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Abstract

Applications that store a large number of
documents often have summarization and re-
trieval functionalities to help users digest large
amounts of information efficiently. Currently,
such systems need to run two task-specific
models, for summarization and retrieval, re-
dundantly on the same set of documents. An
efficient approach to amend this redundancy
would be to reuse hidden representations pro-
duced during the summary generation for re-
trieval. However, our experiment shows that ex-
isting models, including recent large language
models, do not produce retrieval-friendly em-
beddings during summarization due to a lack
of a contrastive objective during their train-
ing. To this end, we introduce a simple, cost-
effective training strategy which integrates a
contrastive objective into standard summariza-
tion training without requiring additional anno-
tations. We empirically show that our model
can perform on par or even outperform in some
cases compared to the combination of two task-
specific models while improving throughput
and FLOPs by up to 17% and 20%, respec-
tively.!

1 Introduction

An increase in textual information has been ob-
served in various domains, posing challenges in
content discovery and driving extensive efforts in
the development of summarization and informa-
tion retrieval systems. The former aims to produce
a shorter version of a given document which en-
capsulates its essential information (Rush et al.,
2015; Zhang et al., 2020), and in the context of
the latter, a number of text encoders have been in-
troduced which output document embeddings that
can match the query embedding to retrieve relevant
documents (Zhuang et al., 2023; Ni et al., 2021; Xu
et al., 2023). While the output format from each
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Figure 1: An existing system requires two models to get
summary and text embedding, while our single model
can produce both in a single forward pass.

approach differs, i.e., a summarization model gen-
erates a text and a text encoder produces a vector,
due to the shared motivation, systems with a large
number of documents often apply these two models
to the same set of documents. For instance, paper-
searching platforms apply both summarization and
encoder models to their collection of scientific (Kin-
ney et al., 2023; Takeshita et al., 2024b) or news
documents (Bambrick et al., 2020). However, with
existing methods, such systems need to run two
models for each document — one for summarizing
and one for encoding. This is an inefficient and ex-
pensive process, especially with the current trend of
increasing model sizes (Touvron et al., 2023; Jiang
et al., 2023). One possible solution for this issue
would be a model that generates a summary as well
as a text embedding for the retrieval of an input
document at the same time. However, regardless of
its practical value, there is no work that targets this
setup.

To fill this gap, we define a new task in which
a single model needs to solve summarization and
retrieval within the same forward pass, dubbed
IRSum. In IRSum, a model must produce hid-
den representations suitable for retrieval during
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the summary generation, as summarized in Fig-
ure 1. In order to evaluate the effectiveness of
our approach, we extend three existing summariza-
tion datasets to enable retrieval evaluation using
the same set of documents. Using these newly
constructed datasets, we benchmark a pre-trained
language model (PLM), TS5, introduced by Raffel
et al. (2020), as well as two large language mod-
els (LLMs), namely LLaMA 2 7B (Touvron et al.,
2023) and Mistral 7B (Jiang et al., 2023). While
these models produce high-quality summaries, re-
trieval performance achieved by the embeddings
obtained during the summary generation is well
below par with reference baselines, calling for ad-
ditional learning to unlock the retrieval ability of
these models’ embeddings.

To this end, we propose a simple multitask train-
ing strategy that combines a contrastive objective
with a summarization objective. Our method only
requires standard summarization datasets for train-
ing, and only a small change is needed for its imple-
mentation. Our experimental results show that our
approach retains both summarization and retrieval
abilities close to the combination of two specialized
models. Our model can achieve 90% performance
for each task while requiring 20% fewer FLOPs
and can process 17% more documents per second
compared to the existing approach.

Our contributions are as follows. (1) We define a
new task, IRSum, that evaluates a model’s ability to
produce a summary and embedding for retrieval
with only one forward pass, coupled with exten-
sions of three datasets to achieve its evaluation. (2)
We benchmark strong baseline models, including
LLM-based summarization models and show that,
in contrast to their high-performing summarization
ability, their text embeddings are far from being
satisfactory for retrieval. (3) We propose a simple
and efficient multitask training strategy and show
our model achieves comparable performance
to the two specialized models with various effi-
ciency improvements.

