sleemanmunk/
approximate-randomization
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This work sets a new SOTA score for a single
model parser for PTB when using self-training,
while performing close to SOTA for CTB. It also
outperforms previously established best results for
German, Indonesian, and Vietnamese.

6 Conclusion

In this paper, we have shown the continuing viabil-
ity of neural transition-based constituency parsing,
once the basic technique is carefully combined with
state-of-the-art neural text encoders, other success-
ful parser techniques, and active learning.

Limitations

Our parser only supports continuous (projective,
tree-structured) constituency parses. There are tran-
sition schemes which address discontinuous trees.
For example, Coavoux and Cohen (2019) wrote a
parser in 2019 which achieved (at the time) SOTA
results on discontinuous English and German tree-
banks. This limitation affects the German results
in particular, where we use the SPMRL continuous
version of discontinuous constituencies rather than
the original Tiger trees.

The running time advantage of a transition parser
is that it theoretically runs in O(N) time, as op-
posed to a chart parser which needs O(N?3) time.
Once a transformer with full sentence context is
used as the input embedding, the time complexity
of the model becomes O(N?) at best. However, in
practice, this model is actually slower than a mod-
ern chart parser. There is a large constant factor
cost in the usage of Python control code to deter-
mine which operations to perform next. Whether
this is because of a limitation inherent to Pytorch,
an unavoidable limitation of determining at runtime
which operations to perform rather than batching
every operation at once, or a deficiency in the im-
plementation is an open question.

We compare empirical results to several exist-
ing models, showing competitive or SOTA results
for multiple languages. However, there are sev-
eral continuous datasets not tested here, including
but not limited to other treebanks in SPMRL, mul-
tiple Spanish resources from LDC, and the Ice-
landic Parsed Historic Corpus (Rognvaldsson et al.,
2012). Expanding the language suite used for test-
ing would provide further evidence of the useful-
ness of the techniques described here and would
improve the usability of this parser. Models for
additional tasks will be provided upon request.
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Ethics Statement

The model described above has all of the ethical
limitations of the underlying datasets. It will parse
any amount of offensive, misleading, or otherwise
inappropriate text without any hesitation.

Constituency parsing is a highly specialized field,
and as such, lower resourced languages are less
studied. We deliberately chose two examples of
lower resourced languages (Indonesian and Viet-
namese) to highlight recent work by those commu-
nities.

While training a single parser is not expensive,
the experiments described in this paper involved
training many parsers to verify average results in-
stead of using a single result, costing many days
of GPU time. The data center used for the train-
ing is powered by renewable energy, mitigating the
environmental impact of this work.
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A Transition Parsing and Related Work

The underlying mechanism of transition-based
parsing is similar to that of a shift/reduce compiler.

To implement a shift/reduce compiler without
relying on the call stack, the compiler maintains a
state with two data structures: a stack of compo-
nents it has already built, which will have zero or
more pieces on it, and a queue of tokens remaining
to be processed. The operations allowed are to shift
a new item from the queue onto the stack and to
reduce some number of items from the stack into a
larger, combined item.

This same general idea applies to transition pars-
ing for NLP models. However, rather than deter-
ministic rules to choose the next action, the parser
models the current state to choose the next action.
The training mechanism is to turn the gold parse
tree into a gold sequence of actions, then train the
model to correctly predict those actions.

The first transition models to use this mechanism
focused on dependencies, becoming a well-studied
method for dependency parsing (Nivre, 2003).

In one early work using this type of model for
constituencies, the transitions chosen either com-
bine the most recent pair of subtrees into a larger
subtree, or create a subtree of one word out of
the next node. Described as a ‘bottom up’ model,
this constructs a binarized parse tree out of the en-
tire sentence. Adding labels to the reduce actions
makes a labeled tree, and further adding ‘complete’
or ‘incomplete’ state to the reduce actions allows
the model to construct a tree with arbitrary branch-
ing, not just binarized (Clevert et al., 2016).

