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Abstract

The power of Large Language Models (LLMs)
in user workflows has increased the desire to ac-
cess such technology in everyday work. While
the ability to interact with models provides no-
ticeable benefits, it also presents challenges in
terms of how much trust a user should put in the
system’s responses. This is especially true for
external commercial and proprietary models
where there is seldom direct access and only
a response from an API is provided. While
standard evaluation metrics, such as accuracy,
provide starting points, they often may not pro-
vide enough information to users in settings
where the confidence in a system’s response is
important due to downstream or real-world im-
pact, such as in Question & Answering (Q&A)
workflows. To support users in assessing how
accurate Q&A responses from such black-box
LLMs scenarios are, we develop an uncertainty
estimation framework that provides users with
an analysis using a Dirichlet mixture model ac-
cessed from probabilities derived from a zero-
shot classification model. We apply our frame-
work to responses on the BoolQ Yes/No ques-
tions from GPT models, finding the resulting
clusters allow a better quantification of uncer-
tainty, providing a more fine-grained quantifica-
tion of accuracy and precision across the space
of model output while still being computation-
ally practical. We further demonstrate its gen-
eralizability and reusability of the uncertainty
model by applying it to a small set of Q&A
collected from U.S. government websites.

1 Introduction

Large Language Models (LLMs) have substantially
influenced a multitude of workflow applications,
such as question and answering (Q&A) systems.
While the expansive knowledge and response ca-
pabilities of generative models (e.g., GPT4) has
been impressive, it also presents unique challenges
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in workflow integration, namely user trust and cer-
tainty in answers and responses. This is especially
pertinent when a Q&A system is designed for non-
subject matter experts who will not be familiar with
the response quality of the domain.

This need has resulted in growing research in un-
certainty estimation to better assess the quality of
a response an LLM (Shelmanov et al., 2021). Re-
cent methods have been developed to quantify and
reduce uncertainty focused on classification tasks
(Gal, 2016; Kuzmin et al., 2023) and text classifica-
tion models (He et al., 2020; Zhang et al., 2019; Xin
et al., 2021). However, obtaining such uncertainty
estimates for many generative applications (e.g.,
responses in a Q&A system) accessing proprietary
models, such as GPT4, is not straightforward, since
the uncertainty cannot being meaningfully charac-
terized without access to the underlying probabili-
ties.

We quantify uncertainty in terms of the pre-
dicted probability of responses. Since many current
LLMs, especially proprietary models (e.g., GPT4),
do not automatically furnish probabilities in their
responses for a specific task or classification (e.g.,
Yes/No Q&A), we use a GPT-BART pipeline (see
section 3) as a proxy for LLM uncertainty. The pro-
posed method only requires probability predictions
and labeled training data and thus could be imple-
mented on future LLMs that do directly provide
probabilities for tasks.

To support users in assessing responses from
such models, we develop a framework which uses
probability distributions from a zero-shot classifica-
tion (BART-MultiLNI (Williams et al., 2018)) with
a Dirichlet Mixture Model Clustering approach
based on a customized version of the Expecta-
tion Maximization algorithm (EM; Dempster et al.,
1977). We apply our framework to Yes/No Q&A,
which remains a surprisingly difficult task sub-
ject to lower-than-expected accuracy (Clark et al.,
2019). An analysis of the clusters of questions us-
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ing conformal prediction show support for users
in better understanding the level of confidence an
LLM so that the user can trust its responses, es-
pecially in a black-box LLM scenario. We subse-
quently apply our fitted general Wikipedia model
to a specific questions relevant to government do-
mains and still obtain a usable clustering analysis.

2 Related Work

2.1 Accuracy

LLM accuracy is widely studied. Metrics to quan-
tify accuracy in LLMs for different applications
include Exact Match (EM; Chang et al., 2024), F1
score (Koike et al., 2024) , and ROUGE (Mishra
et al., 2023). Specifically, work has been done to
evaluate the accuracy and performance of specific
LLMs on task specific tests. For example, Chat-
GPT was shown to pass the United States Medical
Licensing Exam (USMLE; Kung et al., 2023) and
performed well on a neurology board exam with
an accuracy rate of 85% (Erdogan, 2024), in ad-
dition to showing an 86.8% overall accuracy rate
when asked questions related to bariatric surgery
(Samaan et al., 2023).