2 IRSum

In this section, we first formalize the evaluation
of IRSum, then describe how we extend existing
summarization datasets for its operationalization,
and finally benchmark existing models.

2.1 Task formulation.

IRSum consists of the task to generate a summary
and an embedding of a document within one for-
ward pass. The former needs to capture the essen-
tial information of the document, while the latter
should capture the semantic similarities needed
for text retrieval. The evaluation procedure for a
model in IRSum is composed of three steps. (1)
Inference: the model processes all the test docu-
ments and produces summaries and embeddings for
each document. (2) Summary evaluation: for each
generated summary, we compute ROUGE-2 (Lin,
2004)? and G-Eval (Liu et al., 2023)3. (3) Retrieval
evaluation: by following the recent works on dense
retrieval (Khramtsova et al., 2024; Karpukhin et al.,
2020), we encode a query using the same model
and retrieve the relevant documents using cosine
similarity. Then, we use MAP@10 and nDCG@10
to measure the retrieval performance.

2.2 Constructing IRSum datasets.

An essential prerequisite to IRSum is a set of docu-
ments with label annotations for both summariza-
tion and retrieval. To achieve scalable construction,
we draw inspiration from previous works which
produce large-scale datasets by exploiting metadata
attached to documents. For instance, the MTEB
benchmark (Muennighoff et al., 2023a) contains
datasets such as SciDocs (Cohan et al., 2020) or
CQADupStack (Hoogeveen et al., 2015) which re-
gard titles as queries and the corresponding doc-
uments as documents to be retrieved. The same
approach can be found in a popular retrieval bench-
mark, BEIR (Thakur et al., 2021). Other than for
benchmarking purposes, works such as those from
MacAvaney et al. (2022) or Singh and Singh (2022)
take the same approach to achieve a controlled
setup for detailed analysis of retrieval models. In
this work, by following the aforementioned works,
we extend existing summarization datasets by cou-
pling document-summary pairs with titles. One re-
sulting data sample in an extended dataset is a triple
composed of a document, summary, and query. As
instantiations of our task formulation, we extend
three summarization datasets, namely, SciTLDR

*We opted for ROUGE-2 over other ROUGE variants due
to its highest correlation with humans (Fabbri et al., 2021b).
We use py-rouge for its implementation.

3We use an open-weight model as its underlying model
for reproducible evaluation, namely LLaMA 3. We use the
70B variant for SciTLDR and ACLSum and the 8B model
for SQUALITY due to high memory consumption with long
nputs.
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SciTLDR ACLSum SQuALITY
Model R-2 MAP R-2 MAP R-2 MAP
STSgaserzoom  N/A 0.399 N/A 0.427 N/A 0.313
TSpaser2oom 21.47 0.015 1649 0.039 6.37 0.129
LLaMA-27,3 22.85 0.091 20.85 0.091 8.40 0.127
Mistral;p 23.20 0.008 21.74 0.043 8.18 0.150
Table 1: Performance of fine-tuned TS5gasgnoom,

LLaMA-2;5 and Mistral;g. The scores of ACLSum
are averaged performance over three aspect subsets. We
use the contrastively fine-tuned TS5 (STSgasen00Mm) as a
baseline for retrieval.

(Cachola et al., 2020), ACLSum (Takeshita et al.,
2024a), and SQUALITY (Wang et al., 2022) for
our experiments. Since the documents in each
summarization dataset for the retrieval corpus pool
would be too small to simulate a realistic setup.
To this end, we add documents in corpora from
the same domain for each dataset as distracting
samples (§4.1.1 for details).

