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Abstract

This paper shows the benefits and fruitfulness
of evaluating LLMs with multiple problems
at once, a paradigm we call multi-problem
evaluation (MPE). Unlike conventional single-
problem evaluation, where a prompt presents
a single problem and expects one specific an-
swer, MPE places multiple problems together
in a single prompt and assesses how well an
LLM answers all these problems in a single
output. Leveraging 6 classification and 12 rea-
soning benchmarks that already exist, we intro-
duce a new benchmark called ZeMPE (Zero-
shot Multi-Problem Evaluation), comprising
53,100 zero-shot multi-problem prompts. We
experiment with a total of 13 LLMs from 5
model families on ZeMPE to present a compre-
hensive and systematic MPE. Our results show
that LLMs are capable of handling multiple
problems from a single data source as well as
handling them separately, but there are condi-
tions this multiple problem handling capability
falls short. In addition, we perform in-depth
further analyses and explore model-level fac-
tors that may enable multiple problem handling
capabilities in LLMs. We release our corpus
and code' to facilitate future research.

1 Introduction

Thanks to the advances in both GPU hardware and
algorithms (Dai et al., 2019; Beltagy et al., 2020;
Dao et al., 2022; Ding et al., 2024; Chen et al.,
2024, inter alia), large language models (LLMs)
have been developed with increasingly larger con-
text windows (e.g., 8K, 128K, 2M). To leverage the
extended context windows, recent studies (Cheng
et al., 2023; Lin et al., 2024; Son et al., 2024) have
proposed various prompting strategies that place
multiple problems in a single prompt, which we
collectively call multi-problem prompting (MPP).

1https://github.com/jaaack—wang/
multi-problem-eval-11m

The basic idea of MPP is to place multiple prob-
lems after a shared context C' (e.g., task instruction
and/or exemplars) to avoid repeating C' for each
problem as in standard single-problem prompting
(SPP), which improves input token utilization and
reduces LLM inference costs per problem.

In this study, we evaluate a wide range of LLMs
with multiple problems at once through MPP, a
paradigm we call multi-problem evaluation (MPE)
(Wang et al., 2025).> While the main goal of MPP
is to improve the cost-efficiency of LLM inference,
we view MPE primarily as a valuable evaluation
paradigm for probing LLM capabilities, rather than
merely a cost-saving engineering strategy. Un-
like conventional single-problem evaluation that
assesses an LLM’s ability to answer a single prob-
lem through SPP, MPE assesses an LLM’s ability
to concurrently handle multiple problems at once or
in a single output. Understanding the multiple prob-
lem handling capabilities of LLMs is an important
research question because it gives us a foundational
insight into how LLMs operate over multi-problem
inputs that can be sufficiently long and use infor-
mation from individual problems contained within
each multi-problem input.

To enable a comprehensive and systematic MPE,
we introduce ZeMPE (Zero-shot Multi-Problem
Evaluation), a new benchmark comprising 53,1000
zero-shot multi-problem prompts. ZeMPE is syn-
thetically generated by leveraging 6 classification
and 12 reasoning benchmarks that already exist and
are widely used. Moreover, ZeMPE includes vari-
ous types of evaluation tasks to allow for deep and
nuanced analyses, taking into account how multiple
problems are presented in the prompt and whether
these problems are sampled from the same data
source or not. We do not mix classification and

While MPE is achieved through MPP, MPP can be used
for purposes other than evaluation, e.g., knowledge retrieval,
question answering, and other use cases. It it thus necessary
to distinguish MPP from MPE and SPP from SPE.
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reasoning problems together due to the different
natures of these two types of problems and to not
make our experiments confounding.

Our main contributions are as follows:

* We show that LLMs are capable of handling
multiple classification or reasoning problems
from a single data source as well as handling
them separately zero-shot. We present mul-
tiple pieces of evidence, in addition to direct
performance comparisons to validate this.

* We demonstrate that just like few-shot MPP,
zero-shot MPP can be highly cost-efficient.

* We identify two general conditions under
which LLMs perform significantly worse than
expected when presented with multiple prob-
lems and explore the roles of several model-
level factors that may enable their multiple
problem handling capabilities.

¢ We release a new MPE benchmark called
ZeMPE to facilitate future MPE studies.

2 Related Work

We note that current LLM evaluation has predomi-
nantly focused on LLM’s performance on single-
problem prompts. Each of such prompts presents a
single problem and expects one specific answer to
that problem, which may implicitly require multi-
hop reasoning or multi-step task solving.

Recently, Cheng et al. (2023) propose few-shot
MPP named batch prompting that prompts LLMs
with problems batched together from single sources
following a few batches of equally sized exem-
plars. They find that few-shot MPP greatly in-
creases LL.M inference efficiency while retaining
downstream performance with a small batch size
(e.g., <6). To ensure that batch prompting works
with large batch sizes, Lin et al. (2024) introduce a
sampling optimization method that takes a majority
vote over repeated permutations of batch samples.

Instead of solving multiple separate problems,
Son et al. (2024) prompt LLMs with exemplars
to solve multiple related tasks based on a shared
problem setup by placing an explicit instruction
for each task. They find that instructing LL.Ms to
solve all the tasks at once outperforms solving the
individual tasks one by one or in a batch.

In addition to these few-shot studies, Laskar
et al. (2023) shows that instruction-tuned GPTs
can handle 5 short questions sampled from two

open-domain QA benchmarks at once zero-shot,
but the base GPT models can barely perform the
task. To the best of our knowledge, Wang et al.
(2025) present the first systematic evaluation of
LLMs’ zero-shot ability to tackle multiple homoge-
neous classification problems drawn from six stan-
dard benchmarks. They show that, while LLMs can
usually solve several such classifications in a single
prompt with accuracy comparable to handling them
one-by-one, their performance deteriorates sharply
when the prompt instead asks them to return the
indices of texts belonging to each class—a shortfall
that remains consistent across models, prompting
conditions, and experimental settings.

Building on top of Wang et al. (2025), this study
examines a total of 13 LLMs on 18 existing bench-
marks, including 12 reasoning benchmarks that are
not part of Wang et al. (2025)’s evaluation. Besides
from reaffirming Wang et al. (2025)’s finding that
LLMs are capable of handling multiple problems
from a single data source as well as handling them
separately, we perform in-depth further analyses to
both validate such capabilities and expose their lim-
itations. Moreover, we explore model-level factors
that may enable LLM’s strong multiple problem
handling capabilities.

3 Multi-Problem Evaluation

This section compares single-problem evaluation
(SPE) and multi-problem evaluation (MPE) and
introduces ZeMPE, a new MPE benchmark.

