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Abstract

The impact of subword tokenization on lan-
guage model performance is well-documented
for perplexity, with finer granularity consis-
tently reducing this intrinsic metric. How-
ever, research on how different tokenization
schemes affect a model’s understanding capa-
bilities remains limited, particularly for non-
Latin script languages. Addressing this gap,
we conducted a comprehensive evaluation of
six distinct tokenization strategies by pre-
training transformer-based language models
for Nepali and evaluating their performance
across multiple downstream tasks. While re-
cent prominent models like GPT, RoBERTa,
Claude, LLaMA, Mistral, Falcon, and MPT
have adopted byte-level BPE tokenization, our
findings demonstrate that for Nepali, Senten-
cePiece tokenization consistently yields supe-
rior results on understanding-based tasks. Un-
like previous studies that primarily focused on
BERT-based architectures, our research specif-
ically examines sequential transformer mod-
els, providing valuable insights for language
model development in low-resource languages
and highlighting the importance of tokeniza-
tion strategy beyond perplexity reduction.

1 Introduction

Nepali, an Indo-Aryan language written in Devana-
gari script, serves as the official language of Nepal.
According to the Nepal Population and Hous-
ing Census 2021, approximately 13 million peo-
ple (44.9%) speak Nepali as their mother tongue,
while an additional 13.5 million (46.2%) use it
as their second language. The language extends
beyond Nepal’s borders into neighboring regions
of India, Bhutan, Brunei, and Myanmar. Nepali
follows a subject-object-verb sentence structure,
distinguishing it from many Indo-European lan-
guages. Despite its significant speaker population,
computational research in Nepali natural language
processing remains underdeveloped due to limited

high-quality datasets and computational resources.
Nepali’s rich morphological complexity and exten-
sive vocabulary pose unique challenges for creat-
ing accurate and concise content. Investigating the
applicability of state-of-the-art NLP technologies
to Nepali not only benefits researchers and speak-
ers but also has potential implications for other
Devanagari-script languages such as Hindi, San-
skrit, Maithili, and Bhojpuri.

Tokenization—the process of segmenting text
into smaller units such as words or subwords—
forms the foundation of natural language process-
ing pipelines. This critical preprocessing step en-
ables computational systems to analyze and pro-
cess human language by converting raw text into
discrete units that algorithms can efficiently ma-
nipulate. The choice of tokenization strategy sig-
nificantly impacts a model’s ability to handle vo-
cabulary coverage, out-of-vocabulary words, and
morphological complexity. Recent advances in
subword tokenization have revolutionized NLP by
balancing vocabulary size constraints with linguis-
tic flexibility, particularly for morphologically rich
languages like Nepali.

Contemporary language models generate
human-like text by leveraging transformer archi-
tectures trained on massive text corpora. These
models primarily follow two paradigms: masked
language modeling (MLM), exemplified by BERT
(Devlin et al., 2018), where models learn bidirec-
tional context by predicting masked tokens; and
autoregressive language modeling, implemented
in models like GPT (Radford et al., 2019; Brown
et al., 2020) and PaLM (Chowdhery et al., 2022),
where models predict the next token based on
preceding context. = While masked language
models excel at learning powerful bidirectional
representations suitable for downstream tasks,
autoregressive models offer superior capabilities
for text generation. Unlike previous studies that
predominantly focused on BERT-based architec-
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tures for Nepali, our work specifically examines
sequential (autoregressive) transformer models
similar to (Luitel et al., 2024), trained with various
tokenization strategies and evaluated on multiple
downstream tasks.

The major contributions of our paper are as fol-
lows:

1. We pretrained 7 sequential language mod-
els using diverse tokenizers: Word Tok-
enizer (30,000 and 60,507 vocabs), Sentence-
Piece, WordPiece, BPE, Morpheme, and Mor-
pheme+BPE combination (all with 30,000 vo-
cabs except as noted).