2.3 Benchmarking of existing models.

As a showcase of the IRSum task, we bench-
mark our approach with one PLM and two
LLMs, namely T5gasE/200m (Raffel et al., 2020),
LLaMA-27g (Touvron et al., 2023), and Mistral;g
(Jiang et al., 2023). We evaluate all models after
fine-tuning with the corresponding summarization
dataset. For document representations, we use the
special tokens’ representations emitted during the
summarization inference. More specifically, we use
representations of the first token for TS (Ni et al.,
2021) and the [EOS] token for LLaMA and Mis-
tral (Ma et al., 2023; Wang et al., 2024). The results
are shown in Table 1. As a comparison, we also
present the results by Sentence-T5, a contrastively
trained T5 (base size, 200M parameters, ST5) in-
troduced by Ni et al. (2021). While all models
show strong performance in summarization as mea-
sured with ROUGE-2, they perform poorly on the
retrieval subtask. This is shown by the comparison
with ST5gasg/200Mm, Which outperforms LLMs by
a large margin while having a much smaller num-
ber of parameters. These initial findings provide
the motivation for the development of dedicated
models for IRSum.

3 Multitask Model for IRSum

Previously, we showed that even LLM-based sum-
marization models fail at the retrieval part of
IRSum. Now, we propose a novel multitask train-

ing strategy where a model optimizes for summa-
rization and contrastive objectives simultaneously.
We design our training strategy following two prin-
ciples. (1) Only requiring summarization datasets
for training: our method does not require any ad-
ditional annotations other than pairs of source doc-
uments and reference summaries from standard
summarization datasets. (2) Simple training: our
method is a simple add-on to the standard fine-
tuning for summarization without complex addi-
tional implementation.

3.1 Preliminaries
3.1.1 Summarization training.

Training for summarization use pairs of source doc-
uments and target summaries. For both encoder-
decoder and decoder-only architectures, a model
takes a source document and generates a candidate
summary to which a loss is computed using a refer-
ence summary. Following is the formal definition
of the loss function for encoder-decoder models.

N
Loedee = — N "log py (yel, y<r), (1)

t=1

where the model parametrized by ¢ generates a
probabilistic distribution of the next token for the
summary (y;), with ¢ being the current generation
step. Its generation is conditioned by the source
document () and previously generated summary
tokens (y<¢). On the other hand, the summarization
loss for decoder-only models is formulated as,

N

Ly = — Z log p¢(yt|y<t)' (2)
t=1

The difference from the encoder-decoder (Eq. 1) is
that the source document and the previously gener-
ated summary tokens are not separately modelled
but the latter is a part of the prior, which gets ap-
pended as generated.

3.1.2 Contrastive training.

Training for contrastive objectives typically re-
quires pairs of texts that are semantically related to
each other. To obtain such data, existing works use
entailment pairs from natural language inference
datasets (NLI) (Reimers and Gurevych, 2019; Ni
et al., 2021; Xu et al., 2023). Negative pairs are
often constructed without annotations by pairing
sentences randomly within a training mini-batch.
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The contrastive objective we use in this work is the
following one:

ecossim(hi,hj' )/ T

Ly = —log (3)

N _cossim(h;,ht)/7’
>j=1€ !

where h; and h;r are a pair of embeddings of re-
lated texts, and 7 is a hyperparameter to control
the similarity temperature. Negative pair construc-
tion is done in the denominator, where we pair h;
with other embeddings within a batch, of size V.
We use cosine similarity for our similarity mea-
surement. Since recent transformer-based models
produce embeddings per token, we need to aggre-
gate the token embeddings to form a document
representation (h in Eq. 3). Same as §2.3, we use
the first and [EOS] tokens’ representations respec-
tively for PLMs (Ni et al., 2021) and LLMs (Ma
et al., 2023; Wang et al., 2024).

3.2 Multitask training for joint
summarization and retrieval

We next describe how we construct pairs of related
texts within summarization training loops to seam-
lessly achieve contrastive learning and then how we
combine the summarization and contrastive losses.

3.2.1 Positive pair construction.

To build pairs of texts that are semantically related,
we exploit a property of the relationship between
source documents and corresponding summaries,
that is a summary of a document should entail the
information covered in the source document (Falke
etal.,2019; Kryscinski et al., 2020). In other words,
we can treat document-summary pairs similarly as
premise-hypothesis pairs in NLI. This allows us to
seamlessly construct labels needed for contrastive
loss within summarization training as documents
and summaries are already in use in any standard
training algorithms.