3.1 SPE vs. MPE

SPE assesses an LLLM’s ability to solve a type of
problem by prompting the LLM with such a prob-
lem one at a time. In contrast, MPE places multiple
problems together that can be of a same or different
types and evaluates how well an LLM handles them.
A simple example of a multi-problem task would
bundle multiple classification or QA problems to-
gether and ask LLMs to solve them sequentially.

3.2 Benefits of MPE
MPE has at least three advantages over SPE.

Lesser Data Contamination Concerns First, it
is less likely for LLMs to encounter exact multi-
problem prompts during pre-training because of the
combinatory nature of constructing prompts from
multiple problems. This helps mitigate a growing
data contamination concern in modern large-scale
pre-training (Jacovi et al., 2023; Sainz et al., 2023).
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Improved Controllability and Interpretability
of Evaluation Second, since we can manipulate
what kind of problems and how many problems to
include, we know exactly which problem an LLM
gets wrong or right across positions in the prompts.
This enables us to construct a well controlled and
easily interpretable evaluation.

High Feasibility and Adaptability Third, our
study demonstrates that leveraging the rich existing
benchmarks to create a new multi-problem task is
cheap, easy to implement, and highly adaptable.
The most laborious component is the prompt de-
sign, which, once done, can easily be applied to a
set of benchmarks with minimal adaptation.

3.3 ZeMPE

‘We describe how we construct ZeMPE as well as
how we evaluate LLMs on it.

3.3.1 Data

We use 6 classification and 12 reasoning bench-
marks, as described and referenced in Table 1, to
ensure a comprehensive and systematic evaluation.

The classification benchmarks are commonly
used for NLP evaluation, with SST-2, CoL A, and
MRPC appearing in GLUE (Wang et al., 2019) and
WiC in SuperGLUE (Sarlin et al., 2020). They
cover two classification paradigms (single-text and
text-pair) and six distinct task objectives.

The 12 reasoning benchmarks are widely utilized
in LLM evaluation (Kojima et al., 2022; Wei et al.,
2023; Zhang et al., 2023, inter alia). These bench-
marks test symbolic reasoning (Coin Flips & Last
Letters), commonsense reasoning (StrategyQA,
CommonsenseQA, Object tracking, & Bigbench
date), and arithmetic reasoning (AQuA, SVAMP,
GSMB8K, MultiArith, AddSub, & SingleEq), and
require three answer formats (Yes/No, multiple
choice, and free-response).

3.3.2 Evaluation Tasks and Prompt Design

We separate the classification and reasoning prob-
lems, due to their different natures and to avoid
confounding experiments, when designing multi-
problem evaluation tasks.

Unlike previous related studies (Cheng et al.,
2023; Lin et al., 2024; Son et al., 2024) that eval-
uate LL.Ms on multi-problem prompts under few-
shot settings, our evaluation tasks are all zero-shot,
which are rather underexplored, as shown in Sec-
tion 2. Moreover, zero-shot MPE is significant on
at least two levels. First, on a practical level, many

real-world tasks, such as classification, are typi-
cally approached in zero-shot settings (Ziems et al.,
2024). Moreover, designing few-shot exemplars
can be tedious and costly to obtain in practice (Ko-
jima et al., 2022; Yasunaga et al., 2024). Second,
from a scientific perspective, zero-shot MPP may
provide deeper insights into the innate capabilities
of LLMs concurrently handling multiple tasks.
The evaluation tasks are as follows with the full
prompt templates for each task in Appendix E.

Classification-Related Tasks We call the stan-
dard classification task via SPP Single Classifica-
tion or SingleClIf, which serves as a baseline to
be compared with MPE tasks. When an LLM is
prompted to solve multiple homogeneous classifi-
cation problems through MPP, this task is known as
Batch Classification or BatchCIf. Index Selection
One Label (SelectOne) and Index Selection All La-
bels (SelectAll) are two reformulations of BatchCIf.
Instead of making multiple classifications under
BatchClf, these two tasks instruct LLMs to select
indices of text falling into each class label, either
independently in m separate prompts (SelectOne)
or altogether in a single prompt (SelectAll), where
m is the number of class labels in a benchmark.

We design the two selection tasks to test LLM’s
understanding of the classifications performed un-
der BatchClf. Since selection tasks of size n may
have anywhere from 0 to n correct indices per class,
spurious correlations are less likely during our eval-
uation, given the combinatory answer space.

For each of the four tasks above, we start by
describing the task in the prompt and then include
one or multiple classification problems afterwards.
LLMs are instructed to solve these problems ac-
cording to the specific task requirements.

Reasoning-Related Tasks We first test on all the
reasoning problems in each benchmark to establish
LLM SPP baselines. Two MPE tasks are designed,
i.e., single-source and mixed-source multi-problem
reasoning, or MultiReason®S and MultiReason™".
For both tasks, we bundle multiple reasoning prob-
lems together with an indexed prefix “Qi: ,” where
i is the index of each problem starting from “Q1.”
We use two headers, namely, “Questions,” before
the bundled questions, and “Answers,” before an-
swers to be generated by LLMs. Unlike prompts
designed for classification-related tasks, there is no
shared task description, since each question already
describes its own unique problem to be solved.
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Problem Type Input/Output Format Benchmark # Examples Objective
Classification Single-text input SST-2 (Socher et al., 2013) 1,821 Sentiment analysis
CoLA (Warstadt et al., 2019) 1,043 Grammatical acceptability
AGNews (Gulli, 2004) 1,000 Topic classification
Text-pair input MRPC (Dolan and Brockett, 2005) 1,725 Paraphrase detection
SNLI (Bowman et al., 2015) 1,000 Natural language inference
WiC (Pilehvar and Camacho-Collados, 2019) 1,400 Word sense disambiguation
Reasoning Yes/no output StrategyQA (Geva et al., 2021) 2,288 Commonsense reasoning
Coin Flips (Wei et al., 2023) 500 Symbolic reasoning
Multi-choice output AQuA (Ling et al., 2017) 254 Arithmetic reasoning
CommonsenseQA (Talmor et al., 2019) 1,221 Commonsense reasoning
Object tracking (Srivastava et al., 2023) 750 Commonsense reasoning
Bigbench date (Srivastava et al., 2023) 363 Commonsense reasoning
Free-response output Last Letters (Wei et al., 2023) 500 Symbolic reasoning
SVAMP (Patel et al., 2021) 1,000 Arithmetic reasoning
GSMBK (Roy and Roth, 2015) 1,319 Arithmetic reasoning
MultiArith (Patel et al., 2021) 600 Arithmetic reasoning
AddSub (Hosseini et al., 2014) 395 Arithmetic reasoning
SingleEq (Koncel-Kedziorski et al., 2015) 508 Arithmetic reasoning

Table 1: Existing benchmarks we use to construct ZeMPE. We use the test splits wherever possible, except for
CoLA, StrategyQA, and CommonsenseQA, for which we use the dev splits, since the test splits are not publicly
available. For AGNews and SNLI, we randomly sample 1,000 examples from the test splits.

