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Abstract

The rapid advancement of large language mod-
els (LLMs) has shown remarkable progress in
complex reasoning tasks. However, a signifi-
cant disparity exists between benchmark per-
formances and real-world applications. We at-
tribute this gap primarily to current evaluation
protocols and metrics, which inadequately cap-
ture the full spectrum of LLM capabilities, es-
pecially in complex reasoning tasks where both
accuracy and consistency are essential. In this
paper, we introduce G-Pass@k, a novel evalu-
ation metric that continuously assesses model
performance across multiple sampling attempts,
quantifying both the model’s performance po-
tential and its stability. Through extensive ex-
periments on various public and newly con-
structed benchmarks, we employ G-Pass@k in
conjunction with state-of-the-art large language
models to provide comprehensive insights into
their potential capabilities and operational con-
sistency. Our findings reveal a significant op-
portunity to enhance the realistic reasoning abil-
ities of LLMs, underscoring the necessity for
more robust evaluation metrics.

1 Introduction

Since the emergence of large language mod-
els (LLMs), complex reasoning, particularly in
mathematical problem-solving, has been regarded
as the crown jewel of LLM capabilities (Beeching
et al., 2024; Shao et al., 2024). Numerous mod-
els have demonstrated remarkable performance on
mathematical tasks, from general-purpose models
like GPT-4o (OpenAI, 2024a), and the LLaMA
series (AI, 2024) to specialized models such as
DeepSeek-Math (Shao et al., 2024) and Qwen-
Math (Yang et al., 2024c), which excel in complex
and high-difficulty mathematical reasoning. More
recently, long-chain-of-thought (Long-CoT) mod-
els like OpenAI-o1 (OpenAI, 2024b), QwQ (Team,
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2024a), and DeepSeek-R1 (DeepSeek-AI et al.,
2024) have further advanced the state-of-the-art in
mathematical problem-solving.

In real-world applications, LLMs typically em-
ploy sampling with predefined decoding parame-
ters (e.g., temperature, top-k, top-p, and repetition
penalty) to maintain response diversity. Users often
regenerate responses or initiate new sessions un-
til obtaining satisfactory answers to specific ques-
tions. However, conventional evaluation metrics for
LLMs, such as Greedy Accuracy, Pass@k (Chen
et al., 2021), Best-of-N (BoN), and Majority Vot-
ing, demonstrate significant limitations in measur-
ing real-world performance, particularly regarding
long-term consistency. While these metrics effec-
tively capture either instantaneous accuracy or peak
performance across multiple samples, they inade-
quately reflect output stability. Such instability
poses significant challenges for applications requir-
ing reliable and predictable outcomes, highlight-
ing the need for evaluation metrics that effectively
balance response diversity with consistent perfor-
mance and comprehensive analysis of the reasoning
stability of current LLMs.

To address these challenges, we introduce
G-Pass@k, a novel evaluation metric that simul-
taneously assesses both reasoning capability and
performance consistency. The core principle of
G-Pass@k lies in evaluating model performance
under varying thresholds of correctness, providing
a nuanced understanding of model behavior across
different stringency levels. By integrating measures
of both stability and potential, G-Pass@k delivers
a comprehensive assessment of an LLM’s capabil-
ities, particularly valuable for complex reasoning
tasks.

To thoroughly study the reasoning stability of
current LLMs using G-Pass@k, we conduct com-
prehensive experiments to evaluate various mod-
els on multiple mathematical reasoning bench-
marks, encompassing different categories of large
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language models. These include general LLMs,
mathematics-specialized models, and Chain-of-
Thought (CoT) enhanced reasoning models, which
are known for their step-by-step reasoning capa-
bilities in complex mathematical problem-solving.
We also introduce LiveMathBench, a challenging
bilingual mathematics benchmark assembled from
multiple competitions and examinations to mitigate
the impact of data leakage.

Through systematic comparison between tradi-
tional metrics (Greedy Accuracy, Pass@k) and
G-Pass@k, our findings reveal distinctive insights
into model performance that conventional evalu-
ation approaches may overlook and demonstrate
significant limitations in traditional evaluation met-
rics regarding output stability assessment. We ob-
serve a substantial performance degradation across
all models as the G-Pass@k threshold becomes
more stringent, a pattern consistent across both es-
tablished open-source benchmarks (MATH (Light-
man et al., 2024) and AIME (AIME2024, 2024;
AIME2025, 2025)) and our proposed LiveMath-
Bench. Specifically, the key observations include:

• Instability in LLM Reasoning (Section 3.2, Sec-
tion 3.5): Both closed-source and open-source
models exhibit significant instability when ap-
plied to challenging reasoning tasks. Perfor-
mance drops exceed 50% in many cases, with
the worst instances showing declines of up to
90%. This issue is particularly significant in high-
difficulty questions, underscoring the necessity
for further enhancement of current LLMs’ ability
to address complex questions.

• Inconsistency Between Expanded Model Scale
and Enhanced Reasoning Ability (Section 3.2):
Merely scaling up model size does not necessar-
ily enhance stable reasoning capabilities. The
expected improvements in performance and sta-
bility are not consistently observed.

• Discrepancy Between Potential and Stabil-
ity (Section 3.2): There is a noticeable gap be-
tween the models’ potential capabilities, as mea-
sured by their G-Pass@kτ→0, and their actual
stability, reflected in G-Pass@kτ . This dispar-
ity highlights the need for further research into
developing methods that can better harness the
theoretical capabilities of these models in practi-
cal, stable applications.

We also investigate the robustness of the newly
proposed metric G-Pass@k, demonstrating that

G-Pass@k consistently evaluates model perfor-
mance across different hyperparameters, guaran-
teeing its reliability and applicability (Section 3.3,
Section 3.4). Furthermore, we conduct a prelim-
inary investigation into enhancing the reasoning
stability of the model and identifying the reasons
behind strong stability. Our investigation reveals
two key findings: 1) merely relying on SFT does
not achieve significant improvement in reasoning
stability (Section 4.1), and 2) the incorporation
of backtracking and self-reflection mechanisms in
o1-like models improves the stability of their rea-
soning capabilities (Section 4.2).