In terms of evaluating the accuracy of Yes/No
questions, Clark et al. (2019) extensively discusses
the accuracy of different models on the BoolQ
dataset, with a BERT model additionally pretrained
on MultiNLI producing the most accurate results at
80.4% (Clark et al., 2019). Additionally, the devel-
opers of the BoolQ3L dataset provide a thorough
discussion comparing the accuracy of LLMs on
the BoolQ versus BoolQ3L datasets (Sulem et al.,
2022).1

2.2 Uncertainty

There is a need to look for methods for black-box
LLM uncertainty estimations (Xiong et al., 2024),
with LLM verbalization (Lin et al., 2022), prob-
ing (Harsha Tanneru et al., 2024) and semantic
sampling (Aichberger et al., 2024) having been
explored. For Yes/No question, uncertainty in re-
sponses is an known problem (de Marneffe et al.,
2009), as often the response itself does not take

1The BoolQ3L is composed by remapping the original
BoolQ questions to corresponding passages that do not con-
tain sufficient information to answer the question. While it
does provide the addition of “I Don’t know” as an answer, we
only focus on sending the questions to the model and not the
corresponding passages, thus the dataset does not provide ad-
ditional benefits over the standard BoolQ for our experimental
setup.

form of Yes/No and requires inferences.2 The re-
cent rise in datasets created to allow uncertain re-
sponses highlights the importance of examining un-
certainty in question-answering LLMs (Rajpurkar
et al., 2018; Rogers et al., 2020; Wang et al., 2020).
Analyzing how LLMs quantify uncertainty is moti-
vated by several factors, one being to decrease the
rate and effects of hallucinations in Q&A applica-
tions (Ji et al., 2023).

3 Experimental Setup

3.1 Data
We use the BoolQ dataset, a reading comprehen-
sion dataset consisting of 9,427 Yes/No questions
drived from Wikipedia with human-annotated an-
swers (Clark et al., 2019) to develop our model.
However, we only utilize the questions and do not
use the passages in our experiments, relying solely
on the LLM’s internal knowledge to answer the
question. In addition to its size, we find the wide-
coverage of question types within the BoolQ a
good proxy for assessing the ability of an LLM
to cover a wider range of general knowledge topics.
While we recognize additional LLM pre-training
of a model may improve performance for domain
specific questions, this is beyond the scope of this
work. Furthermore, many commercial enterprises
will not have such an option readily available.

Though the BoolQ dataset was originally created
to only contain a response of “Yes” or “No”, we in-
vestigate the benefit of an additional response type
“I don’t know” (see section 3.3). To validate the
transferability of our model to a domain specific
real-world scenario, we construct a small set of
25 questions from two government websites cov-
ering customs and import/export regulations3 and
the electronic code of federal regulations4 with a
specific focus on immigration regulations (Title 8).
This allows us to 1) identify how accessible such
publicly available data is in the model and 2) as-
sess how the model performs on a more specific
domain.

3.2 GPT4 Answer Probabilities
Assessing the accuracy and precisoin of responses
requires the LLM to reliably answer in terms
of only three categories {“Yes”, “No”, “I don’t

2See section 3.2 for indications that current LLMs still
frequently do not fulfill this request even when explicitly
prompted.

3https://www.cbp.gov/
4https://www.ecfr.gov/
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Question: 
“Are there 

military 
bases in San 
Francisco?”

[“There are no 
active military 
bases located 
within the city 

limits of … 
Presidio of 
Montery.”]

Answer: “No”

+
Yes No I don’t Know

0.04 0.87 0.09
… … …    

Zero Shot Classification Pipeline

Figure 1: Our Zero-Shot Classification Pipeline with an example Yes/No question. BoolQ Train Dataset question
5124 is fed through GPT4 model, generating an imprecise output lacking probabilities. The response is fed to the
facebook/bart-large-mnli Transformers model returning needed answer probabilities for analysis.
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Figure 2: An illustration of the data analytic pipeline. Yes/No questions, labels, and probability predictions are
fed into the cluster model. The Yes/No questions are embeded using sentence transformers and dimensionality
reduction is performed with UMAP. Analysis examines measures of accuracy and precision within clusters and
semantic structure related to highly uncertain answers.

know”}, while also providing the probability of
each of these three answers, something many com-
mercial and proprietary models do not readily dis-
tribute.

We first assessed the ability of both GPT4 and
GPT4o to produce the probability predictions re-
quired for our clustering algorithm by adopting
the prompting strategy of Zhou et al. (2023) and
send the BoolQ question in addition to explicitly
instructing the model to return a 0-1 confidence
for its response.5 For GPT4 this took ≈ 16.47
seconds per API call (≈ 43.14 total hours), while
for GPT4o took ≈ 16.79 per API call (≈ 43.95
total hours). Analyzing the responses allowed us
asesss the feasibility of automating the processing
of analyzing responses by (i) examining a small
collection of the outputs manually, and (ii) progra-
matically assessing rates at which the instructions
were followed.

