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Abstract

Current evaluations of mathematical skills in
Large Language Models are constrained by
benchmarks lacking scope, particularly for
multi-modal problems — frequently relying
on school-level (Cobbe et al., 2021; Lu et al.,
2023; Zhang et al., 2024), niche Olympiad-
style (Fang et al., 2024; Mao et al., 2024), sim-
ple quiz format (Yue et al., 2023; Qiao et al.,
2024) or relatively small (Lewkowycz et al.,
2022) datasets.

To address this, we introduce U-MATH, a
novel benchmark comprising 1,100 unpub-
lished open-ended university-level problems
sourced from current US curricula, with 20%
incorporating visual elements. Given the free-
form nature of U-MATH problems, we employ
LLM judges for solution evaluation and re-
lease u-MATH, a meta-evaluation benchmark
composed of 1,084 U-MATH-derived tasks en-
abling precise assessment of these judges.

Benchmarking leading LLMs reveals marked
limitations in multi-modal reasoning, with max-
imum accuracy reaching 93.1% on textual tasks
but only 58.5% on visual ones. Furthermore,
solution judgment proves challenging, requir-
ing the most advanced models to achieve mean-
ingfully high performance, even still peaking
at an imperfect F1-score of 90.1%.

We open-source U-MATH, u-MATH, and all
our evaluation code.!

1 Introduction

Assessing the mathematical proficiency of Large
Language Models (LLMs) is crucial for evaluating
their fundamental reasoning capabilities (Ahn et al.,
2024). The most widely used benchmarks, GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
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2021), primarily cover school-level problems, over-
looking advanced topics and facing rapid satura-
tion (Achiam et al., 2023). Although some MATH
problems and other recent works introduce harder
concepts, they are limited in size and scope, relying
on competition-style problems and neglecting the
practical middle-ground of university-level course-
work.

There is also growing demand for visual reason-
ing assessment in multi-modal LL.Ms (Ahn et al.,
2024). Datasets such as the recent MATH-V (Wang
et al., 2024a) provide numerous visual problems
but face similar topic limitations or rely on the
multiple-choice format, making the tasks signifi-
cantly easier (Li et al., 2024b; Pezeshkpour and
Hruschka, 2023).

In turn, reliably evaluating complex free-form
responses is challenging (Hendrycks et al., 2021),
which results in LLM judges becoming the de
facto standard despite known biases and inconsis-
tencies (Zheng et al., 2023). These biases are often
overlooked and unquantified, preventing potential
correction. Quantifying auto-evaluation errors re-
quires datasets designed specifically to assess the
evaluators themselves, also called meta-evaluations.
While mathematical meta-evaluation datasets do
exist, they are mostly based on GSM8K and MATH,
inheriting their scope limitations.

To address these gaps, we introduce the U-MATH
(University Math) and u-MATH (Meta U-MATH)
benchmarks. Our main contributions are:

1. U-MATH (Section 3): We open-source 1,100
university-level problems, balanced across six
core university subjects. The problems are
collected from actual coursework and supplied
with correct answers, with approximately 20%
incorporating visual elements.

2. p-MATH (Section 3.3): We introduce a set
of 1084 meta-evaluation tasks designed to as-
sess the quality of LLM judges by selecting
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Example: Differential Calculus.

U-MATH Problem:

The function s(t) = 2 - t3 —3-t% — 12 - t + 8 represents the position of a particle traveling along a
horizontal line.

1. Find the velocity and acceleration functions.

2. Determine the time intervals when the object is slowing down or speeding up.

Reference Solution (shortened):
The velocity is v(t) = §'(t) = ‘ 6-1° —6-t— 12| zeros of the v(t) are t = —1,2.

The acceleration is a(t) = v'(t) =| 12+t — 6 |, zero of the a(t) is t = 1.

It speeds up when v(t) and a(t) have the same sign, and slows down when opposite.

Interval  v(t) a(t) Behavior
(—00,—1) >0 <0 Slowing down
(-1,2) <0 <0 Speedingup
(3.2) <0 >0 Slowing down
(2, 00) >0 >0 Speeding up

Accounting for non-negative time, speed up on‘ (0,1/2) and (2, c0)

, slow down on | (1/2,2) |

Figure 1: A U-MATH sample. A common students’ error reported by the author is overlooking time non-negativity.

approximately 25% of the U-MATH prob-
lems, supplying each with four solutions pro-
duced by four different top-performing lan-
guage models, and providing ground truth la-
bels on generated solutions’ correctness.

3. Comparative analysis (Section 4): We com-
pare various open-source and proprietary
LLMs on U-MATH and p-MATH, revealing
significant deficiencies in solving university-
level multi-modal problems. We also find pro-
prietary models to outperform open-source
ones on these tasks, while near-parity is ob-
served with the text modality. Judgment also
proves challenging for LLMs, with only the
best-performing and most recent models at-
taining adequately high scores. In addition,
we demonstrate that most current systems ex-
hibit biased and unstable judgment perfor-
mance. Finally, we establish that judgment
as a skill is distinct from problem-solving and
identify characteristic behavioral tendencies
in LLM judges.

We release the U-MATH and pu-MATH bench-
marks under a permissive license to facilitate fur-
ther research and ensure reproducibility.

2 Background

Evaluating mathematical capabilities of LLMs is an
essential direction of Al research (Ahn et al., 2024).
Apart from mathematical proficiency being impor-
tant in and of itself, studies show that fine-tuning
with math and code-related data enhances models’

fundamental ‘cognitive skills’ (Prakash et al., 2024)
and reasoning capabilities (Chen et al., 2024), fur-
ther necessitating the creation of mathematical eval-
uation datasets. Despite significant progress, many
existing datasets are limited in scope, complexity of
the problems, or size, as evidenced by the summary
in Table 1.

Textual Mathematical Benchmarks. Datasets
like MathQA (Amini et al., 2019) and the math-
ematics subset of MMLU (Hendrycks et al., 2020)
represent early efforts to assess math capabilities of
LLMs, relying primarily on rather simple multiple-
choice problems. Today, even smaller models have
achieved high scores with these tasks (Li et al.,
2024a), rendering the benchmarks obsolete.

Subsequently, more comprehensive datasets
emerged, including GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), and MGSM
(Shi et al., 2022) (a multilingual version of 250
GSMSK samples). These, however, mostly include
elementary- to high-shool level problems, which
may not fully gauge the depth of mathematical rea-
soning, and quickly approach saturation as well.