2. We compared language model performance
based on perplexity during pre-training across
different tokenization methods.

3. We evaluated pre-trained models by fine-
tuning on multiple Nepali Natural Language
Understanding (NLU) tasks and all code and
models’ll be made public on acceptance.

2 Related Works

Language modeling fundamentally aims to pre-
dict the next word given contextual words. Ben-
gio et al. (2000) introduced the Neural Probabilis-
tic Language Model (NPLM), which learns dis-
tributed word representations alongside probabil-
ity functions for word sequences. Before Recur-
rent Neural Networks (RNNs) gained prominence,
approaches based on parse trees and n-gram statis-
tics dominated the field. Mikolov et al. (2010)
demonstrated the superiority of RNN-based lan-
guage models over standard n-gram techniques in
speech recognition applications, despite their sub-
stantial computational complexity. Building on
this foundation, Sutskever et al. (2011) advanced
character-level modeling for text generation by
training RNNs with the Hessian-Free optimizer.
The field was revolutionized by Vaswani et al.
(2017) with the introduction of the Transformer
architecture, which implemented attention mech-
anisms to develop state-of-the-art machine trans-
lation models capable of generating text in one
language given context in another. The Trans-
former’s parallelization capabilities effectively ad-
dressed the computational and training limitations
of previous sequential models, leading to the devel-
opment of influential architectures like BERT (De-
vlin et al., 2018) and GPT (Brown et al., 2020) that
now underpin numerous contemporary NLP tasks.

Recent years have witnessed growing research
interest in pretraining and finetuning NLP models
for low-resource languages like Nepali. Maskey
(2023) pretrained a text generation model fol-
lowing Sanh et al. (2019)’s configuration on a
combined dataset comprising Oscar, cc100, and
scraped Nepali Wikipedia articles, employing Sen-
tencePiece tokenization with a 24,576 vocabu-
lary size. Maskey et al. (2022) trained three
distinct transformer-based masked language mod-
els (DistilBERT-base, DeBERTa-base, and XLM-
RoBERTa) for Nepali text sequences, evaluating
and comparing them against other transformer-
based models on downstream classification tasks.
In parallel work, Niraula and Chapagain (2022)
finetuned Multilingual BERT specifically for
Named Entity Recognition tasks in Nepali. Tim-
ilsina et al. (2022) developed another BERT-based
language model for Nepali using WordPiece vo-
cabulary with 30,522 subword tokens, demonstrat-
ing superior performance compared to other BERT-
based language models (Rajan, 2021; Devlin et al.,
2018; Conneau et al., 2020) when finetuned on
four distinct tasks: Content Classification, Named
Entity Recognition, Part-of-Speech Tagging, and
Categorical Pair Similarity. Despite these various
pretraining and finetuning efforts in Nepali, a com-
parative analysis of language model performance
on downstream tasks using different tokenization
approaches remains unexplored.

Several studies have investigated tokenization
impacts in other languages. Toraman et al.
(2022) analyzed the efficiency (training time, car-
bon emissions) and effectiveness (performance) of
various tokenization techniques by finetuning a
Turkish BERT-based language model on multiple
downstream NLP tasks, finding that for similar
and smaller vocabulary sizes, character-level BPE
and WordPiece outperformed other approaches
like word-based tokenization. For Korean, Park
et al. (2020) discovered that morpheme tokeniza-
tion followed by character-level BPE achieved op-
timal performance, as this approach prevents BPE
from considering byte sequences spanning multi-
ple morphemes. Alrefaie et al. (2024) observed
similar results for Arabic, where combining BPE
with morpheme-based approaches proved most ef-
fective. Additionally, Alyafeai et al. (2021) eval-
uated different tokenization methods on three Ara-
bic NLP classification tasks, though without em-
ploying transformer-based architectures.

Our approach differs from these previous stud-
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ies in three significant ways. First, we finetune
sequential (autoregressive) language models rather
than BERT-based architectures. Second, we specif-
ically analyze the performance of byte-level BPE
tokenization algorithms—an aspect not thoroughly
examined in prior work. Finally, we provide em-
pirical evidence challenging the predictive validity
of perplexity—the commonly used intrinsic met-
ric during language model pretraining—regarding
downstream finetuning performance.