Among the responses we manually observed,
the last lines included a single numeric response
between 0 and 1, a stylistic string such as "’“‘",

5See Appendix A for prompt template and Appendix B for
an example response.

prose, and one of "Yes", "No", or "I don’t know",
sometimes followed by a numeric score between 0
and 1. In total, the last line was numeric in 92.6%
cases for the GPT4 model, and 75.5% of cases for
the GPT4o model. It would thus take substantial
follow-up intervention by a human to process an-
swers suitably for aggregated analysis (or to further
refine prompting strategy), making this strategy
less scalable. Accurately extracting the confidence
scores from these non-uniform responses would
be even more difficult and likely prone to missing
values.

3.3 Zero-Shot Classification Probabilities

To obtain probabilities for responses, we use a zero-
shot LLM classification pipeline (depicted in Fig-
ure 1). We first send only the BoolQ questions with-
out any context or prompt template to a GPT model,
relying solely on the model’s internal knowledge
for its response to the question. For GPT4 this took
≈ 1.9 seconds per API call (≈ 20.2 total hours),
half the amount of time than with our prompt tem-
plate used in section 3.2, while GPT4o took ≈ 17.3
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per API call (≈ 45.2 total hours).6

To obtain a probability of all potential responses,
we pass each response to BART (Lewis et al.,
2020a), specifically the Multi-Genre Natural Lan-
guage Inference (MultiLNI) task (Williams et al.,
2018) variant7 which took about 2 seconds per in-
ference (≈ 5 hours total). This model enables zero-
shot classification given a set of predetermined
labels (in our case, “Yes”, “No”, and “I don’t
know”) and provides a probability score that re-
flects BART’s confidence of each respective label.
This approach allows us to both (1) classify re-
sponses into one of the desired categories, and (2)
access a set of probability estimates and thus un-
certainty of various responses.

4 Production and Assessment of Clusters

Figure 3 shows a ternary plot with three proba-
bility axes corresponding to “Yes”, “No”, and “I
don’t know” outputs in three dimensions for GPT4.
The goal is to characterize each of these clusters
using the observed Q&A data y. While several
established clustering approaches exist, we have
implemented a specific approach that obtains clus-
ters of Q&A probabilities in their natural sum-to-
one space. Our approach uses the EM algorithm
(Dempster et al., 1977) for clustering with indi-
vidual cluster densities that follow the Dirichlet
distribution (Kotz et al., 2004), which automati-
cally constrains the Q&A probabilities to sum to
one.

4.1 Dirichlet Mixture Model Clustering via
EM algorithm

We specify K = 4 clusters based on inspection of
Figure 3. Each of these clusters has a shape gov-
erned by density function fk(.) for k = 1, . . . , 4.
The three-dimensional distribution f(y) of the
Q&A probabilities is a weighted average of the
clusters according to the following mixture model:

f(y) =
K∑

k=1

πkfk(y,θk). (1)

The EM algorithm takes the observed data y and
user-specified K, then learns the values of the clus-
ter sizes πk interpreted as the proportion of points

6It is not known why GPT4o took longer to answer ques-
tions without a prompt than with one at this time. One poten-
tial reason may have been quota limits at the time of the API
calls.

7facebook/bart-large-mnli available via HuggingFace API.

that belong in the kth cluster. The algorithm also
estimates the Dirichlet shape parameters θk, which
govern the shape of clusters as shown in the ternary
plot in Figure 3.

While the EM algorithm is a well established,
our contribution is its implementation making use
of Dirichlet cluster densities fk(.). Surprisingly,
this is not readily available in other clustering-
based implementations of the EM algorithm, e.g.,
(Benaglia et al., 2009; Wu, 2023).8 Upon conver-
gence, this algorithm provides the user with cluster
sizes and shapes, and assignments of each data
point to the most appropriate cluster. We refer to
the process of placing points in the most likely mix-
ture model component as “clustering” as this is the
common use of this term in the statistical literature
(McLachlan and Peel, 2004). We have found our
implementation of the EM algorithm to be robust
to several different starting value specifications and
only took ≈ 65 seconds per run.

4.2 Evaluation and Analysis

We report the accuracy rate and precision via con-
formal prediction (see section 4.3) both in the pres-
ence and absence of the cluster structure deter-
mined by the EM algorithm. We also report the
weights and shape parameter estimates obtained
by the EM algorithm. To assess accuracy rate, we
determine how often the highest probability answer
agrees with the true label for each question. We
note that “I don’t know” is allowed as an answer,
though this label does not appear in the BoolQ set.
To avoid considering “I don’t know” as a wrong
answer, our primary accuracy rate does not include
questions for which the “I don’t know” answer has
the highest probability. We assess accuracy on the
full 9,427 question/answer pairings in the BoolQ
training data set, and we provide 95% confidence
intervals for these rates.