Recent works aim to introduce more advanced
concepts, prominent examples including Math-
Odyssey (Fang et al., 2024) and CHAMP (Mao
et al., 2024), composed primarily of problems from
high-school competitions, ProofNet (Azerbayev
et al., 2023) and MiniF2F (Zheng et al., 2021),
focused on formal proof composition and auto-
formalization, and OCWCourses (Lewkowycz
et al., 2022), based on MIT curricula contents.
However, these datasets are constrained by their
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#Free-form Text-only #Free-form Visual

Dataset Levels %Uni. Level #Test % Visual %Free-form Uni. Level Test Uni. Level Test
MMLU . (Hendrycks et al., 2020) (H] 0 13k 0 0 0 0
GSMB8k (Cobbe et al., 2021) 0 1k 0 0 0 0
MATH (Hendrycks et al., 2021) 0 Sk 0 100 0 0
MiniF2F (Zheng et al., 2021) (H] 0 244 0 100 0 0
OCWCourses (Lewkowycz et al., 2022) 100 272 0 100 272 0
ProofNet (Azerbayev et al., 2023) ~50 371 0 100 ~180 0
CHAMP (Mao et al., 2024) 0 270 0 100 0 0
MathOdyssey (Fang et al., 2024) ~25 387 0 100 ~50 0
MMMU o (Yue et al., 2023) 0 505 100 0 0 0
MathVista (Lu et al., 2023) (H] 0 Sk 100 46 0 0
MATH-V (Wang et al., 2024a) (H] 0 3k 100 50 0 0
We-Math (Qiao et al., 2024) (H] ~20 1.7k 100 0 0 0
0 47k 833 45 0 0

MathVerse (Zhang et al., 2024)
U-MATH (this work) (U]

—_
(=3
(=1
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100
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Table 1: Existing auto-evaluated math benchmarks along with their sizes, visual sample percentages, and open-ended problem

percentages. Level markers:

smaller sizes (under 400 problems each), and most
focus on Olympiad-style problems, missing the
more practical topics of university coursework.
Apart from that, all of them rely on publicly avail-
able materials, allowing for data leakage.

Our dataset offers over three times more open-
ended university-level problems compared to
these existing alternatives, with all of its problems
previously unpublished.

Visual Mathematical Benchmarks. With the rise
of multi-modal LLMs, demand for visual mathe-
matical benchmarks is growing (Zhang et al., 2024;
Qiao et al., 2024). Early efforts focused primar-
ily on simpler geometry problems, as seen with
datasets such as GeoQA (Chen et al., 2022b), Uni-
Geo (Chen et al., 2022a), and Geometry3K (Lu
et al., 2021), which offer a very narrow coverage
of visual reasoning.

Later developments attempted to broaden the
scope. MMMU (Yue et al., 2023) provides 505
college-level visual questions, but its complexity
is limited by the use of multiple-choice format.
MathVista (Lu et al., 2023) combines 28 existing
and 3 new datasets, totaling 5k samples (1k test),
although Qiao et al. (2024) noted issues with data
quality.

The latest benchmarks face similar limitations.
We-Math (Qiao et al., 2024) includes 1.7k visual
samples but again only uses the multiple-choice
format. MathVerse (Zhang et al., 2024) and MATH-
V (Wang et al., 2024a) both incorporate over 1.5k
free-form solutions, but lack topic coverage due
to their focus on simpler problems or high-school
competition challenges.

Our U-MATHy;sua1 subset embraces the free-form

response format for visual problems while adher-
ing to the topics of university coursework.

Elementary to Middle School, () High School, @ College, (@ University,

Olympiads.

Mathematical solution verification. The open-
ended nature of answers and ambiguity in math-
ematical expressions make evaluating math solu-
tions particularly challenging. As a result, many
benchmarks use multiple-choice questions for ease
of grading, though this can simplify the tasks and
offer hints that models can exploit (Li et al., 2024b;
Pezeshkpour and Hruschka, 2023).

Free-form evaluation by LLM judges, while
widespread (Zheng et al., 2023), is prone to er-
rors that are often overlooked and unaccounted
for, compromising reliability (Zheng et al., 2023).
Therefore, tools allowing for assessment of auto-
matic evaluators — meta-evaluations — are crucial.
Recent studies also indicate that evaluating math so-
lutions is challenging for LLMs (Zeng et al., 2023;
Xia et al., 2024) and that judgment performance
correlates with problem-solving performance with-
out fully aligning with it (Stephan et al., 2024), fur-
ther reinforcing the relevance of meta-evaluations.

There are existing datasets suited for mathemati-
cal meta-evaluations: PRM80OK (Lightman et al.,
2023) contains 800K annotated steps from 75K
solutions to 12K MATH dataset problems, FELM
(Zhao et al., 2024) provides GPT-3.5 annotations
for solutions to 208 GSM8K and 194 MATH prob-
lems, MR-GSMS8K (Zeng et al., 2023) and MR-
MATH (Xia et al., 2024) introduce meta-evaluation
tasks based on the problems from GSM8K and
MATH. These are all essentially based on GSM8K
and MATH datasets, neglecting meta-evaluation
for more advanced mathematical areas.

Our p-MATH benchmark is based on U-
MATH problems, enabling university-level meta-
evaluations.
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3 U-MATH

We present U-MATH — a benchmark of 1,100
problems designed to evaluate LLMs’ proficiency
in university-level mathematics. Following prior
work (Hendrycks et al., 2020, 2021; Cobbe et al.,
2021; Fang et al., 2024; Yue et al., 2023), we use
Accuracy as our main performance metric, em-
ploying an LLM judge (Zheng et al., 2023) to test
evaluated responses against the golden labels. A
problem is only considered solved if each of the
questions included with the problem statement is
answered correctly and fully (e.g. if one of the
questions asks to find the saddle points of a func-
tion, all of them have to be found).

3.1 Dataset Curation

We collaborate with Gradarius, a platform pro-
viding math-specialized learning content and soft-
ware for top US universities, sourcing tens of thou-
sands of problems from ongoing courses across
various institutions. Both problems and solutions
are crafted by subject matter experts, representing
real-world academic standards, and have not been
externally published prior to our work. To build our
benchmark, we select the most challenging prob-
lems available. In particular, we seek to filter out
any calculation-intensive problems and focus on
evaluating reasoning rather than arithmetical apti-
tude, as LLMs are not designed to perform arith-
metic and are inherently prone to errors (Hendrycks
etal., 2021; Lewkowycz et al., 2022).

First, we filter out problems with short solutions
(< 100 characters), problems in multiple-choice
format, and problems marked as implying calcu-
lator use. Additionally, for visual problems, we
choose to keep only those containing a single im-
age, for evaluation simplicity.

Next, we employ several small language models
— Llama-3.1 8B (Dubey et al., 2024), Qwen2 7B
(Yang et al., 2024a), Mistral 7B (Jiang et al., 2023),
Mathstral 7B, NuminaMath 7B (Beeching et al.,
2024) — to solve the problems and select 150 most
challenging ones per subject, based on the average
solution rate. By using a diverse set of model fam-
ilies, we avoid allowing any individual one to be
overly influential in problem selection.

Lastly, we manually curate the selected problems
using our in-house mathematical experts and the
Gradarius content team to ensure the absence of
erroneous problem statements or golden labels.

Following the data curation, we enlist a team

of academic experts from the Stevens Institute of
Technology, who actively teach various Calculus
courses. These experts thoroughly review the prob-
lems to verify whether they are suitable for assess-
ing the subject knowledge expected of university
students. Overall, only 4.3% of the problems are
categorized as high-school rather than university-
level.

3.2 Dataset Statistics

The U-MATH benchmark comprises 1,100 mathe-
matical problems spanning 6 subjects, with about
20% of the problems including visual elements
(graphs, tables, geometric figures). Table 2 sum-
marizes the problems’ distribution across the sub-
jects, together with the average number of ques-
tions posed and answers expected per problem (e.g.
the task could be to find the local minima, maxima,
and saddle points of a function, while the correct
answer might contain no extrema and two saddle
points).