3 Methodology

3.1 Tokenization Techniques

We have trained 6 different tokenizers keeping the
vocabulary size at the constant of 30000. We in-
tend to perform a comparison of LMs(perplexity
and finetuning performance) but the perplexity
scores tend to decrease with decreasing vocabulary
size. Hence comparison through constant vocab
size across models makes more sense. The table 1
shows encoded text for the same input by every to-
kenizer. Below are the specifics of how we trained
these tokenizers.

1. Word-based: In our word-based tokeniza-
tion scheme, we selected the top 30,000 vo-
cabulary tokens based on frequency distribu-
tion. To handle out-of-vocabulary (OOV)
words during training and evaluation, we in-
corporated a <unk>token. Additionally, we
included a <num>token to efficiently encode
all numerical strings in Nepali. We utilized
PyTorch’s torchtext library to construct this
vocabulary.

2. Morphemes: Morphemes represent the
smallest meaningful subdivisions of words.
We employed the Morfessor 2.0 library to
train a model that segments compound words
into constituent morphemes using Maximum
A Posteriori (MAP) estimation (Smit et al.,
2014). This morfessor model was applied
to approximately one-third of the OSCAR
corpus to prepare a morpheme-level training
dataset. Following the approach suggested by
Park et al. (2020), we introduced a ‘*’ token
to indicate space between words, facilitating
accurate reconstruction during decoding. Un-
der this scheme, the text ‘AB C* would be seg-
mented as ‘A B * C’, preserving both morpho-
logical structure and word boundaries.
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3. WordPiece: The WordPiece algorithm di-

vides words into frequently occurring sub-
word units. It initializes by segmenting words
into characters and prepending ‘##’ to non-
initial tokens. For example, ‘Sfia” would
initially be segmented as (s, ##-::?r, ##d,
##9)’. The algorithm then combines these
units based on the scoring function in equa-
tion 1, where ‘ f’ represents frequency:

f pair (1)
f 1st * f 2nd
This scoring mechanism prioritizes fre-
quent combinations of infrequent subtokens.
During encoding, WordPiece identifies the
longest subtoken present in the vocabulary.
We implemented this tokenizer using the
‘Tokenizers’ Python package, addressing
compatibility issues with Devanagari dia-
critics by temporarily replacing them with
English letters during preprocessing and
reversing this substitution during decoding.

score =

. SentencePiece(with BPE): For this tok-

enizer, we implemented character-level Byte
Pair Encoding (BPE) compatible with Senten-
cePiece. Unlike WordPiece, the BPE algo-
rithm merges characters or subtokens based
directly on merged token frequency, apply-
ing learned rules sequentially during encod-
ing (Sennrich et al., 2016). Our implemen-
tation incorporates the white space handling
capabilities introduced by Kudo and Richard-
son (2018), treating spaces as standard to-
kens rather than special delimiters. This ap-
proach was implemented using the ‘Tokeniz-
ers’ Python package.

. Byte-Level BPE: Byte-level BPE operates

similarly to character-level BPE but performs
merging operations on individual bytes rather
than characters. This approach provides
stronger guarantees against OOV words by
operating at a lower level of abstraction.
However, byte-level BPE typically produces
larger token sequences than character-level
approaches for equivalent text, potentially af-
fecting computational efficiency. The byte-
level approach is particularly valuable for
handling multilingual text and special charac-
ters.

