
Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM² 2025), pages 200–211
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

Learning and Evaluating Factual Clarification Question Generation
Without Examples

Matthew Toles1, Yukun Huang1,2, Zhou Yu1,3,
1Columbia University, 2Duke University, 3Arklex.ai,

Correspondence: mt3639@columbia.edu

Abstract

Real-world tasks such as giving legal or tech-
nical advice often depend on context that is
initially missing at the outset. The ability to
derive missing factual information by asking
clarifying questions (ACQ) is an important el-
ement of real-life collaboration on such rea-
soning tasks. Although intent disambiguation
has been heavily investigated, factual reasoning
remains underexplored. To enable evaluation
of factual domain clarification question genera-
tion, we present a new task that focuses on the
ability to elicit missing information in multi-
hop reasoning tasks. We observe that humans
outperform GPT-4o by a large margin, while
Llama 3 8B Instruct does not even beat the
dummy baseline in some metrics. Finally, we
find that by fine-tuning Llama 3 8B Instruct on
its own generations filtered via rejection sam-
pling, we can improve information recovery
by 27.6% without using any manually labeled
data.

1 Introduction

In many real-world scenarios, the initial context
is often incomplete, making it risky to provide an-
swers without first seeking clarification. For in-
stance, legal, medical, and technical advice typ-
ically depends on specific details about the indi-
vidual’s situation. As language models (LMs) are
increasingly used in open-domain assistant roles,
their ability to clarify and gather relevant facts be-
fore offering advice is becoming more crucial.

Evaluating clarification question generation is
not straightforward. Many question generation
tasks evaluate generated questions based on word
overlap with a ground truth label (Rahmani et al.,
2023), ignoring whether the question actually ac-
quires useful information or how difficult it is
to answer. Other tasks such as those by Rao
and Daumé III (2019) use human evaluators to
judge the quality and informativeness of ques-

Figure 1: Overview of the HotpotQA-FLM task, which
simulates the need to formulate a question. Conven-
tionally, the downstream model performs the down-
stream task directly ( ). However, in HotpotQA-
FLM ( ), critical information is missing 1⃝. To
acquire that information, the ACQ model 2⃝ first uses
the context to generate a clarification question. The
question is presented to the contextually knowledgeable
answering agent 3⃝, which generates a response. The
response is sent as additional context to the downstream
model 4⃝. For strong ACQ models, we expect the down-
stream model to achieve better performance on context
+ answering agent response than on context alone.

tions, but human annotation is impractical for large-
scale language model benchmarking in the style
of BIG-bench (Srivastava et al., 2022) and MMLU
(Hendrycks et al., 2020).

Recently, some ACQ tasks including those by
Zhang and Choi (2023) avoid these limitations by
measuring the effect of clarifications on a down-
stream task. In this paradigm, which we refer to as
pragmatic evaluation, an answering agent is used
to dynamically generate answers to clarifying ques-
tions (Figure 1). The downstream task (e.g. QA), is
then performed with and without the clarification.
Pragmatic evaluation captures the objective value
of the information gained while also permitting
automatic evaluation.

Although underexplored in evaluations, failing
to clarify basic facts in high-stakes applications
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can cause serious harm to users and others. If a
user asks how to clean up a chemical spill, clarify-
ing what chemical is critically important; applying
water to an alkali metal can cause explosion, but
sweeping up fine powders can aerosolize toxins.
Absorbing oxidizers with paper towels, however,
may cause spontaneous combustion (ACS, 1995).
Analogous scenarios exist in medical, legal, secu-
rity, or other domains where failing to clarify can
have serious real-world consequences. Although
our contributions address one specific scope, we
find that current models struggle to clarify key facts
even in this constrained trivia QA domain. This
suggests more work is necessary before models can
adapt to under-specified high-stakes environments.

Compared to ambiguity in user intent, ambiguity
in relevant facts poses unique challenges. Although
users can generally answer questions about their
own intent, they may not always know the answer
to factual questions. Factual questions should be
phrased to require minimal effort of recall while
still learning facts relevant to the downstream task
(Did you earn more than $X? vs. Exactly how
much did you earn?).