Building trees in a top-down manner allows for a
more comprehensive understanding of the sentence
or local phrase when making a determination of the
next action. Adding small recurrent networks, in
particular an LSTM over the subtrees, facilitated
recusively constructing embeddings for phrases as
well as words. Adding these mechanisms was, at
the time, very close to state of the art (Dyer et al.,
2016).

The in-order transition sequence improves on
this mechanism by delaying when the labeling of
the subtree is chosen. First, the left side of the
subtree is built, and only after that is built does
the model label the subtree it is currently building
(Liu and Zhang, 2017). Predicting the label of the
constituent with the additional information of the
first child further improves accuracy.

Aside from these models, there are even more
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complicated options available. For example, some
formalisms allow for discontinuous parse trees to
represent long distance dependencies, and special-
ized action sets exist to account for those (Coavoux
and Cohen, 2019). Furthermore, recent work ex-
plored using attention to attach the currently built
subtree at any depth of the previously built sub-
trees, not just the top, a mechanism titled attach-
juxtapose (Yang and Deng, 2020).

In this work, we continue with the top-down and
in-order sequences.

B Hyperparameters and Training Setup

Encoding
Embedding Dim 100
Forward & Backward CharLM 1024 + 1024
Electra 768
POS Tag Embedding 20
LSTM Layers 2
LSTM Input Dropout 0.2
Prediction Head
MLP Layers 3
Nonlinearity RelLU
Optimization
Batch Size 50 trees
Eval Frequency 5000 trees
AdaDelta optimization 200 evals
AdaDelta LR 1.0
AdaDelta WD 0.02
AdamW optimization 200 evals
AdamW LR 0.0002
AdamW WD 0.05
Plateau LR Decay 0.6
Plateau Patience 5
Plateau Cooldown 10

Table 8: Hyperparameters used when training the model.
The publicly released software includes flags for each
of these settings.

After 200 training and evaluation cycles with
AdabDelta (Zeiler, 2012), the model with the best
dev set evaluation is trained for another 200 cycles
with AdamW (Loshchilov and Hutter, 2019). The
model with the best dev set evaluation among all
of the models trained is kept as the final model.

The final model size is dependent on whether the
model uses a transformer and whether that trans-
former is fully finetuned or finetuned with LoRA
(Hu et al., 2021). A fully finetuned English model



using ELECTRA has 59,645,169 parameters, of
which 25,165,824 were finetuned Electra parame-
ters.

This work used torch version 2.3.0 and peft ver-
sion 0.10.0 (Paszke et al., 2019; Mangrulkar et al.,
2022). It is likely earlier or later versions of both
packages would produce similar results.

Fully training a parser with these hyperparame-
ters takes 1-2 days on a consumer GPU, such as an
Nvidia RTX 3090, depending on the dataset used.
German, for example, trains faster than Chinese, as
the German treebank has a much shorter average
sentence length.

When building a silver dataset, we randomly
chose 200,000 trees from the set of trees which did
not have full agreement between the 10 submodels.

Aside from the silver dataset improvement
graphs, results reported in this paper use an average
of 5 models with different random seeds to report
single model results. Ensemble results are based
on a single ensemble built from those 5 models.

C Datasets

C.1 English

For English, we evaluate on the standard Penn Tree-
bank (Marcus et al., 1993) We use the standard
Evalb evaluation,* with PRT/ADVP collapsing and
punctutation removal, to measure the performance
of the parser. In particular, we use the “nk.prm”
settings from (Kitaev and Klein, 2018) with the
standard EvalB metric. For the input embedding,
we use Electra-Large (Clark et al., 2020), along
with a charlm (Akbik et al., 2019) and the word
vectors from the CoNLL 2017 shared task (Ginter
etal., 2017).

For some of the experiments, we built the model
without the pretrained transformer or charlm in
order to better emphasize the difference in model
quality the proposed changes made. For example,
the silver experiment in section 4 has results with
and without the more powerful representations.