3.2.2 Multitask task loss.

We combine two losses, namely summarization
loss and document-summary contrastive loss, by
simply taking a weighted average of two losses,
using the balancing hyperparameter A. Formally
as described as Lijgsym = A * Ly + (1 — A) * Lgy,
where A takes a value between O to 1, setting A to
1 would be a standard training for summarization
without contrastive objective.

4 Experimental Study

4.1 Setup
4.1.1 Datasets.

We conduct experiments using the IRSum extended
versions of three summarization datasets. Sc-
iTLDR (Cachola et al., 2020) is a single docu-
ment summarization dataset composed of scientific
articles from machine learning conferences and
short overview summaries written by the authors
and reviewers. We enlarge the retrieval pool by
adding 10k papers*. ACLSum (Takeshita et al.,
2024a) is an aspect-based scholarly document sum-
marization dataset where each paper is annotated
with three summaries from different perspectives,
namely Challenge, Approach, and Outcome. In
our experiments, we treat each aspect subset as an
individual dataset and report the averaged results.
We add the first 10k documents from the train-
ing split of Rohatgi (2022) to the retrieval pool.
SQuALITY (Wang et al., 2022) is a query-focused
summarization dataset derived from novels. Each
document is coupled with a reference summary
with a focus on the corresponding question. We
prepend questions before the documents when feed-
ing to models. We add the first 10 documents from
the English portion of Project Gutenberg to the
retrieval pool’.

4.1.2 Models.

We use one PLM and two open-weight LLMs and
each of the contrastively trained checkpoints for
our experiments. TS (Raffel et al., 2020) is an
encoder-decoder model with 200 million parame-
ters pre-trained for a denoising autoencoding ob-
jective. Since its most popular contrastive variant
introduced by Ni et al. (2021) only has the encoder
without it being followed by a decoder, we fine-
tune the original TS5 model using the contrastive
loss objective proposed by Khosla et al. (2020)
on the concatenation of MultiNLI (Williams et al.,
2018) and SNLI (Bowman et al., 2015) datasets.
We use the premise-hypothesis pairs labelled as
entailment as positive pairs and use in-batch neg-
ative sampling to construct negative pairs. In the
rest of our paper, we refer to this contrastive coun-
terpart we trained as STS. Mistral (Jiang et al.,
2023) is a decoder-only model with 7 billion pa-

4https://huggingface.co/datasets/CShorten/
ML-ArXiv-Papers

5https://huggingface.co/datasets/manu/project_
gutenberg

265


https://huggingface.co/datasets/CShorten/ML-ArXiv-Papers
https://huggingface.co/datasets/CShorten/ML-ArXiv-Papers
https://huggingface.co/datasets/manu/project_gutenberg
https://huggingface.co/datasets/manu/project_gutenberg

SciTLDR ACLSum SQUALITY

Model FT R-2 GEval MAP nDCG R-2 GEval MAP nDCG R-2 GEval MAP nDCG
Specialized 2147  3.15 0399 0438 1649 431 0427 0471 637 1.88 0230 0313

T5 Org 2029 3.09 0245 0271 1525 421 0015 0018 581 2.12 0.022 0.053
IRSum  Cont 2086 3.09 0.576 0.612 1236 4.13 0377 0425 433 239 0.083 0.133

Merged 20.94 3.12 0490 0.526 1677 4.17 0.169 0.187 574 2.15 0.041 0.081

Specialized 2320 1.55 0229 0259 21.74 450 0382 0423 8.8 226 0.193 0.295

Mistral Orig 2325 2.01 0.133 0.155 2022 4.51 0231 0256 828 203 0.117 0.173
IRSum  Cont 23.07 155 0418 0458 2123 4.25 0072 0091 8.64 1.96 0.113 0.199