3.3.3 ZeMPE Composition

We define task size n as the number of classifica-
tion or reasoning problems included in a prompt.
We construct a multi-problem prompt with all prob-
lems sampled from the same benchmark, except
for MultiReason™S where we sample one question
from each of k reasoning benchmarks to construct
an k-problem prompt. In total, ZeMPE comprises
53,100 zero-shot multi-problem prompts contain-
ing classification and reasoning problems.

Classification-Related Tasks For each classifi-
cation benchmarks, we consider 5 task sizes and
ensure that each task size has 100 distinct prompt
instances: 5, 10, 20, 50, and 100 for single-text
benchmarks and 3, 5, 10, 20, and 50 for text-pair
benchmarks. To isolate the effect of task size, a
larger task size only differs from a smaller one
by having additional problems given a benchmark;
and to isolate the effect of task, different MPE tasks
share the same sets of problems given a task size
and a benchmark. In total, this results in 13,500
prompts for classification-related MPE tasks.

Reasoning-Related Tasks Besides vanilla zero-
shot prompting, we also perform zero-shot-CoT
following Kojima et al. (2022).> Inspired by Cheng
et al. (2023) as well as to control for the number
of prompts generated, we consider smaller task
sizes from 2 to 10. To ensure a reliable evalua-
tion (e.g., sufficient parsable outputs), we increase
the number of prompts from 100 to 300 for each

*In our early experiments, we found that zero-shot-CoT
did not lead to different responses for the classification-related
MPE tasks probably due to their novelty, so it was not used.

benchmark/task size combination.

For each reasoning benchmark, we consider task
sizes 2, 5, and 10 for MultiReason®S. To robustly
examine an LLM’s performance on mixed-source
prompts, we create 6 distinct benchmark combi-
nations based on the 12 benchmarks, each consist-
ing of 10 different benchmarks. For each bench-
mark combination, we consider the first 2, 4, 6, 8,
and 10 benchmarks (also equals the respective task
sizes) in the combination for MultiReason™S. We
also control the effects of task size and task with
careful sampling, similar to what we did above.
This results in 21,600 and 18,000 prompts for
MultiReason®S and MultiReason™S, respectively.

4 Experiments

This section first describes the experimental setups
and then reports and discusses the results.

4.1 LLMs and Evaluation Settings

We evaluate 7 LLMs from 4 model families with
greedy decoding for the four classification-related
tasks: Vicuna (13B, Chiang et al., 2023), Mistral
7B (Jiang et al., 2023), Mixtral 8x7B (Jiang et al.,
2024), Llama-3 8B and 70B (Instruct, Meta, 2024),
GPT-3.5, and GPT-4 (OpenAl, 2023). See Ap-
pendix A for the details about the LLMs used.

Given the consistent results we observed across
LLMs with the classification-related tasks and for
budget reasons, we only use two LLMs with greedy
decoding, i.e., GPT-3.5 and Llama-3 70B. Since
Llama-3 models tend to produce reasoning steps
even when not instructed to do so, we only prompt
GPT-3.5 with zero-shot-CoT.
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Figure 1: Average accuracy of the 7 LLMs on the 4 classification-related task across task sizes for each benchmark.
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Figure 2: Cost/Accuracy Ratio (lower is better) for the 7 LLMs on the 6 benchmarks for SingleCIf (task size=1) and
BatchClIf (otherwise). We use the average (input + output) token count per classification as the proxy for the actual
inference costs, calculated on the basis of the input and output tokens. The plot for MRPC is log-scale for the y-axis.

4.2 Performance Metric 4.3 Classification-Related Results

We measure the average per-problem accuracy  In line with previous studies (Cheng et al., 2023;
(PPA) to unify the evaluation across all proposed ~ Lin et al., 2024) on few-shot MPP, we observe
tasks. PPA, defined in Equation 1, is the average  that while large language models (LLMs) demon-
accuracy of classifying n problems in each prompt ~ strate strong zero-shot classification capabilities
or, in the case of SelectOne, in each set of directly ~ and prompting with multiple problems can be cost-

related prompts targeting different class labels. efficient, their performance degrades significantly
when the same sets of problems are presented in a

different format.

LLMs can handle multiple classifications at once
under zero-shot with minimal performance loss.

where I(P;) is the inferred LLM-generated answer Although the BatchClf accuracy generally declines
to the ith problem in the input prompt, A; is the 33 the task size increases (Fig 1), all 7 LLMs

ground truth, and §(i, j) = 1iff i = j and O other- achieve accuracy of at least 90% that of Single-
CIf across the benchmarks most of the time (see

Table 5 in Appendix B). Overall, the SingleCIf
accuracy for the 7 LLMs on the 6 benchmarks is
75.5% and the BatchClf accuracy is 72.3%, a minor
3.2% absolute drop from the former. Interestingly,
for SNLI almost all LLMs perform better in Batch-
CIf than in SingleClf across all the task sizes (3-50)
and GPT-4 consistently achieves a BatchClf ac-
curacy near or better than the SingleClf accuracy
under all conditions (see Fig 7 in Appendix B).

1 n
PPA = n;5(I(Pi),Ai) (1)

wise.

For SelectOne and SelectAll, I(F;) is deter-
mined by considering the LLM’s assignments of
indices to all class labels. Other than assigning an
index to a wrong class label, there are two more
error types. First, LLMs may assign an index with
more than one class label, i.e., a contradiction error.
Second, LLMs may assign no labels to an index at
all, namely, a non-excluded middle error.

For MultiReason™® prompts containing k prob-
lems evenly sampled from & benchmarks, we com-  Zero-shot MPP can be cost-efficient. Single-
pute the expected PPA by averaging over the ob-  problem prompting can waste input tokens by
served SPP performance for each benchmark. redundantly repeating a shared task instruction.

To compare performance difference, we use = Multi-problem prompting reduces this redundancy,
Mann-Whitney U tests for significant testing and  and this saving is larger the more problems are
Cohen’s d (Cohen, 1969) for measuring effect size. ~ combined in a single prompt. Because performance
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BatchClIf vs BatchClIf vs SelectOne vs
SelectOne SelectAll SelectAll
Mean Acc Dif 32.0 12.1 -19.9
Std Dev 16.9 15.3 12.0
Cohen’s d 1.8 0.8 -1.0

Table 2: Pairwise accuracy differences (x vs y = X - y).
All the differences are statistically significant and with
a large effect size (| Cohen’s d | > 0.8).

tends to decline slowly as the number of tasks in-
creases, this yields a favorable cost-accuracy ratio
as the number of tasks increases (Fig 2). We only
encountered two outliers, Vicuna on MRPC with
task size 50 where the average input is 3,645 to-
kens and the context window is 4,096 tokens, and
Mixtral 8x7B at > 50 on AGNews. While it is of
course up to downstream users to determine what
cost-accuracy is right for them, this is likely benefi-
cial for many use cases where similar prompts are
repeated frequently.