4.3 Conformal Prediction

The Q&A probability predictions for “Yes”, “No”,
and “I don’t know” frequently indicate a reason-
ably high level of uncertainty. For example, one
question shown in Figure 2 reads “is Sanskrit the
first language of the world”. Zero-shot classifica-
tion provides probabilities of 41% for “Yes”, 34%
for “No”, and 25% for “I don’t know”. While the
most probable answer is 41% for “Yes”, it is diffi-
cult to glean any clear course of action from this

8See Appendix D for more details on our approach.
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Figure 3: Ternary plots that show the probability predictions for “Yes,” “No,” and “I don’t know” categories for
the 9,427 BoolQ questions using GPT4 shown in Figure 1. Points are semi-transparent to assist with visualizing
concentration. The left panel shows the probability predictions and the right panel color codes those same predictions
by the cluster obtained using the methods described in Section 4.

collection of uncertain probabilities, since none of
the probabilities are close to 100%. In fact, the true
label is “No” and thus the most probable answer is
incorrect in this instance.

To better understand the extent to which the
Q&A probabilities are indecisive, we subject our
Q&A probability predictions to conformal predic-
tion (Vovk et al., 2005) in order to obtain a set of
answers that contains the truth with a user-specified
high level of probability. Conformal prediction
holds out a separate calibration set which is used to
learn the threshold a probability prediction needs to
be above in order to be included in the conformal
set. Thus conformal prediction in the classification
problem works by expanding the size of a predic-
tion set until the probability that the true label is
within the prediction set reaches the user-specified
requirement, which we set to a standard value 90%
following Angelopoulos and Bates (2023). Expand-
ing the size of the answer set increases accuracy of
the prediction set to 90% at the cost of reducing pre-
cision of the answer. In general, higher inclusion
probability requirements lead to larger conformal
prediction sets.

Conducting conformal prediction is accom-
plished by randomly selecting and holding out a
calibration data set of 2,000 from the BoolQ train-
ing set, then using the calibration set to establish
the probability threshold that an answer has to be
above in order to be included in the conformal pre-

diction set. Then, the remaining 7,427 probability
outputs are compared against the threshold to pro-
duce the conformal prediction set.9 This process
is essentially instantaneous once the predictions
are available, and we summarize the rates at which
each answer appears in the conformal set, overall
and within each cluster.

5 Results

Seen in Figure 3, the ternary plots visualize the
probability predictions in terms of each answer:
“Yes”, “No”, and “I don’t know”. The left panel
shows that probabilities sum to one for each ques-
tion, and there appear to be K = 4 clusters in the
data. The right panel shows the result of our clus-
tering approach. This analysis shows three specific
virtues:

1. The size and shape of the clusters are deter-
mined automatically based on the three di-
mensional distribution of the data, obviating
the need for a human to pre-specify decision
thresholds.

2. Even though the clusters were determined au-
tomatically, they are readily interpretable and
easy to visualize for humans. Responses that
appear in clusters with higher accuracy than
the overall analysis may be more trustworthy

9For an excellent tutorial for conformal prediction see
Angelopoulos and Bates (2023).
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Description (color) Accuracy rate (95% CI) Cluster size π̂k Parameter estimates θ̂k
Probably Yes (Red) 88.4% (87.5% - 89.3%) 0.51 (30.52, 0.99, 1.14)
Probably No (Blue) 77.1% (75.3% - 78.9%) 0.24 (1.08, 35.53, 5.60)
Equivocal predictions (Green) 59.4% (56.7% - 62.1%) 0.25 (1.76, 3.38, 3.23)
Probably I don’t know (Purple) - 0.01 (2.13, 7.34, 77.98)
No clustering (Black) 80.8% (79.9% - 81.6%) 1.00 -

Table 1: Accuracy rates, confidence intervals, and estimates for cluster size and shape parameters when GPT4 is
used. Results are presented overall and for the clustering approach. Accuracy rate is based on the most probable
answer to each question. Color corresponds to the clusters visualized in the right panel of Figure 3.

Description (color) One label All labels Yes No I don’t know
Probably Yes (Red) 51.5% 15.8% 100.0% 28.7% 35.6%
Probably No (Blue) 2.1% 10.6% 10.8% 100.0% 97.7%
Equivocal predictions (Green) 0.0% 90.8% 91.1% 99.8% 99.8%
Probably I don’t know (Purple) 6.5% 17.7% 17.7% 93.5% 100.0%
No clustering (Black) 26.8% 32.8% 75.8% 63.6% 66.6%

Table 2: Results of the conformal prediction exercise on the 7,427 available answers for GPT4. Percentages indicate
how many questions included a single answer label, all three answer labels, and individual inclusion of “Yes”, “No”,
and “I don’t know” labels. Results are presented overall and by cluster.

than questions that land in low-accuracy clus-
ters.