Merged 2345 2.63 0.630 0.669 2096 4.51 0.605 0.654 871 199 0270 0.321

Specialized 2285 2.55 0.007 0.008 20.85 4.48 0.000 0.000 840 248 0.054 0.122
LLaMA Orig 22.80 1.18 0.017 0.021 20.16 4.45 0.040 0.052 834 1.97 0.097 0.130
IRSum  Cont 23.17 154 0.027 0.038 1841 4.12 0.007 0.011 8.06 2.05 0.100 0.152

Merged 23.14 1.17 0.023 0.028 2031 443 0.024 0.030 821 2.11 0.094 0.145

Table 2: Performance of existing specialized approaches and our multitask models (IRSum). [Origlinal is a
fine-tuned model from the original pre-trained checkpoint, [Cont]rastive is a contrastively-trained version, and
Merged is a checkpoint produced by taking an average of summarization and the contrastive models’ parameters.
Scores are underlined when they achieve 90% of specialized models, bolded and underlined when they surpass

the specialized counterparts.

rameters. For the contrastively trained version, we
use E5-Mistral (Wang et al., 2024) where the orig-
inal model is trained using synthetic data. LLaMA
(Touvron et al., 2023) is a decoder-only model also
with 7 billion parameters. We use RepLLaMA
(Ma et al., 2023) which is a result of fine-tuning
the original LLaMA on the training split of MS
MARCO (Nguyen et al., 2016) for its contrastive
counterpart. Additionally, we also evaluate merged
checkpoints produced by taking an average be-
tween summarization and contrastively fine-tuned
models (Wortsman et al., 2022).

4.1.3 Training settings.

We perform a grid search using the validation split
for all the model training. We test for learning rate
€ {1e-05, 3e-05, 5e-05}. For batch size, we tune
€ {16, 8, 4} for TS5 and ST5, however, due to their
large memory consumption, we set the batch size
to 4 with the gradient accumulation of 2 and use
QLoRA (Dettmers et al., 2024) fro LLMs. We test
A € {0.80,0.85,0.90} for our multitask training.
We use AdamW optimizer (Loshchilov and Hutter,
2019), and train until the validation loss does not
increase for three epochs (i.e., early stopping with
the patience of 3). For all the combinations of
models and datasets, we perform three fine-tunings
using different random seeds and report the average
performance.

Relevance Consistency Fluency

Agreement 80% 95% 85%
Specialized > IRSum 12 1 1
IRSum > Specialized 11 0 2
Tie 17 39 37

Table 3: Result of manual quality evaluation. We calcu-
late the number of times a summary from our multitask
model (IRSum) is preferred over one from the special-
ized model and vice versa. Agreement gives how often
two annotators gave the same preference for a pair of
summaries.

4.2 Results and discussions

4.2.1 Performance.

Table 2 compares our multitask models to the exist-
ing pipelines composed of two task-specific mod-
els. In most cases, our multitask models perform
on par, e.g., achieving more than 90% of, with
the specialized pipelines. In particular, the merged
checkpoints enjoy our multitask training, outper-
forming the specialized models on all the tasks and
metrics in retrieval tasks. When Mistral is used as
an underlying model, the merged variants also out-
perform in the summarization task on all datasets
on at least one of two evaluation metrics. In addi-
tion, we conducted a manual evaluation. To this
end, two annotators compare summaries of the first
20 documents from SciTLDR’s test split generated
by Mistral-based multitask and specialized models
according to three aspects (Fabbri et al., 2021a).
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Model Storage (]) Batch Size (1) FLOPs ({) TP (1)
T5 50.0% 1.3% 1.3% 24.7%
Mistral 49.9% 5.0% 20.4% 17.1%
LLaMA 50.0% 12.5% 20.5% 10.9%

Table 4: Efficiency improvements achieved by our
multitask models over existing pipelines using special-
ized Mistral or LLaMA models across storage, batch
size, floating point operations per second (FLOPs) and
throughput (TP).

The results are shown in Table 3. The high agree-
ment between the two annotators shows the stabil-
ity of our study, and the high number of tie cases,
especially on Consistency and Fluency, exhibit that
the two models produce summaries with the same
quality on these metrics. While the number of ties
is fewer on Relevance, the win rate between the
two models is almost 50%, indicating that there
is no significant difference. Based on the results
from both automatic and manual evaluations, we
conclude that our multitask models can achieve
performance comparable to that of the specialized
models.