To illustrate, we choose for each model/task com-
bination the largest BatchClIf task size that achieves
at least 95% SingleClIf accuracy for that pair. We
observe that MPP reduces substantial inference
costs for all LLMs run on the 6 benchmarks, rang-
ing from from 30.7% to 82.0% (see Fig 6 in Ap-
pendix B).

LLMs perform significantly worse on the selec-
tion tasks. In our experiments, LLMs nearly al-
ways perform much better in BatchClf than in Se-
lectOne and SelectAll under the same conditions
with a consistent and stable margin, even when the
task size is just 3 or 5 (Fig 1). The overall discrep-
ancy in accuracy between BatchCIf and the two
tasks is large and statistically significant (32% for
SelectOne and 10% for SelectAll, see Table 2) and
generally increases with a larger task size (Fig 1).

The sharp drop in accuracy may not be human-
like, because arguably, humans should at least be
able to classify and select a small number (e.g., 3/5)
of texts equally well simply by thinking over the
problems (i.e., zero-shot).

Surprisingly, such a consistent and rather stable
performance gap also exists between SelectOne
and SelectAll in favor of the latter, largely inde-
pendently of the task size (Fig 1). On average, the
SelectOne accuracy is 19.9% lower than the Se-
lectAll accuracy, also with a large and significant
effect size (Table 2).

4.4 Reasoning-Related Results

We observe that although LL.Ms can be compe-
tent zero-shot multi-problem solvers for reasoning,
their performance becomes consistently worse than
expected under multiple mixed-source problems.
Similar to our arguments in last section, the consis-
tent performance declines even with a small num-
ber (e.g., 2 or 4) of mixed-source problems may
indicate a lack of human-like understanding, as
LLMs’ reasoning capabilities are easily impacted
by the mixing of problems from different sources.

LLMs can do MultiReason>> on par with
their SPP performance. Similar to Cheng et al.
(2023), we observe in Fig 3 (A) that both LLMs, to
varying extents, can handle multiple single-source
reasoning problems as well as or even better than
when they handle these problems individually, al-
though their MPP performance typically goes down
with a larger task size.

When the reasoning problems are from mixed
sources, LLLMs perform worse than expected.
Interestingly, as shown in Fig 3 (B), the observed
MultiReason™® performance is almost always
lower than the expected one computed by aver-
aging over the SPP performance over each bench-
mark for both LLMs, with and without CoT. Out of
540 model (including GPT-3.5 with zero-shot-CoT)
and benchmark pairs, there are only 18.3% cases in
which the observed performance is better than the
expected one for a given model/benchmark pair by
a small margin (mean/std: 2.9%/2.5%). However,
for the rest 81.7% cases when the expected per-
formance is better, the margin is larger (mean/std:
13.5%/12.7%). In other words, LLMs typically
perform worse in each benchmark when handling
multiple reasoning problems from mixed sources.

Benefits of zero-shot-CoT prompting are trans-
ferrable under MPP. Analogous to the finding
that zero-shot-CoT improves LLMs’ reasoning per-
formance under SPP (Kojima et al., 2022), GPT-3.5
generally performs better with CoT than without it
under zero-shot MPP for both MultiReason®S and
MultiReason™S. The transferrability of zero-shot-
CoT* indicates that LLMs can apply CoT over each
problem in the prompt and benefit from the gener-
ated reasoning steps when solving each problem.
This again implies the strong capabilities of LLMs
to utilize information across positions under MPP.

*Similarly, Cheng et al. (2023) show that the benefits of
few-shot-CoT are transferrable under MPP.
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distinct benchmark combinations, where each benchmark contributes a problem to each mixed-source prompt.

5 Further Analyses

This section provide further analyses to better un-
derstand LLMs’ multiple problem handling capabil-
ities, their limitation, and what enables such capa-
bilities. It starts with two error analyses for Batch-
CIf, aiming to see whether models make similar
prediction errors and positional errors under Batch-
CIf compared to SingleCIf. We then investigate the
reason why SelectAll appears to be harder than Se-
lectOne, which seems counter-intuitive. Lastly, we
explore model-level factors that may enable LLMs
to receive and handle multiple problems at once.

5.1 BatchClIf Error Analysis

Given the strong BatchClIf results, two natural
questions arise: do LLMs make similar errors
under MPP and how do their errors distribute
across positions? For each one of the 180
LLM/benchmark/task size combinations, we use
chi-squared tests to compare the proportional er-
ror distribution across class labels under SingeCIf
and BatchClIf and compute the cumulative error
density across positions under BatchClf. We ob-
serve that (1) only in 9 out of 180 (or 5%) cases,
error labels are distributed significantly differently
between SingleClIf and BatchClIf (p < 0.05); and
(2) surprisingly, LL.Ms typically do not display
a clear positional bias or a serial position effect
as known in psychology (Murdock, 1962), when
solving sufficiently many problems at once (Fig 4).
This is in contrast to previous studies based on
single-problem prompts where LLMs are found
to be better at using information from the begin-

ning (primacy bias) or the end (receny bias) of the
prompt (Liu et al., 2024; Levy et al., 2024).

Taken together, the fact that LLMs make similar
label prediction errors and the lack of an obvious
positional bias imply that LL.Ms can use informa-
tion equally well across different positions under
multiple classification problems. This may explain
their strong multiple problem handling capabilities.

5.2 Why is SelectAll Harder than SelectOne

We investigate the reasons in Fig 5, which shows
that when asked to select text indices for one class
label at a time independently, LLMs almost always
assign an index to multiple labels (i.e., contradic-
tion) and leave some indices unselected (i.e., non-
excluded middles) more often. This showcases a
lack of internalized planning with modern zero-
shot LL.Ms, although different LLMs may make
these two types of errors in different proportions.
In contrast, when LLMs have to select indices for
all labels at once, they are less likely to generate
directly illogical answers in a single output as their
answer to the (i + 1), label is conditioned by their
answer to the 7, label.

5.3 Exploring Model-level Factors that may
Enable MPP

Since so far we have only tested decoder-only and
instruction-tuned LLMs, which all show strong
performance under MPP, we explore if these two
factors enable MPP. For these reasons, we test
with greedy decoding (1) three FLAN-T5 models
(Chung et al., 2022), i.e., Large, XL, XXL; and
(2) three pretrained LLMs, i.e., Llama-3 8B (Base,
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results from the 6 benchmarks.