Math Subject #Textual #Visual ‘ Avg. Questions Avg. Answers
Algebra 150 30 1.93 1.28
Differential Calculus 150 70 2.37 1.15
Integral Calculus 150 58 1.09 1.01
Multivariable Calculus 150 28 1.74 1.09
Precalculus 150 10 1.51 1.23
Sequences and Series 150 4 1.36 1.00
All 900 200 | 1.66 112

Table 2: Statistics across U-MATH subjects: counts of text-
only and visual problems, average questions per problem, and
average answers per question

3.3 Meta-Evaluation Framework (u-MATH)

Evaluating mathematical problems is not straight-
forward, with even simple expressions such as x -
0.5 having alternative valid forms such as 5, x + 2,
x/2, or unsimplified variants like 9/18. In prac-
tice, evaluating free-form solutions requires testing
expression equivalence in much less trivial cases,
especially with more advanced problems (see Ap-
pendix A.3 for an example). To systematically
study the ability of LLMs to evaluate free-form
mathematical solutions on advanced university-
level problems, we introduce the u-MATH bench-
mark. It consists of a curated subset of U-MATH
samples, supplied with LLLM-generated solutions,
both correct and not. Four solutions are generated
for each of the problems — using Qwen2.5 72B,
Llama-3.1 8B, GPT-40 and Gemini 1.5 Pro models.
We focus on text-only problems due to the limited
size of the U-MATH ;g1 subset.
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Solution correctness is determined using a com-
bination of manual labeling and automatic veri-
fication via Gradarius-API, which allows to test
formal equivalence of mathematical expressions.
Whenever the API classifies an LLM-produced an-
swer as coinciding with the golden label, we can
be confident in that answer’s correctness. How-
ever, a negative API response does not imply in-
correctness, since extraction of the answer from
the full solution and its subsequent conversion into
an API-compatible expression format are imper-
fect. Hence, solutions with negative API responses,
which occur roughly 40% of the time, are labeled
by in-house math experts, same as described in
Section 3.1.

Our internal experts also review all the prob-
lems, including the ones with all the solutions auto-
labeled, to assess their evaluation difficulty. In the
end, we select 271 U-MATH problems (around
25%) based on these difficulty estimates, result-
ing in a total of 1,084 samples. The final set does
not aim to reflect the overall U-MATH distribution,
but rather provide a robust and challenging test for
LLM judges.

A tested model is provided with a problem state-
ment, a reference answer, and a solution to evaluate
and is expected to produce a correctness judgment
to be compared against the golden verdict. We treat
this as a binary classification task, using the macro-
averaged F1-score as our primary metric. To offer
a finer-grained evaluation, we also report Positive
Predictive Value (PPV or Precision) and True Posi-
tive Rate (TPR or Recall) for the positive class, as
well as Negative Predictive Value (NPV) and True
Negative Rate (TNR) for the negative class. We
report scores calculated both overall (all samples)
and per originating model, separately for each of
the four author models.

4 Experiments and Results
4.1 Experimental Setup

We select some of the recent top-performing LLMs
to evaluate (Table 3). All the non-reasoning models
are restricted to a single generation of 4,096 tokens
with temperature set to 0.

For reasoners, the token limit is 32,768. Note
that o-series models do not allow for inference tem-
perature control, always having a default nonzero
temperature. Our internal tests on a subset of the
models, including DeepSeek-R1 and QwQ-32B-
Preview for the reasoner subset, show negligible

Model Source Size(s)

Ministral 2410 Mistral.ai (2024a) 8B
Mistral Small 2501 Mistral.ai (2024c) 24B
Mistral.ai (2024b) 123B
DeepSeck-Al et al. (2024)  MoE 37/685B
Yang et al. (2024b) 7B, 72B
Team (2024) 7B, 32B, 72B
Nexusflow (2024) 72B
Dubey et al. (2024) 8B, 70B
Wang et al. (2024b) 708
Wang et al. (2024b) 70B
Mistral Al (2024) 12B
Mistral AI (2024) 1248
Yang et al. (2024a) 7B.72B
Meta Al (2024) 11B, 90B
Anthropic (2024)
OpenAl (2024a)
OpenAl (2024a)
Team et al. (2024)
Team et al. (2024) unknown

DeepSeek-Al et al. (2025) MoE 37/685B
QwenLM (2024b) 32B
QwenLM (2024a) 72B
01-mini-2024-09-12 OpenAl (2024c¢)
03-mini-2025-01-31 OpenAl (2024d)
01-2024-12-17 OpenAl (2024b)
Gemini 2.0 Flash Thinking (exp-01-21)  Google (2024)

Visual Open-weights Reasoner

Mistral Large 2411
DeepSeek-V3
Qwen2.5-Math
Qwen2.5

Athene-V2 Chat
Llama-3.1

Llama-3.1 Nemotron
Llama-3.3

Pixtral 12B 2409
Pixtral Large 2411
Qwen2-VL
Llama-3.2

Claude 3.5 Sonnet (new)
GPT-40-mini-2024-07-18
GPT-40-2024-08-06
Gemini 1.5 Flash 002
Gemini 1.5 Pro 002
DeepSeek-R1
QwQ-Preview
QVQ-Preview

NAXX AXX S8 S80S X X X X XXX XXX
XX XX SN XX XXX SCCCSCCSSSSSSSS

NASK S0 XXX XX X XXXXXXXXXXXXX

Table 3: The LLMs used in our work.

differences in accuracy under greedy decoding and
four-rollout Pass@1 with a temperature of 0.6 (av-
erage accuracy over four independent launches),
nor do we observe any significant variation across
the rollouts. We thus adhere to a single-generation
scheme for reasoners as well, employing greedy
decoding for all the models except the o-series.
We use chain-of-thought prompting (Wei et al.,
2022) with the prompt provided in Appendix C.1
and o3-mini as a judge, due to the model being
simultaneously one of the most performant and bal-
anced judges according to our meta-evaluations
(see Section 4.3), as well as cost-effective and
widely available, allowing for easier reproduction.

4.2 U-MATH Results

Table 4 summarizes the results of our experiments.
We observe several key trends.

Reasoners offer breakthrough performance:
Reasoning models attain the top U-MATH, U-
MATHT and U-MATHy scores of 86.8%, 93.1%
and 58.5% respectively, compared to 67.2%, 71.7%
and 47.0% for the standard-inference models.

Open models are catching up on text-only prob-
lems, with DeepSeek in the lead: DeepSeek-V3
achieves a U-MATHT score of 69.3%, closely trail-
ing the leading Gemini 1.5 Pro model with 71.7%.
DeepSeek-R1 (91.3%) is only marginally behind
ol, the best-performing reasoner (93.1%).