3. A by-cluster analysis of accuracy, precision,
and semantic structure is more informative
than an analysis which ignores clusters, and
thus helps humans understand the conditions
under which LLM answers can be trusted con-
fidently.

5.1 Cluster Accuracy BoolQ

Table 1 provides overall and by-cluster accuracy
rates and also maximum likelihood estimates of
cluster size π̂k and cluster-specific shape param-
eters θ̂k. About half of the questions are in the
“Probably Yes” cluster, with 24%, 25%, and 1% of
questions in each of the “Probably No”, “Equivo-
cal predictions”, and “Probably I don’t know” clus-
ters, respectively. This analysis shows that our
approach has higher accuracy for questions in the
Probably "Yes" cluster (88.4%) compared with an
overall analysis that does not implement clustering
(80.8%). Accuracy of the most probable answer
is lower within the equivocal predictions cluster
(59.4%), and accuracy in the Probably "No" cluster
(77.1%) is statistically closer with the “Overall -
No Clustering” strategy. A user of this analysis
would thus know that they are able to make rela-
tively more accurate decisions based on questions
where the answer probabilities fall in the red cluster
(“Probably Yes”) compared with other clusters or

when eschewing a cluster analysis altogether.

5.2 Conformal Prediction
Table 2 shows shows the results of the conformal
prediction exercise on the remaining 7,427 avail-
able answers not used for calibration to assess pre-
cision. Since we used conformal prediction to ob-
tain prediction sets that have a a fixed 90% chance
of containing the true label, we view conformal
predictions sets with a smaller number of answers
in them to be more precise than conformal sets
that have a greater number of answers. Conformal
prediction is thus useful since it indicates how deci-
sive the most probable answer is. For example, the
overall analysis indicates that the no clustering ap-
proach is highly indecisive for 32.8% of questions,
as all three answers are included in the conformal
set. In the no clustering approach only 26.8% of
the questions have highly precise predictions, as
these include a single answer in the conformal set.
Within the clusters, however, the story is different
as 51.5% of the questions in the “Probably Yes”
cluster have a single label, while 15.8% contain all
three labels.10

Table 2 indicates how precise the Q&A proba-
bility answers tend to be within each cluster, and
how the cluster-level analyses differ substantially
from an overall analysis that does not account for
a clustering structure. This is useful since the user

10See Appendix C for GPT4o Results.
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Figure 4: Plots of the two UMAP components for each question in the BoolQ analysis. Left panel shows overall
distribution of components. Right panel shows the distribution of components within each of the four clusters
identified by the Em algorithm. The probably “I don’t know” cluster (bottom right of right panel) appears to differ
in distribution from the rest.

can, for the set of questions they are particularly
interested in, determine which cluster the answers
belong in, then assess how precise those answers
are and note any improvement in precision they
obtain over an analysis that does not involve clus-
tering. Returning to our “is Sanskrit the first lan-
guage of the world” example, the most probable
answer of “Yes” at 41% is actually incorrect. The
present analysis reveals that the conformal set for
this question contains all three answers and thus is
imprecise. That is, a user who wanted to assem-
ble the smallest set that would have at least a 90%
chance of including the truth would not be able to
eliminate any answers from consideration.

5.3 Semantic Investigation
We generate embeddings for each question in the
BoolQ using a sentence transformer (Reimers and
Gurevych, 2019)11 and use UMAP (McInnes et al.,
2018) for dimensionality reduction to investigate
any potential semantic patterns of interest. Figure
4 shows the results of the semantic analysis. While
the distribution of components looks pretty similar
in the overall analysis, the “I don’t know” cluster
(purple) does show some potential differentiation.
When looking at questions in this specific cluster,
we see some commonalities such as questions deal-
ing with media and entertainment especially wrt.
future events (e.g., “Will there be a 13th season of
Criminal Minds”) as well specific plot knowledge
(“Did the Robinsons make it back to Earth”).

Potential reasoning could be the “futuristic” na-
11Specifically we use sentence-transformers/all-mpnet-

base-v2 based on Song et al. (2020) via HuggingFace API.

Description (color) Number of prompts Accuracy rate (95% CI)
Probably Yes (Red) 12 83.3% (51.6% - 97.9%)
Probably No (Blue) 3 100.0% (29.2% - 100.0%)
Equivocal predictions (Green) 5 60.0% (14.7% - 94.7%)
Probably I don’t know (Purple) 0 -
No clustering (Black) 20 80% (56.3% - 94.3%)

Table 3: Accuracy rates for the U.S. government web-
sites using the GPT4 fitted model. Note that observa-
tions with "I don’t know" as the most probable answer
are not included in this analysis.

ture in combination with information and answers
BART was exposed to during training. While a
commercial LLM’s response (in our case GPT4)
may be able to be updated with newer information
that might help discriminate contextual real-world
knowledge and provide new information to resolve
“futuristic” questions this may not directly be trans-
ferable in a zero-shot classification model that is
restricted primarily to the model’s internal knowl-
edge at the time of training.