Additionally, when evaluating clarification ques-
tions in the factual domain, one must ensure critical
pieces of the puzzle are not guessable or leaked in
some other way. A task that nominally requires clar-
ification ("Napoleon Bonaparte was 167cm. Who is
taller, Shaquille O’Neal or Napoleon Bonaparte?")
becomes trivial if the downstream agent is aware
that Shaquille O’Neal was a very tall basketball
player.

To bridge this gap, we introduce the PACQ task
that focuses on evaluating models’ ability to ask
questions seeking objective factual information.
Our first contribution is HotpotQA-FLM. In this
task, an LLM must assist a downstream agent in
answering a trivia question that is conditional on
an unknown fact. The LLM must identify what
information is missing, and ask for it from a third
answering agent. HotpotQA-FLM prompts are cre-
ated by deleting one fact from the context necessary
to perform a downstream multi-hop QA task from
the HotpotQA dataset (Yang et al., 2018). We term
this process fact-level masking (FLM). Clarifying
questions are submitted to an answering agent. The
answering agent responds with one of many top-
ically similar answers. Last, performance on the
downstream task is assessed with and without the
clarification.

We find state-of-the-art models struggle with

HotpotQA-FLM as compared to humans. Ques-
tions by GPT-4o recover only 48% of missing in-
formation compared to those by humans. Smaller,
open source models achieve only 14% of human
performance.

Given weak zero-shot performance on
HotpotQA-FLM, we also contribute a method for
training models to ask informative clarification
questions. Notably, HotpotQA-FLM does not
include examples of clarifying questions for
supervised fine-tuning, which are rarely available.
Instead, we train our model, Alexpaca,1 by creating
a synthetic dataset through repeated interaction
with the answering agent. The dataset is filtered
with rejection sampling to only include clarifying
question examples that result in the expected
useful response. Last, Alexpaca is fine-tuned
on the synthetic dataset. Alexpaca shows a 28%
increase in performance over its zero-shot Llama 3
8B Instruct source model on the full dataset. This
demonstrates small models’ ability to self improve
at clarifying question generation given effective
feedback. Alexpaca also demonstrates a scalable
and cheap proof-of-concept for approaching
factual ACQ tasks. The training method is suitable
where supervised examples are unavailable or
proprietary models perform poorly (as we find)
or are unacceptable for cost, privacy, or latency
reasons.

To summarize, our contributions are: 1)
HotpotQA-FLM, a clarification question genera-
tion task evaluated based on objective information
gain in the factual domain; and 2) Alexpaca, a
rejection-sampling approach to fine-tuning models
for clarification question generation not reliant on
manual annotation.

2 Related Work

2.1 General Question Generation
Question Generation (QG), speaking generally, is
the task of automatically generating questions (Rus
et al., 2008). Questions can be generated using
syntactic (Gates, 2008; Yao et al., 2012) or neural
(Chen et al., 2018) approaches. Duan et al. (2017)
and Wang et al. (2020) generate questions for data
augmentation for QA tasks and pretraining, respec-
tively, using convolutional, recurrent, and trans-
former architectures. Chatbots designed for social
dialogue may ask questions to exhibit emotional
intelligence, prompt users, and drive engagement

1In honor of Jeopardy! host Alex Trebek (1940–2020)
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(Shum et al., 2018). Question-asking can also be
used for educational purposes (Kurdi et al., 2020).
Four automatically evaluated question generation
tasks appear in BIG-bench (Srivastava et al., 2022)
including Twenty Questions, Forecasting Subques-
tions, Question-Answer Generation, and Question
Selection.

2.2 Asking Clarifying Questions

Asking clarifying questions (ACQ) is a type of QG
for acquiring additional factual knowledge or dis-
ambiguating user intent, as in (Aliannejadi et al.,
2019). During general QG, outputs are often evalu-
ated based on the Bleu, Rouge, or other word over-
lap metrics, as in (Qi et al., 2020; Xu et al., 2019;
Min et al., 2020; Deng et al., 2022; Gaur et al.,
2022; Chen et al., 2018; Meng et al., 2023) (Kostric
et al., 2024) (Ang et al., 2023). Other research uses
human evaluations, (Pyatkin et al., 2022; Rao and
Daumé III, 2019, 2018; Chen et al., 2022). Prag-
matic asking clarifying questions (PACQ), on the
other hand, evaluates a question based on the use-
fulness of the answer it prompts (Figure 1). (Zhang
and Choi, 2023; Lee et al., 2023) and (Andukuri
et al., 2024) explore ACQ pragmatically but in the
intent rather than factual domain. GuessWhat?!
(De Vries et al., 2017), CLEVR Ask (Matsumori
et al., 2021), and White et al. (2021) explore con-
strained iterative binary PACQ tasks in the vision
domain. We present a new task specifically ad-
dressing question generation for multi-hop factual
reasoning.

