
Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM² 2025), pages 532–548
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Shallow Preference Signals: Large Language Model Aligns Even Better
with Truncated Data?

Xuan Qi∗2, Jiahao Qiu∗1, Xinzhe Juan3, Yue Wu†1, Mengdi Wang†1,
1AI Lab, Princeton University, 2IIIS, Tsinghua University,

3Department of Computer Science & Engineering, University of Michigan,

Abstract

Aligning large language models (LLMs) with
human preferences remains a key challenge
in AI. Preference-based optimization methods,
such as Reinforcement Learning with Human
Feedback (RLHF) and Direct Preference Op-
timization (DPO), rely on human-annotated
datasets to improve alignment. In this work, we
identify a crucial property of the existing learn-
ing method: the distinguishing signal obtained
in preferred responses is often concentrated in
the early tokens. We refer to this as shallow
preference signals.

To explore this property, we systematically trun-
cate preference datasets at various points and
train both reward models and DPO models
on the truncated data. Surprisingly, models
trained on truncated datasets, retaining only
the first half or fewer tokens, achieve compa-
rable or even superior performance to those
trained on full datasets. For example, a re-
ward model trained on the Skywork-Reward-
Preference-80K-v0.2 dataset outperforms the
full dataset when trained on a 40% truncated
dataset. This pattern is consistent across mul-
tiple datasets, suggesting the widespread pres-
ence of shallow preference signals.

We further investigate the distribution of the
reward signal through decoding strategies. We
consider two simple decoding strategies moti-
vated by the shallow reward signal observa-
tion, namely Length Control Decoding and
KL Threshold Control Decoding, which lever-
age shallow preference signals to optimize the
trade-off between alignment and computational
efficiency. The performance is even better,
which again validates our hypothesis.

The phenomenon of shallow preference sig-
nals highlights potential issues in LLM align-
ment: existing alignment methods often fo-
cus on aligning only the initial tokens of re-
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sponses, rather than considering the full re-
sponse. This could lead to discrepancies with
real-world human preferences, resulting in sub-
optimal alignment performance.

1 Introduction

Aligning large language models (LLMs) with hu-
man preferences is a core challenge in artificial in-
telligence (AI) research (Wang et al., 2023a). Pref-
erence datasets (Liu et al., 2024a; Cui et al., 2023;
Askell et al., 2021; Bai et al., 2022) have played
a critical role in addressing this challenge by cap-
turing human judgments of model outputs. These
datasets enable the identification and prioritization
of responses that are more aligned with human
expectations. Preference-based optimization tech-
niques, such as Reinforcement Learning with Hu-
man Feedback (RLHF) (Ouyang et al., 2022) and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023), rely on these datasets to refine the
decision-making process of models.

Despite the promise of these methods, there are
several challenges associated with them. Recent
work (Zhang et al., 2024; Park et al., 2024a,b; Etha-
yarajh et al., 2024) has highlighted that reward mod-
els trained using RLHF may suffer from reward
hacking. Factors such as response format, length,
and even the inclusion of emojis can influence qual-
ity judgments, resulting in potential inaccuracies.
In this paper, we introduce a previously underex-
plored aspect of preference data. Specifically, we
observe that the signal indicating the superiority
of the chosen response over the rejected one is not
uniformly distributed across the entire response. In
many cases, the relative quality of responses can
be determined from only the early portion of the
response—or even just a few tokens—rather than
requiring an evaluation of the entire response. We
refer to this phenomenon as shallow preference
signals. This observation suggests that preference-
based optimization methods may not need to rely
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on the full response to effectively capture the dis-
tinguishing features of higher-quality responses.

We hypothesize that focusing on the early por-
tion of the response allows models to capture the
most salient preference signals, resulting in more
efficient training and potentially improved align-
ment performance. To test this hypothesis, we
introduce a methodology where preference data
is truncated at various positions, and models are
trained on these truncated datasets. We analyze
the distribution of preference signals in response
pairs and conduct systematic experiments to val-
idate the hypothesis that models trained on trun-
cated preference data perform comparably to mod-
els trained on the full dataset. This is confirmed
for both reward models and models fine-tuned
with DPO. Our findings demonstrate that the dis-
tinguishing features between the chosen and re-
jected responses are concentrated in the early part
of the response. In fact, models trained on trun-
cated datasets—using only the first half or fewer
tokens of each response—achieve similar, or even
superior, performance compared to those trained
on the full dataset. For instance, a reward model
trained on the Skywork-Reward-Preference-80K-
v0.2 (Liu et al., 2024a) dataset achieves an ac-
curacy of only 75.85% on RewardBench (Lam-
bert et al., 2024). However, when the dataset
is truncated to 50% and 40%, the accuracy in-
creases to 75.88% and 76.35%, respectively. Even
with a truncation to 25%, the accuracy remains
at 69.92%. Similarly, a reward model trained on
the RLHFlow-pair-data-v2-80K-wsafetyRLHFlow-
pair-data-v2-80K-wsafety1 dataset achieves an ac-
curacy of 65.96% on RewardBench. After trun-
cating the dataset to 50% and 40%, the accuracy
improves to 72.16% and 69.71%, respectively, with
accuracy remaining at 62.44% for a 33% trunca-
tion.