. Morphemes and BPE: In our final approach,

we applied Morphemes and byte-level BPE



Tokenization Method Tokens

Word [ 'germeR', 'ISier, gE, eI, e, aEE, a1 ]

Morpheme [ 'HEMmEeR!, '*, ISR, T, T, R, eifge, Y, R, R e, T, e, T ]
WordPiece [ 'HEW, T, ##OR, IS0, g, fgdl’, mefedi]’, wmON0anAr, urd, #4fa, 1 ]
SentencePiece ['#7g', "=, ' _Ieir, ' _gHTe’, ' _sifge, _=er, &, L, e, 1t ]

BPE [‘An@aat’, ‘ands’, ‘an™, ‘anvy’, ‘ad apk’, ... 37 gibberish tokens]

Mprpheme+ BPE [‘am®an®’, ‘an¥y’, ‘ax™, ‘an¥y’, ‘ax aok’, ... 37 gibberish tokens |

Table 1: Comparison of tokenization methods for encoding the Nepali sentence ‘HgHTdch TSILT gHT Sifget Tt
&1 UTdfelq 1°. The 0 symbols in WordPiece tokenization represents an English letter used in place of one of the

modifier character(diacritic).

tokenization algorithms sequentially. This
combined method ensures that the resulting
tokens do not span across morpheme bound-
aries, preserving linguistic structure while
benefiting from BPE’s compression capabil-
ities. We applied byte-level BPE to the
morpheme-segmented corpus created using
the Morfessor library as described earlier, cre-
ating a tokenization scheme that respects both
morphological and statistical patterns in the
text.

3.2 Model Architecture

For every tokenization technique, the same model
architecture was used for pretraining the language
model. A simple architecture consisting of 6 lay-
ers of transformer encoder blocks with 6 attention
heads each was modeled. The size of input embed-
ding layer used for tokens was 300 and the dimen-
sion used for feedforeward network was 1024. To
regularize, we used a dropout rate of 20%. Finally,
both the batch size and the sequence length used
were 64. The parameters used are summarized in
the table 2. The total number of parameters in the

30k vocab LMs was 24M.

Parameter Value
emsize 300
dim_feedforeward 1024
nlayers 6
nhead 6
dropout 0.2
batch size 64
seq. length 64

Table 2: Transformer Model Parameters

For finetuning, we added a hidden layer and an
output layer feedforward network on top of the rep-
resentation learned on the final layer of the last
transformer block. The dimension of the hidden
layer used was again 1024 with ReLU activation

function, and the output layer’s dimension was
equal to the number of classes for the particular
task.

4 Experiment

4.1 Dataset for LM Pre-training

We used Oscar corpus for the Nepali language (Or-
tiz Suarez et al., 2019) with the removal of du-
plicated sentences. The total data that became
available from this corpus was 1.2GB. From this
dataset, four versions of LMs were trained i.e.
word-based, SentencePiece, WordPiece and BPE-
tokenized LMs on 300k paragraphs while mor-
phemes and morphemes with BPE-tokenized LMs
were trained on 100k paragraphs. Before training
the sentences were preprocessed, tokenized, en-
coded(given id), and then batched. After batching
i.e. grouping 64 training examples, we get 16791
unique batches of training data when word-based
tokenization is used. Using any other preprocess-
ing and tokenization scheme led to larger number
of batches as shown in Figure 1. The morpheme-
based models were only trained on a third of the
dataset hence the percentage was calculated rela-
tive to the batches calculated using word-based to-
kenization on this dataset.

4.2 Pre-Training

We trained 6 transformer-based language models
using tokenizers of 3.1 with the architecture as de-
scribed in 3.2. Additionally, we also trained a
word-based language model with 60k vocabulary
but the same model architecture. This provided
us with some insights into performance based on
vocabulary size. The model evaluation during the
pertaining is based on the perplexity score which
can be calculated using the eq. 2 where we have
replaced P(z;|context) with P(x;).

N
1
Perplexity = exp <_N Z log P(%)) )

i=1
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Figure 1: Percentage increase in number of batches
with different tokenization methods relative to word-
based tokenization.