2.3 Related Tasks

In task-oriented dialog (TOD), the system is de-
signed to converse with the user to perform a slot-
filling task. Slot-filling tasks are typically straight-
forward and well-defined, like booking a hotel. Un-
like in our task, the missing information, such as
the desired price range, is usually clearly defined by
which slots are empty (Budzianowski et al., 2018).
By decoupling TOD from a fixed slot ontology and
accounting for incomplete user knowledge, PACQ
can be viewed as a generalization of the dialog
planning and natural language generation steps of
TOD. Finally, PACQ is similar to the idea of agent
tool-use, where agents (Yao et al., 2023) can con-
sult APIs like a calculator, search engine, or QA
model to improve performance on a downstream
task. Tool-use models like Toolformer (Schick
et al., 2023) call APIs internally during generation
to gather additional knowledge. Framing PACQ

as a distinct task may improve data efficiency in
training and granularity of evaluation as compared
to end-to-end tool use.

3 Methods

3.1 Problem Description

The goal of pragmatic asking of clarifying ques-
tions is for the ACQ model to transfer information
from a knowledgeable answering agent to an ex-
ecutive downstream model by asking a clarifying
question. In our setup the answering agent is a lan-
guage model, but could also be a database, human
expert, or the user. The downstream model is a
model that directly executes some task for the user,
such as a legal assistant chatbot or QA model. The
answering agent is an agent capable of answering
clarification questions related to the downstream
task. This could be a human user, expert, or LLM
stand-in like Flan-T5 (Chung et al., 2022). The
ACQ model is a language model agent capable of
generating questions that assist the downstream
model in its task. It takes the downstream task
as input and generates a question for the answer-
ing agent. The answering agent response is con-
catenated to the original context and then passed
to the downstream model, giving the downstream
model access to the information requested in the
question. The ACQ model’s performance is evalu-
ated using the difference between the downstream
model’s performance with and without the answer-
ing agent’s answer.

Our setup, as described above and similar to (Lee
et al., 2023), consists of a downstream model, D,
tasked with performing some task, and an answer-
ing agent, A, which responds to questions gener-
ated by the ACQ model, C. In the next section, we
present a specific C → A → D setup and dataset
on which to evaluate it.

3.2 Model Training

Creating examples of good clarification questions
is expensive and challenging because question use-
fulness depend on the properties of the answer-
ing and downstream agents. Any change to these
agents may require a different question genera-
tion strategy. Therefore, it is useful for models
to be trained through interaction with the answer-
ing agent rather than through manual supervision.
We propose a method where a zero-shot model re-
peatedly generates clarifying questions, and is then
fine-tuned on only the clarifying questions that pro-
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duce useful information.

3.3 Problem Definition
Let t be a natural language statement of a task. Let
the context for the task be comprised of f1, ..., fn
natural language facts. Let example x = t+ f1 +
... + fn, where + indicates string concatenation
Let D(x) → y be a downstream model that takes
x as input and outputs y. Let C(x) → q be an
ACQ model that takes x as input and generates a
natural language question q. Let R(D,x, y) → r
be some reward on which D is evaluated, where
more positive values are better, such as F-score,
accuracy, or negative loss. For brevity, we often
omit D and y.

We say a fact f is supporting if it is believed
that R(x + f) > R(x − f), where − represents
deletion (if present). Otherwise we say f is dis-
tracting (Yang et al., 2018). Let A(q) → fr be an
answering agent that takes q as input and returns a
response fr. The PACQ task is to create a model
C that maximizes

∆r = R(x+ fr)−R(x)

One may construct more complex versions of
PACQ involving multiple missing facts, iterative
asking, multiple answering agents, or cost func-
tions for different types of questions. In this paper,
we limit PACQ to the costless, single-mask, single-
turn, single-answering agent case and we do not
address determining whether a task lacks sufficient
context.