Furthermore, our experiments suggest that the
shallow preference signal phenomenon signifi-
cantly impacts LLM content generation. Based
on this observation, we find that simple strategies
can perform well without needing complex decod-
ing approaches. Recent work (Yang et al., 2024;
Bergner et al., 2024; Hu et al., 2024b; Kavehzadeh
et al., 2024) has proposed various decoding strate-
gies, but our findings indicate that by focusing on
the early portion of the response, we can achieve

1https://huggingface.co/datasets/RLHFlow/pair_
data_v2_80K_wsafety

an optimal trade-off between reward and KL diver-
gence. To test this, we explore two decoding strate-
gies—Length Control Decoding and KL Threshold
Control Decoding—to see if the early-token bias
observed during training affects generation at in-
ference time. Our results show that the differences
between the DPO model trained on full preference
data and the reference model are most noticeable
in the early tokens of the generated response. As
more of the response is generated, the difference
decreases. This suggests that the reward signal in
DPO training is concentrated in the early tokens,
rather than being evenly distributed. (Lin et al.,
2024) also explores token distribution differences
between base LLMs and aligned models, though
their method primarily focuses on in-context learn-
ing, avoiding parameter fine-tuning.

Meanwhile, the findings of this paper may shed
light on existing problems in LLM alignment. Our
experiments validates that current alignment meth-
ods often focus on aligning earlier tokens, rather
than considering full sentences. The latter portions
of answers generated by LLM tend to be generated
through an auto-regressive mechanism, which does
not exhibit significant quality variation through our
decoding experiments. Through extensive exper-
iments, we validate our hypothesis that focusing
on the early portion of the response allows mod-
els to capture the most salient preference signals,
resulting in more efficient training and potentially
improved alignment performance. However, align-
ment with truncated data is shallow alignment
which only improves the performance on met-
rics but may keep further away from the real-
world alignment with human values. (Qi et al.,
2024) proposes a related issue, but their work is
confined to safety alignment and does not extend to
the broader alignment challenges present in LLMs.
Instead, our work validates the phenomenon more
systemically and extensively.

In summary, the main contributions of our paper
are as follows:

1. We introduce and systematically validate the
phenomenon of shallow preference signals,
demonstrating that the distinguishing fea-
tures between high-quality and low-quality
responses are often concentrated in the early
portion of the response.

2. We show that training reward models and
DPO models on truncated responses—using
only the early portion—achieves performance
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9.9 is greater than 9.11. Comparing digit by digit, both start 
with 9, but 9.9 has 9 in the tenths place, while 9.11 has 1. Since 
9 > 1, 9.9 is larger.

Original 
Dataset

9.9 is greater than 9.11. Comparing digit by digit, both start 
with 9, but 9.9 has 9 in the tenths place, while 9.11 has 1. Since 
9 > 1, 9.9 is larger.Truncated 

Dataset

Higher cost

Introduce noise 

Lower cost

Maintain/improve
performance DPO

9.11 is greater than 9.9. Both have 9 in the tenths place, but 
9.11 has 1 in the hundredths place, while 9.9 has 0. Since 1 > 0, 
9.11 is larger.

9.11 is greater than 9.9. Both have 9 in the tenths place, but 
9.11 has 1 in the hundredths place, while 9.9 has 0. Since 1 > 0, 
9.11 is larger.

Prompt: Which number is bigger 9.11 or 9.9 ? 

Reward 
Model

Figure 1: An example illustrating the phenomenon of shallow preference signals. It demonstrates how the relative
quality of two responses can be determined from the early portion of the response, or even from the first sentence.
Training with only the initial part allows the model to capture most of the preference signals while conserving
resources.

comparable to or better than training on full
responses. This finding holds across multiple
datasets and supervision settings.

3. We provide a new perspective on the limita-
tions of current alignment pipelines. Specifi-
cally, we suggest that current alignment meth-
ods face the limitation of shallow alignment,
emphasizing that alignment should go beyond
just aligning a few tokens and consider full
sentences for more effective results.

2 Related Works

2.1 LLM Alignment with Human Preference
Aligning the outputs of large language models with
human preferences is a crucial problem in the field
of LLMs (Wang et al., 2023a). One of the most
notable advancements in this area is Reinforcement
Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017; Ouyang et al., 2022), which
has led to the development of cutting-edge lan-
guage models such as GPT-4o (Hurst et al., 2024),
Gemini-2.0 (Anil et al., 2023), and Llama-3.1-
70B-Instruct (Dubey et al., 2024). The traditional
RLHF approach involves training a reward model
to score the outputs of the language model, fol-
lowed by fine-tuning using deep reinforcement
learning algorithms like Proximal Policy Optimiza-
tion (PPO) (Bai et al., 2022). However, PPO faces
challenges in alignment tasks due to its complexity,
instability, and inefficiency (Choshen et al., 2020;
Engstrom et al., 2020). Several works have sought
to improve the RLHF paradigm from various an-

gles in order to better align LLMs with human
preferences (Zhao et al., 2023; Azar et al., 2024;
Tang et al., 2024). Among these, Direct Preference
Optimization (DPO) (Rafailov et al., 2023) has
gained significant attention, as it directly optimizes
a policy using chosen and rejected pairs.