Previous work has used Devlin et al. (2018) and
Yang et al. (2019) as the embedding for SOTA re-
sults. We compare with Bert for a fair comparison,
while finding that XIL.Net and other autoregressive
models are less compatible with transition con-
stituency parsing, perhaps because the bidirectional
encoders are necessary to have proper knowledge
of future words.

*https://nlp.cs.nyu.edu/evalb/
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C.2 Chinese

The Chinese Treebank version 5.1 is another stan-
dard measurement for the quality of a model (Xue
et al., 2005).

One caveat with CTB is there are two standard
test splits of CTB 5.1 in the literature. One is a split
which includes new trees from CTB 5.1, used as
recently as (Zhou and Zhao, 2019), and the other
is to inherit the smaller test section from previ-
ous versions of CTB, such as used in (Kim et al.,
2023). Experimentally, the smaller test set is en-
tirely newswire and models achieve higher scores
on the more structured language. Unfortunately,
this dichotomy has previously gone unreported,
and CTB constituency leaderboards tend to mix
scores from the two test sets.”

In this work, we use the split of 301-325 for
dev, 271-300 for test, and ignore 400—439 to pro-
vide a fair comparison with the most recent SOTA,
Kim et al. (2023). The chinese-electra-180g-large-
discriminator transformer (Cui et al., 2020) pro-
duced the best results for us, as opposed to Kim
et al. (2023), which used Chinese BERT.

C.3 German

Three commonly used treebanks exist for German:
Negra, Tiger, and Tiibingen (Brants et al., 2001;
Telljohann et al., 2012). Licensing reasons pre-
vented us from using Tiibingen, as we intend to
publicly release our models, and Negra was in-
cluded in the Tiger treebank. Accordingly, we used
Tiger as the best option available to us.

For this paper, we use the SPMRL version of the
dataset and evaluate it with the “spmrl.prm” set-
tings for EvalB (Seddah et al., 2013). In order to
compare the accuracy of the parser without con-
cern for the tokenization, we use the gold tokeniza-
tion provided in the SPMRL task. Furthermore,
while the original Tiger treebank uses discontinu-
ous trees, this parser only handles continuous trees.
The SPMRL version of the treebank allows for such
processing.

We use the Electra model from german-nlp-
group® to build the final version of the parser. The
previous SOTA on this dataset, the Kitaev et al.
(2019) parser, used XLM-R (Conneau et al., 2020).

SPMRL includes several other treebanks. Mod-
els for those tasks will be made available for com-

5https://chinesenlp.xyz/docs/constituency_
parsing.html

6https://huggingface.co/german—nlp—group/
electra-base-german-uncased
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parison or annotation purposes on request.

C.4 Indonesian

At GURT 2023, Suan Lim et al introduced a
newly written Indonesian constituency treebank
(Suan Lim et al., 2023). They reported a score of
88.85 using Benepar and a custom fine tuned trans-
former, using the standard nk.prm parameters from
evalb. We built a character model from Wikipedia
and the Oscar Common Crawl (Abadji et al., 2022),
then tested on the various publicly available Indone-
sian transformers on HuggingFace.

Our best models use the Indolem Indobert model
(Koto et al., 2020); other Indonesian or multilingual
transformers were less accurate in our experiments.

C.5 Italian

We use the Venice Treebank (Delmonte et al., 2007)
to build an Italian model. As the original treebank
does not have defined train/dev/test splits, we align
the sentences with the edited sentences of the UD
conversion of VIT (Alfieri and Tamburini, 2016),
which does have train/dev/test splits. Where no
alignment is possible, such as for sentences which
are split in the UD dataset, we drop the sentence.
This leaves 7875 train, 683 dev, and 1042 test trees.
Code to reproduce this split is included in the soft-
ware release.

Using the Electra model from DBMDZ’ pro-
duced the most accurate model for this task.

We evaluated this model using the standard evalb
evaluation, adding punto to the list of ignored con-
stituencies as that represents punctuation in this
treebank.