4 Experiments

4.1 Dataset
We contribute HotpotQA-FLM, a version of the
QA dataset HotpotQA for evaluating pragmatic
asking of clarifying questions (Yang et al., 2018).
HotpotQA is a multi-hop QA reasoning task where
each example contains both supporting and distrac-
tor facts from Wikipedia as determined by human
annotators. We choose reward function R to be
the F1 score of the word overlap between the pre-
dicted answer and the ground truth answer follow-
ing the original HotpotQA. Thus r ∈ [0, 1] and
∆r ∈ [−1, 1].

To evaluate our ACQ model, we create three con-
text examples: the incomplete example xi missing
some context, the complete example xc with full
context, and xr which contains the incomplete con-
text plus additional context derived from the clari-

fying question. The incomplete and complete con-
texts will serve as the worst- and best-case bench-
marks against which we compare the response con-
text.

First, we obtain xc which contains the task and
every supporting fact (Figure 2) from HotpotQA.
Next, we apply fact-level masking to each Hot-
potQA example, where facts are helpfully provided
as a list. From each complete example, we create an
incomplete example xi by randomly selecting one
supporting fact, f∗, to be the masked fact and delet-
ing it from the context: xi = xc − f∗. When miss-
ing one supporting fact, the downstream task be-
comes substantially more difficult, even for strong
zero-shot models like GPT-4o (OpenAI, 2024) (Fig-
ure 5). The masked fact, along with the distractor
facts and the other supporting facts, make up the
set of responses, fr, the answering agent may give.
Finally, we prompt the question model with the
incomplete context to generate a question, then
generate a response fr from the answering agent.
We create the response example xr by appending
xr = xi + fr. To benchmark human performance,
one author of this paper annotated a test set of 400
clarifying questions from examples also included
in the full set.

In general, we expect the complete example xc,
which contains every supporting fact, to have the
highest possible reward. Meanwhile, we say an
example x is improvable if there exists at least
one possible response fr such that ∆r(fr) > 0.
By masking facts in xc we can decrease the re-
ward on the example, producing an improvable
self-supervised example. Note that not all incom-
plete examples will be improvable, such as when:

• Two facts contain redundant information
• D has memorized knowledge of information

in f∗

• f∗ is mislabeled as supporting
• xi still allows D to make a spurious correla-

tion without f∗

It is also possible for xi to be improved by a re-
sponse fr even if fr ̸= f∗, if fr and f∗ contain sim-
ilar information. We automatically compute ∆r on
the full and test sets using fact-level masking, find-
ing that 27.6 and 28.5% of examples, respectively,
are improvable. We preserve unimprovable exam-
ples in the dataset to avoid bias; the downstream
model may sometimes achieve the correct response
through a spurious correlation on the incomplete
example, but fail to make the spurious correlation
after receiving the response. Similarly, the down-
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Incomplete Example xi

Complete Example xc

Candidate Oracle Responses

t When was the composer of "Persian Surgery Dervishes" born?

fsup
1 Persian Surgery Dervishes is a recording of two live solo electric organ concerts, the

first held in Los Angeles on 18 April 1971 and the second in Paris on 24 May 1972,
by avant-garde minimalist composer Terry Riley.

fsup
2 (f∗) Terrence Mitchell "Terry" Riley (born June 24, 1935) is an American composer and

performing musician associated with the minimalist school of Western classical music.

fdis
1 Thomas Christian David (December 22, 1925 - January 19, 2006) was an Austrian

composer, conductor, choral conductor, and flutist.

fdis
2 Abdolreza Razmjoo is a composer, arranger and singer Tenor of Iran Kurdish ancestry

from Kermansha.

Figure 2: An example containing a downstream task t, supporting facts fsup
1,...,n, and distractor facts fdis

1...n. (Additional
facts not shown.) We create an incomplete example xi by masking one supporting fact, f∗, chosen at random,
from the facts in the complete example xc. Prompted with xi, the ACQ model poses a question to the answering
agent which returns one answering agent response fr from the supporting or distractor facts. We then append
xr = xi + fr, which we expect to improve downstream model performance D(·)

stream model may fail even given the masked fact,
but succeed given another fact if the other fact con-
tains more helpful information.