Open models lag behind in visual problems,
where Gemini dominates: The open-proprietary
gap becomes much more pronounced when con-
sidering U-MATHy. In each ‘capability group’
(smaller, larger, and reasoning models) the best
open-weight result comes from the Qwen family
(Qwen2-VL 7B: 27.1%, Qwen2-VL 72B: 43.9%,
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U-MATH Algebra Diff. C. Integral C. Multivar C. Precalculus Seq.& Series
Model UMATH T V H T V ‘ T V ‘ T V ‘ T Vv ‘ T V* ‘ T v
900 200 150 30 150 70 150 58 150 28 150 10 150 4
Text-only models
Ministral 8B 23.1 269 6.0 | 600 67 |133 86 |100 52 |127 36 |473 00 |180 0.0
Llama-3.1 8B 29.5 337 11.0 | 600 33 |173 100|227 19.0 233 3.6 |507 200 |280 0.0
Qwen2.5 7B 433 504 11.0 | 86.0 20.0 | 30.7 4.3 |320 190|367 3.6 |787 10.0 | 38.7 0.0
Qwen2.5-Math 7B 45.5 530 115847 6.7 |320 86 |240 172|440 107 |813 00 |520 50.0
Mistral Small (24B) 34.8 399 120 8.7 133|133 100|133 155|253 143 |707 00 |360 00
Qwen2.5 32B 524 604 160 || 920 133|427 114|347 259|500 179 |83 00 |[580 00
Llama-3.1 70B 35.2 404 1151793 33 [ 173 17.1 | 160 103|267 7.1 | 680 0.0 |353 500
Llama-3.1 Nemotron 70B 42.5 47.7 195 | 840 233|293 214|213 19.0 | 40.7 143 | 67.3 20.0 | 43.3 0.0
Llama-3.3 70B 44.7 51.7 135|833 6.7 |353 114|273 207|487 10.7 |68.7 10.0 |46.7 250
Qwen2.5 72B 51.2 589 165 | 90.7 167|367 157|353 172|520 143 |840 10.0 | 547 50.0
Athene-V2 Chat (72B) 54.9 629 19.0 || 87.3 10.0 | 433 229|367 172|620 214 /907 00 |57.3 750
Qwen2.5-Math 72B 59.5 68.7 18.0 | 947 6.7 | 460 129 | 440 259|693 214 |893 100 | 68.7 75.0
Mistral Large (123B) 47.6 55,6 120 | 853 133|320 8.6 |367 155|453 143 |780 00 |560 250
DeepSeek-V3 (MoE 37/685B) 62.6 69.3 325960 10.0 493 30.0 387 39.7|693 429 |900 40.0 | 72.7 50.0
Multimodal models
Pixtral 12B 17.5 179 16.0 | 40.0 233|107 300 | 47 34 | 6.7 7.1 |320 00 | 133 0.0
Llama-3.2 11B 20.4 229 9.0 520 33|73 200 1.3 34 133 00 |440 10.0 | 193 0.0
Qwen2-VL 7B 26.3 27.1 225|587 100|187 37.1 | 113 172|140 179 |427 10.0 | 173 0.0
Llama-3.2 90B 37.2 41.8 165 | 82.0 233|213 27.1 |11.3 52 |300 107 |70.0 0.0 |36.0 250
Qwen2-VL 72B 41.8 439 325 80.0 26.7|29.3 443|220 27.6|320 286 |66.0 100 |34.0 250
Pixtral Large (124B) 47.8 514 315 | 827 333|300 329|247 328|467 286 |733 300 |513 0.0
Claude Sonnet 3.5 38.7 40.7 30.0 || 75.3 30.0 | 20.7 414 | 120 155|333 393 | 640 20.0 | 387 0.0
GPT-40-mini 434 472 260 | 87.3 133|260 329|167 172|373 393 |76.0 200 |40.0 50.0
GPT-40 50.2 53.9 335 90.0 33.3|30.0 37.1|273 27.6|49.3 429 |80.0 300 |46.7 0.0
Gemini 1.5 Flash 57.8 61.2 425 90.7 46.7 |473 47.1|30.7 310|553 53.6 |827 300 |60.7 50.0
Gemini 1.5 Pro 67.2 71.7 47.0 || 92.0 60.0 | 62.0 50.0 | 47.3 27.6 | 653 60.7 | 90.0 50.0 | 73.3 75.0
Reasoning models
QVQ-72B-Preview 65.0 69.7 440 || 940 333|540 414|413 552|653 500 | 953 300 | 680 0.0
QwQ-32B-Preview 73.1 82.7 300 | 953 33 |700 243|673 500|807 321 |973 200 |83 50.0
DeepSeek-R1 (MoE 37/685B) 80.7 91.3 330 967 167|853 229|873 500|867 429 |987 10.0 |933 750
ol-mini 76.3 829 465 | 973 40.0 | 753 529|720 46.6 | 787 429 |96.7 300 |77.3 50.0
Gemini 2.0 Flash Thinking 83.6 89.2 585 | 953 60.0 | 80.7 486 | 887 655|853 750 |953 50.0 | 90.0 25.0
03-mini 82.2 92.8 345993 100|880 17.1|90.7 603|853 500 |99.3 200 |94.0 75.0
ol 86.8 93.1 58.5 | 97.3 50.0 | 86.0 57.1|90.7 63.8 |92.0 60.7 |99.3 500 | 933 75.0

Table 4: Comparison of models’ results on U-MATH. Scores for various subjects are displayed along with the integral scores. T
denotes accuracy over text-only tasks, V denotes accuracy over visual tasks. Asterisk denotes a small number of samples (< 30).
Images are not included in the prompt for text-only models, only the problem statements. Note that text-only models can solve a
percentage of visual problems, due to either guessing, some of the problems being solvable without the accompanying images, or
judgment errors discussed in Section 4.3. Bold indicates the best result in each group.

QVQ-72B-Preview: 44.0%), trailing far behind
Gemini models. Gemini leads the proprietary cat-
egory across all scales with considerable margins
(Gemini 1.5 Flash: 42.5%, Gemini 1.5 Pro: 47.0%,
Gemini 2.0 Flash Thinking: 58.5%).

Visual comprehension is challenging: U-MATHy
scores are consistently much lower compared to
U-MATHT, although manual examinations do not
suggest the underlying problems to be any harder.
Besides, transitioning from text-only to visual of-
ten causes degradation in models’ textual perfor-
mance: 48.1% = 42.9% with Mistral and Pixtral
Large, 26.1% = 18.6% with smaller Llama-3.1
and Llama-3.2, 71.8% = 59.3% with QwQ and
QVQ Preview.

Specialization trumps Size: Larger models ex-
pectedly outperform smaller ones, but small-scale
specialists like Qwen2.5-Math 7B can surpass mod-
els 10 times their size, such as Llama-3.1 70B. Sim-
ilarly, Qwen2.5-Math 72B performs on par with a
685B mixture-of-experts DeepSeek-V3.

Continuous Finetuning enhances performance:
Llama-3.1 70B = Llama-3.1 Nemotron 70B and
Qwen2.5-72B = Athene-V2 72B yield 2.9% and
5.2% higher U-MATH accuracy respectively, sug-
gesting that standard-inference models may not be
fully optimized for their size and could use high-
quality post-training data to improve further.
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4.3 Meta-Evaluation (u-MATH) Results

Meta-evaluations follow the setup in Section 4.1.
Additionally, we experiment with two distinct
prompting schemes — a standard Automatic Chain-
of-Thought (AutoCoT) prompt involving a sim-
ple task description followed by an instruction to
think step-by-step, and a manual Chain-of-Thought
prompt (which we refer to as simply CoT) with
explicit instructions on which steps to follow —
finding the latter performs best and using it as our
default. The judge’s output is further processed
by an extractor model (Qwen2.5 72B is fixed for
consistency), prompted to produce a single label
— “Yes’, ‘No’ or ‘Inconclusive’ — with ‘Inconclu-
sive’ reserved for refusals or generation failures
and treated as incorrect. Reference Appendix C.2
for the full prompt contents. The main results are
presented in Table 5. We summarize our conclu-
sions in the following.