2.2 Reward Model

The reward model plays a critical role in
RLHF (Christiano et al., 2017; Ouyang et al., 2022).
Traditional reward models are often assumed to
follow a Bradley-Terry model (Bradley and Terry,
1952a), which provides a score for an entire out-
put to indicate its preference (Wang et al., 2023b;
Christiano et al., 2017; Ouyang et al., 2022). How-
ever, the Bradley-Terry model has limitations, par-
ticularly its inability to handle complex or intran-
sitive preferences (Munos et al., 2024; Swamy
et al., 2024; Ye et al., 2024). Some works have
addressed this issue by discarding the Bradley-
Terry assumption and instead modeling the prob-
ability that one response is preferred over an-
other (Jiang et al., 2023; Liu et al., 2024b; Dong
et al., 2024a). Additionally, other approaches have
explored the construction of multi-objective reward
models to capture human preferences more com-
prehensively (Touvron et al., 2023; Wang et al.,
2024b,a). Furthermore, some studies have pro-
posed process reward models (Luo et al., 2023;
Lightman et al., 2024; Li and Li, 2024) or step-
wise reward models (Havrilla et al., 2024), which
have shown promising results, especially in reason-
ing tasks.
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2.3 Reward Hacking

Reward hacking refers to the situation in which
an agent or model optimizes a proxy reward that
deviates from the true objective, leading to subop-
timal or even undesirable behavior (Skalse et al.,
2022). This phenomenon has been widely studied
across various environments such as grid-worlds,
Atari games, and text generation tasks (Arjona-
Medina et al., 2019; Pan et al., 2022; Xu et al.,
2022). Prior research has focused on categoriz-
ing different forms of reward hacking and devel-
oping mitigation strategies, such as regularizing
policy optimization (Laidlaw et al., 2024), impos-
ing a KL divergence penalty (Miao et al., 2024),
and applying model merging techniques to either
the policy or reward model (Zhang et al., 2024).
Despite these efforts, existing approaches have
notable limitations. In response, recent studies
have introduced new definitions and strategies for
mitigating reward hacking, including the concept
of "hackability" (Skalse et al., 2022) and the use
of information-theoretic reward modeling (Miao
et al., 2024). Furthermore, the application of re-
ward hacking techniques to language models has
been explored, particularly in improving the sam-
ple efficiency of preference learning (Zhu et al.,
2024). In contrast to these prior approaches, our
work mitigates a subset of reward hacking by trun-
cating the model’s responses and better aligning
them with human preferences. This truncation pro-
cess effectively reduces noise in the dataset, leading
to improved accuracy. By removing certain noise
components, our method can be seen as a novel
approach to addressing reward hacking within the
context of language models.

3 Methodology

In this section, we introduce the methodology used
to investigate the structure and front-loaded nature
of reward signals in large language models (LLMs)
trained with preference data.

3.1 Formulation of Reward Signal Location

Consider a preference dataset containing pairs of
responses, where one response is the chosen re-
sponse and the other is the rejected response. The
reward signal is defined as the inherent quality dif-
ference between these two responses. Let rcho(i)
denote the chosen response for a given instance i,
and rrej(i) denote the rejected response. The ob-
jective is to model the reward signal R(i), which

indicates the degree of preference for rcho(i) over
rrej(i).

We hypothesize that the reward signal is con-
centrated in the early part of the response. To
formalize this, let rcho(i) = [y1, y2, . . . , yT ] and
rrej(i) = [z1, z2, . . . , zT ] represent the token se-
quences for the chosen and rejected responses, re-
spectively, where T is the total number of tokens in
each response. We define the reward signal at each
token position t as the difference in the model’s log-
probability for the chosen and rejected responses
at that position:

Rt(i) = log p(yt | x, y1:t−1)− log p(zt | x, z1:t−1),

where x represents the input context, and log p(yt |
x, y1:t−1) is the log-probability of the token yt in
the chosen response at position t, conditioned on
the context x and the preceding tokens y1:t−1. Sim-
ilarly, log p(zt | x, z1:t−1) is the log-probability of
the token zt in the rejected response at the same
position.

We argue that the total reward signal R(i) can be
approximated as the cumulative sum of the reward
signals up to a truncation point tk:

R(i) =

tk∑

t=1

Rt(i) = log p(y1:tk | x)− log p(z1:tk | x),

where tk represents the truncation point, beyond
which the reward signal becomes less informative
or introduces noise. This leads to the hypothesis
that truncated responses up to position tk preserve
most of the reward signal, enabling the training of
effective reward models and DPO models without
requiring the full response.

To further validate our hypothesis, we investi-
gate the effects of truncating the responses in pref-
erence datasets on training the reward model and
DPO, where a formal statement can be found in Ap-
pendix B.

3.2 Mixing Strategy and Decoding Policies
To further investigate the impact of early-token
preference signals during decoding, we utilize a
mixing strategy and two decoding policies. The
mixing strategy combines the DPO policy with the
corresponding reference model policy to enhance
the reward-KL divergence tradeoff.

3.2.1 Mixing Strategy
The mixing strategy involves combining the prob-
ability distributions from the DPO model πDPO
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and the reference model πref in a weighted man-
ner. Specifically, we define a mixing policy πmix
as:

πmix = softmax
(
a · log πDPO

πref
+ log πref

)

where a is a mixing coefficient controlling the trade-
off between the DPO and reference model. This
strategy allows for fine-tuning the balance between
the reward signal captured by the DPO policy and
the stability provided by the reference model.

3.2.2 Decoding Strategies
We explore two decoding strategies that prioritize
the early part of the response or manage the KL
divergence between the DPO and reference models.