4.2 Evaluation Implementation Details

To generate and evaluate answers to PACQ ques-
tions, we construct the following pipeline. The
ACQ model C takes an incomplete example xi

as input to generate a clarifying question q. As
baselines for C we choose GPT-4o (OpenAI, 2024)
and Llama 3 8B Instruct (AI@Meta, 2024). We
select these models for their strong performance
on zero-shot tasks. We choose a prompt template
for each model by evaluating three zero-shot and
three 5-shot in-context prompts on 400 examples
from the training dataset 8.1. In addition, we create
a new model, Alexpaca, by fine tuning Llama 3
on a dataset of its own generations filtered with
rejection sampling. Finally, we include a dummy
Repeater model among the baselines, which simply
returns the input task.

Questions generated by C are passed to the an-
swering agent A, a Flan-T5-Base model, which
we choose for its accessibility and strong zero-
shot performance on other QA tasks (8.2). The
answering agent serves as a stand-in for a human
expert answering clarifying questions generated by
C. A returns fr, the most likely response to q from
among all possible distractor facts F dis present
in the original HotpotQA example, all supporting
F sup facts, n − 1 of which are already present in
the context, and the masked fact f∗. HotpotQA
examples contain, on average, 39.2 distractor facts
(standard deviation 11.4) and 2.43 supporting facts

(standard deviation 0.71).
To create the response example xr, we append

the answering agent response to the incomplete
example. Note that by appending rather than insert-
ing, the order of facts may be altered as compared
to xc, even if fr = f∗, which may occasionally
affect the output of the downstream model.

Finally, we compare the performance of the
downstream model, D, given contexts xi, xr, and
xc. D is also a Flan-T5-Base model (8.3). We
choose Flan-T5-Base over models using more pa-
rameters or training data because we expect they
are more likely to answer based off of context
rather than information memorized from training
data (e.g., Wikipedia). If C produces a question
with positive utility towards D, then one should
expect R(xc) ≥ R(xr) > R(xi). To express re-
ward relative to its theoretical minimum (R(xi))
and maximum (R(xc)) values, we define recovery
as:

ρ = 100 · R(xr)−R(xi)

R(xc)−R(xi)

and select F1 recovery as our downstream evalua-
tion metric.

4.3 Alexpaca: Fine-Tune through Interaction

Annotating high quality clarifying questions is chal-
lenging and costly. For this reason, we train our
model, Alexpaca, purely through interacting with
the answering agent. First, we use the Llama 3
8B Instruct foundational model to generate a set of
clarifying question examples using rejection sam-
pling. To ensure examples are of high quality, we
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Figure 3: F1 and exact match recovery for PACQ models
and human annotators. Results shown for the full vali-
dation set (n = 7404) and the test set (n = 400), which
contains human-generated ACQ questions. Alexpaca-1r
indicates single round rejection sampling.

reject questions if the answering agent response
does not match the masked fact. We repeat the
generation for each example until one is accepted,
or until k = 40 rounds. Each round we increase
generation temperature by 2/k, starting at 0.01 in
order to encourage exploration in later rounds. Fi-
nally, we fine-tune the same Llama 3 foundational
model on the rejection sampling dataset.

5 Results and Discussion

5.1 Baseline Performance
We report F1 and exact match recovery results for
ACQ models on the full HotpotQA validation set
(n = 7404, Figure 3). Of all models, GPT-4o per-
forms best in both F1 and exact match (EM), recov-
ering 41.7% and 42.8% respectively. These results,
however, fall short of complete recovery of missing
information, indicating room for improvement even
in strong zero-shot models. Other models perform
substantially worse. Llama 3 achieves 26.9% F1 re-
covery, which is only a moderate improvement over
the dummy Repeater model. We suspect Repeater
achieves its positive recovery (22.5%) by exploit-
ing a bias in the answering agent towards choosing
responses with high keyword overlap with the input
question.