Meta, 2024), GPT-3 1.3B, and GPT-3 175B (Brown
et al., 2020). We run these 6 LLMs on CoLLA at
task sizes 1 and 5 under zero-shot settings with
results shown in Table 3. Experiments with Coin
Flips show similar results, but the LLM outputs are
less meaningful, as discussed in Appendix D.2. We
make the following observations from Table 3.

Instruction tuning helps. This is because pre-
trained decoder-only LLMs either cannot handle
multiple problems at once or their performance is
much worse than their instruction-tuned counter-
parts. However, unlike what Laskar et al. (2023)
suggests, instruction tuning may not be a neces-
sary condition for MPP, since both Llama-3 8B
and GPT-3 175B can perform reasonably well in
BatchClf on CoLA.

FLAN-TS can barely respond to MPP, regard-
less of model sizes. We suspect that this may
not be due to their encoder-decoder structures, but
other factors such as training data and reinforce-
ment learning from human feedback (Christiano
et al., 2017), which FLAN-T5 models lack. We
leave it for future investigation.

Scaling model size seems helpful. With other
factors being identical, larger models appear to per-
form better than the smaller ones under MPP. For
example, FLAN-T5-Large is outperformed by both
FLAN-T5-XL and -XXL. Furthermore, while GPT-
3 1.3B and FLAN-T5-XL can perform SingleCIf

SingleCIf BatchCIf Avg # Answers
Llama-3 8B (Instruct) 80.5 79.4 5.0
GPT-3.5 84.2 79.6 5.0
Llama-3 8B (Base) 78.5 60.6 5.04
GPT-3 1.3B 63.0 0.0 0.03
GPT-3 175B 66.6 64.4 5.08
FLAN-T5-Large (0.78B) 76.0 NA 1.0
FLAN-T5-XL (3B) 80.2 NA 1.0
FLAN-T5-XXL (11B) 78.2 4.0 1.2

Table 3: SingleClf and BatchClf (task size 5) accuracy
(%) of three pretrained LLMs and three FLAN-TS5 mod-
els on CoLA. We also include the results of Llama-3 8B
(Instruct) and GPT-3.5 (likely base model: GPT-3 175B)
from Section 4.3 to compare with their respective base
models. The last column is the average number of LLM-
generated answers for BatchClf (expects 5). When it is
1, accuracy is not calculated to avoid overinterpretation.

close to or even better than GPT-3 175B and FLAN-
T5-XXL, only the larger models can do BatchClIf
to varying extents—the two smaller models cannot
do the task at all.

Final remark. Overall, instruction tuning ap-
pears to be the most important factor that enhances
MPP. We leave more careful explorations to future
research.

6 Conclusion

In this study, we present a comprehensive and
systematic MPE of LLMs. We evaluate various
LLMs from 4 model families on single-source
multi-problem prompts constructed from 6 classifi-
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cation and 12 reasoning benchmarks. In line with
previous few-shot results, we confirm that LLMs
are competent multi-problem solvers for classifica-
tion and reasoning under zero-shot settings. More-
over, we find multiple pieces of evidence that vali-
date the strong innate multiple problem handling
capabilities of LLMs, such as the similar classifi-
cation errors LLMs make under SPP and MPP, the
lack of obvious positional biases, and the transferra-
bility of zero-shot-CoT under MPP. Leveraging the
strong multiple problem handling capabilities, we
show that zero-shot MPP can be cost-efficient.

Two conditions are identified under which LLMs
show consistent performance declines with MPP:
(1) reformulating Batch Classification as index se-
lection tasks; and (2) mixing reasoning problems
from different sources in a multi-problem prompt.
Noticeably, these performance declines happen
even when the number of problems included is
rather small (e.g., < 5), which may not be human-
like and indicates a lack of true understanding. In
addition, we explore several model-level factors
that may enable MPP and find instruction tuning to
be an important factor that enhances MPP.

Overall, our experiment demonstrate surpris-
ingly consistent observations across different
LLMs and across multi-problem prompts con-
structed from various benchmarks. This consis-
tency indicates the reliability and fruitfulness of
MPE as an evaluation paradigm.

As a result of our study, we create a new bench-
mark comprising 53,100 zero-shot multi-problem
prompts. We call it ZeMPE, which stands for
Zero-shot Multi-Problem Evaluation. We release
ZeMPE to aid future MPE research.
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A LLM Details

We use a total of 13 LLMs in our study. Table 4
describes the specific versions for these LLMs and
highlights their differences in terms of architec-
ture, open weights, Supervised Fine-Tuning (SFT,
Wei et al., 2022), and Reinforment Learning from
Human Feedback (RLHF, Christiano et al., 2017)
etc.

B Classification-Related Results

This section contains additional details for Sec-
tion 4.3. The prompt details for the experiments
can be found in Appendix E.

B.1 Full Results

The full results obtained from Section 4.3 are visu-
alized in Fig 7. We exclude the results of Vicuna on
AGNews when task size is 100 because the prompts
exceed the model’s context length.

B.2 SingleClIf vs. BatchCIf

Table 5 indicates the proportion of BatchClf tasks
for which each LLM surpasses a threshold percent
of corresponding SingleClf performance.

B.3 Zero-shot MPP can be cost-efficient

Fig 6 shows the cost saving rate for each model/task
pair at the largest BatchClf task size that achieves
at least 95% SingleClIf accuracy for that pair.

C Reasoning-Related Results

This section provides additional details for Sec-
tion 4.4. The prompt details for the experiments
can be found in Appendix E.

Mistral 7B
Mixtral 8x7B
Llama-3 8B
=
S
4
Llama-3 70B
GPT-3.5

GPT-4 4 40.0 BE{AEWER:]

U
CoLA AGNews MRPC  SNLI
Benchmark

T
SST-2

Figure 6: Cost saving rate (%) per classification based
on our experiments. The cost is estimated by both the
input and output token counts (using the respective tok-
enizers), weighted according to the pricing policy from
OpenAlI and TogetherAl (for non-GPT LLMs) websites.

C.1 Construction of Mixed-Source Prompts

We create 6 distinct benchmark combinations based
on the 12 benchmarks, each consisting of 10 differ-
ent benchmarks. When creating these 6 benchmark
combinations, we implement the following 2 rules:
(1) the first 2 benchmarks must be different across
the 6 combinations to cover the 12 benchmarks; (2)
the first 2 benchmarks cannot come from SVAMP,
GSMS8K, MultiArith, AddSub, and SingleEq to
maximize the differences between them.

C.2 More Single-Source Results

Fig 8 shows MultiReason®S results on the other 6
reasoning benchmarks not presented in Fig 3.