Judgment is non-trivial: In non-reasoners, the
maximum attainable F1 score is only 81.5%, and
while reasoning models offer significant improve-
ments, reaching a high F1 mark of 90.1%, our re-
sults underscore that LLM judges remain fallible
— even when applied in an objective domain with
access to ground truth labels and using the best
current systems. This observation is important be-
cause judges’ error rates directly limit evaluation
precision. Moreover, in cases where judgment er-
rors are systematic in nature as opposed to pure
noise — an issue we explore later with an example
— this cannot be overcome with sheer data volume.

Judgment is distinct from problem-solving: Su-
perior problem-solving does not necessarily trans-
late to better judgment, as illustrated, for instance,
with Qwen2.5 vs. Qwen2.5-Math scores. In fact,
our results suggest a trade-off between these skills,
tracing to reasoning-coherence tradeoff and mani-
festing in judges’ behavioral differences. These are
most apparent (Figure 2) in non-reasoners: propri-
etary models tend towards conservatism (relatively
high TNR compared to TPR), whereas Qwen mod-
els, particularly math specialists, exhibit the oppo-
site. See Appendix F for more detailed discussion.

Reasoners exceed the Pareto frontier: Reason-
ing models improve substantially in both problem-
solving and judgment performance over the previ-
ous model generation. Notably, the two best per-
forming systems, ol and 03-mini, are also among
the most balanced with respect to TPR-TNR parity.

Prompting effects are substantial yet inhomoge-
neous across models: In non-reasoners, switching
from AutoCoT to CoT generally maintains or im-
proves judgment performance and reduces author
bias (see paragraph below), except for Llama mod-
els, which suffer an increase in inconclusive judg-
ments (Appendix E, Table 5). Gemini 1.5 models
benefit the most (>10% F1 gain), becoming the top
non-reasoners and surpassing the Qwen, DeepSeek,
and GPT models that beat Gemini with AutoCoT.
Reasoner systems, however, remain largely unaf-
fected by the change in prompting.

Judges exhibit model-specific biases: We observe
a consistent trend toward better performance on
Llama solutions and worse performance on Qwen
solutions (see Figure 3). The author bias is most
pronounced with smaller judges under AutoCoT
prompting and reduced when moving toward more
capable models and switching to CoT in the case
of non-reasoners. At the same time, no noticeable
self-judgment effects are observed.

5 Conclusion

We introduce U-MATH, a novel multi-modal
benchmark for university-level mathematical rea-
soning, featuring 1,100 unpublished problems
sourced from real teaching materials spanning six
university subjects, with 20% involving visual el-
ements. In addition, we provide u-MATH, a U-
MATH-derived meta-evaluation dataset enabling
rigorous assessment of LLM judges.

Our experiments reveal LLM weaknesses in ad-
vanced mathematical reasoning, particularly visual
tasks (achieving 58.5% accuracy vs. 93.1% for
text-only). Enabling visual reasoning is difficult,
often degrading textual performance, and is under-
developed — especially in open-weight models,
which lag significantly behind proprietary ones de-
spite near parity in text-only problems. Neverthe-
less, continuous fine-tuning, reasoning-first train-
ing, and mathematical specialization boost perfor-
mance, suggesting considerable growth potential.

Judgment proves both distinct from problem-
solving and non-trivial for LLMs, with only the
most capable models attaining meaningfully high
performance while still peaking at an imperfect
90.1% F1-score mark. Additionally, we discover
pronounced biases and instabilities in judgment
performance as well as distinctive behavioral pat-
terns, underscoring the utility and necessity of
meta-evaluations.
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Model U-MATHiy [ u-MATH 1-MATH e 1-MATH jym, p-MATHGpr -MATHGemini

H Flcer / Flauwcor | TPR. TNR - PPV NPV | Fleor / Flauocor  Fleor / Flawocor  Fleor / Flauocor  Fleor / Flauwcor
Llama-3.1 8B 33.7 52.0/53.1 48.7 559 56.0 485 48.7/49.6 49.2/51.2 51.2/57.6 55.5/50.5
Ministral 8B 26.9 60.5/58.9 559 658 654 564 52.8/55.7 63.1/58.2 62.9/60.9 58.3/54.1
Qwen2.5-Math 7B 53.0 61.9/61.2 76.6 479 629 639 59.7/56.7 63.8/64.0 57.2/585 63.8/61.2
Qwen2.5 7B 50.4 69.3/67.0 787 59.8 693 70.8 62.4/60.5 723/724 68.3/00.4 69.1/65.0
GPT-40-mini 47.2 72.3/69.2 59.0 88.1 851 65.1 69.3/61.7 76.2/78.5 70.4/69.8 69.6/064.3
Gemini 1.5 Flash 61.2 74.8 /053 633 883 862 67.6 71.2/61.9 80.6/70.8 70.1/653 73.9/59.7
Llama-3.1-70B 40.4 61.0/68.2 62.5 596 641 579 56.0/63.8 57.0/70.2 69.4/69.8 58.8/64.4
Qwen2.5-Math 72B 68.7 74.0/75.5 809 668 738 752 69.3/68.8 77.3/79.8 68.2/69.2 76.8 /80.4
Qwen2.5 72B 58.9 75.6/75.1 771 742 775 737 70.5/68.9 79.3/80.1 73.7/73.4 7421738
Mistral Large 55.6 76.6/74.5 75.7 777 797 735 72.5/70.8 78.6/77.7 76.0/74.4 75.0/71.0
DeepSeek-V3 69.3 80.6/81.5 770 847 850 76.6 81.8/76.0 81.2/86.2 74.9 /80.1 80.4/82.7
Claude 3.5 Sonnet 40.7 74.8/68.1 625 895 873 0674 70.8/ 64.1 779/71.8 72.2/68.1 73.8/63.4
GPT-40 53.9 774742 70.1 859 851 713 74.2/68.2 81.8/78.9 7151758 72.6/70.5
Gemini 1.5 Pro 7.7 81.5/69.8 785 847 852 782 78.9/654 83.6/74.8 79.3/69.1 80.5/065.8
QwQ-32B-Preview 82.7 81.0/79.6 857 759 805 822 81.9/77.8 81.3/79.4 76.1/76.8 80.8/79.8
DeepSeek-R1 91.3 84.3/83.8 773 922 917 784 80.8/81.1 87.1/85.8 81.8/81.5 84.7/83.4
Gemini 2.0 Flash-Thinking 89.2 80.2/81.2 89.2 708 774 854 77.3/78.0 81.1/84.0 76.1/78.9 82.6/79.4
ol-mini 82.9 83.4/843 78.5 888 888 78.7 80.0/83.8 88.0/87.0 81.1/82.2 81.3/80.8
03-mini 92.8 89.6/89.8 89.0 90.2 91.1 88.0 87.7/88.4 93.2/93.6 88.2/88.6 86.7/85.7
ol 93.1 90.1/90.2 914 88.6 90.0 90.2 86.1/85.7 94.4/94.7 88.9/89.3 88.7/89.1