4.2.2 Efficiency.

To assess the efficiency of our multitask models, we
compare our models and the specialized pipelines
from four perspectives. Storage: we check how
much disk space is used to store all the files re-
quired to run both setups. Batch Size: because
our multitask model requires less memory at in-
ference time, we can process more documents at
once by enlarging the batch size. We find this value
by gradually increasing batch size for both setups
independently until it causes out-of-memory errors.
FLOPs counts the number of floating point oper-
ations during the inference. We use DeepSpeed’s
Flops Profiler for its implementation (Rasley et al.,
2020). Thoughput (TP) shows how many docu-
ments can be processed within one second. Table
4 shows the results in the relative improvements
achieved by our models when compared to the
traditional pipelines. As naturally expected, the
required storage size is reduced by half with our
method. Because our setup is more memory effi-
cient, we achieve loading up to 12% more samples
within one batch, as well as with fewer FLOPs, and
finally, we achieve up to 17% higher throughput.
Together with our performance results from the
previous section, we conclude that our approach
can substantially improve computational efficiency

Summarization Retrieval
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18 —— T5 #
Mistral Y,
—— LLaMA 0.40
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o S Y
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Figure 2: Effect of A on downstream tasks, summariza-
tion (left) and retrieval (right) for different models. The
scores are averaged over the three datasets.

while retaining models’ performance compared to
the existing specialized pipelines.

4.2.3 A trade-off.

A hyperparameter in our multitask training, namely
A, balances the summarization and contrastive
losses during training. Since the balancing happens
on the loss values, whether this hyperparameter
indeed behaves as a balancing knob or if there is a
trade-off between two tasks at all in downstream
performance is not an axiom. To this end, we train
models with different lambdas (from 0.1 to 0.9 with
a step size of 0.3); a higher lambda means it uses
the summarization loss more. In this experiment,
we fix the batch size to 16 and 8, respectively, for
TS5 and Mistral/LLaMA, and the learning rate to
1e-05 for all models. To reduce the computational
cost, we do not perform retrieval pool augmen-
tation in this set of experiments. The results are
shown in Figure 2, the scores are averaged over
three datasets. Summarization abilities by different
models increase as the lambda gets higher (on the
right in the Figure), however, the sensitivity of re-
trieval performance to the lambda is much weaker,
as the gaps between MAPs when lambda is 0.1 and
0.9 are less than 0.05 for both Mistral and LLaMA.

Model merging for IRSum. Model merging is
recently drawing attention as a training-free alter-
native method to obtain models for fine-tuning (Jin
et al., 2023; Don-Yehiya et al., 2023). The objec-
tive of our IRSum task is to replace a specialized
pipeline with two models with one multitask model
where the model merging can provide a cheap op-
tion to produce such a multitask model. To this end,
we take the simplest model merging which is to
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Figure 3: Performance of models obtained by tak-
ing weighted (controlled by lambda) averages between
summarization and contrastive checkpoints. A higher
lambda means that weights from a summarization model
are used more, with 0.5 being an exact average of two.
Dashed lines are scores achieved by specialized models.

take a weighted average of two models (Wortsman
et al., 2022). Specifically, for each architecture, we
merge its contrastive and standard summarization
fine-tuned checkpoints. Note that this process does
not require any weight updates, hence, this process
can be cheaply done without GPUs even for large
models. We do not expand retrieval poor for the ex-
periments described in this subsection. The result
is shown in Figure 3. Regardless of lambda, the hy-
perparameter that decides the balance between two
models to be merged, all three model architectures
degrade summarization performance compared to
the original summarization counterparts (dashed
lines in the figure) by large margins. Especially,
Mistral loses more than 5 ROUGE-2 points even
when the lambda is set to 0.9, outperformed by the
other two models, including a much smaller, T5.
However, for retrieval, surprisingly, all models out-
perform the retrieval-specialized version with some
lambdas. The two LLMs especially outperform the
specialized model with all lambdas. However, the
positive results on retrieval, due to the lower perfor-
mance on summarization, we conclude that while
model merging can produce well-performing initial
checkpoints with fine-tuning (see Table 2), simple
merging alone does not result in satisfactory per-
formance.