D Further Analyses

D.1 Positional Errors under BatchCIlf

Fig 9 shows the full results regarding the positional
errors 7 LLMs make across benchmarks and task
sizes. We note that (1) distribution of the positional
errors becomes more random (or even) as the task
size increases for all LLMs; (2) in most cases, the
positional errors distribute nearly randomly, show-
ing no evidence of obvious positional biases, if any;
(3) some LLMs may display more severe positional
biases on some benchmarks with a certain task size,
such as GPT-3.5 on SST-2 with task size 50, but
overall this is rare.

D.2 Exploring Model-level Factors that may
Enable MPP

This section describes the results of the three pre-
trained base LLMs and three FLAN-T5 models on
Coin Flips at task sizes 1 and 2 from Section 5.3,
shown in Table 6. Similar to Table 3, Table 6 shows
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Figure 7: Full average accuracy of 7 LLMs on the 4 classification-related tasks across the 6 classification benchmarks.

100 StrategyQA Coin Flips AQUA Bigbench date AddSub
w
LY ’70-—.-—
= = e = = = =
2 E|%e——o""--g| & g 2 £
> > > > > >
g 40 3 3 2 2 3
< < < < < <
20
0
12 5 10 12 5 10 2 5 10 12 5 10 12 5 10 12 5 10
# Questions # Questions # Questions # Questions # Questions # Questions
—e— Llama-370B  —e— GPT-3.5 =--- CoT

Figure 8: Average accuracy of GPT-3.5 and Llama-3 70B on the other 6 reasoning benchmarks with multiple
single-source problems. We leave out results where the number of parsable outputs is less than 50, e.g., GPT-3.5 on
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Figure 9: Cumulative error density across positions for all benchmarks and LLMs across different task sizes. The
task size “M/N” on the left side of the plots denotes the task size for the 3 text-pair benchmarks (i.e., MRPC, SNLI,
and WiC) and for the 3 single-text benchmarks (i.e., SST-2, CoLA, AGNews), respectively.
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Model Version Architecture Open Weights SFT ~ RLHF  MoE  #Parameter  Context Length
Vicuna (Chiang et al., 2023) vl.5 decoder-only v v X X 13B 4,096
Mistral 7B (Jiang et al., 2023) Instruct-v0.2 decoder-only v v X X 7B 8,192
Mixtral 8x7B (Jiang et al., 2024) Instruct-vO0.1 decoder-only v 4 X v 47B 8,192
Llama-3 8B (Meta, 2024) Instruct decoder-only v v v X 8B 8,192
Llama-3 70B (Meta, 2024) Instruct decoder-only v v v X 70B 8,192
GPT-3.5 turbo-0125 decoder-only X v v X Unknown 16,385
GPT-4 (OpenAl, 2023) turbo-2024-04-09 decoder-only X v v X Unknown 128,000
GPT-3 1.3B (Brown et al., 2020) babbage-002 decoder-only X X X X 1.3B 16,384
GPT-3 175B (Brown et al., 2020) davinci-002 decoder-only X X X X 175B 16,384
Llama-3 8B (Meta, 2024) Base decoder-only v X X X 8B 8,192
FLAN-T5 (Chung et al., 2022) Large encoder-decoder v v X X 0.78B 512
FLAN-TS5 (Chung et al., 2022) XL encoder-decoder v v X X 3B 512
FLAN-TS5 (Chung et al., 2022) XXL encoder-decoder v 4 X X 11B 512

Table 4: Details about the 13 LLMs used in the study. For Mixtral 8x7B, a Mixture of Experts (MoE) LLM, although
each token has access to 47B parameters, but only uses 13B active parameters during inference.

>90% SCAcc  >80% SCAcc > 75% SCAcc

Vicuna 13B 79.3 93.1 93.1
Mistral 7B 76.7 83.3 100.0
Mixtral 8x7B 63.3 83.3 86.7
Llama-3 8B 733 90.0 100.0
Llama-3 70B 80.0 100.0 100.0
GPT-3.5 56.7 83.3 90.0
GPT-4 100.0 100.0 100.0
Overall 75.6 90.4 95.7

Table 5: Percent of time that BatchCIf performance
surpasses a threshold percent of SingleClf accuracy
(SCAcc) across benchmarks.

#P=1 #P=2 Avg # Answers
Llama-3 8B (Instruct) 46.8 50.0 2.1
GPT-3.5 44.8 55.4 2.0
Llama-3 8B (Base) 45.9 (20.4) 33.7 2.7
GPT-3 1.3B 49.0 45.0 6.3
GPT-3 175B 50.0 (43.4) 28.4 6.6
FLAN-T5-Large (0.78B) 46.6 NA 1.0
FLAN-T5-XL (3B) 49.4 NA 1.0
FLAN-T5-XXL (11B) 572 NA 1.0

Table 6: Accuracy (%) of three pretrained LLMs and
three FLAN-T5 models on Coin Flips with 1 and 2
problems. “# P”’: number of problems. When computing
accuracy, we treat an LLM response with more than 2
answers as a wrong answer. The numbers in the two
parentheses are accuracies when treating “uncertain”
answers as wrong answers, instead of discarding them.

that instruction-tuned models perform much bet-
ter on multi-problem prompts and that FLAN-T5
models can barely handle multi-problem prompts.

However, after manual inspection, we find that
the outputs of the three pretrained models, are often
not very sensical with repetitions of the prompts (ei-
ther partially or entirely). In particular, as shown in
Table 6, the two GPT-3 models tend to produce
more answers than needed (we set max output
tokens to be 200). The answer can also be non-
sensical even when well formatted, such as the
example output from GPT-3 175B below. Llama-3
8B (Base) overall produce more meaningful out-
puts, but similar problems also apply. We thus
discourage over-interpreting the results in Table 6.

Q1: Yes. The coin is still heads up.
Q2: No. The coin is now tails up.
Explanation

Q1: The coin is still heads up because the coin is
not flipped. The coin is flipped only when someone
flips the coin. If no one flips the coin, the coin is not
flipped.

Q2: The coin is now tails up because the coin is
flipped. The coin is flipped only when someone flips
the coin. If no one flips the coin, the coin is not
flipped.

Discussion

This is a very interesting question. It is a question
about the meaning of “flip”. The meaning of “flip” is
not clear. Itis not clear whether “flip” means “reverse”
or “flip”. It is not clear whether "flip" means "flip"
or "flip"...{ The last sentence repeated for three more
times. }...

192



E Full Prompts

E.1 Prompt Templates for SingleCIf,
BatchClf, SelectOne, and SelectAll

Tables 11 to 12 show the complete prompt tem-
plates for the four task types (i.e., SingleClf, Batch-
CIf, SelectOne, and SelectAll) tailored for SST-
2, CoLA, AGNews, MPRC, SNLI, and WiC, re-
spectively. While there are differences in the ex-
act wording of a prompt template for each task
type across the 6 classification benchmarks, each
prompt template type shares a similar underlying
structure and can be easily applied to other classifi-
cation benchmarks.