2 Generalized Metric for LLM Reasoning

2.1 Preliminary: Pass@k

Pass@k was initially proposed to evaluate the func-
tional correctness of code generated by models (Ku-
lal et al., 2019; Chen et al., 2021). With the growing
application of large language models across diverse
reasoning tasks (Rajani et al., 2019; Imani et al.,
2023; Giadikiaroglou et al., 2024), the Pass@k met-
ric has gained increasing recognition (Luo et al.,
2023; Yu et al., 2024). It provides an effective
measure of a model’s potential performance in
solving complex questions. Pass@k represents the
probability of generating at least one correct solu-
tion within k attempts for each question, as defined
by the formula:

Pass@k = EQuestions

[
1−

(
n−c
k

)
(
n
k

)
]
, (1)

where n denotes the total number of generations in
the reasoning task, and c is the number of correct
solutions among them. Intuitively, Equation (1)
calculates the expected proportion of questions for
which at least one correct solution is obtained. In
practice, n is typically set equal to k, primarily to
minimize inference costs.

2.2 Generalized Metric: G-Pass@k

While Pass@k provides an indication of a model’s
performance potential, it does not consider the sta-
bility of the model’s reasoning across diverse at-
tempts. To evaluate both the potential and stability
of a model, we propose a generalized metric called
G-Pass@k. Simply put, G-Pass@k assesses the
stability of a reasoning model by measuring the
probability of consistently generating correct solu-
tions across all attempts.

17595



Definition of G-Pass@k and G-Pass@kτ . Let
p∗ denote the latent success probability of a model
generating correct solutions. Assuming each gen-
eration is independent and identically distributed
(i.i.d.), the probability of obtaining m correct solu-
tions follows a binomial distribution:

m ∼ B(n, p∗). (2)

Since p∗ is typically inaccessible, we use a hyper-
geometric distribution to approximate the binomial
distribution:

lim
n→∞

H(m; k, c, n) → B(m;n, p∗). (3)

Therefore, G-Pass@k can be defined as (Yao et al.,
2024):

G-Pass@k = EQuestions

[(
c
k

)
(
n
k

)
]
. (4)

Here, n denotes the total number of generations
per question, and c signifies the number of gen-
erations that yield correct solutions. Consider-
ing the stringent requirement in Equation (4), we
draw inspiration from the mean Average Preci-
sion (mAP) metric (Everingham et al., 2010) in
the object detection task to introduce a tolerance
threshold τ ∈ (0.0, 1.0], leading to the definition
of G-Pass@kτ :

G-Pass@kτ = EQuestions




c∑

j=⌈τ ·k⌉

(
c
j

)
·
(
n−c
k−j

)
(
n
k

)


 ,

(5)
where ⌈τ · k⌉ denotes the smallest integer greater
than or equal to τ · k. Conceptually, for τ < 1.0,
there is flexibility to allow up to k−⌈τ ·k⌉ incorrect
solutions within the k generations. In conclusion,
we leverage the hypergeometric distribution for
sampling without replacement to approximate the
binomial distribution for sampling with replace-
ment. Such approximations tend to have smaller
errors when n is sufficiently large (k ≪ n). Further
details are provided in Appendix B.

Pass@k as a Special Case of G-Pass@kτ .
Pass@k can be regarded as a special case of
G-Pass@kτ , as formalized in the following the-
orem:
Theorem 2.1. Pass@k is a special case of
G-Pass@k as τ approaches 0, formally expressed
as:

lim
τ→0

c∑

j=⌈τ ·k⌉

(
c
j

)
·
(
n−c
k−j

)
(
n
k

) = 1−
(
n−c
k

)
(
n
k

) . (6)

The proof is provided in Appendix C.

Definition of mG-Pass@k. Recall that when
the threshold τ is low, G-Pass@kτ primarily re-
flects the model’s performance potential. Con-
versely, at higher τ values, G-Pass@kτ evaluates
the model’s stability, i.e., its level of mastery over
the question. Thus, G-Pass@kτ enables the con-
tinuous assessment of both performance potential
and stability. We further define mG-Pass@k as
follows:

mG-Pass@kτ = 2

∫ 1.0

0.5
G-Pass@kτdτ

=
2

k

k∑

i=⌈0.5·k⌉+1

G-Pass@k i
k
.

(7)

Intuitively, mG-Pass@k provides an interpolated
estimate of the area under the curve of G-Pass@kτ
for τ ∈ [0.5, 1.0], serving as a comprehensive met-
ric that integrates all G-Pass@kτ values within a
certain range. For models that are both optimal and
stable, the mG-Pass@k value should approach 1.

3 Stability of LLM Reasoning

In this section, we perform extensive experiments
on the mathematical reasoning task to evaluate and
analyze the reasoning stability of current LLMs,
given the prevalence and ease of verification of the
mathematical reasoning task.

3.1 Setup
3.1.1 LLMs
We evaluate various LLMs recognized for their
strong mathematical reasoning capabilities, includ-
ing three categories: general LLMs, mathematical
LLMs, and o1-like LLMs. For the details, please
refer to Appendix E.

3.1.2 Data
In all experiments, we involve several benchmarks,
which include the newly constructed benchmark
named LiveMathBench and publicly available
benchmarks, MATH500-L5, AIME2024-45, and
AIME2025. For more detailed information about
benchmarks, please refer to Appendix F.

3.2 Main Performance
Table 1 demonstrates the performance on Live-
MathBench and Table 2 demonstrates the perfor-
mance on MATH500-L5 and AIME2024-45. More
experimental results can be found in Appendix I.
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Table 1: Performance of models on LiveMathBench. We perform 48 runs and report results of greedy accuracy, and
G-Pass@16{0.5,0.75,1.0} and mG-Pass@16. A more detailed performance can be found in Table 6 at Appendix I.1.