Length Control Decoding: In this strategy, the
first t tokens are generated by sampling from the
DPO policy, while the remaining tokens are gener-
ated by sampling from the reference model. The
goal is to focus on the part of the response where
the reward signal is concentrated. The strategy is
parameterized by the truncation length t, which
controls the point at which the decoding switches
between the two models.

yk =

{
sample from πDPO if k ≤ t

sample from πref if k > t

KL Threshold Control Decoding: In this strat-
egy, we compute the KL divergence between the
DPO model and the reference model at each token
generation step. If the KL divergence exceeds a
predefined threshold b, we sample from the DPO
policy; otherwise, we sample from the reference
model. This dynamic approach allows the model
to maintain flexibility in adjusting to the relative
importance of reward signal versus stability during
the response generation process.

yt =

{
sample from πDPO if KL(πDPO ∥ πref) > b

sample from πref if KL(πDPO ∥ πref) ≤ b

where y(i)t denotes the i-th sampled token from the
DPO model at the t-th position.

The KL divergence KL(πDPO ∥ πref) is com-
puted at each token position as:

KL(πDPO ∥ πref) = Eyt∼πDPO

[
log

πDPO(yt|x, y<t)

πref(yt|x, y<t)

]

This expectation is estimated using Monte Carlo
sampling. Specifically, we sample K = 1, 000
tokens from the DPO model at each token position,
and the KL divergence is computed as:

K̂L(πDPO ∥ πref) =
1

K

K∑

i=1

log
πDPO(y

(i)
t |x, y<t)

πref(y
(i)
t |x, y<t)

Both of these strategies are used to examine how
early-token reward signals influence inference-time
behavior, while maintaining acceptable KL diver-
gence during decoding.

4 Experiment: Truncation Effects on
Reward Models and DPO

4.1 Experiment Setting

In this experiment, we investigate the effect
of truncating response sequences at different
positions within preference datasets Skywork-
Reward-Preference-80K-v0.2 (Liu et al., 2024a),
ultrafeedback-binarized (Cui et al., 2023), and
RLHFlow-pair-data-v2-80K-wsafety2, which are
commonly used in the context of large language
models. Specifically, we apply truncation to the
response sections (including both chosen and re-
jected responses) at varying positions. The trun-
cation process retains only the initial portion of
the response tokens, while the remaining tokens
are discarded, resulting in the creation of multiple
truncated datasets. We then train reward models
and use Direct Preference Optimization (DPO) to
fine-tune models on these truncated datasets and
compare their performance with models trained on
the original, untruncated datasets. We also inves-
tigate the use of DPO implicit reward (Rafailov
et al., 2023) to assess the quality of two responses
on datasets with different truncation ratios, and
compare the accuracy of this evaluation with the
actual quality judgments.

We utilize Google’s gemma-2b-it3 model as the
base for training the reward model, following the
methodology outlined in RLHFlow (Dong et al.,
2024b) to train a standard Bradley-Terry reward
model (Bradley and Terry, 1952b). For the DPO
training, we use the Llama-3.1-8B-Instruct (Pat-
terson et al., 2022) as the base model, following
the DPO methodology outlined in OpenRLHF (Hu
et al., 2024a) to fine-tune the model. In the ex-
periment using DPO implicit reward to assess ac-
curacy, we use the LLaMA3-iterative-DPO-final
model (Xiong et al., 2024; Dong et al., 2024b)
as the DPO policy model and its supervised fine-
tuning (SFT) checkpoint, LLaMA3-SFT, trained
from Llama-3-8B, as the reference policy model.

2https://huggingface.co/datasets/RLHFlow/pair_
data_v2_80K_wsafety

3https://huggingface.co/google/gemma-2b-it
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4.1.1 Metrics
The performance of the models is evaluated using
two metrics:
Test Accuracy. This metric measures the propor-
tion of instances where the reward model assigns
a higher score to the chosen response compared to
the rejected response.
GPT4o Win Rate. This metric is computed using
the AlpacaEval 2.0 (Li et al., 2023) standard test set
and the default baseline model with GPT4o acting
as the judge.

4.2 Results

4.2.1 Evaluation of Reward Models on
RewardBench

We evaluate the performance of the trained reward
models on the core RewardBench evaluation set.
For each dataset, we train the reward models on
the training set using truncated versions of the re-
sponses with truncation ratios of 50%, 40%, 33%
and 25%. The results are presented in Table 1.

Truncating the response in the preference data
to 50% or 40% of tokens had minimal impact on
the performance of the trained reward model across
all three datasets. In fact, for certain metrics and
datasets, models trained on truncated data outper-
formed those trained on full responses. However,
truncating the response to 33% or 25% of its orig-
inal length leads to a slight reduction in perfor-
mance. Despite this, the performance drop remains
small, and the models continue to exhibit the ma-
jority of the performance seen with the original,
untruncated datasets.

4.2.2 Evaluation of Reward Models on Each
Task of UltraFeedback

We train reward models on the ultrafeedback-
binarized dataset, separately for each task: Help-
fulness, Honesty, Instruction Following, and Truth-
fulness. For each task, we train the reward models
on the training set using truncated versions of the
responses with truncation ratios of 50%, 40%, 30%,
20% and 10%. Results are shown in Table 2.

The results show that truncating the responses to
50% or 40% of their original length had a negligible
effect on test accuracy for each task. In some tasks,
models trained on truncated data even perform bet-
ter than those trained on full responses. However,
when the responses are truncated to shorter lengths
(e.g., 30%, 20%, or 10%), a slight decrease in test
accuracy is observed. Nonetheless, the models

retain a substantial portion of their original perfor-
mance, indicating that truncation did not result in a
significant loss of accuracy.