Throughout our research project, we have also
tried prompts with different wordings and struc-
tures until we finally unified the prompt designs
presented above. For example, we initially asked
LLMs to directly generate indices line by line in-
stead of a JSON output for SelectOne and we did
not provide any formatted example for SelectAll.
We also put the output format instruction in the end
of each prompt for SelectAll, instead of in the be-
ginning. Although we observed certain task-level
performance variations, which are expected, the
overall complexity among the 4 task types (Selec-
tOne > SelectAll > BatchClIf > SingeClIf) remains
unchanged, despite the variations in the prompts.
This indicates the overall limited effects of reword-
ing and restructuring prompts.

E.2 Prompt Template for Multi-problem
Prompts for Reasoning Problems

The prompt template for a multi-problem prompt
made up of reasoning problems is straightforward,
as described in Section 3.3.2. Below is a simple
example prompt made up of 2 reasoning problems
from CommonsenseQA.

Questions

Q1: The person wasn’t bothered by the weather, she
had remembered to bring her what?

Answer Choices: (A) read book (B) own house (C)
apartment (D) more rice (E) warm coat

Q2: After working on the car, what did it end up
doing?

Answer Choices: (A) going too fast (B) last several
years (C) honk the horn (D) go fast (E) start running

Answers

\. J

To enable zero-shot-CoT, we simply append the
string “Let’s think step by step.” (Kojima et al.,

2022) to a zero-shot prompt like the one shown
above in a newline (after “Answers”).
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Task Prompt template

SingleCIf Indicate the sentiment for the following line of text. The sentiment shall be
either ‘Positive’ or ‘Negative.’

Text: $text
Sentiment:

BatchCIf Indicate the sentiment for each of the $num following lines of text. The
sentiment shall be either ‘Positive’ or ‘Negative.’

Texts, one per line:
$texts

The sentiments for each of the $num lines of text, one per line:

SelectOne Go over the $num lines of text below and list the index numbers of the lines with
$polarity sentiment according to the following instructions: If none of the texts
show $polarity sentiment, write ‘None.” If all the texts show $polarity sentiment,
write ‘All.” Otherwise, provide the index numbers for each text with $polarity
sentiment.

Output your responses in JSON format with the key ‘$polarity’. A for-
matted example output is provided below.

{ ‘$polarity’: [None/All or index numbers for the texts with $polarity sentiment]}
Texts, one per line:

Stexts

JSON output:

SelectAll Go over the $num lines of text below. First, list the index numbers of the lines
with positive sentiment. Then, list the index numbers of the lines with negative
sentiment. If none of the texts show a particular sentiment, write ‘None.” If all
the texts show a particular sentiment, write ‘All.’” Otherwise, provide the index
numbers of the texts that fit a particular category.

Output your responses in JSON format with two keys: ‘positive’ and
‘negative.” A formatted example output is provided below.

{‘positive’: [None/All or index numbers of positive sentences], ‘negative’:
[None/All or index numbers of negative sentences] }

Texts, one per line:

Stexts

JSON output:

Table 7: Prompt templates for SST-2. Words immediately preceded by the dollar sign $ are placeholders. For the
single-text classification task (SST-2, CoLA, AGNews), the sequence of texts in the place of ‘$texts’ are indexed
starting with ‘1° and each text is separated by a newline.
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Task Prompt template

SingleCIf Indicate the grammatical acceptability for the following line of text. The
acceptability shall be either ‘Acceptable’ or ‘Unacceptable.’

Text: $text
Grammatical acceptability:

BatchCIf Indicate the grammatical acceptabilities for each of the $num following lines of

text. The acceptability shall be either ‘Acceptable’ or ‘Unacceptable.’

Texts, one per line:

$texts

Grammatical acceptabilities for each of the $num lines of text, one per
line:

SelectOne Go over the $num lines of text below and list the index numbers of the lines that
are grammatically $acceptability according to the following instructions: If none
of the texts are grammatically $acceptability, write ‘None.” If all the texts are
grammatically $acceptability, write ‘All.” Otherwise, provide the index numbers
for each grammatically $acceptability text.
Output your responses in JSON format with the key ‘$acceptability’. A
formatted example output is provided below.
{ ‘$acceptability’: [None/All or index numbers of $acceptability sentences]}
Texts, one per line:
$texts
JSON output:

SelectAll Go over the $num lines of text below. First, list the index numbers of the lines

that are grammatically acceptable. Then, list the index numbers of the lines
that are grammatically unacceptable. If none of the sentences show a particular
acceptability, write ‘None.” If all the sentences show a particular acceptability,
write ‘All.” Otherwise, provide the index numbers of the texts that fit a particular
category.

Output your responses in JSON format with two keys ‘acceptable’ and
‘unacceptable.” A formatted example output is provided below.

{‘acceptable’: [None/All or index numbers of acceptable texts], ‘unacceptable’:
[None/All or index numbers of unacceptable texts] }

Texts, one per line:

$texts

JSON output:

Table 8: Prompt templates for CoLA.
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Task Prompt template

SingleCIf Classity which news category the following line of text belongs to among the
following four categories: ‘Business,” ‘Sports,” “World,” and ‘Sci/Tech.’
Text: $text
News category:

BatchClIf Classify which news category each of the $num following lines of text belongs
to among the following four categories: ‘Business,” ‘Sports,” ‘World,” and
‘Sci/Tech.
Texts, one per line:
$texts
News categories for each of the $num lines of text, one per line:

SelectOne This is a news classification task in which each line of text belongs to one of
four categories ‘Business,” ‘Sports,” “World,” and ‘Sci/Tech.’
Go over the $num lines of text below and list the index numbers of the
lines that can be classified as $category according to the following instructions:
If none of the texts can be classified as $category, write ‘None.” If all the texts
can be classified as $category, write ‘All.” Otherwise, provide the index numbers
of the texts that can be classified as $category.
Output your responses in JSON format with the key ‘$category’. A for-
matted example output is provided below.
{‘$category’: [None/All or index numbers of the texts that can be classified as
$category]}
Texts, one per line:
$texts
JSON output:

SelectAll This is a news classification task in which each line of text belongs to one of

four categories ‘Business,” ‘Sports,” “World,” and ‘Sci/Tech.’

Go over the $num lines of text below and list the index numbers of the
lines that belong to each category according to the following instructions: If
none of the texts can be classified as a particular category, write ‘None.” If all the
texts can be classified as a particular category, write ‘All.” Otherwise, provide
the index numbers of the texts that can be classified as the category.

Output your responses in JSON format with the following keys: ‘busi-
ness,” ‘sports,” ‘world,” and ‘sci/tech.” A formatted example output is provided
below.