5.2 Alexpaca Fine-Tuning Performance
Alexpaca exceeds baseline Llama 3 performance by
37.2% vs. 26.9 F1 recovery (p = 0.00074), demon-
strating a method for self-improving ACQ mod-
els given an answering agent rather than example
clarifying questions. Although GPT-4o achieves
higher performance than Alexpaca, Alexpaca is

(a) Alexpaca (b) Llama 3

(c) GPT-4o (d) Human Annotation

Figure 4: Proportion of questions (Q) answered with a
masked fact (MS) vs. distractor (D) by answering agent
(middle values). Proportion of answers given resulting
in positive, zero, or negative difference in downstream
model performance (right values).

open-source and uses many times fewer parameters
compared to GPT-4o. Alexpaca therefore may be
more suitable in circumstances where cost, latency,
or privacy are a concern. We report the average
of results for five random seeds. During training
dataset creation, repeatedly attempting to generate
passing examples up to 40 times each (Alexpaca)
improves F1 recovery by 6.0% points compared to
using a single attempt (Alexpaca-1r). We believe
that challenging examples accepted in later rounds
of rejection sampling and generated at higher tem-
perature have a disproportionate effect on model
behavior.

5.3 Alexpaca Behavior

Although Alexpaca elicits the masked fact more
often than GPT-4o on the test set (189 vs. 145),
Alexpaca’s overall improvement rate is still lower
(72 vs. 80). Likely this is an artifact of the Alex-
paca training rejection criteria wherein acceptance
is determined by eliciting the masked fact rather
than actual downstream improvement. This indi-
cates room for improvement in baseline models
performing PACQ. Attempts to correct this bias by
accepting examples based on recovery rather than
masked fact response did not achieve statistically
significant improvement in F1 recovery, possibly
due to a lower signal-to-noise ratio in end-to-end
systems.
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Figure 5: Supporting, answered, and masked F1 as a
function of downstream model architecture.

5.4 Comparison to Human Performance

We find that human-generated questions on the test
set are more likely to elicit the masked fact f∗ in
the response (Figure 4). Eliciting the masked sen-
tence usually, but not always, produces as good or
better a result in the downstream model compared
to eliciting a distractor. This leads to human an-
notations performing significantly better than the
best baseline models. Human annotation achieved
84.4% F1 and 89.7% EM recovery, compared to the
strongest baseline, GPT-4o, which achieved 46.2%
F1 and 54.4% EM recovery on the test set (Figure
3).

5.5 Downstream Model Ablation

We evaluate all available sizes of Flan-T5 and GPT-
4o as candidate downstream models using a Flan-
T5-Base model as the answering agent and human-
generated questions as the ACQ model. Models
lose between 9.2% (GPT-4o) and 22.0% (Flan-T5-
Large) absolute points F1 score as a result of mask-
ing a single supporting fact (Figure 5). We sus-
pect GPT-4o is more robust than Flan-T5 since in
exploration they appear to have memorized large
portions of Wikipedia, which minimizes the impact
of removing Wikipedia facts from context. This
makes them less well suited as indicators in the
role of the downstream model compared to Flan-
T5. Models recover between 62.0% (GPT-4o) and
84.4% (Flan-T5-Base) of the F1 score lost during
masking after including the answering agent re-
sponse to human generated questions. Although
models are affected differently by FLM, with GPT-
4o being the most robust, reasonable consistency
in F1 recovery rate suggests that valid results could
be achieved across many model choices.

Figure 6: F1, exact match and masked fact response
rate (MFRR) as a function of answering agent size and
architecture.

5.6 Answering Agent Ablation

We test GPT-4o and all sizes of Flan-T5 as the
Answering Agent on human-generated questions.
Flan-T5-Base and larger respond with the masked
fact in more than 68% of cases (Figure 6). Further-
more, we observe consistently strong performance
by these models on F1 and exact match, with both
metrics exceeding 84% recovery in all cases. This
indicates that when prompted by well-formed and
informative questions, Flan-T5 of size Base and
larger can consistently respond with appropriate
answers. For the sake of accessibility, we choose
the smallest strong model, Flan-T5-Base, as our
answering agent. Interestingly, although GPT-4o
responds with the masked fact far less frequently
than any Flan-T5 model (GPT-4o: 37.8%, Flan-T5-
XXL: 74.0%), GPT-4o achieves the second-highest
F1 recovery overall and 92.6% exact match recov-
ery. This suggests that although GPT-4o gives dis-
tractor or redundant supporting facts most of the
time, the facts it chooses still carry critical infor-
mation, llustrating the importance of measuring
information gain rather than nominal correctness.