4.2.3 Evaluation of DPO-trained Models on
AlpacaEval 2.0

In addition to training reward models, we investi-
gate the effect of response truncation in the pref-
erence dataset by Direct Preference Optimization
(DPO). For this experiment, we use the Skywork-
Reward-Preference-80K-v0.2 dataset (Liu et al.,
2024a). The dataset responses are truncated at vari-
ous ratios of 50%, 40%, 33% and 25%. Results are
shown in Table 3.

The results indicate that truncating the responses
in the preference data had a minimal effect on the
performance of models trained with DPO. While
the impact increased with the truncation ratio, trun-
cating the response to 50% or 40% of its original
length does not significantly degrade the perfor-
mance of the DPO-trained models. This suggests
that, in the context of DPO training, the majority
of the signals used to evaluate response quality
are concentrated in the earlier segments of the re-
sponse.

4.2.4 Implicit Reward Accuracy on Truncated
Responses

In this experiment, we truncate the responses in the
Skywork-Reward-Preference-80K-v0.2 (Liu et al.,
2024a) dataset at various proportions and compute
the DPO implicit reward for each response pair.
We then compare the preferences derived from the
implicit rewards with the actual human-annotated
preferences to assess the consistency. The results
are presented in Figure 2.

The results indicate that as the length of the re-
sponse considered increases, the preferences de-
rived from the DPO implicit reward align more
closely with human-annotated preferences. Inter-
estingly, even when only the initial portion of the re-
sponse is considered, the preferences derived from
the DPO implicit reward show a high degree of
consistency with human preferences. This suggests
that, in preference datasets, evaluating only the
early tokens of a response is sufficient to accurately
assess the relative quality of two responses, without
the need to examine the entire response.
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Dataset Dimension Original Dataset 50% 40% 33% 25%

Skywork-Preference

Chat 0.8073 0.7318 0.7039 0.5866 0.5978
Chat-Hard 0.7039 0.7105 0.6974 0.6776 0.6732

Safety 0.8216 0.8068 0.7946 0.8162 0.8030
Reasoning 0.7043 0.7769 0.8101 0.7064 0.7450

Total 0.7585 0.7588 0.7635 0.7000 0.6992

UltraFeedback

Chat 0.7946 0.8098 0.8073 0.7844 0.7644
Chat-Hard 0.6029 0.6425 0.6342 0.5983 0.5946

Safety 0.7416 0.7632 0.7848 0.7384 0.6756
Reasoning 0.7056 0.6904 0.6682 0.6886 0.5646

Total 0.7391 0.7327 0.7194 0.7018 0.6355

RLHFlow-Preference

Chat 0.9553 0.9302 0.9287 0.8574 0.8291
Chat-Hard 0.4517 0.4561 0.4506 0.4323 0.4127

Safety 0.6730 0.6621 0.6438 0.5985 0.6081
Reasoning 0.5984 0.8374 0.7894 0.6247 0.5723

Total 0.6596 0.7216 0.6971 0.6244 0.5562

Table 1: Performance of reward models trained on different truncation ratios for various datasets. The table presents
the evaluation scores across multiple dimensions from the RewardBench core set: Chat, Chat-Hard, Safety and
Reasoning. Total is the final score on the RewardBench core set. Skywork-Preference refers to Skywork-Reward-
Preference-80K-v0.2 dataset, UltraFeedback refers to ultrafeedback-binarized dataset, RLHFlow-Preference
refers to RLHFlow-pair-data-v2-80K-wsafety dataset. Original Dataset refers to the model trained on the full
dataset without truncation; 50%, 40%, 33%, and 25% refer to truncated datasets with corresponding ratios. The
highest score in each row is highlighted with darker blue , and the second-highest score with lighter blue .
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Figure 2: The x-axis represents the response trunca-
tion ratio, while the y-axis shows the accuracy of DPO
implicit reward in predicting the relative quality of re-
sponses based on truncated datasets.

5 Experiment: KL Divergence and
Reward-KL Tradeoff for Evaluating
Response Quality

This section presents a set of experiments that
examine the relationship between the Kullback-
Leibler (KL) divergence between the DPO model
and the reference model, and the reward-KL trade-
off during response generation. These experiments
aim to validate the hypothesis that the reward sig-
nal in preference datasets is primarily concentrated
in the early part of the response, highlighting the
phenomenon of shallow preference signals.

5.1 Experiment Setup

To investigate this hypothesis, we perform two key
experiments. In the first experiment, we compute
the KL divergence between the DPO model and
the reference model at each token generation step.
This experiment allows us to observe how the KL
divergence evolves as the response is generated
and whether the early tokens exhibit a higher diver-
gence compared to later ones. In the second exper-
iment, we explore the reward-KL tradeoff during
generation. Based on our observation of shallow
preference signals, we adjust the sampling strategy
according to the behavior of the DPO and reference
models to further confirm that the reward signal is
concentrated in the early part of the response. We
use a simple baseline decoding strategy, described
in subsubsection 3.2.1, and test different decoding
strategies to explore how well the early preference
signal can be captured.