4.3 Finetuning

The pre-trained language models were finetuned
on Nep-gLUE benchmark datasets (Timilsina et al.,
2022) which consists of four Natural Language Un-
derstanding tasks. The details on the finetuning ap-
proach and the datasets are briefly mentioned be-
low:

4.3.1 Categorical Pair Similarity(CPS)
Categorical Pair Similarity(CPS) is a pair-wise se-
quence classification task where the job is to find
whether the given two sequences belong to the
same category. CPS dataset was created (Tim-
ilsina et al., 2022) by extracting 2.5k of similar
sequence pair for each of the 9 categories(total =
22.5k) and a 22.5k of different category sequence
pair through random sampling accross dissimilar
pair formed by pairing 2.5k sentences in each cat-
egory with sentences from different category, re-
sulting in a balanced dataset of 45k paired samples.
Both of the sentences were passed through the pre-
trained model and the finetuning was performed on
the concatenation of the representations from both
the sequences. The prediction category was 1 for a
similar pair and O for a dissimilar pair and, trunca-
tion was used whenever the sequence length limit
was reached.

4.3.2 Part of Speech Tagging(POS)

Part of Speech Tagging(POS) is a sequence label-
ing task where every word in the sequence of text

has to be classified to one of tags such as noun,
verb etc. This dataset was taken from a publicly
available repository (Nepali Bhasa, 2020) which
consists of 4251 sentences with more than 110k la-
bels accross 39 tags. For preprocessing, multiple
sequences for a same sentence was created and la-
bel was generted for each sequence. For example:
Sentence ABC with words A(Tag: La),B(Tag: Lb)
and C(Tag: Lc) can be decomposed into sentences
A, AB, ABC. Then the label for sequence A is La
, AB is Lb and ABC is Lc. Finally, the finetuning
was performed using the representation of the last
token. Hence to categorize the tag of B in sequence
AB, we take the representation of B by passing AB
into the pretrained model. Also, the truncation is
performed from the beginning whenever the max-
imum sequence length is reached meaning that if
the length limit is 2 then the sequence ABC would
be trucated to BC.

4.3.3 Named Entity Recognization(NER)

Similar to the POS task, Named Entity Recogni-
tion (NER) is also a sequence labeling task but here
the job is to find the type of named entity like per-
son, location or organization. The dataset used in
the benchmark (Singh et al., 2019), consists around
3289 sentences with labels that belong to one of 7
classes including the other token ‘Q’. Similar ap-
proach to POS tagging task was used as mentioned
in sec. 4.3.2 in preprocessing, truncation and fine-
tuning.

4.3.4 Content Classification(CC)

Content classification is a task where the natural
language content or sequence has to be classified in
one of the categories. CC dataset was created (Tim-
ilsina et al., 2022) by scraping news articles from 9
different categories consisting of around 45k data
points. The finetuning was performed on the se-
quence with truncation from the end.

5 Result and Discussion

5.1 Perplexity Trend

Table 3 shows the perplexity values at the end
of training and validation. The training and val-
idation perplexity is lowest for Morpheme with
BPE followed by only BPE, while highest for
SentencePiece followed by WordPiece. Notably,
word-based tokenization outperforms both Word-
Piece and SentencePiece. Figure 2 illustrates the
training and validation perplexity trends (in log
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scale) throughout training. All tokenization meth-
ods show initial steep decreases in training per-
plexity before flattening. Similarly, validation per-
plexity for WordPiece, SentencePiece, Word-level,
and Morpheme shows large initial decreases be-
fore stabilizing. In contrast, byte-level BPE-based
approaches display flat validation curves from the
beginning, reflecting the large number of training
steps already completed during the first epoch due
to the higher number of batches processed when
using byte-level tokenization.

Tokenization Training Validation
BPE 6.328 5.863
Morpheme+BPE 3.854 3.677
SentencePiece 134 120.6
WordPiece 125.6 116.3
Morpheme 14.09 13.71
Word based(30k) 106.8 97.08

Table 3: Perplexity values during training and valida-
tion

Figure 3 shows the comparison of the perplex-
ity trend during training and validation for word-
based tokenization with 30k tokens and 60k tokens.
The perplexity score for 30k is less than for 60k
during every phase of training and validation sug-
gesting that an increase in vocab size in this region
also tends to increase in perplexity.