5.7 Error Analysis

We observe one failure mode associated with the
answering agent and three associated with the ACQ
model, which prevent PACQ questions from recov-
ering missing information. Firstly, the answering
agent may return an irrelevant and unhelpful re-
sponse. In 31.5% of cases, human-generated ques-
tions induce responses other than the masked fact.
When f∗ ̸= fr, the F1 score of the downstream
model increases in only 11.1% of cases, compared
to 32.5% of cases when f∗ = fr (Figure 4d). When
a distractor fact does cause an increase in F1, it is
often because information in the distractor fact con-
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Full Test

Model F1 F1 Recovery EM EM Recovery MFRR F1 F1 Recovery EM EM Recovery MFRR

GPT-4o 61.6 41.7 45.9 42.8 24.7 61.6 46.2 48.2 54.4 36.2
Repeater 58.3 22.5 43.1 22.8 29.1 58.5 29.6 45.8 39.7 32.8
Llama 3 59.1 26.9 43.9 28.2 22.8 55.2 11.8 43.3 25.0 23.0
Alexpaca 60.9 37.2 45.5 39.8 39.2 60.3 39.1 46.9 46.2 45.3
Alexpaca-1r 60.5 35.3 45.2 37.5 37.9 59.7 35.9 46.4 43.5 43.1
Human - - - - - 68.8 84.4 54.3 89.7 68.5

Table 1: F1 and exact match recovery for full validation set and manually annotated test set.

tains overlaps with information in the masked fact.

Other times, the failure mode is due to the ACQ
model generating poor questions. In some exam-
ples, GPT-4o asks for information already present
in the context:

Context: Roger O. Egeberg’s other roles included As-
sistant Secretary for Health and Scientific Affairs during
the Nixon administration and Dean of the University of
Southern California’s medical school.
Task: Roger O. Egeberg was Assistant Secretary for
Health and Scientific Affairs during the administration
of a president that served during what years?
GPT-4o: Under which president did Roger O. Egeberg
serve as Assistant Secretary for Health and Scientific Af-
fairs? ✗
Human: During what years did Nixon serve as presi-
dent? ✓

In other cases, GPT-4o appears to struggle with
simple categorical reasoning:

Context: Backford Cross is located around the A41/A5117
junction, south of Great Sutton and about 1.5 mi north of
the village of Backford, near Chester.
Task: What major truck road is located in Backford Cross?
GPT-4o: What are the major roads near Backford Cross?
✗
Human: Is the A41 or the A5117 a major truck road? ✓

Alexpaca makes mistakes similar to GPT-4o, as
well as hallucinating relevant details to ask about:

Context: Dinosaur is a 2000 American CGI animated ad-
venture film produced by Walt Disney Feature Animation
and The Secret Lab and released by Walt Disney Pictures.
Task: Which came out first, Dinosaur or McFarland, USA
Alexpaca: What Disney animated film was released in
1942? ✗
GPT-4o: When was McFarland, USA released? ✓

Since the Alexpaca training approach does not
focus on style improvement, Alexpaca sometimes
retains Llama 3’s prototypical cheery chatbot ver-
bosity, though more frequently asks informative
questions:

Context: Sir Arthur Ignatius Conan Doyle (22 May 1859
– 7 July 1930) was a British writer best known for his
detective fiction featuring the character Sherlock Holmes.
Task: Who was born first, Arthur Conan Doyle or Pene-
lope Lively?
Llama 3: A clever question! To answer the final question,
I can ask: "When was Arthur Conan Doyle born?" ✗
Alexpaca: A clever question!
To answer this question, I can ask: "When was Penelope
Lively born?"
This question will help me determine the answer to the
original question by allowing me to compare the birth
dates of Arthur Conan Doyle (22 May 1859) and Penelope
Lively (1947). ✓

Although verbose, Alexpaca’s question does in
fact produce the masked sentence, also illustrat-
ing the answering agent’s robustness to noise and
style. Ironically, Alexpaca identifies that Penelope
Lively’s birthdate (17 March 1933) is missing, then
hallucinates it to be in 1947.

6 Conclusion

In this paper, we presented a benchmark for objec-
tively evaluating clarifying questions and observed
that state-of-the-art zero-shot LLMs struggle at
this task compared to humans. To overcome these
challenges, we introduced fact-level masking and
HotpotQA-FLM, a self-supervised PACQ dataset,
and an associated evaluation process. Finally, we
demonstrated a training method for the Alexpaca
model that relies on agent-agent interaction rather
than supervised examples of clarifying questions
to self-improve over baseline.