For both experiments, we use the LLaMA3-
iterative-DPO-final model (Xiong et al., 2024;
Dong et al., 2024b) as the DPO policy model
and its supervised fine-tuning (SFT) checkpoint,
LLaMA3-SFT, trained from Llama-3-8B, as the
reference policy model. The corresponding re-
ward is measured using the reward model FsfairX-
LLaMA3-RM-v0.1 (Dong et al., 2024b). We ran-
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Task Original Dataset 50% 40% 30% 20% 10%
Helpfulness 0.89 0.90 0.90 0.87 0.82 0.73

Honesty 0.87 0.88 0.87 0.84 0.79 0.76
Instruction Following 0.91 0.91 0.86 0.87 0.74 0.69

Truthfulness 0.85 0.84 0.84 0.83 0.81 0.64
Average 0.88 0.8825 0.87 0.855 0.795 0.705

Table 2: UltraFeedback test accuracy across different tasks with various truncation ratios. The table presents the test
accuracy for each task in the UltraFeedback dataset, with different truncation ratios: Original Dataset refers to the
model evaluated on the full, unmodified UltraFeedback dataset; 50%, 40%, 30%, 20%, and 10% refer to models
evaluated using truncated versions of the dataset. The tasks listed include: Helpfulness, Honesty, Instruction
Following, and Truthfulness. Average represents the mean accuracy across all tasks. The highest score in each row
is highlighted with darker blue , and the second-highest score with lighter blue .

Metric Llama3.1 8B Original Dataset 50% 40% 33% 25%
LCWR 21.45 24.90 25.19 24.85 23.51 21.13

WR 22.37 23.92 24.15 23.57 23.43 20.96

Table 3: Performance of DPO models with different truncation ratios. The table presents the evaluation metrics
for both the original model and the DPO models trained on truncated datasets: Llama3.1 8B refers to the original
Llama-3.1-8B-Instruct model; Original Dataset refers to the Llama-3.1-8B-Instruct model fine-tuned using the
full Skywork-Reward-Preference-80K-v0.2 dataset with the DPO algorithm; 50%, 40%, 33%, and 25% refer to
models fine-tuned using truncated versions of the dataset. LCWR refers to Length-controlled Win Rate and WR
refers to Win Rate. The highest score in each row is highlighted with darker blue , and the second-highest score
with lighter blue .

domly selected 1000 instructions from the training
sets of Alpaca (Taori et al., 2023) and UltraFeed-
back (Cui et al., 2023) to form the instruction sets
for these two experiments. The KL divergence be-
tween the two policies at each token is computed
as described in subsubsection 3.2.2, and the KL
divergence between the two policies for the whole
response generation is accumulated across all to-
ken generation steps. The final KL divergence is
computed as:

K̂L(πmix ∥ πref) =
1

N

N∑

i=1

T∑

t=1

log
πmix(y

(i)
t |xi, y<t)

πref(y
(i)
t |xi, y<t)

where N represents the size of the instruction set, T
denotes the total number of tokens in the response,
xi is the instruction, y(i)t refers to the generated
token at position t, and y<t refers to the tokens
generated prior to token t.

5.2 Results
5.2.1 KL Divergence Analysis Across Token

Positions
In the first experiment, we analyze the KL diver-
gence between the DPO model and the reference
model at each token generation step. The KL di-
vergence is computed for each token yt by com-

paring the conditional probability distributions of
the DPO model πDPO(yt|x, y<t) and the reference
model πref(yt|x, y<t), where x is the instruction,
and y<t represents previously generated tokens. As
shown in Figure 3, the KL divergence is high in
the early tokens, indicating significant differences
between the DPO and reference models. However,
the divergence diminishes significantly as token
generation progresses, suggesting that the primary
divergence occurs in the initial phase of response
generation.

This observation supports the hypothesis that
the reward signal in preference datasets is mostly
concentrated in the first part of the response, with
minimal divergence in the later tokens, where the
DPO model relies on the tokens generated earlier.

5.2.2 Reward-KL Tradeoff for Length
Control and KL Threshold Control
Decoding

The second experiment explores the reward-KL
tradeoff during response generation, based on the
observation of shallow preference signals. We fo-
cus on two simple decoding strategies: Length Con-
trol Decoding and KL Threshold Control Decoding,
which are based on the idea that the reward signal
is concentrated in the early portion of the response.
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Figure 3: KL Divergence between the DPO model and
the reference model at each token position. The plot
shows that the divergence is higher for early tokens and
decreases as generation progresses.

Length Control Decoding In Length Control
Decoding, we sample from the DPO policy for the
first t tokens and from the reference policy for the
remaining tokens. We evaluate this strategy for
various values of t and compute the average reward
and KL divergence for each configuration.

KL Threshold Control Decoding In KL Thresh-
old Control Decoding, we compute the KL diver-
gence KL(πDPO ∥ πref) at each token position. If
the divergence exceeds a threshold b, we sample
from the DPO policy; otherwise, we sample from
the reference policy. We test several values of b
and record the average reward and KL divergence.

The results of both strategies, shown in Figure 4,
demonstrate that simple strategies, based on the ob-
served concentration of reward signals in the early
tokens, improve the reward-KL tradeoff compared
to the baseline. These findings confirm that adjust-
ing the decoding strategy in a simple manner—by
focusing on the early tokens—can lead to better
alignment between reward and KL divergence, fur-
ther supporting the idea that the reward signal is
concentrated in the early part of the response.