6 Cluster Accuracy U.S. Government
Websites

To assess the Dirichlet clustering model’s predic-
tive capability beyond the BoolQ training set, we
applied the learned clustering rule to a small set of
25 Q&A questions from U.S. government websites
(see section 3.1). Questions were pre-appended
with either “I am an immigration specialist” or “I
am an import/export control specialist” respectively
before being sent to GPT4.

Applying the GPT4 fitted BoolQ uncertainty
model without any further clustering, the most
probable answer was “Yes” 12 times, “No” 8
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Figure 5: Ternary plots that show the probability predictions for “Yes,” “No,” and “I don’t know” categories for the
25 U.S. government websites Q&A prompts using the cluster rule learned from BoolQ analysis and GPT4. The left
panel shows the probability predictions and the right panel color codes those same predictions by cluster assignment.
No observations were observed in the "Probably I don’t know" cluster in the bottom left of the ternary plots. 4.

times, and “I don’t know” 5 times. Among the
20 “Yes” and “No” predictions, the accuracy rate
is 16/20=80%. Using prediction based on the clus-
tering approach, 15 out of 25 predictions are in ei-
ther the “Probably Yes” or “Probably No” clusters,
and 10 observations are in the “Equivocal” cluster.
No observations appeared in the “Probably I don’t
know” cluster. These predictions can be seen in the
right panel of Figure 5. Table 3 shows the accuracy
rate and confidence intervals for the most probable
answer within clusters. While the small sample size
precludes the ability to make definitive statements
about statistical significance, the overall pattern of
higher accuracy in the “Yes” and “No” clusters and
lower accuracy in the “Equivocal” cluster is similar
to what we observed with the BoolQ analysis.

When we look at some of the questions and both
the response and the zero-shot probabilities, there
are several instances in which GPT4 correctly an-
swers in the text, but the zero-shot classification
is not overly confident or ultimately wrong, even
when the questions are on similar topics. For ex-
ample, the question “Does an ESTA grant me entry
to the US?” is correctly answered in the GPT4
response and while the zero-shot classification is
also correct (“No”), it only achieves a 43% proba-
bility from the model (compared to 41% “I don’t
know”). While the question “Is an an ESTA a
visa?” is also correctly answered by GPT4, it re-
ceives much higher probability of “No” at 79% in
its zero-shot classification. In another instance, the
question “Are travelers checks considered money
as defined by the Customs and Border Protection?”

is correctly answered by GPT4 (“Yes”), but the
zero-shot classification classification is incorrect
with “No” (37%), although all the probabilities are
rather close indicating potential indecision.

These results however demonstrate that we can
successfully optimize our uncertainty model on
larger more general datasets of Q&A responses
and effectively apply them to smaller, more do-
main specific datasets and achieve the same desired
effect of identifying question responses where a
user can make relatively more accurate decisions.

7 Conclusion

We developed a Dirichlet Mixture Model Cluster-
ing via EM algorithm framework for LLM Yes/No
Q&A response certainty. Our approach zero-shot
pipeline is particularly applicable for when the un-
derlying probabilities are not available in the initial
response from an LLM. Importantly, our approach
is model independent, reusable, computationally ef-
ficient, and can be applied to any zero-shot pipeline
where we have access to both the category labels
and underlying probabilities. Our by cluster anal-
yses reveal a more fine-grain analysis of accuracy,
precision, and semantic similarities than without its
implementation. A user is thus provided more in-
formation about if and under what conditions they
can have more certainty in trusting responses for
decision making, especially in domains in which
they lack certainty.

While we limited ourselves to only Yes/No ques-
tions here, the framework can be extended to addi-
tional cases with a known, finite set of responses
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(e.g., classification tasks or categorical responses)
and has future potential integration with in-context
learning (Brown et al., 2020) and to more ef-
fectively support retrieval-augmented generation
(RAG) systems (Lewis et al., 2020b).

Limitations

We view using zero-shot classification probabilities
from another LLM as a derivative of LLMs-as-a-
Judge (Zheng et al., 2023), and assumes our ap-
proach is sufficient and reliant enough for scalabil-
ity. Given that LLM-as-a-Judge has shown variable
research (Shen et al., 2023; Hada et al., 2024) and
factuality questions arise (Fu et al., 2023), there
are still open questions and active research exam-
ining the reliability and effectiveness of various
approaches using any LLM-as-a-Judge framework
and any of its derivatives. Our developed method
requires only class probabilities and labeled train-
ing data to be useful, and could be readily deployed
on a future LLM that furnishes Q&A probabilities.
But we recognize that our current approach for
LLM uncertainty is affected by the BART model
processing and probability generations and may
show variable outcomes using different models.