Table 5: Judgment performance on p-MATH benchmark using CoT prompting; Macro F1-score (F1), True Positive Rate (TPR),
True Negative Rate (TNR), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) are presented, with F1 as
the primary metric. The second number within each F1 column written in gray represents the score under AutoCoT prompting.
pn-MATH columns display integral scores over the entire benchmark, while p-MATH <podel> columns denote subsets with
solutions generated by specific author models. U-MATHr.x accuracy is added for comparison of each model’s performance as a
problem-solver vs. as a judge. Bold indicates the best result in each column.
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Figure 2: True Positive Rate vs True Negative Rate of judges on pt.-MATH. The value inside of the marker denotes the F1-score.
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Figure 3: Relative difference in judge pt-MATH F1 scores: performance on a specific author’s solutions vs. overall performance.
Each pane corresponds to one of the author models. X-axis specifies the judge model (in three groups: small, large, reasoner).
Bar pairs compare the difference for AutoCoT vs. manual CoT prompting. The three least performant models (Ministral 8B,
Llama-3.1-8B and -70B) are excluded due to outlier behavior (e.g. Appendix E).
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Limitations

While U-MATH offers a diverse set of university
curricula problems, it does not cover the full range
of advanced mathematical subjects. In addition,
while the textual parts of our benchmarks demon-
strate good model separability across the broad
spectrum of recent models, these parts start to ap-
proach saturation with the reasoning systems, fur-
ther necessitating expansion into more advanced
topics such as, for example, complex analysis.
Moreover, the 20% fraction of visual problems,
while reflective of real-world coursework, limits
the scope of visual reasoning evaluations. Further-
more, visual problems are not covered by our meta-
evaluations.

Although accuracy is a standard metric of choice, it
discards a lot of signal and does not allow for finer-
grained analyses. Furthermore, reliance on LLM
judges introduces errors and biases, and while we
do quantify these to some extent, that is only a first
step, and additional mitigation mechanisms would
need to be put in place in order to account for the
errors in a principled manner.

Future Work. Future research can focus on the
design of assessment protocols that allow partial
credit to enable finer-grained problem-solving eval-
uations. Another important direction is bridging
the gap between quantifying the uncertainty and
bias induced by auto-evaluations and controlling
for them. Finally, a possible way of overcoming sat-
uration, apart from going through a costly process
of curating new data, is coming up with adversarial
task creation or modification approaches, which
we see as particularly relevant for meta-evaluations.
By open-sourcing our data and evaluation code, we
strive to facilitate further research and encourage
development of models better equipped for com-
plex, real-world mathematical problems.

Ethics Statement

We collected all data in U-MATH and u-MATH
with appropriate permissions, ensuring no personal
or proprietary information is included. The datasets
consist solely of mathematical problems and so-
lutions, without any sensitive content. We open-
sourced the datasets and code under suitable li-
censes to support transparency and research ad-
vancement. There are no known conflicts of inter-
est associated with this work.

Reproducibility Statement

All datasets and evaluation code will be available
on GitHub. Detailed descriptions of data collection
and processing are presented in Section 3. The
experimental setup, including model configurations
and prompts, is described in Section 4, with the full
prompts provided in Appendices C.1 and C.2.
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A Problem examples

A.1 U-MATH Sample Problems

Example 1: Algebra.

Write a logarithmic equation corresponding to
the graph, using log base 3:
y

"5 "4 -§\"2 - 123 45

N
\ww\wH
O ASh N L e ows oo

—3-logs(z + 4)

Example 3: Precalculus Review.

Find a formula for the plotted sinusoidal func-
tion:

(7x/4,8) (on/4, 8)

(x/4,0)

Example 5: Multivariable Calculus.

The graph of the polar rectangular region D is
given. Express the region D in polar coordi-
nates:

1. The interval of r is [3, 5]

2. The interval of @ is [2 - 7, 2 - 7]

Figure 4: Examples of text-only and visual problems from the U-MATH benchmark along with their subjects and golden answers.

Example 2: Integral Calculus.

Solve the integral:

/ -9 Yz
T AW
9- V2 +3-\x

_3.111(%)_

27 3
1 3, 24 2.,
7§Vm275V:C4+§V:L’3+§\/5+C

E is located inside the cylinder 2° + 4 = 1 and
between the circular paraboloids z = 1—z% —y?
and z = z? 4 y*. Find the volume of E.

Example 6: Differential Calculus.

Sketch the curve:

llf3

Y= 6 (x+3)2
Provide the following:

1. The domain (in interval notation)

. Vertical asymptotes

. Horizontal asymptotes

. Slant asymptotes

. Intervals where the function is increasing
. Intervals where the function is decreasing
. Intervals where the function is concave up
. Intervals where the function is concave down
. Points of inflection

Nole BN Ne WU BF SIS S )
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A.2 U-MATH Sample Problem with Reference Solution

Example: Differential Calculus.

U-MATH Problem:

The function s(t) = 2-t* — 3 -t — 12 - t + 8 represents the position of a particle traveling along a
horizontal line.

1. Find the velocity and acceleration functions.

2. Determine the time intervals when the object is slowing down or speeding up.

Golden answer:
1. The velocity function v(t) = 6 - t* — 6 - t — 12 and acceleration function a(t) =12 -t — 6
2. The time intervals when the object speeds up (0, ), (2, o) and slows down (1, 2)

Reference solution:

The velocity is the derivative of the position function:

v(t) = s'(t) =|6t% — 6t — 12

The acceleration is the derivative of the velocity function:
a(t) =v'(t) =|12t — 6
To determine when the object is speeding up or slowing down, we compare the signs of v(¢) and a(t).

Step 1: Find the Zeros of v(t) and a(t)
First, solve for v(t) = 0:

6t°—6t—12=0 = t*—t—-2=0 = (t—2)t+1)=0

Thus, t = 2 and t = —1. Next, solve for a(t) = 0:

12t —-6=0 = t:%

Step 2: Analyze the Signs of v(t) and a(t)
We analyze the signs of v(t) and a(t) on the intervals determined by t = —1,¢ = 1, and ¢t = 2.

Interval  v(t) a(t) Behavior
(—00,—1) >0 <0 Slowingdown
(-1,2) <0 <0 Speedingup
(3.2) <0 >0 Slowing down
(2, 00) >0 >0 Speeding up

Step 3: Account for non-negative time

1 1
The object is speeding up on (0, 5) and (2, o) |and slowing down on (5, 2) .

Figure 5: A sample U-MATH problem, including the reference solution and the golden answer.
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A.3 p-MATH Sample Problem

Example: Integral Calculus.

U-MATH Problem:
Solve the integral:

. —_ . 3
/ 20 Cf)S( 10 - x) e
21 - sin(—10 - x)7

Golden answer:

C+ 1 <% - (cot(10 - z))* +

W=

51 - (cot(10 - x))G)

LLM-generated answer:

3sin(10z)? — 2
126 sin(10z)° e

Golden judge verdict: Yes

Comment:
Omitting the arbitrary constants, the reference and the submission could be expressed, respectively, as

6 4 6 4
cot’(10z) n cot*(10x) and &€ (10z)  csc (109@)’

63 42 63 42

which differ by a constant term of 1/126.

Figure 6: A sample u-MATH problem, illustrating the comparison between the golden and LLM-generated answers.
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B U-MATH Topic Distribution

U-MATH covers a variety of topics across the six of its subjects. Table 6 presents the total number of
topics per subject, along with the names and sample counts for the seven most populated topics in each.