LLMs Greedy G-Pass@16 (Equation (5)) / %

G-Pass@160.5 G-Pass@160.75 G-Pass@161.0 mG-Pass@16

General LLMs

Llama-3.1-8B-Instruct 24.0 18.2 11.3 4.5 10.4
Yi-1.5-34B-Chat 24.8 18.6 11.3 6.0 11.0
Gemma-2-27b-it 26.9 23.5 17.8 12.7 17.3
Llama-3.1-70B-Instruct 29.8 30.0 22.2 12.5 20.8
Qwen2.5-7B-Instruct 37.0 36.5 27.2 16.0 25.8
DeepSeek-V2.5-1210 38.7 38.9 27.9 17.3 26.7
Llama-3.3-70B-Instruct 40.3 36.2 28.9 19.1 27.5
GPT-4o-2024-11-20 † 44.8 41.9 32.9 22.2 31.6
InternLM3-8B-Instruct 44.5 43.0 35.4 23.0 33.6
Claude-3.5-Sonnet † 46.7 44.1 36.2 26.6 35.3
Mistral-Large-Instruct-2411 41.6 39.4 37.1 32.9 36.4
Qwen2.5-72B-Instruct 51.7 47.3 39.6 29.0 37.8
Qwen2.5-32B-Instruct 50.8 48.3 39.5 28.6 38.1
Gemini-1.5-Pro-Latest † 59.1 55.9 47.3 31.0 44.3
DeepSeek-V3.0-Chat † 55.0 59.5 49.9 35.0 47.9

Mathematical Reasoning LLMs

DeepSeek-Math-7B-RL 23.5 19.8 14.0 9.7 13.7
NuminaMath-72B-CoT 40.8 34.0 27.1 14.2 25.0
Qwen2.5-Math-7B-Instruct 44.1 44.1 38.3 28.1 36.6
Qwen2.5-Math-72B-Instruct 57.6 52.7 45.4 27.9 42.3

O1-like Reasoning LLMs

Skywork-o1 45.4 39.3 31.9 21.7 30.4
QwQ-32B-Preview 72.7 74.9 65.8 40.1 61.2
OpenAI o1-mini † 74.1 ‡ 76.3 67.3 48.3 64.8
DeepSeek Distill Qwen-32B 67.7 81.2 72.3 54.5 69.7
DeepSeek Distill LLama-70B 74.8 80.8 73.0 53.0 69.7
DeepSeek R1 † 81.1 83.6 79.1 69.5 77.6

† API-based LLMs.
‡ OpenAI o1 series model does not provide an optional temperature parameter, so we chose the average
accuracy of 20 generations as the proxy for greedy accuracy.

From the results, we derive the following observa-
tions:

1) Reasoning Ability Still Needs to be Properly
Evaluated. While most models demonstrate rela-
tively strong performance in terms of Greedy Accu-
racy and Pass@16, their effectiveness significantly
declines when assessed using the G-Pass@k metric.
Specifically, when τ is set to 1.0, indicating that
the model must generate accurate solutions in all
16 attempts, almost all models experience a drastic
decline in performance. Notably, even the most
robust model in Table 1, DeepSeek R1, displays a
14.3% decline, diminishing from 81.1% to 69.5%.
Even when τ is relaxed to 0.5, which requires only
half of the generated solutions to be correct, Gen-
eral LLMs, Mathematical Reasoning LLMs, and

o1-like Reasoning LLMs still experience a decrease
in performance. This indicates that, under demand-
ing conditions, most models struggle to maintain
consistency in their reasoning abilities across mul-
tiple samples, irrespective of whether the criteria
are strict or lenient. These findings underscore the
necessity for more rigorous evaluations of models’
reasoning capabilities, particularly in scenarios that
require consistent and reliable performance across
multiple instances. The current evaluation metrics,
often reliant on single-shot greedy decoding, may
not fully capture the real robustness and stability
of these models in real-world applications.

2) Increasing Model Size May Not Significantly
Enhance Robustness. A comparison of mod-
els within the same series, such as Qwen2.5-32B-
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Table 2: Performance of models on MATH500 and AIME2024. Aligning with experiments on LiveMathBench,
we also perform 48 runs and report results of greedy accuracy, G-Pass@16{0.5,0.75,1.0}, and mG-Pass@16. More
detailed results are available in Table 8 at Appendix I.3.

LLMs Greedy G-Pass@16 (Equation (5)) / %

G-Pass@160.5 G-Pass@160.75 G-Pass@161.0 mG-Pass@16

MATH500-L5

Qwen2.5-7B-Instruct 56.0 54.8 43.3 28.0 41.5
Llama-3.3-70B-Instruct 54.5 55.4 49.5 35.0 47.3
Mistral-Large-Instruct-2411 55.2 52.3 51.2 45.6 50.1
Qwen2.5-72B-Instruct 63.4 62.5 54.4 44.9 53.1
Qwen2.5-32B-Instruct 64.2 66.6 59.4 41.0 55.6

Qwen2.5-Math-7B-Instruct 65.7 65.0 62.2 57.6 61.5
Qwen2.5-Math-72B-Instruct 71.6 64.9 59.4 46.0 57.6

Skywork-o1 61.2 56.5 52.2 42.9 50.7
QwQ-32B-Preview 83.6 87.2 78.8 57.4 75.6
DeepSeek Distill Qwen-32B 83.6 89.9 83.8 70.4 81.9

AIME2024-45

Qwen2.5-32B-Instruct 11.1 7.1 3.4 2.2 3.7
Qwen2.5-7B-Instruct 11.1 8.9 8.1 4.7 7.5
Mistral-Large-Instruct-2411 13.3 10.4 6.8 2.4 6.1
Qwen2.5-72B-Instruct 13.3 13.7 12.9 7.5 11.7
Llama-3.3-70B-Instruct 22.2 25.3 18.2 6.9 16.4

Qwen2.5-Math-7B-Instruct 11.1 4.6 2.6 2.2 2.8
Qwen2.5-Math-72B-Instruct 20.0 18.7 16.2 6.7 14.1

Skywork-o1 11.1 11.2 10.3 1.5 8.2
QwQ-32B-Preview 44.4 41.0 28.6 8.1 24.7
OpenAI o1-mini † 60.3 ‡ 62.2 53.3 15.6 43.1
DeepSeek Distill Qwen-32B 62.2 77.0 66.5 31.3 59.3

† API-based LLMs.
‡ OpenAI o1 series model does not provide an optional temperature parameter, so we chose the average
accuracy of 20 generations as greedy accuracy.