{ ‘business’: [None/All or index numbers of texts in ‘business’ category], ‘sports’:
[None/All or index numbers of texts in ‘sports’ category], ‘world’: [None/All
or index numbers of texts in ‘world’ category], ‘sci/tech’: [None/All or index
numbers of texts in sci/tech category]}

Texts, one per line:
$texts

JSON output:

Table 9: Prompt templates for AGNews.
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Task Prompt template

SingleCIf Compare text A with text B and determine if text A is a paraphrase of text B.
Respond with ‘Yes’ if text A is a paraphrase, and ‘No’ if it is not.

$text
Answer:

BatchCIf Compare text A with text B for the following $num text pairs and determine if
text A is a paraphrase of text B line by line. Respond with ‘Yes’ if text A is a
paraphrase, and ‘No’ if it is not. Provide your answers line by line.

$texts
Answers:

SelectOne Go over the $num text pairs below and list the index numbers of the text pairs
where text A $be a paraphrase of text B according to the following instructions:
If none of the text pairs satisfy this condition, write ‘None.” If all the text pairs
satisfy this condition, write ‘All.” Otherwise, provide the index numbers of the
text pairs where text A $be a paraphrase of text B.

Output your responses in JSON format with the key ‘answer’. A for-
matted example output is provided below.

{‘answer’: [None/All or index numbers of the text pairs where text A $be a
paraphrase of text B]}

Here are the text pairs:

$texts
JSON output:

SelectAll Go over the $num text pairs below. First, list the index numbers of the
text pairs that contain paraphrases. Then, list the index numbers of the
text pairs that contain non-paraphrases. If none of the text pairs satisfy a
condition, write ‘None.” If all the text pairs satisfy a condition, write ‘All.
Otherwise, provide the index numbers of the text pairs that satisfy each condition.

Output your responses in JSON format with two keys: ‘yes’ for para-
phrases and ‘no’ for non-paraphrases. A formatted example output is provided
below.

{‘yes’: [None/All or index numbers of text pairs that contain paraphrases], ‘no’:
[None/All or index numbers of text pairs that contain non-paraphrases]}

Here are the text pairs:

Stexts
JSON output:

Table 10: Prompt templates for MRPC. For the text-pair classification task (MRPC, SNLI, WiC), the sequence of
text pairs in the place of ‘$texts’ are indexed starting with ‘1’ and each text pair is separated by two newlines (each
text pair ends with a newline be design, followed by another newline before the next text pair).
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Task

Prompt template

SingleCIf

Given the following premise and hypothesis, determine the inference relation
between them. Respond with ‘Entailment’ if the hypothesis logically follows
from the premise, ‘Contradiction’ if they are in direct opposition, and ‘Neutral’
if neither applies.

Stext
Inference relation:

BatchClIf

Given the following $num pairs of premises and hypotheses, determine the
inference relation for each pair line by line. Respond with ‘Entailment’ if the
hypothesis entails the premise, and ‘Contradiction’ if they contradict. If neither
is the case, respond with ‘Neutral.” Provide your answers line by line.

$texts
Inference relations for the $num text pairs provided above:

SelectOne

Go over the $num text pairs below and list the index numbers of the text
pairs where the inference relation between the premise and the hypothesis is
$relationship according to the following instructions: If none of the text pairs
contain $relationship inference relation, write ‘None.” If all text pairs contain
$relationship inference relation, write ‘All.” Otherwise, provide the index
numbers of the text pairs where the inference relation between the premise and
the hypothesis is $relationship.

Output your responses in JSON format with the key ‘$relationship’. A
formatted example output is provided below.

‘$relationship’: [None/All or index numbers of text pairs that contain $relation-
ship inference relation]

Here are the text pairs:

Stexts
JSON output:

SelectAll

Go over the $num text pairs below. First, list the index numbers of the text
pairs that contain entailment inference relation. Then, select all text pairs
that contain contradiction inference relation. Finally, select all text pairs
that contain neutral inference relation. If none of the text pairs satisfy a
condition, write ‘None.” If all the text pairs belong satisfy a condition, write ‘All.
Otherwise, provide the index numbers of the text pairs that satisfy each condition.

Output your responses in JSON format with three keys: ‘entailment’,
‘contradiction’, and ‘neutral’. A formatted example output is provided below.

{ ‘entailment’: [None/All or index numbers of text pairs that contain entailment
inference relation], ‘contradiction’: [None/All or index numbers of text pairs
that contain contradiction inference relation], ‘neutral’: [None/All or index
numbers of text pairs that contain neutral inference relation] }

Here are the text pairs:

Stexts
JSON output:

Table 11: Prompt templates for SNLI.
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Task

Prompt template

SingleCIf

Analyze the usage of the given target word in the two subsequent contexts. The
target word may appear in various grammatical forms in each context. Respond
with “Yes’ if it maintains the same meaning across both contexts, and ‘No’ if it
does not.

$text
Answer:

BatchClIf

Analyze the usage of the following $num target words in the two contexts
that immediately follow them. These target words may appear in different
grammatical forms across the two subsequent contexts. Determine if each target
word maintains the same meaning in the two subsequent contexts. Provide your
answers line by line, indicating ‘Yes’ if it does and ‘No’ if it does not.

$texts
Answers:

SelectOne

Analyze the following $num target words and determine the index numbers
of the target words where the same meaning $be maintained across the two
contexts that immediately follow them. These target words may appear in
different grammatical forms in each context. If none of the target words satisfy
this condition, write ‘None.’. If all the target words satisfy this condition, write
‘All” Otherwise, provide the index numbers.

Output your responses in JSON format with the key ‘answer’. A for-
matted example output is provided below.

{‘answer’: [None/All or index numbers of the target words where the same
meaning $be maintained in the two subsequent contexts]}

Here are the target words along with their contexts:

$texts
JSON output:

SelectAll

Analyze the following $num target words, which may appear in different
grammatical forms in the two subsequent contexts. First, list the index numbers
of target words that maintain the same meaning in the two subsequent contexts.
Then, list the index numbers of target words that do not maintain the same
meaning in the two subsequent contexts. If none of the target words satisfy a
condition, write ‘None.” If all the target words satisfy a condition, write ‘All.
Otherwise, provide the index numbers of the target words that satisfy each
condition.

Output your responses in JSON format with two keys: ‘yes’ for target
words used with consistent meanings and ‘no’ for those used with inconsistent
meanings. A formatted example output is provided below.

{‘yes’: [None/All or index numbers of target words used with consistent
meanings], ‘no’: [None/All or index numbers of target words used with
inconsistent meanings]}

Here are the target words along with their contexts:

$texts
JSON output:

Table 12: Prompt templates for WiC.
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