6 Conclusion

We introduce shallow preference signals, where
key distinguishing features between preferred and
non-preferred responses are concentrated in early
response tokens. Our experiments show that mod-
els trained on truncated data—retaining 40% to
50% of tokens—perform similarly or better in re-
ward modeling and Direct Preference Optimization
(DPO) than those trained on full-length data. Ad-
ditionally, we highlight the limitation of current
methods that focus mainly on initial tokens, sug-
gesting the need for strategies that consider entire
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Reward vs KL-Divergence
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Figure 4: Reward and corresponding KL Divergence for
the baseline and two different control strategies. The
blue dots represent data from the baseline, while the red
triangles and green squares represent the Length Control
and KL Threshold Control strategies, respectively.

responses for more accurate alignment with human
preferences.
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A Preliminaries

A.1 Autoregressive Language Model And
Token-Level Markov Decision Process

Autoregressive language models (ARLMs) are de-
signed to generate token sequences y1, y2, . . . , yT
conditioned on the preceding tokens in a given
context. Formally, for a provided input prompt
x, the model generates the token sequence y =
(y1, y2, . . . , yT ) by factorizing the joint distribution
of the sequence using the chain rule of probability:

p(y|x) =
T∏

t=1

p(yt|y1, y2, . . . , yt−1, x),

where p(yt|y1, y2, . . . , yt−1, x) represents the con-
ditional probability of generating token yt, given
all previous tokens y1, y2, . . . , yt−1 and the input
prompt x.

This process is typically framed as a token-level
Markov Decision Process (MDP), where each state
at time step t, denoted st, represents the sequence
of tokens generated up to that point:

st = (x, y1, y2, . . . , yt−1),

and the action at corresponds to the generation of
the next token yt. The transitions between states
are deterministic and are given by:

st+1 = (x, y1, y2, . . . , yt),

as each subsequent state is determined solely by
the previous state and the action of generating the
next token.

This token-level MDP formulation is useful for
various applications, such as in training RL-based
models where the language model needs to learn
to generate tokens that not only fit the linguistic
context but also satisfy some predefined quality
criteria. Moreover, recent advancements in rein-
forcement learning from human feedback (RLHF)
have sought to fine-tune such models to align with
human preferences, making this framework essen-
tial for ensuring that ARLMs produce high-quality,
aligned outputs.

In the context of reinforcement learning (RL),
the task is framed as a Max-Entropy RL problem,
where the reward is a combination of a task-specific
reward function and a regularization term. The
objective is to maximize the expected sum of the
rewards, along with the entropy of the policy to

promote exploration:

Ex∼X,y∼π(·|x) [r(y|x) + β log πref(y|x)] +
βEx∼X [H(π(·|x))]

where r(y|x) represents the reward for generating
a sequence y given the input prompt x, πref(y|x) is
a reference policy that can be used to encourage
alignment with desired behaviors, and H(π(·|x))
is the entropy of the policy at time t, promoting ex-
ploration by discouraging deterministic behaviors.

At the token level, the RL objective can be rewrit-
ten as:

Es0∼X,at∼π(·|st)

[
T∑

t=1

r′(st, at)

]
+ βEs0∼X [H(π(·|s0))],

where r′(st, at) is the token-level reward, defined
as:

r′(st, at) =

{
β log πref(at|st), if st+1 is not terminal,
r(y|x) + β log πref(at|st), otherwise.

In this formulation, the reward function r(y|x) typ-
ically measures how well the generated sequence
aligns with the desired outcome, while the entropy
term β log πref(at|st) encourages diversity in the
generated tokens.

The objective in reinforcement learning is to find
an optimal policy π∗ that maximizes the expected
cumulative reward. This is done by solving for the
optimal Q-function Q∗(st, at), which provides the
expected future reward for taking action at from
state st:

Q∗(st, at) = r′(st, at) + V ∗(st+1),

where V ∗(st) is the optimal state-value function,
representing the expected reward from state st. The
optimal policy π∗ satisfies the following equation:

β log
π∗(at|st)
πref(at|st)

= Q∗(st, at)− V ∗(st).

When t < T , the optimal policy maximizes the
difference between the state-value function of the
next state and the current state, encouraging the
model to generate the sequence that leads to the
highest cumulative reward.

A.2 RLHF with Reward Models
Reinforcement learning from human feedback
(RLHF) is an approach where a reward model is
used to guide the training of the language model.
The reward model r(y|x) evaluates the quality of a
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generated response y given a prompt x. The goal
is to maximize the expected reward by adjusting
the model’s parameters using a policy optimization
algorithm such as Proximal Policy Optimization
(PPO)

Initially, (Christiano et al., 2017) proposed learn-
ing a reward model using the Bradley-Terry model
to assign a score to each response. For a pair of re-
sponses y and y′, the Bradley-Terry model defines
the probability that y is preferred over y′ as:

P (y ≻ y′|x) = exp(r(y;x))

exp(r(y;x)) + exp(r(y′;x))
,

The reward function is learned by maximizing the
log-likelihood of preference predictions.

For a triplet (x, yw, yl), where yw is the winner
and yl is the loser, the Direct Preference Optimiza-
tion (DPO) loss is derived as follows:

ℓDPO(x, yw, yl; θ;πref) :=

− log σ

(
β

[
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

])

where σ(·) is the logistic function, σ(z) =
1

1+exp(−z) and β is a hyperparameter that controls
the importance of the preference signal in the op-
timization process. This DPO method provides
a more efficient and stable solution compared to
traditional methods that require separate reward
modeling and policy optimization.

B Training Reward Models and DPO
Models with Truncated Preference
Data

In this work, we investigate the effects of truncat-
ing the responses in preference datasets at various
positions. Let rcho(i)

trunc and rrej(i)
trunc denote the

truncated chosen and rejected responses, respec-
tively, where truncation is applied to retain only the
first tk tokens of each response:

rcho(i)
trunc = [y1, y2, . . . , ytk ],

rrej(i)
trunc = [z1, z2, . . . , ztk ]

We train reward models on these truncated pref-
erence datasets. The reward model aims to predict
the relative quality of responses given the truncated
input. Specifically, we model the reward using the
following formula:

P (y ≻ y′ | x) = exp(r(y;x))

exp(r(y;x)) + exp(r(y′;x))
,

where r(y;x) represents the reward function for re-
sponse y given the context x, and P (y ≻ y′ | x) is

the probability that response y is preferred over y′.
Although the reward model is trained on truncated
responses, it is still able to assess the quality of
full responses effectively by leveraging the reward
function learned from the truncated portions.