C.6 Japanese

We use the Japanese ALT (Thu et al., 2016) to build
a Japanese model. This is a parallel treebank, in-
tended to eventually have many languages parsed,
but currently only Japanese is finished enough to
use for constituency parsing. The treebank adver-
tises 20,106 trees, but some number are missing
from the Japanese portion of the corpus. We further
eliminate 9 trees for having entire words composed
of nothing but spaces. This leaves 17195 train, 934
dev, and 931 test trees.

After some brief exploration, we found that the
Rinna Roberta model (Sawada et al., 2024) was a
good combination of ease of use and performance.

7https://huggingface.co/dbmdz/
electra-base-italian-xx1l-cased-discriminator
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C.7 Vietnamese

In 2022, VLSP produced a constituency parsing
dataset, along with a bakeoff (Ha et al., 2022). We
compare our results against the best performing
model from the bakeoff, from (Bauer et al., 2023).
Note that the publicly reported contest scores in-
clude both POS and bracket scores, whereas this
score is reported on only brackets, leading to our
scores differing from the publicly reported scores.
We use evalb to evaluate, adding punct to nk.prm.

As there is no defined dev set for VLSP22, we
use a random sample of 1/10th of the training
dataset.

We found the best transformer for building the
parser was Phobert-Large (Nguyen and Nguyen,
2020).

C.8 Availability

The previous artifacts are available for research pur-
poses. PTB and CTB are both available from LDC,
whereas VIT is available at ELRA. SPMRL and
Vietnamese were provided by request. ICON and
ALT are freely available as part of the published
work. Whenever possible, we confirmed with the
authors that models derived from the work can be
publicly released. This limitation informed our
choice of German treebank, in particular.

The models derived from these datasets will be
available at (anonymous) under the Apache Li-
cense, Version 2.0.

D Example Oracle Sequence

Both the in-order and top-down transition scheme
are capable of constructing any tree, doing so with
an unambiguous transition sequence. Included in
Table 9 is an end to end parsing example for “Tran-
sition parsing is fun” using a top-down transition
sequence.

E Ambiguous Dynamic Oracle

An unambiguous dynamic oracle repair is when the
dynamic oracle has only one minimum error option
for how to rewrite the transition sequence after the
parser makes an error at training time. An exam-
ple of this is when the top-down gold sequence
is to Shift, but the model chooses to Close. The
incorrectly closed bracket is both a recall and a pre-
cision error, but causes no further errors provided
the remainder of the sequence is properly followed,
so the best, unambiguous repair is to remove the
correct Close from later in the sequence.
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Action
Open(ROOT)

Open(S)

Open(NP)

Shift

Shift

Close

Open(VP)

Shift

Open(ADJP)

Constituents
ROOT

9 9

? ? 7 Transition
ROOT S NP ? ?
? ?7 7

Transition parsing
ROOT S NP

N

? ? Transition parsing
ROOT S NP VP

N

? ? Transition parsing ?
ROOT S NP VP ?

N

? ? Transition parsing ? is
ROOT S NP VP ? ADIJP

AN

? ? Transition parsing ? is ?

Action
Shift

Close

Close

Close

Close

Constituents
ROOT S NP VP ? ADJP ?

AN

? ? Transition parsing ? is ?  fun
ROOT S NP VP ? ADIJP

LN

? ? Transition parsing ? is fun

ROOT S NP VP

? ? Transition parsing is ADJP

fun

ROOT S

N
2 VAN

Transition parsing is ADJP

fun
ROOT

|
_

N VP
Transition parsing is ADIJP
fun

Table 9: Complete top-down transition sequence for “Transition parsing is fun”
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NP

N\

ADJP sheet steel

/N

cold rolled
Correct

NP

R

ADJP rolled sheet steel

cold
After an incorrect Close, this is the best tree the

model can construct

An ambiguous error has multiple possible reso-
lutions which produce the same number of errors.

The most common ambiguous transition error
for the in-order model is that of a shift replaced
with an open, empirically representing 1/6th of
the errors made by a fully trained model. Such a
transition introduces a single precision error, the in-
correctly opened bracket. There are multiple ways
of “repairing” the transition sequence after such
an error. For example, an immediate close of the
new bracket represents a unary transition around
the previous item, whereas a close at the end of the
bracket could contain several subtrees.