Instruct and Qwen2.5-72B-Instruct, reveals that
despite a more than twofold difference in model
size, their performance is similar across various
metrics and datasets. For example, on both Live-
MathBench and existing open-source datasets, the
difference in Greedy Accuracy and mG-Pass@k
between these two models is within two percent-
age points. Additionally, in the larger LLMs like
Mistral-Large-Instruct-2411 (123B), although the
scale has increased further, performance and stabil-
ity have actually declined compared to Qwen2.5-
72B-Instruct. This suggests that for certain tasks,
particularly those requiring deep understanding and
logical reasoning, mere parameter expansion may
not yield the expected gains in performance or sta-
bility. Conversely, the current base model still
holds untapped potential, and improved training
paradigms or test-time scaling methods should be
proposed to enhance its reasoning performance and
ability, rather than merely increasing the model
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Figure 1: Illustration of G-Pass@k w.r.t. different val-
ues of k, where k = {4, 8, 16} on MATH500-L5.

size (Snell et al., 2024).

3) Significant Gap Between Theoretical Per-
formance Potential and Actual Stability. In
evaluating model performance, we observe a no-
table gap between the theoretical upper limit (G-
Pass@16τ→0), the actual performance (Greedy Ac-
curacy), and the stability across multiple samples
(G-Pass@16τ=1.0). As evident from the main per-
formance, while models theoretically possess high
potential performance, their actual performance
in practical applications falls short of this optimal
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Table 3: Performance on CCEE and WLPM. The table shows the decreasing trend of Greedy w.r.t. Pass@16 and
G-Pass@161.0 w.r.t. Greedy, which are marked with colors of different transparency.

LLMs CCEE WLPMC

G-Pass@16→0 ↘ Greedy ↘ G-Pass@161.0 G-Pass@16→0 ↘ Greedy ↘ G-Pass@161.0

Llama-3.3-70B-Instruct 75.9 59.0↓22.2 35.2↓40.3 42.1 9.1↓78.3 ∼ 0.0↓100.0
Mistral-Large-Instruct-2411 71.5 63.6↓11.0 52.3↓17.7 18.2 9.1↓49.8 6.1↓32.9
DeepSeek-V3.0-Chat 84.6 68.2↓19.3 53.3↓21.8 56.8 18.2↓68.0 6.6↓63.7
Qwen2.5-72B-Instruct 80.3 72.7↓9.4 56.9↓21.7 50.4 18.2↓63.9 4.1↓77.5
Gemini-1.5-Pro-Latest 81.8 68.2↓16.6 53.1↓22.1 60.0 36.4↓40.0 4.3↓88.2
GPT-4o 79.4 61.7↓22.3 41.8↓32.3 29.9 18.2↓39.1 4.0↓78.0
Qwen2.5-Math-7B-Instruct 80.5 63.6↓21.0 49.3↓22.5 43.8 18.2↓58.5 0.7↓96.2
Qwen2.5-Math-72B-Instruct 84.1 77.3↓8.0 53.8↓30.4 47.0 27.3↓41.9 18.2↓33.3
QwQ-32B-Preview 92.3 86.4↓6.3 55.0↓36.3 88.4 27.3↓69.1 11.7↓66.9
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Figure 2: Illustration of G-Pass@k w.r.t. different val-
ues of n for DeepSeek-Math-7b-RL and NuminaMath-
72B-CoT on LiveMathBench.

level, particularly in terms of output stability.

3.3 Performance w.r.t. G-Pass@kτ Settings

Performance w.r.t. k. Figure 1 presents the re-
sults of selected models for G-Pass@4, G-Pass@8,
and G-Pass@16. From the experiments, G-Pass@k
can achieve consistent evaluation results under dif-
ferent k values. In addition, for advanced reasoning
models with strong performance, a larger value of
k has better differentiation.

Performance w.r.t. n. As previously noted,
the number of attempts n is crucial for the ac-
curacy of the estimation. We select two mod-
els, DeepSeek-Math-7b-RL and NuminaMath-72B-
CoT, to conduct experiments with n = {16} ×
{1, 2, 3, 5, 8, 15} = {16, 32, 48, 128, 240}, and re-
port G-Pass@16τ . The results are illustrated in
Figure 2. When n is small, the estimation devia-
tion is large, as shown by the significant fluctua-
tions in the G-Pass@16τ values for both models.
Conversely, for larger n, G-Pass@16τ tends to sta-
bilize, indicating a more consistent and reliable
performance. Empirically, we recommend mak-
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Figure 3: G-Pass@kτ performance of LLMs w.r.t. sam-
pling parameters, i.e., top-p, top-k, and tempreature.

ing at least n = 3k generations when calculating
G-Pass@k to ensure estimation accuracy.

3.4 Impact of Sampling Parameters

The configuration of sampling parameters influ-
ences the diversity of model generation and, con-
sequently, its reasoning stability. To investigate
the effects of various sampling parameters, we
evaluate models across different combinations of
these parameters. Specifically, we focus on 3 key
parameters: temperature, top-p, and top-k. For
each evaluation, we adjust one parameter while
holding the others constant. Figure 3 illustrates
the experimental results for the Llama-3.3-70B-
Instruct, Qwen2.5-72B-Instruct, and QwQ-32B-
Preview models. Additional details can be found
in Appendix I.4, Appendix I.5, and Appendix I.6.
Our findings can be summarized as follows:
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1) G-Pass@kτ Demonstrates Robustness Across
Sampling Parameters. The proposed metric,
G-Pass@kτ , demonstrates stability across various
models under different sampling parameters. This
indicates that G-Pass@kτ serves as a robust metric,
accurately reflecting model performance.

2) Sensitivity of Different Models to Sampling
Parameters Varies Greatly. Experimental re-
sults show that some models, including Llama-
3.3-70B-Instruct, Mistral-Large-Instruct-2411, and
Qwen2.5-72B-Instruct, maintain stable perfor-
mance across various sampling parameters. We
hypothesize that models with more parameters ex-
hibit greater resistance to perturbations after ad-
equate pre-training. In contrast, certain models,
such as Qwen2.5-Math-72B-Instruct, experience
significant performance degradation under atypi-
cal sampling parameters. This degradation may be
attributed to the effects of post-training, making
these models more susceptible to perturbations.

3) Long CoT Can Help to Enhance the Robust-
ness of the Model. An intriguing observation
is that several o1-like models exhibit considerable
robustness to sampled parameters. For instance,
the performance of QwQ remains consistently sta-
ble across all experiments. We believe that long
COT reasoning aids the model in rectifying errors
introduced by random sampling. This finding un-
derscores the importance of backtracking and self-
reflection in addressing complex reasoning prob-
lems.