Representation shift by multitask training. We
now perform intrinsic evaluation of embeddings in-
stead of the extrinsic evaluation with downstream
tasks to understand the effect of our multitask train-
ing in embedding space. To this end, we take two

-6

(7))

8 -7

—

E -8

K]

= Model

- ® Pre-train
-10 Summarization
-1, = Multitask

60 80 100 120

Alignment Loss

Figure 4: Uniform and alignment losses by only pre-
training, standard summarization fine-tuning, and our
multitask models. Results are averaged over three
datasets.

losses, uniform loss and alignment loss, by follow-
ing the existing works that aim to improve encoder
models (Wang and Isola, 2020; Ni et al., 2021).
The uniform loss computes how well input em-
beddings are distributed, which we compute using
documents. The alignment loss shows the expected
distance between pairs of provided embedding, we
use document-query pairs. Lower scores are better
for both losses. The result is shown in Figure 4,
where we compare how two losses shift when two
different fine-tunings are applied to the pre-trained
model of T5. One can observe that doing standard
summarization fine-tuning improves the embed-
ding space usage indicated by the lower uniform
loss than just the pre-trained model; however, the
alignment loss increases, meaning that having em-
beddings close to each other when texts’ semantics
are related is not a required property for the summa-
rization task. On the contrary, our multitask model
improves both losses from the pre-trained model
and the standard summarization model. Our mod-
els improving uniform loss over the standard sum-
marization model is a possible reason why our mod-
els sometimes outperform the specialized model on
summarization, as we report in Table 2.

4.2.4 Cross-lingual setup.

Our previous experiments consider monolingual
setups where documents, summaries, and queries
are all in one language — English. We now test
how the specialized approaches and our multitask
models perform in a cross-lingual setup where the
languages of input and output are different. Specif-
ically, we use the X-SciTLDR dataset (Takeshita

268



DE IT ZH JA
R-2 MAP R-2 MAP R-2 MAP R-2 MAP
Specialized 9.810.273 12.96 0.238 13.560.168 5.79 0.242

Orig 9.150.210 11.190.192 12.940.024 5.330.074
IRSum Cont 9.38 0.363 11.49 0.362 13.22 0.212 5.040.170
Mer 9.08 0.622 9.450.632 10.21 0.622 8.68 0.622

Table 5: Performance comparison between the spe-
cialized pipeline and our multitask model (IRSum) in
cross-lingual setup based on original vs. contrastive vs.
merged checkpoints.

et al., 2022), composed of research publications in
English and summaries in four different languages.
While summaries are already in non-English lan-
guages, the queries (i.e., titles for each document)
are in English. To achieve a cross-lingual retrieval
setup, we translate English titles into four corre-
sponding languages using a distilled version of the
NLLB model (Team et al., 2022). We consider Mis-
tral as a base model for this experiment (LLaMA-
based models are omitted since RepLLaMA is only
trained on English data). For contrastive variants,
we use E5-Mistral off-the-shelf since it includes all
four languages in its contrastive training stage. The
results are shown in Table 5. While our multitask
model shows competitive performance to the spe-
cialized pipelines, especially its contrastive check-
point, it successfully achieves 80% in all languages
on summarization and outperforms in three lan-
guages on retrieval. It does not achieve 80% in
Japanese retrieval. This can be due to the fact that
the Japanese portion is the smallest in ES-Mistral’s
contrastive training samples compared to the other
languages (Wang et al., 2024). Merged checkpoints
show large improvements in retrieval, similar to our
monolingual experiments.

5 Related work

5.1 Multitask benchmarks.

Strong interests in models that are capable of solv-
ing multiple tasks have driven the development of
benchmarks (Wang et al., 2018; Muennighoff et al.,
2023b; Gehrmann et al., 2021). However, since the
input documents are not shared, they cannot mea-
sure the models’ ability to make multiple outputs
in a single forward pass.