Similarly, for Direct Preference Optimization
(DPO), we fine-tune a base model on the truncated
preference datas. The DPO objective seeks to max-
imize the likelihood of the chosen response over
the rejected response by minimizing the following
loss:

ℓDPO(x, y
trunc
w , ytrunc

l ; θ;πref) :=

− log σ

(
β

[
log

πθ(y
trunc
w | x)

πref(ytrunc
w | x) − log

πθ(y
trunc
l | x)

πref(ytrunc
l | x)

])
,

where πθ is the probability distribution generated
by the model, πref is the reference model’s dis-
tribution, ytrunc

w and ytrunc
l represent the truncated

winning and losing responses, and σ is the sigmoid
function. In our approach, we train the DPO model
on truncated responses, but it is still capable of
generating full responses and performing in regu-
lar dialogues. The truncation helps to focus on the
most relevant tokens early in the response, reducing
noise from irrelevant parts of the response.

C Investigating the Autoregressive
Influence on Preference Signals

In previous experiments, we observed that the pref-
erence signal appears to be concentrated in the
initial portion of the response sequence. This could
potentially be an artifact of the autoregressive na-
ture of the data generation process. Given that the
datasets used in earlier experiments were synthe-
sized using autoregressive language models, we
hypothesize that this phenomenon might be influ-
enced by the autoregressive paradigm itself.

To validate this hypothesis, we conducted a
series of experiments using human-generated re-
sponses and preference labels. Specifically, we
employed the SHP dataset (Ethayarajh et al., 2022),
which consists of responses and preference anno-
tations generated by humans, to repeat the experi-
ments outlined in subsubsection 4.2.1 and subsub-
section 4.2.4.

C.1 Results
C.1.1 Performance on RewardBench
We trained reward models on the human-generated
SHP dataset using both original and truncated ver-
sions of the responses. The evaluation was con-
ducted on the RewardBench core set. The results,
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shown in Table 4, demonstrate that the shallow
preference signal phenomenon persists even when
using human-generated data.

C.1.2 DPO Implicit Reward Accuracy on
Human-Generated Data

We also applied the DPO implicit reward approach
to the truncated human-generated responses, as
described in subsubsection 4.2.4, to predict the rel-
ative quality of response pairs. The accuracy of
these predictions was then compared to human-
annotated preferences. The results, shown in Fig-
ure 5, confirm that the shallow preference signal
phenomenon persists even with human-generated
data. As the truncation ratio decreases, the align-
ment between DPO implicit reward predictions
and human-annotated preferences remains high,
demonstrating that even truncated responses are
sufficient for accurately predicting relative quality.

C.2 Conclusion
The results from the human-generated data exper-
iments provide strong evidence that the observed
shallow preference signal is not solely a byproduct
of autoregressive data generation. Even when the
data is generated by humans, the preference sig-
nal remains concentrated in the early portions of
the response. This indicates that the phenomenon
is likely inherent in the structure of the response
itself, rather than an artifact of the autoregressive
generation process.

D Limitations

One limitation of this work is that the observed
phenomena may have alternative explanations be-
yond the shallow preference signal we propose.
Although our experiments support the hypothe-
sis from multiple angles, some experimental out-
comes might be influenced by other factors. For
instance, in the experiment where the DPO model
was trained on a truncated dataset, while our hy-
pothesis accounts for the observed results, it is also
possible that the DPO algorithm’s inherent limita-
tions could affect its performance, restricting its
learning ability and hindering its capacity to fully
capture human preferences beyond the initial token
positions.

Another limitation is the absence of a strong the-
oretical foundation for the proposed phenomenon.
Although our empirical results are compelling, a
comprehensive theoretical explanation of the spe-
cific parts of a response that contribute to human

preferences remains elusive. Future research could
explore this aspect in more depth to establish a
more robust theoretical framework.
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Dataset Dimension Original Dataset 50% 40% 33% 25%

SHP-Preference

Chat 0.8198 0.8071 0.8139 0.7874 0.7709
Chat-Hard 0.6039 0.6352 0.5759 0.5155 0.5274

Safety 0.7906 0.8049 0.7825 0.7698 0.7589
Reasoning 0.5624 0.5532 0.5439 0.5592 0.5451

Total 0.7008 0.7056 0.6989 0.6882 0.6712

Table 4: Performance of reward models trained on the human-generated SHP dataset with different truncation ratios.
The results show the evaluation scores across multiple dimensions: Chat, Chat-Hard, Safety, Reasoning, and
Total. Original Dataset refers to the model trained on the full dataset without truncation; 50%, 40%, 33%, and
25% refer to datasets where the responses are truncated to retain 50%, 40%, 33%, and 25% of the original token
length, respectively. The highest score in each row is highlighted with darker blue , and the second-highest score
with lighter blue .
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Figure 5: Accuracy of DPO implicit reward in predicting the relative quality of responses on the human-generated
SHP dataset with truncated responses. The x-axis represents the truncation ratio and length, and the y-axis shows
the accuracy of DPO implicit reward predictions compared to human annotations.
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