7 Limitations

One limitation of the Alexpaca approach is that it
requires answering agent responses to be labeled
as useful or not useful. The FLM process pro-
duces such labels implicitly. In the real-world, how-
ever, whether classifying answers is more practical
than annotating clarification questions examples
depends on the situation. We also note the lim-
ited scope of our benchmark, which addresses only
two- or three-hop trivia-style questions. Similarly,
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subjective situations and those contingent on user
intent are not included. Nonetheless, we believe
this dataset and approach lead to improve factual
clarification question generation in language mod-
els and LLM safety in high-stakes, ambiguous en-
vironments.
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8 Appendix

8.1 List of Prompts

1. Ask another question that would help you an-
swer the following question: {context} {q1}

2. Some information is missing from this context.
Ask a simpler question that would help you
answer it. Context: {context} Main Question:
{q1} Simpler question:

3. What question can you ask to help you answer
the final question? {context} {q1} You can
ask:

4. Ask another question that would help you an-
swer the following question: {in-context ex-
amples} {context} {q1}

5. Some information is missing from this con-
text. Ask a simpler question that would help
you answer it. {in-context examples} Con-
text: {context} Main Question: {q1} Simpler
question:

6. What question can you ask to help you an-
swer the final question? {in-context examples}
{context} {q1} You can ask:

Based on performance on n = 400 examples
from the HotpotQA train dataset we select prompt
3 for Llama 3, and GPT-4o, though improvement
over other prompts was not statistically significant.

8.2 Answering Agent Implementation Details

For Flan-T5 answering agents, we prompt the
model with

Question: {clarifying question}\n context: {candi-
date answer}\n prompt: Does the context answer
the question, yes or no?

We then return the answer with the highest
ratio of the "yes" to "no" logits. For the GPT-4o
answering agent, we prompt the model with

Question: {clarifying question}\n \n {enumerated
answers} \n\n Which answer is correct? Only say
the number of the answer, nothing else.

and return the answer at the index returned. If no
valid index is returned, we return a random answer.

8.3 Downstream Agent Implementation
Details

For downstream agents, we prompt the model with

{task} {article title 1}: {fact 1} ... {article title n}:
{fact n} Answer in as few words as possible:
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8.4 Answering Agent Architecture Ablation

F1 F1 Recovery EM EM Recovery MFRR

Flan-T5-Small 64.9 63.8 50.5 67.6 50.8
Flan-T5-Base 68.8 84.4 54.2 89.4 68.5
Flan-T5-Large 69.2 86.5 55.0 94.1 71.3
Flan-T5-XL 69.8 90.1 55.5 97.1 74.3
Flan-T5-XXL 70.4 92.9 56.0 100.0 74.0
GPT-4o 69.5 88.4 54.3 89.7 43.5
Incomplete 53.0 0.0 39.0 0.0 -
Complete 71.7 100.0 56.0 100.0 -

Table 2: Answering agent architecture ablation for answering agents using Flan-T5-Base as downstream model on
the full validation set.

8.5 Downstream Agent Architecture Ablation

F1 EM

Incomplete Response Complete Recovery Incomplete Response Complete Recovery

Flan-T5-Small 41.4 51.1 53.6 79.3 28.5 35.3 37.8 73.0
Flan-T5-Base 53.0 68.8 71.7 84.4 39.0 54.3 56.0 89.7
Flan-T5-Large 59.8 76.1 81.8 74.2 42.5 58.0 63.5 73.8
Flan-T5-XL 62.3 78.9 82.9 80.5 45.8 60.8 64.8 78.9
Flan-T5-XXL 65.2 78.9 82.2 80.6 50.5 62.5 65.8 78.7
GPT-4o 70.9 76.6 80.1 62.0 34.5 38.0 39.5 70.0

Table 3: Downstream agent architecture ablation using Flan-T5 base as answering agent on the Full validation set.

8.6 Alexpaca Training Hyperparameters

Examples 500
Per Device Batch Size 2
Gradient Accumulation Steps 16
Learning Rate 2e-5
Weight Decay 0
Warmup Ratio 0.03
Learning Rate Schedule Cosine
Data Parallel Full Shard Auto Wrap
Random Seed 0

We perform training on 2x NVIDIA A100 GPUs. We perform inference on 1x NVIDIA RTX A6000 with
batch size 1.
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