Model creativity may potentially influence our
framework’s stability. The framework would op-
timally work assuming that responses are static
(i.e., have low or zero temperature settings) and are
consistently classified by the zero-shot model. Ad-
ditional experiments would need to be performed to
determine how consistent the clustering approach
is when dealing with higher temperatures and more
volatility in classifications.

Ternary plots are ideal for visualizing cluster
structures in three dimensions where the variables
sum to a constant. In higher dimensions, i.e.,
tasks with more than three categorical outputs, our
method still works since the EM algorithm extends
trivially to higher dimensions. However, the vi-
sualization aspect will be more burdensome and
assessing the effectiveness of the clustering struc-
ture visually might require examining multiple two
and three dimensional plots.

While a GUI is not currently available, such
a feature would be a worthwhile future endeavor
that would enable a better UX in understanding
whether and when to trust an LLM responses for
Q&A tasks.

Ethics Statement

Using an LLM for zero-shot classification runs
the risk of adding the model’s inherent bias when
making classification decisions. We would advise
attempting to ascertain data lineage and sources
for training when selecting an LLM for zero-shot
applications, as finding a neutral or domain relevant
would help reduce these issues. However, given
that many vendor LLMs are more black-box in
nature with respect to ascertaining many of the
training and implementation details, it is important
to adequately examine and assess if the selected
LLM is appropriate for the given data and task to
reduce any negative impact such bias may have on
a downstream application.

Given the use of U.S. government websites, it
is important to take into consideration the ramifi-
cations of any incorrect answer generated at any
step in the process, from a the initial question
response from the black-box model, to the zero-
shot model classification probabilities, to the un-
certainty model. For this reason, it is imperative
to also inform the user of the risks relying solely
on any automatically generated answer on such
important topics from such a system poses. An
incorrect or misunderstood response runs the risk
of a substantial negative real-world consequences
on an individual, thus it is still important to pro-
vide individuals the relevant sources of information
needed for any desired self-verification.
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Appendix

A Prompt to examine if GPT can reliably produce probability predictions

You are evaluating a response that has been submitted for a particular task, 

using a specific set of standards. Below is the data:

[BEGIN DATA]

***

[Task]: The submission comes from a question answering exercise. Please 

assign confidence scores for 'Yes', 'No', and 'I don't know’ to the submission 

such that all confidence scores are between zero and one, and the confidence 

scores sum to one.

***

[Submission]: <BoolQ prompt goes here>

***

[Criterion]: confidence:

"0":  “Zero chance. It is impossible that the submission falls into the current 

category.”

"0.5": "fifty-fifty. It is just as likely as not that the submission falls into the 

current category.”

"1": "Certain – The submission definitely belongs in the current category.”

***

[END DATA]

Assign confidence scores of 'Yes', 'No', and 'I don't know’ to the submission. 

First, write out in a step by step manner your reasoning about the criterion to 

be sure that your conclusion is correct. Avoid simply stating the correct 

answers at the outset. Then print the choice only from between 0 and 1 

(without quotes or punctuation) on its own line corresponding to the correct 

answer for each 'Yes', 'No', and 'I don't know’ category.

Figure 6: Prompt adapted from Zhou et al. (2023) used to assess whether GPT4 and GPT4o models can reliably
produce the probability outputs.
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B Example Response from Template presented in Appendix A

Figure 7: Example response for the question "Did Abraham Lincoln write the letter in Saving Private Ryan?" using
our adapted Zhou et al. (2023) prompt template.
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C Results from GPT4o
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Figure 8: Ternary plots that show the probability predictions for "Yes," "No," and "I don’t know" categories for
the 9,427 BoolQ questions using GPT4o shown in Figure 1. Points are semi-transparent to assist with visualizing
concentration. The left panel shows the probability predictions and the right panel color codes those same predictions
by the cluster obtained using the methods described in Section 4.

Description (color) Accuracy rate (95% CI) Cluster size π̂k Parameter estimates θ̂k
Probably Yes (Red) 91.9% (91.0% - 92.7%) 0.42 (26.11, 1.13, 1.25)
Probably No (Blue) 86.4% (84.0% - 88.5%) 0.10 (1.28, 36.53, 6.65)
Equivocal predictions (Green) 56.2% (54.2% - 58.1%) 0.47 (3.45, 5.72, 5.10)
Probably I don’t know (Purple) 0.01 (2.17, 6.80, 39.21)
No clustering (Black) 78.9% (77.9% - 79.8%) 1.00 -

Table 4: Accuracy rates, confidence intervals, and estimates for cluster size and shape parameters when GPT4o is
used. Results are presented overall and for the clustering approach. Accuracy rate is based on the most probable
answer to each question. Color corresponds to the clusters visualized in the right panel of Figure 8.