5.2 Multitask models.

In this paper, we take the simplest approach to
model multiple losses, that is to take a weighted av-

erage between losses, while we achieve satisfactory
results with this, there have been several methods
with improvements. Mao et al. (2022) propose to
use a generalization loss in addition to the standard
training loss to improve the balance between tasks.
Another work by Chai et al. (2023) introduces a
way to resolve the conflicts between tasks. While
these papers focus on different instances of the text
classification task, they can improve our simple
multitask training strategy, which is left for our fu-
ture work. A few works also investigated multitask
training for text summarization (Guo et al., 2018;
Magooda et al., 2021; Kirstein et al., 2022). These
works report having auxiliary tasks can improve
the target summarization performance, however,
they do not consider improving on multiple tasks
at the same time as we do in this paper.

5.3 Contrastive learning for text generation
models.

In addition to applications for encoder-only models
(Nietal., 2021; Wu et al., 2022; Xu et al., 2023),
there have been a few works where contrastive
learning is applied for text generation models, aim-
ing to improve text generation performance (Su
et al., 2022; An et al., 2022). Jain et al. (2023)
propose to continuously train decoder-only GPT-2
on a contrastive objective together with the causal
language modelling objective. For text summa-
rization, Cao and Wang (2021) propose to use a
contrastive loss as an auxiliary loss and show that it
can improve models’ faithfulness. However, their
integration of contrastive learning focuses on the
summarization ability of the model while we are
interested in giving summarization models a new
retrieval ability.

6 Conclusion

In this paper, we first define a new multi-object
task setup which asks a model to summarize and
encode a document for retrieval within a single
forward pass. We extend three existing summariza-
tion datasets so that we can use the same set of
documents to evaluate on the two tasks. By using
them, we find that existing summarization models
based on a PLM and recent LLMs cannot achieve
satisfactory performance in this setup. Given this
result, we propose a new multitask training strategy
which cheaply integrates a contrastive objective
into the standard summarization training loop and
show that our models often achieve performance
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comparable to a combination of two specialized
models or even sometimes outperform them while
being much more computationally efficient.

7 Limitations

Our work has the following limitations. First, while
we consider three summarization datasets with
different styles, namely single document, aspect-
based, and query-focused summarization, however,
there are other types of summarization tasks that
practically suitable to our multitask task setup, such
as multi-document summarization. Second, we use
the simplest approach to combine summarization
and contrastive losses in our proposed multitask
training strategy, there are more complex and re-
cent approaches such as Mao et al. (2022) where
they also take generalization loss into account to
balance multiple losses. Due to its simplicity our
approach does not support how to achieve multitask
inference on passage-level which may be suitable
for some retrieval setups. We plan to extend our
work towards to these two directions in our future
projects.
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Model Licence URL
TSgask Apache 2.0 https://huggingface.co/t5-base
Mistral;g Apache 2.0  https://huggingface.co/mistralai/Mistral-7B-v0.1
Llama 273 LLAMA 2 License  https://huggingface.co/meta-llama/Llama-2-7b-hf
ES-Mistral;g MIT  https://huggingface.co/intfloat/e5-mistral-7b-instruct
RepLLaMA LLAMA 2 License https://huggingface.co/castorini/repllama-v1.1-mrl-7b-lora-passage
mT5-basessom Apache 2.0 https://huggingface.co/google/mt5-base
NLLB Distilledsoom CCby NC4.0  https://huggingface.co/facebook/nllb-200-distilled-600M
SciTLDR Apache 2.0  https://huggingface.co/datasets/allenai/scitldr
ACLSum MIT  https://huggingface.co/datasets/sobamchan/aclsum
X-SciTLDR MIT  https://huggingface.co/datasets/umanlp/xscitldr
SQuALITY Apache 2.0  https://huggingface.co/datasets/pszemraj/SQuALITY-v1.3

Table 6: A list of datasets and models used in our study with external URLs.
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