5.2 Understanding Perplexity

Tokenization % of most freq. token
Morpheme+BPE 0.160
Bpe 0.121
SentencePiece 0.047
WordPiece 0.168
Morpheme 0.479
Word 0.108

Table 4: Tokenization Methods and normalized fre-
quency of the most frequent token

Our experiments reveal that tokenization meth-
ods involving Morpheme or BPE yield substan-
tially lower perplexity scores compared to alterna-
tive approaches. This raises a critical question: Do
these lower perplexity scores necessarily indicate
superior language modeling capabilities? To inves-
tigate this relationship, we conducted a comprehen-
sive frequency analysis on both training and eval-
uation corpora using the tokenizers trained on the
training corpus, as illustrated in Figure 4.

The frequency distribution analysis across the
entire vocabulary demonstrates that the Sentence-
Piece algorithm maintains higher frequencies for
mid-range tokens (up to the 25,000th token shown).
We observe a clear correlation: tokenization meth-
ods yielding higher perplexity scores during evalu-
ation consistently display higher frequency curves.
However, examining the most frequent tokens—as
shown in the frequency analysis of the top 15 vo-
cabulary items—reveals that the SentencePiece al-
gorithm, despite having the worst perplexity score,
begins with the lowest normalized frequency. This
pattern indicates that SentencePiece produces to-
ken distributions that are relatively more uniform
compared to other algorithms evaluated in our
study. This comparative uniformity suggests that
when predicting the next token, models using Sen-
tencePiece assign less extreme probability to the
most likely candidates. In practical terms, these
models predict frequent tokens with less confi-
dence while assigning relatively higher probabil-
ities to less frequent tokens. Table 4 quantifies
this difference dramatically: the most frequent to-
ken in SentencePiece covers only 4.7% of the cor-
pus, while the most frequent token (‘*’) in the Mor-
pheme approach spans 47.9% of the corpus. This
explains why Morpheme tokenization achieves re-
markably low perplexity—the model makes nearly
half of its predictions with very high confidence.

From another perspective, BPE’s superior per-
plexity performance stems from its ability to gen-
erate a larger number of high-frequency tokens
compared to other methods. The byte-level BPE
tokenization exhibits significantly higher normal-
ized frequencies for approximately the first hun-
dred most frequent tokens. Operating at the byte
level rather than character level allows BPE to
more efficiently capture repetitive patterns in text,
leading to more confident predictions. However,
this raises a fundamental question: Does this ap-
parent advantage in perplexity metrics translate to
enhanced understanding capacity?

Contrary to what perplexity scores might sug-
gest, our experiments demonstrate that Sentence-
Piece, the algorithm that performs worst accord-
ing to perplexity standards, consistently outper-
forms other approaches when fine-tuned on nat-
ural language understanding (NLU) tasks. Addi-
tionally, despite their impressive perplexity scores,
byte-level tokenization methods incur substan-
tially higher computational costs during training.
This inefficiency stems from their tendency to seg-
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Tokenization CPS POS NER CC NepGLUE
Morpheme+BPE  0.86 0.90 0.72 0.77 0.81
BPE 0.89 087 0.75 0.81 0.83
SentencePiece 096 0.89 0.74 091 0.88
WordPiece 093 071 064 0.85 0.78
Morpheme 094 074 0.76 0.88 0.83
Word (30k) 096 075 0.72 090 0.83
Word (60k) 096 0.76 0.74 091 0.84

Table 5: Finetuning performance(Macro-F1 score) of language models with different tokenization schemes on four
different NLU tasks Categorical Pair Similarity(CPS), Parts Of Speech Tagging(POS), Named Entity Recogni-
tion(NER) and Content Classification(CC) from Nep-gLUE benchmark. The final NepGLUE score represents the

average performance across all tasks.

ment text into smaller token sequences, generating
a larger total number of tokens during encoding.
Beyond computational considerations, processing
text as longer sequences of smaller tokens may im-
pair contextual understanding when working with
fixed sequence length limitations.