Subject Sample Count Topic
Differential Calculus 29  Curve Sketching
(51 unique topics) 13 Limits
12 One-Sided Limits
12 L’Hospital’s Rule
11 Increasing and Decreasing Functions
11 Higher Derivatives
10  Applications of Derivatives (Local Extrema)
Sequences and Series 40 Taylor Series
(28 unique topics) 30 Fourier Series
18 Maclaurin Series
12 Approximating Constants Using Power Series
6 Radius of Convergence (Center of Convergence)
5 Differentiate Power Series
4 Error in Approximation
Integral Calculus 83 The Substitution Rule
(35 unique topics) 24 Antiderivatives
10 Volumes of Solids of Revolution About the X-Axis
9 Trigonometric Substitutions and Inverse Substitutions
9 Integrate Respect Independent Variable
7 Applications of Integrals
7 Single Variable Surface Area Integrals
Precalculus Review 55 Trigonometric Functions
(19 unique topics) 24 Zeros
11 Inverses of Functions
8 Inequalities
7 Equations with Exponents and Logarithms
7 Properties of Functions
6 Exponential Functions
Algebra 18 Equations and Inequalities
(74 unique topics) 13 Polynomial Equations
8 Find Composition of Two Functions
7 Polynomials
6 Find Slope Line
6 Applications of Exponential Function
6  Quadratic Equations
Multivariable Calculus 13 Triple Integrals
(53 unique topics) 11 Lagrange Multipliers
9 Double Integrals in Polar Coordinates
8 Derivatives of Parametric Equations
8 Integrals of Multivariable Functions
8 Double Integral Over General Region
6 Classification of Critical Points

Table 6: Unique topic counts and top seven populated topics together with their sample sizes per subject.
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C Prompts
C.1 Prediction Prompt

Solution CoT Prompt.

{{problem_statement}}
Please reason step by step, and put your final answer within \boxed{ }
Comment:

Images, if present, are passed by way of a provider-native interface.
For OpenAl-compatible endpoints this is done through the image_url field.”

“https://platform.openai.com/docs/guides/vision

Figure 7: Inference prompt used for sampling solutions given the problem statements.
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C.2  Judgment Prompts

Judgment Automatic CoT Prompt.

You’ll be provided with a math problem, a correct answer for it and a solution for evaluation.
You have to answer whether the solution is correct or not.

PROBLEM STATEMENT:
{{problem_statement}}

CORRECT ANSWER:
{{golden_answer}}

SOLUTION TO EVALUATE:
{{model_output}}

Now please compare the answer obtained in the solution with the provided correct answer to evaluate
whether the solution is correct or not.

Think step-by-step, then conclude with your final verdict by putting either "Yes" or "No" on a separate line.

Figure 8: AutoCoT judgment prompt used for comparing sampled solutions to the golden labels. This prompt variant is only
meant for p-MATH experimentation and has not been used in U-MATH evaluation.

Judgment CoT Prompt.

You’ll be provided with a math problem, a correct answer for it and a solution for evaluation.
You have to answer whether the solution is correct or not.

PROBLEM STATEMENT:
{{problem_statement}}

CORRECT ANSWER:
{{golden_answer}}

SOLUTION TO EVALUATE:
{{model_output}}

Now please compare the answer obtained in the solution with the provided correct answer to evaluate
whether the solution is correct or not.

Think step-by-step, following these steps, don’t skip any:

1. Extract the answer from the provided solution

2. Make any derivations or transformations that may be necessary to compare the provided correct answer
with the extracted answer

3. Perform the comparison

4. Conclude with your final verdict — put either "Yes" or "No" on a separate line

Figure 9: CoT judgment prompt used for comparing sampled solutions to the golden labels. This prompt variant is our default
one, and also the one used for U-MATH evaluations.

994



Judgment Extract Prompt.

You’ll be given a result of an evaluation of some mathematical solution by a professional evaluator.
You need to extract the final verdict of this evaluation in simple terms: is the solution graded as correct or not.

Output only a single label — "Yes", "No" or "Inconclusive” — according to the provided evaluation
("Yes" if the solution is graded as correct, "No" if the solution is graded as incorrect, "Inconclusive" if the
evaluation is incomplete or the final verdict is not settled upon).

Only output "Inconclusive" for incomplete or unsettled evaluations. If the evaluation does contain a single
final verdict like "Yes", "Correct", "True", "No", "Incorrect", "False" and so on, even if it is supplied with
some additional disclaimers and remarks, output a "Yes" or "No" label accordingly.

Here goes your input:

AURURY

{{generated_judgment}}

AUANRY

Now please output exactly either "Yes", "No" or "Inconclusive".

Figure 10: Prompt for extracting the final verdict from the judge’s output.
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D U-MATH Visual Comparison
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Figure 11: Performance of the selected top-performing models on U-MATH, U-MATH .y and U-MATHvisyal -
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E p-MATH Inconclusive Judgment Rate

Model H IncRate, AutoCoT ‘ IncRate, CoT
Llama-3.1 8B 13.4 229
Llama-3.1 70B 5.0 13.8
Ministral 8B 0.6 53
Mistral Large 0.4 1.7
Qwen2.5-Math 7B 2.8 24
Qwen2.5-Math 72B 1.2 0.7
Qwen2.5 7B 1.0 1.2
Qwen2.5 72B 1.6 2.1
DeepSeek-V3 0.2 0.2
GPT-40-mini 0.0 0.1
GPT-40 0.0 0.0
Gemini 1.5 Flash 0.0 0.1
Gemini 1.5 Pro 0.0 0.0
Claude 3.5 Sonnet 0.0 0.0
QwQ-32B-Preview 0.6 0.9
Gemini 2.0 Flash Thinking 0.2 0.5
DeepSeek-R1 0.0 0.3
ol-mini 0.0 0.1
ol 0.0 0.1
03-mini 0.0 0.0

Table 7: Percentages of inconclusive judgments produced by each model under different prompting schemes on p-MATH.
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F Problem-solving vs. Judgment, Conservatism vs. Leniency, Reasoning vs. Coherence

This section compares the performance of the models on U-MATHTey; and p-MATH. The overall score
distribution shown in Figure 12 reveals that improved problem-solving capabilities do not necessarily
translate to improved judgment. Furthermore, the data suggest a potential trade-off between these
capabilities, as observed with non-reasoning models, which exhibit a wedge-shaped trend: the two skills
improve together up to a certain threshold, beyond which they appear inversely correlated.

ol-

03-mini -

DeepSeek-R1 -

ol-mini -

Gemini 1.5 Pro -

QwQ-32B-Preview -

DeepSeek-V3 -

Gemini 2.0 Flash Thinking -

T

GPT-40 -

Mistral Large -

Qwen2.5 72B -

Claude 3.5 Sonnet -

Gemini 1.5 Flash -

Qwen2.5-Math 72B -

GPT-40-mini -

Qwen2.5 7B -

Qwen2.5-Math 7B -

Llama-3.1 70B -

Ministral 8B -

Llama-3.1 8B -

10095 90 85 80 75 70 65 60 55 50 45 40 35 30 2520 1510 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
U-MATH Text Accuracy «— p-MATH Fl-score

Figure 12: Comparison of LLMs’ textual problem-solving (U-MATHrex) vs judgment (4-MATH) performance.