3.5 Impact of Question Difficulty
We also examine the performance of models with
respect to questions of varying difficulty levels.
We analyze CCEE and WLPMC splits from Live-
MathBench. CCEE is a college entrance exam-
ination that primarily involves fundamental high
school mathematics knowledge, whereas WLPMC
is a prestigious collegiate mathematics competition
that presents significantly greater challenges. Ta-
ble 3 shows the experimental results. The findings
indicate that models struggle more with general-
izing this ability to challenging questions. The
sharp decline in performance on WLPMC, com-
pared to CCEE, suggests a higher level of difficulty
models face when grasping these questions. For
instance, on WLPMC, the Greedy Accuracy of
QwQ-32B-Preview declines by 69.1% compared
to its Pass@16 performance. In contrast, on CCEE,
the Greedy Accuracy of QwQ-32B-Preview only

declines by 6.3% compared to its Pass@16 perfor-
mance.

From the observation, we conjecture that models
tend to learn superficial patterns from training data,
which is reflected in the marked improvement of
the Pass@k metric. However, this increase does
not necessarily translate into an enhancement of
the model’s real reasoning capabilities.

4 Enhancing the Stability of Reasoning

In this section, we aim to explore factors that can
improve the reasoning stability. Initially, we assess
whether straightforward supervised fine-tuning on
specific corpora enhances reasoning stability. Sub-
sequently, we explore the reasons for the pro-
nounced stability of o1-like models, positing that
the characteristics of their reasoning paths con-
tribute to this improved stability.

4.1 Can SFT Enhance Model Stability? An
Empirical Analysis of Data
Contamination

Currently, most large language models are trained
on massive pre-training corpora which may lead
to data contamination. Data contamination arises
when the test data is mixed into training data, also
referred to as data leakage (Dickson, 2024; Dong
et al., 2024). Additionally, supervised fine-tuning
on specific datasets is a common post-training
method to enhance model performance. In this
section, we explore whether training a model on a
particular corpus significantly affects its reasoning
stability.

To investigate the effect of SFT, we train the
Qwen2.5-7B model on a previously unseen cor-
pus and evaluate its reasoning performance and
stability throughout the training process to ascer-
tain whether mere SFT (which we also refer to as
overfitting or contamination) significantly impacts
reasoning stability. To be specific, the training pro-
cess begins with a base set of 200,000 randomly
sampled instructions from the Numina-Math-CoT
corpus (LI et al., 2024), which serves as the uncon-
taminated training set. Subsequently, we introduce
incremental rounds of data contamination, consist-
ing of 0, 6, 8, 10, and 16 rounds, where a round of
0 indicates the absence of contamination, i.e., train-
ing exclusively on the original NuminaMath data.
The model’s efficacy was assessed across these five
conditions, as illustrated in Figure 4.

Despite the observed increase in greedy score
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Figure 4: The data contamination experiment involves
different contamination rounds, where #Replication
represents the number of these rounds. The term Slope
denotes the slope value of the G-Pass@16τ curve with
respect to τ .

with escalating rounds of contamination, the sta-
bility, as quantified by the G-Pass@k metric, did
not exhibit a corresponding enhancement. Specifi-
cally, in Figure 4 left part, the disparity between ac-
tual performance (Greedy Accuracy) and stability
across multiple samples (G-Pass@k@16τ=1.0) at
each contamination round—6, 8, 10, and 16—was
22, 20, 18, and 26, respectively. In contrast, this
gap for a non-contaminated model was only 5,
which indicates that the discrepancy between per-
formance and stability in contaminated models is
more than three times greater. Additionally, as
shown in Figure 4 right part, the slope becomes
increasingly steep as the rounds of contamination
increase, showing a deterioration in model stability
with each additional round of contamination. This
phenomenon is particularly significant in certain
downstream training scenarios where overfitting be-
comes necessary, such as in contexts characterized
by data scarcity. In these cases, while an increase in
greedy accuracy might be achieved, it often comes
at the cost of reduced stability. Notably, the afore-
mentioned performance-stability gap may not nec-
essarily narrow proportionally with increased levels
of contamination.

From the experimental results, we can contend
that simple SFT does not significantly enhance
the model’s reasoning stability, or that LLMs are
more inclined to memorize during SFT, rather than
improving genuine reasoning ability (Chu et al.,
2025).

4.2 Mechanistic Analysis of Long CoT in
Enhancing Model Stability

From the experimental results presented in Table 1
and Table 2, it is evident that o1-like LLMs demon-
strate greater stability when compared to general
LLMs (e.g., Llama-3.1-8B-Instruct & Skywork-o1,
and Qwen2.5-32B-Instruct & QwQ-32B-Preview).

In this section, we explore the reasons behind the
superior inference performance and stability of o1-
like LLMs.

We select Qwen2.5-32B-Instruct and QwQ-32B-
Preview as the foundational models. Our first ob-
servation is that o1-like LLMs significantly surpass
general LLMs in terms of the length of reasoning
paths. This leads us to hypothesize whether ex-
tending the reasoning path length of general LLMs
can enhance their reasoning performance and sta-
bility. To verify this hypothesis, we designed the
following experiments: 1) leverage Qwen2.5-32B-
Instruct to perform parallel reasoning m times,
treating m reasoning paths combined as a single
reasoning process; and 2) leverage Qwen2.5-32B-
Instruct to execute serial reasoning m times, insert-
ing a break-link (e.g., Wait, let’s re-evaluate the
solution steps.) between each reasoning path. We
subsequently compared the performance of these
two enhanced reasoning models with that of QwQ-
32B-Preview, and the results are illustrated in Fig-
ure 5. We observe that: 1) while parallel reasoning
in general LLMs, combined with majority voting,
can improve reasoning performance and stability
to some extent, this improvement is limited. Such
performance and stability remain significantly infe-
rior to those of o1-like LLMs when considering an
equivalent number of reasoning tokens at the same
scale. While parallel reasoning is anticipated to
outperform certain models with more parameters
as the number of tokens rises, it unavoidably incurs
substantial reasoning overhead. 2) a robust back-
bone model possesses the capability to reflect and
backtrack. Introducing specialized break-links can
enhance this capability to some extent, thereby im-
proving the performance and stability of reasoning.
However, this capability requires further stimula-
tion compared to models similar to o1-like LLMs.
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Figure 5: Comparison between Qwen2.5-32B-Instruct
and QwQ-32B-Preview.