In this section, we enumerate the ambiguous
errors possible in the top-down scheme. The in-
order scheme is similar, but with more complicated
exceptions.

If the correct transition is Shift, but the model
predicts Open, this creates a new bracket where
there is none, a single precision error. The new
constituent must be closed at some point. If the
Shift was the final word of the current bracket, this
is not ambiguous:

NP

A

ADJP sheet steel

cold rolled
Correct

NP

e

ADJP sheet NP

/N |

cold rolled steel
Incorrect NP with an unambiguous close

If the incorrect NP in this example opens before
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the word ‘sheet’, though, the new constituent can
close either after ‘sheet’ or ‘steel’:

NP

N\

ADJP NP  steel

SN

cold rolled sheet
NP

T

ADJP NP

NN

cold rolled sheet steel

If the correct transition was to Close, but the
model predicts Shift, this causes both a precision
error and a recall error. The newly created bracket
is a precision error, and the correct bracket cannot
be recovered, a recall error. The dynamic oracle
repair is ambiguous in the case of more than one
piece after which the bracket could close. Contin-
uing with the ‘steel’ example, if the ADJP is not
correctly closed:

NP

T

ADJP steel

T

cold rolled sheet
NP

ADJP

T

cold rolled sheet steel

The same effect happens with a Close to Open
error. Both the new constituent and the unclosed
constituent from earlier need to be closed, and the
time at which to do that is ambiguous unless the
constituent has only one possible resolution. Note
that the incorrect Open does not necessarily cause
a recall error in the case of building a correct con-
stituent at the wrong time, such as in the phrase
‘eat (NP spaghetti) (PP with a fork)’ becoming ‘eat
(NP spaghetti (PP with a fork))’

In the case of an Open constituent incorrectly la-
beled, in most cases this is a precision error which
the dynamic oracle can repair by building the cor-
rect constituent anyway, then closing the incorrect
constituent later. When to close may be ambiguous,
such as if the model added an incorrect VP in the
‘cold rolled sheet steel” example:



NP

/R

VP sheet steel

ADJP

/N

cold rolled
NP

TN

VP steel

PN

ADJP sheet

/N

cold rolled
NP

VP

A

ADJP sheet steel

/N

cold rolled

Another ambiguity in the mislabeled Open case
can arise when the incorrectly predicted Open tran-
sition is the next correct transition, such as if the
model had predicted ADJP instead of NP. In that
case, discarding the Open(NP) and the correspond-
ing Close would cause a single recall error instead
of a precision error.

F Dynamic Oracle Repair

We ran an extensive test on the in-order transi-
tion error described in section 4, when the gold
sequence has a Close-Shift, but the prediction is
Shift. In this case, the correct bracket is lost, mean-
ing a recall error, and a new, wider bracket is cre-
ated, meaning a precision error. To prevent further
errors, this new bracket must be closed before the
bracket enclosing it is also closed. In the case of a
bracket wider than one more node, this close tran-
sition could occur after any number of additional
nodes without further affecting the score, meaning
it is an ambiguous oracle repair.

The signal is not strong, but as shown in table
10, the overall trend for this one repair is to be
slightly more accurate to not choose any ambiguous
transition. Further tests using all of the dynamic
oracle repairs found that not using any ambiguous
repairs was an improvement.

As observed in section 4 for the top-down oracle,
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Lang Unamb Early Late
EN 9253 @ 9259 9252
ZH  91.55 | 9145 91.38
ID 89.21  89.24 89.21
DE 9566 « 95.64 95.72
IT 83.76 | 83.63 83.65
VI 82.85 « 82.76 = 82.78

Table 10: Dev scores for the close/shift error described
above show this ambiguous error cannot be determinis-
tically resolved in a positive manner.

when testing multiple such ambiguous repairs at
once, the trend is that using teacher forcing for the
ambiguous errors is a slight improvement.