Description (color) One label All labels Yes No I don’t know
Probably Yes (Red) 97.0% 0.0% 100.0% 1.5% 1.5%
Probably No (Blue) 50.5% 0.0% 0.0% 100.0% 49.5%
Equivocal predictions (Green) 0.2% 75.7% 80.5% 99.8% 95.1%
Probably I don’t know (Purple) 47.9% 0.0% 0.0% 52.1% 100.0%
No clustering (Black) 45.9% 35.9% 79.5% 58.5% 51.9%

Table 5: Results of the conformal prediction exercise on the 7,427 available answers for GPT4o. Percentages
indicate how many questions included a single answer label, all three answer labels, and individual inclusion of
“Yes”, “No”, and “I don’t know” labels. Results are presented overall and by cluster.
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Description (color) Number of prompts Accuracy rate (95% CI)
Probably Yes (Red) 13 84.6% (54.6% - 98.1%)
Probably No (Blue) 2 100.0% (15.8% - 100.0%)
Equivocal predictions (Green) 7 57.1% (18.4% - 90.1%)
Probably I don’t know (Purple) 0 -
No clustering (Black) 22 77.3% (54.6% - 92.2%)

Table 6: Accuracy rates for the U.S. government websites using the GPT4 Turbo fitted model. Note that observations
with "I don’t know" as the most probable answer are not included in this analysis.
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Figure 9: Ternary plots that show the probability predictions for “Yes,” “No,” and “I don’t know” categories for the
25 U.S. government website Q&A prompts using the cluster rule learned from BoolQ analysis and GPT4o. The left
panel shows the probability predictions and the right panel color codes those same predictions by cluster assignment.
No observations were observed in the “Probably I don’t know” cluster in the bottom left of the ternary plots.

For the customs and immigration and import and export control example using the GPT4o model, the
most probable answer was “Yes” 13 times, “No” 9 times, and “I don’t know” 3 times. Among the 22 “Yes”
and “No” predictions, the accuracy rate is 17/22=77%. Using prediction based on the clustering approach,
15 out of 25 predictions are in either the “Probably Yes” or “Probably No” clusters, and 10 observations
are in the “Equivocal” cluster. No observations appeared in the “Probably I don’t know” cluster. These
predictions can be seen in the right panel of Figure 9. Among the 15 non-equivocal predictions, the
accuracy rate is 13/15=87%.
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D Dirichlet Mixture Model Clustering via EM algorithm Details

The EM algorithm is a popular choice for clustering tasks in the context of finite mixture models shown
in Equation (1). The unique aspect of our implementation is that we used Dirichlet cluster densities to
enforce the sum-to-one constraint on the Q&A probabilities. Our approach to the EM algorithm follows
the usual two step iterative process. First we take the expectation (i.e., the “E step”), which replaces the
unknown cluster membership labels with their expected value using current parameter estimates. Then we
maximize (i.e., the “M step”) the likelihood function to obtain estimates for the θk shape parameters for
k = 1, . . . ,K. The E and M steps are repeated until the likelihood value converges 12.

While many existing software implementations of the EM algorithm exist (Benaglia et al., 2009; Wu,
2023), we did not find any that implemented the Dirichlet distribution as a component density. For this
reason, we implemented an EM algorithm that uses the Dirichlet distribution for component densities
fk(.) .13

The functional form of the component densities is:

fk(y) =
Γ(

∑L
l=1 θkl)∏L

l=1 Γ(θkl)

L∏

l=1

yθkll , (2)

where Γ(.) is the gamma function, l = 1, . . . , L indexes the possible answers (L = 3 corresponding to
“Yes”, “No”, and “I don’t know”). Thus, the complete log likelihood function is:

logLc(Ψ) =
K∑

k=1

n∑

i=1

zkj{logπk + logfk(yi;θk)}. (3)

where Ψ is a vector that contains all unknown parameters in the model, i = 1, . . . , n indexes the number
of observations in the analysis, k = 1, . . . ,K is the number of clusters in the model (K = 4 in our
analysis), zki = 1 if observation i belongs in cluster k and zki = 0 otherwise, πk is the weight for the kth
component, yi is a length three vector of probability predictions corresponding to the ith question, and θk
is a length three vector of shape parameters for the kth component density. Equation (3) is referred to as a
complete log likelihood function because it presumes knowledge of the cluster memberships zki.

12See McLachlan and Peel (2004) for an overview on finite mixture models and details on the EM algorithm.
13Code will be made available upon publication.
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