Therefore, we propose a preliminary hypothesis:
o1-like LLMs exhibit superior reasoning perfor-
mance and stability due to their reflective and
backtracking capabilities, which enable them to
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correct errors in the reasoning path. The rea-
soning path can be conceptualized as a gradient
descent process in which general LLMs may easily
become trapped in local optima when optimizing
in a single direction. In contrast, o1-like LLMs,
through their backtracking and reflection abilities,
can escape local optima and more effectively iden-
tify global optima.

To validate our hypothesis, we investigate the
hidden states of LLMs during the reasoning
process, which reflects the decision process of
LLMs (Ren et al., 2023; Wang et al., 2024). Specif-
ically, we utilize the CoE-Score to quantitatively
analyze the variation tendencies of hidden states
across different layers of LLMs. For detailed in-
formation, please refer to the original paper by
Wang et al. (2024). We choose several questions
from LiveMathBench and prompted Qwen2.5-32B-
Instruct and QwQ-32B-Preview to perform multi-
ple reasoning. Subsequently, we gather all candi-
date answers generated by Qwen2.5-32B-Instruct
and QwQ-32B-Preview and calculate the CoE-
Scores with respect to candidate answers at each
position of the reasoning paths. The curves are
depicted in Figure 11, Figure 12, Figure 13, and
Figure 14. These figures reveal that o1-like LLMs
exhibit multiple decision changes during the rea-
soning process, as indicated by frequent peaks and
troughs in their CoE-Score curves. In contrast, the
decision process of general LLMs is more linear,
resulting in a notably flat CoE-Score curve. This
linearity makes general LLMs more susceptible
to noise and incorrect intermediate steps, thereby
reducing their inference performance and stability.

5 Related Work

Stability of LLM Reasoning. Large language
models (LLMs) exhibit remarkable performance in
reasoning tasks, encompassing question answering,
programming, and mathematical problem-solving.
Despite their prowess, the output stability of LLMs
poses a significant challenge, whereby the model’s
outputs can vary for the same input due to ran-
dom sampling or hallucinations, impacting the
model’s reliability and predictability (Gupta et al.,
2024; Xu et al., 2024; Atil et al., 2024; Zhuo et al.,
2024). Atil et al. (2024) introduced two new met-
rics: TARr@N for the total agreement rate at N
runs over raw output and TARa@N for total agree-
ment over parsed-out answers. However, TARr@N
and TARa@N focus solely on measuring output

consistency, our work introduces a novel evaluation
metric G-Pass@k for evaluating the mathematical
reasoning proficiency of LLMs. This metric aims to
assess the model’s true reasoning ability by not only
considering output consistency but also emphasiz-
ing correctness. Additionally, Yao et al. (2024)
propose passˆk, an approach to assess the reliabil-
ity and consistency of real-world agent tasks, shar-
ing the same formulation as G-Pass@k. We relax
the overly restrictive conditions of G-Pass@k and
further introduce G-Pass@kτ and mG-Pass@k. In
comparison to the original G-Pass@k and passˆk,
our methods offer enhanced flexibility and more
comprehensive evaluation capabilities.

Mathematical Reasoning Benchmarks for
LLMs. The assessment of large language mod-
els (LLMs) in mathematical reasoning has led to
the development of specialized benchmarks focus-
ing on different aspects of an LLM’s mathemat-
ical proficiency. GSM8K (Cobbe et al., 2021)
presents a dataset composed of elementary-level
math word problems, segregated into training and
testing sets, that demand multi-step reasoning and
detailed solution paths. MATH (Hendrycks et al.,
2021) encompasses 12,500 problems derived from
high school math competitions, challenging LLMs
with advanced topics like calculus and algebra, and
providing step-by-step solutions to facilitate coher-
ent training. MathBench (Liu et al., 2024) is a
hierarchical benchmark that assesses both theoreti-
cal and applied mathematical abilities, consisting
of 3,709 questions spanning basic arithmetic to
university level, structured across five educational
tiers. Omni-Math (Gao et al., 2024) focuses on
Olympic-level mathematical reasoning, featuring
4,428 competition-level problems categorized into
over 33 subfields and 10 difficulty levels, spanning
from entry-level to professional international com-
petitions.

6 Conclusion

In this work, we propose G-Pass@kτ and mG-
Pass@k, novel evaluation metrics that assess both
the reasoning capability and performance consis-
tency of LLMs across varying correctness thresh-
olds. Through detailed evaluations conducted on
mathematical reasoning benchmarks, we find that
current LLMs struggle with consistent reasoning.
Additionally, we demonstrate G-Pass@k’s robust-
ness and preliminarily explore strategies for en-
hancing the models’ reasoning stability.
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Limitations

In this study, we analyze the stability of large lan-
guage models in reasoning tasks, propose a new
metric, and conduct experiments on various mathe-
matical reasoning benchmarks. Due to constraints
in space and resources, our work has the following
limitations:

• our experiments are not extended to broader rea-
soning tasks. Nevertheless, we assert that mathe-
matical reasoning, as a representative task, aptly
supports our experiments and conclusions. Fu-
ture research will address a wider range of rea-
soning tasks.

• We attempted to run experiments on as many
large language models (LLMs) as possible; how-
ever, due to hardware limitations, API call over-
head, and the service instability of some APIs, a
few experimental results were missing. However,
we believe that the experimental results presented
in this paper are sufficient to support our conclu-
sions.

• The benchmarks in this paper include only En-
glish and Chinese, however, the conclusions are
generally applicable to large language models of
all languages.
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A Detailed Related Work

B Estimation of G-Pass@k

To demonstrate the unbiasedness of Equation (5),
we conduct the simulation experiment illustrated in
Figure 6. Specifically, we assume the probability
of a model providing the correct solution in a single
run is p∗ = 0.4. For each n, we perform several
random Bernoulli samplings to obtain different val-
ues of c to calculate G-Pass@kτ , and then compute
the mean and variance to generate the figure. From
Figure 6, it can be observed that Equation (5) is
an unbiased estimator, facilitating fair comparison
across different values of n.