Based on extensive manual examination, we propose this phenomenon reflects a trade-off between
formal domain-specific reasoning and general coherence. This is perhaps best illustrated by considering
the tradeoff’s ‘extreme ends’: Claude Sonnet achieves strong judgment scores despite significantly weaker
problem-solving compared to models with similar judgment rankings, something allowing it to compensate
for problem-solving deficit, while Qwen-Math, conversely, excels in problem-solving relative to neighbors,
indicating some hindrance in translating problem-solving prowess into more effective judgment.
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Studying the model responses suggests that what hinders Qwen-Math is exactly the inferior coherence:
the model is generally struggling with instruction comprehension, adherence to formatting rules and
‘keeping track’ of the tasks beyond mathematical problem-solving. Claude, by comparison, is excellent
at all of those things, but often to the detriment of in-depth reasoning. To illustrate how this typically
plays out, Appendix G provides an example comparing the Claude’s and Qwen’s judgments on a single
p#-MATH sample. Notice how Claude is restrictive and superficial in its comparison, whereas Qwen
‘loses the structure’ along the way, designating only the first two steps prescribed with the CoT prompt
(see prompt contents in Appendix C.2), omitting points three and four and switching to the ‘common
problem-solving output style’.

We observe this dynamic with all the models to an extent, leading to two corresponding ‘judgment styles’:

* Lenient judges: tend to ‘follow the solution’, are generally more verbose and good at going into
involved derivation chains, which is necessary to arrive at a true positive verdict in more complex
scenarios (higher TPR), but comes at a cost of increased hallucination risk and mislabeling negative
examples (lower TNR).

* Conservative judges: tend to be more ‘anchored on the label’, are generally more structured and
precise, and also less heavy on long hallucination-prone outputs, which reduces the negative mislabeling
(higher TNR) but comes at the expense of poor positive recall (lower TPR).

Linking behavioral tendencies to typical outcomes allows us to quantify and visualize these patterns by
decomposing the p-MATH performance into TPR and TNR, as shown in Figure 2. Notice in particular
that Claude and Qwen-Math appear as ‘the opposites‘ — having respectively the highest overall TNR and
highest overall TPR among the non-reasoners with an approximately equal F1-score.

There are also other patterns emerging, offering deeper insight into the discussed trade-offs.

* Model tendencies run in the family: for example, both of the GPT-4 models are conservative, as are
both of the Gemini 1.5 models, while all the Qwen models tend to be more lenient. This suggests that
these tendencies are largely induced by training data.

* More balanced training leads to more balanced performance, as evidenced by comparing the
TPR-TNR ratio of Qwen2.5 and Qwen2.5-Math.

* Losing in capability, on the contrary, exacerbates the bias, with conservative models mainly losing
in TPR and lenient models mainly losing in TNR when moving from a larger model to a smaller one
(e.g. Gemini 1.5 Pro = Gemini 1.5 Flash, GPT-40 = GPT-40-mini, Qwen2.5-72B = Qwen2.5-7B).
This indicates that not only a well-balanced training mixture is required but also adequate model
capability to generalize over it.

* Reasoner systems ‘push to the right’, consistent with our observations that increased mathematical
problem-solving and verbosity — hallmarks of reasoner systems — correlate with an increase in TPR?.
This together with previous observations suggests that a potentially promising approach to improving
the broad performance and coherence of reasoning systems lies in better training balancing. Notice
also that the best performing models, ol and 03-mini, are among the most balanced ones.

’Notably, R1 is the only reasoning system that is closer to conservative models in terms of its scores. Upon inspection, we
found that its reasoning traces are indeed often driving it towards conservative judgments, the model displaying ‘hyper-fixation’
over minute details of the golden labels. This is the first case we encountered where an increase in coherence would probably aid
more with true positives rather than true negatives. But the sentiment remains the same: coherence and reliability are required to
appropriately and successfully apply problem-solving skills to the task at hand.
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G p-MATH Judgment Examples

Example: Differential calculus.

U-MATH Problem:
Compute the derivative of the function
b (2-25+3)
VSN T2 2
Golden answer:
,  —128-27 +66-2° — 842 +45 x5 (226 + 3)
YT o4 4541247 —36-22+ 18 -2 YT—2-2
LLM-generated answer:
2°-(22°43) 1 (5 120° 2
Y1-2xz 2\z 2243 3(1-22)
Golden judge verdict: Yes
J
Claude 3.5 Sonnet Judgment.
1. The solution’s answer is: ””53(?7\/%23) : % (g + % + ﬁ)
. —128.27 26 _84.2 z5-(2-26+3
2. The correct answer is: 72}1?:8 +1§§E7736§§2 ﬂ‘é?z . ém )
3. To compare these expressions:
z5-(2-z6+3)
* Both have the same factor i

However, the other factors are completely different:
2 \z 22643 + 3(1—-22)

— Solution has: 1 (é 4 12° #)

. _—128-27466-25—84-2+45
Correct answer has: ;=575 22500

* These expressions are not algebraically equivalent, as they have different degrees in numerator and
denominator

4. No
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Qwen2.5-Math 72B Judgment.

1. The solution provides the derivative as:

dy _ [2°-(2e043) 1(5 122° L2
dr J1 -2z 2\z 22643  3(1-21)

2. The provided correct answer is:

, —12827 +662° — 842 + 45 x5 - (226 4 3)

Y7 D428 1 1247 — 3622 + 187 Y1—o2z

We need to simplify the expression inside the parentheses of the solution and see if it matches the fraction
in the correct answer. First, let’s rewrite the expression inside the parentheses:

5. 122° L2
x 22643 3(1-2x)

To combine these fractions, we need a common denominator. The common denominator is
x(22° 4+ 3)(3(1 — 22)) = 3z(22° 4 3)(1 — 22)
Rewriting each term with this common denominator:

5  5-3(20°+3)(1—2z)  15(22° + 3)(1 — 22)

r 3z(22% +3)(1 —2x)  3x(2z6 + 3)(1 — 2z)

122° 122°-3z(1—22)  362°(1 — 22)
226 +3  3x(226+3)(1 — 2x)  3z(22¢ + 3)(1 — 22)

2 2-2(22°4+3) 22(22° 4 3)

3(1—2z) 3z(225+3)(1—2z) 3z(22% 4+ 3)(1 — 22)

Combining these fractions:

15(22°% 4+ 3)(1 — 22) + 362°%(1 — 2z) 4 2x(22° 4 3)
3x(228 + 3)(1 — 2z)

Expanding the numerator:
15(22° + 3)(1 — 22) = 302° — 602" + 45 — 90z
2¢(22° + 3) = 42" + 6z
Adding these together:
302° — 602" + 45 — 90z + 362° — 722" + 42" + 62 = —1282" + 662° — 84z + 45
So the expression inside the parentheses simplifies to:

—1282z"7 + 662° — 84z + 45
3x(226 + 3)(1 — 2x)

Therefore, the derivative is:

25 (226 +3) 1 —12827 +662° — 84z +45  —128z7 + 662° — 84z +45 |25 - (226 + 3)

VT—2z 2 3x(2e5+3)(1—22)  6x(2e5+3)(1—20) \ ¥V1-22

Notice that:
—242° 41227 —362°+ 18z = —6x (42’ —22°+62—3) = —62(22°+3)(22—1) = 62(22°+3)(1—22)

Thus, the two expressions are identical. Therefore, the solution is .
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