5.3 Finetuning Performance

Table 5 presents the results of finetuning on four
tasks from the Nep-gLUE benchmark. The best-
performing model for each task and the overall
GLUE scores are highlighted in bold. Our analy-
sis reveals several counterintuitive patterns regard-
ing the relationship between perplexity and down-
stream performance.

For the Categorical Pair Similarity (CPS) task,
SentencePiece—the worst-performing tokeniza-
tion method in terms of perplexity—achieves the
best macro-F1 score, tied with both 30k and 60k
versions of word-based tokenization. Conversely,
Morpheme+BPE, which demonstrated the lowest
perplexity during pretraining, performs worst on
this task. In Part-of-Speech (POS) tagging, Mor-
pheme+BPE achieves the best macro-F1 score.
However, SentencePiece, despite having the high-
est perplexity, outperforms all other tokenization
methods except Morpheme+BPE. This finding fur-
ther reinforces that perplexity is a poor predictor
of a language model’s representation learning ca-
pabilities.

For Named Entity Recognition (NER), the Mor-
pheme algorithm performs best, with all other
methods showing comparable performance ex-
cept WordPiece, which performs significantly
worse. In Content Classification (CC), Senten-
cePiece again demonstrates superior performance,
followed by word-based and Morpheme-based to-
kenization schemes, while byte-based algorithms

perform considerably worse.

The averaged NepGLUE score across all tasks
reveals that SentencePiece is the optimal tokeniza-
tion method with a score of 0.88, while Word-
Piece performs worst with 0.78, followed by Mor-
pheme+BPE with 0.81. This aligns with Liu
et al. (2019)’s observations that byte-level BPE
algorithms typically underperform compared to
character-level BPE. Comparing word-based al-
gorithms with 30k versus 60k vocabulary sizes,
we observe that larger vocabulary size leads to
marginally better or equivalent performance across
tasks, without dramatic improvements. Unlike
Toraman et al. (2022), we maintained consis-
tent model sizes across different vocabulary sizes,
which may explain the modest performance differ-
ences, as noted in Alrefaie et al. (2024).

6 Conclusion

In this paper, we compared perplexity scores
across different tokenization methods using autore-
gressive language models for Nepali. We found
that more granular tokenization typically produces
fewer high-frequency tokens, resulting in lower
perplexity. Increasing vocabulary size in word-
based tokenization correspondingly increased per-
plexity. However, our finetuning experiments on
various NLU tasks revealed that tokenization meth-
ods with the best perplexity scores (byte-level BPE
with/without Morphemes) did not yield superior
performance on understanding tasks. Instead, Sen-
tencePiece consistently outperformed other meth-
ods across tasks despite having worse perplexity
scores.
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7 Limitations

Despite our efforts, several limitations remain in
this study. Our language models have only 24M
parameters (30k versions), making them larger
than the smallest BERT models (14M) but far from
large-scale sequential models. Thus, the appli-
cability of our findings to LLMs remains uncer-
tain. Additionally, our models use a maximum
sequence length of 64, which may bias compar-
isons between tokenization algorithms like byte-
level BPE and word-based approaches in terms of
contextual information, though the comparison re-
mains fair computationally.

Furthermore, our benchmark datasets lack se-
quence generation tasks such as text summariza-
tion, machine translation, and question answer-
ing, limiting the generalizability of our results to
generative models. While we evaluate six tok-
enization schemes, we do not consider alterna-
tives like n-gram characters, Unigram LM (Kudo,
2018), or sampling-based SentencePiece (Kudo
and Richardson, 2018), which could enhance ro-
bustness. A more comprehensive study incorporat-
ing these methods, as well as an analysis of vocab-
ulary size effects beyond word-based tokenization,
remains for future work. Finally, exploring larger
models across multiple languages presents an in-
teresting direction for further research.
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