C Proof of Theorem 2.1

Proof. Since j starts iterating at the upward round-
ing of ⌈τ · k⌉ and τ ∈ (0, 1], so we have:

lim
τ→0

c∑

j=⌈τ ·k⌉
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j
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·
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According to the Vandermonde’s Identity (Van-
dermonde, 1772), the numerator term on the right
side of Equation (8) can be written as
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So we conclude that:
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D Pass@k v.s. G-Pass@k

To facilitate an intuitive comparison between
Pass@k and G-Pass@k, Figure 7 presents the met-
ric values for various c values with n = 80. The
figure illustrates that, while Pass@k offers insights
into the model’s capabilities, relying solely on it
may lead to an overestimation of the model’s ac-
tual performance. For instance, as shown in the
upper left of Figure 7, even when the model solves
the question correctly only 8 times out of 80 runs,
Pass@k produces a notably high score (Pass@k
> 0.8 for k ≥ 16). Additionally, as c increases
beyond a certain threshold, differentiating perfor-
mance based on Pass@k becomes increasingly
challenging.

In contrast, G-Pass@k provides a more accu-
rate and nuanced evaluation of the model’s perfor-
mance, as depicted in Figure 7. Across varying c
values, G-Pass@k demonstrates clear distinctions
between performance levels. Moreover, by adjust-
ing the threshold parameter τ , G-Pass@k can high-
light different aspects of the model’s performance:
a lower threshold emphasizes the model’s potential,
while a higher threshold underscores its stability
and mastery of the problem.

In summary, G-Pass@k not only delivers a more
comprehensive performance assessment compared
to Pass@k, but also, through flexible threshold
configurations, effectively balances the evaluation
of the model’s potential and stability.

E Evaluated LLMs

In this paper, we conduct experiments on
LLMs including: InternLM3-8B-Instruct (Ying
et al., 2024; Hugging Face, 2024), DeepSeek-
Math-7b-RL (Shao et al., 2024), DeepSeek-
V3.0-Chat (DeepSeek-AI et al., 2024),
Gemma-2-27b-it (Rivière et al., 2024),
Llama-3.1-8B-Instruct (Dubey et al., 2024),
Llama-3.1-70B-Instruct (Dubey et al., 2024),
Yi-1.5-34B-Chat (Young et al., 2024), Llama-
3.3-70B-Instruct (Dubey et al., 2024; AI, 2024),
NuminaMath-72B-CoT (Beeching et al., 2024),
Mistral-Large-Instruct-2411 (Team, 2024b),
Qwen2.5-7B-Instruct (Yang et al., 2024b),
Qwen2.5-Math-7B-Instruct (Yang et al., 2024c),
Qwen2.5-32B-Instruct (Yang et al., 2024b),
Qwen2.5-72B-Instruct (Yang et al., 2024b),
Qwen2.5-Math-72B-Instruct (Yang et al., 2024c),
Qwen2.5-Max (Yang et al., 2024b), Claude-
3.5-Sonnet (Anthropic Inc., 2024), Gemini-1.5-
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Figure 6: Illustration of estimation and the true value of G-Pass@kτ .

Pro (Research, 2024), Gemini-2.0-Flash-Exp (Re-
search, 2025), and GPT-4o-2024-11-20 (OpenAI,
2024a). Additionally, we include several o1-like
LLMs, such as QwQ-32B-Preview (Team, 2024a),
Skywork-o1-Open-Llama-3.1-8B (o1 Team, 2024),
DeepSeek-R1 series models (DeepSeek-AI et al.,
2024), OpenAI o1-mini (OpenAI, 2024b), and
OpenAI o3-mini (OpenAI, 2025).

F Data Details

F.1 LiveMathBench

To effectively analyze the reasoning stability of
large language models, we construct a new bench-
mark named LiveMathBench. LiveMathBench con-
sists of the latest complex mathematical questions
from various examinations and competitions, en-
suring minimal risk of data contamination. Live-
MathBench will undergo ongoing updates with new
questions to continuously evaluate the mathemati-
cal reasoning performance of models.

F.1.1 Benchmark Construction
LiveMathBench is specifically designed to include
out-of-domain question sets with different diffi-
culty spans from various mathematical exams and
competitions, aiming to avoid data contamination

issues in existing LLMs and public math bench-
marks (Zhou et al., 2023; Li et al., 2024; Ni et al.,
2024). LiveMathBench (version of 202412) incor-
porates the latest problems from the China National
Mathematical Olympiad (CNMO), China’s College
Entrance Examination (CCEE), American Math-
ematics Competition (AMC), and William Low-
ell Putnam Mathematical Competition (WLPMC).
These datasets encompass diverse levels of diffi-
culty and linguistic variations and have low overlap
with publicly available datasets, ensuring a compre-
hensive evaluation of the generalization capabilities
of LLMs across various mathematical scenarios.

F.1.2 Data Sources

LiveMathBench (version of 202412) is composed
of 4 parts including CNMO, CCEE, AMC, and
WLPMC.

CNMO. The CNMO section features cu-
rated questions from the latest Chinese National
Mathematics Olympiad. To enhance the difficulty
level, single-choice questions are transformed into
problem-solving tasks by concealing answer op-
tions, necessitating models to reason independently
and provide solutions.
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Figure 7: Comparison of Pass@k and G-Pass@k. In our simulation setup, we set n = 10 and c = {8, 16, 24, 32},
and then calculate Pass@k and G-Pass@k.

Table 4: Statistics of LiveMathBench

Dataset Language #Fill-In-the-Blank #Problem-Solving #Questions

CNMO en & cn - 18×2 18×2

CCEE en & cn 13×2 31×2 44×2

AMC en & cn - 46×2 46×2

WLPMC en & cn - 11×2 11×2

ALL en & cn 13×2 106×2 119×2

CCEE. In the CCEE segment, we have selected
questions from recent mock exams of China’s
College Entrance Examination, excluding multi-
modal proof problems. We have excluded multiple-
choice questions and converted single-choice items
into problem-solving questions, removing provided
answer choices to assess the models’ ability to gen-
erate solutions autonomously.

AMC. The AMC section includes ques-
tions from the latest American Mathematics
Competition, where each original question typi-
cally offers five possible answers labeled A through
E, with only one correct option. Consistent with
our approach in other sections, we convert these
single-choice questions into problem-solving cues,

encouraging models to deduce solutions without
the aid of provided options.

WLPMC. We also include questions from
the latest William Lowell Putnam Mathematical
Competition (WLPMC). Regarded as one of the
most prestigious university-level mathematics com-
petitions globally, the WLPMC challenges partic-
ipants with problems that span a broad spectrum
of mathematical disciplines. These include geome-
try, algebra, trigonometry, calculus, linear algebra,
combinatorics, probability theory, number theory,
complex numbers, and differential equations.

17609



F.1.3 Benchmark Statistics
Table 4 presents comprehensive statistics for the
LiveMathBench. In order to enhance benchmark
diversity and assess the performance of LLMs in
multilingual settings, both English and Chinese
versions of the questions are included.

F.1.4 Data Samples
Here we provide some samples in LiveMathBench.

Example in CNMO

[Question]
设复数z, w满足z +w = 2，求S = |z2 −
2w|+ |w2 − 2z|的最小可能值。
[Answer]
8
√
5− 16

[Question Type]
问答

Example in CCEE

[Question]
函数f(x) = x3e3x−3lnx−1

x (x > 0)的最小
值是
[Answer]
3
[Question Type]
填空

Example in AMC

[Question]
The graph of y = ex+1 + e−x − 2 has an
axis of symmetry. What is the reflection of
the point (−1, 12) over this axis?
[Answer](
0, 12
)

[Question Type]
Problem-Solving

F.1.5 Hard Split
To achieve better differentiation, we also imple-
mented a hard split for evaluating models with
strong inference performance. Specifically, we se-
lected subsets where QwQ-32B-Preview and Ope-
nAI o1-mini models demonstrated lower accuracy,

Example in WLPMC

[Question]
A sequence y1, y2, . . . , yk of real numbers
is called zigzag if k = 1, or if y2 − y1, y3 −
y2, . . . , yk−yk−1 are nonzero and alternate
in sign. Let X1, X2, . . . , Xn be chosen in-

dependently from the uniform distribution
on [0, 1]. Let a(X1, X2, . . . , Xn) be the
largest value of k for which there exists an
increasing sequence of integers i1, i2,
dots, ik such that Xi1 , Xi2 , . . . , Xik is
zigzag. Find the expected value of

a(X1, X2, . . . , Xn) for n ≥ 2.
[Answer]
2n+2

3
[Question Type]
Problem-Solving

consisting of 21 questions in English and 24 ques-
tions in Chinese.

F.2 MATH500-L5

MATH500 (Lightman et al., 2024) dataset
is a curated subset of a larger collection
MATH (Hendrycks et al., 2021), intended to chal-
lenge LLMs with complex mathematical problems.
It encompasses a variety of advanced questions
from multiple domains including algebra, geome-
try, probability, and number theory, thereby provid-
ing a comprehensive assessment of a model’s pro-
ficiency in mathematical reasoning. We select all
questions with difficulty 5, resulting in MATH500-
L5, which contains 134 questions.

F.3 AIME2024-45

Tailored for evaluating LLM performance at
the American Invitational Mathematics Exam-
ination (AIME) level, the AIME question
set (AIME2024, 2024; Yang et al., 2024c) presents
a series of intricate tasks that test logical thinking,
abstract reasoning, and accurate calculation skills.
This resource aims to push the boundaries of what
LLMs can achieve in solving sophisticated mathe-
matical problems. We combine the part 1 and the
part 2 of the American Invitational Mathematics
Examination 2024, resulting in 45 questions, called
AIME2024-45.
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F.4 AIME2025

We also incorporate Part 1 of the American Invita-
tional Mathematics Examination 2025, referred to
as AIME2025 (AIME2025, 2025), as our evalua-
tion benchmark, comprising 15 questions.

G Judge Details

G.1 Configurations of Judge Model

Inspired by previous works (Zheng et al., 2023;
Son et al., 2024), we leverage Qwen2.5-72B-
Instruct (Yang et al., 2024a) to judge if the answers
generated by the models are consistent with the
golden answers, consider the high inference cost of
the closed source models such as OpenAI models.
We set the temperature to 0.0, and maximum output
tokens to 8, 192.

G.2 Prompt for Judge

We leverage the prompts shown in Box Chinese
Version of Judge Prompt and Box English
Version of Judge Prompt to judge the consis-
tency between candidate answers and reference
answers.

G.3 Evaluation of Judge Model

To evaluate the effectiveness of our judge
model, we compared the agreement rate between
Qwen2.5-72B-as-Judge and GPT4o-as-Judge (Ope-
nAI, 2024a). Specifically, we randomly selected
300 samples from the generations of five different
models and used the judgments from GPT4o as
the ground truth. We then calculated the agree-
ment rate between the judgments made by our
model and those by GPT4o. Table 5 presents the
results, demonstrating that Qwen2.5-72B-as-Judge
achieves high consistency with GPT4o-as-Judge
across different models. These findings validate
the feasibility of Qwen2.5-72B-as-Judge.

H Implementation Details

In all experiments, we set the number of gen-
erations, n, to 16 × 3 = 48 and report the
greedy accuracy, Pass@k (G-Pass@k→0), and
G-Pass@k values, where k ∈ {4, 8, 16} and τ ∈
{0.25, 0.5, 0.75, 1.0}. For the sampling param-
eters of open-source models, we configure the
temperature to 1.0, top-p to 0.8, top-k to 50, and
repetition-penalty to 1.0. For open-source models,
the maximum number of tokens is set to 8, 192 for
non-o1 LLMs and 32, 768 for o1-like LLMs. For

closed-source models, due to constraints of infer-
ence costs, we configured the maximum comple-
tion tokens to 4, 096 for non-o1 LLMs and 8, 192
for o1-like LLMs. We use the OpenCompass (Con-
tributors, 2023) platform to evaluate all LLMs.

Due to the diverse formats of the final answers
produced by models in complex mathematical ques-
tions, we leverage Qwen-2.5-72B-Instruct (Yang
et al., 2024a) to judge whether the content gener-
ated by the tested model aligns with the standard an-
swer. In our judge pipeline, we provide the original
question, reference answer, and model-generated
answer, prompting Qwen-2.5-72B-Instruct to deter-
mine whether the candidate solution is consistent
with the reference answer. The details of the judg-
ing process can be found in Appendix G.

All experiments were conducted on clusters
equipped with NVIDIA A800 GPUs and Intel(R)
Xeon(R) Platinum 8336C CPUs, requiring hun-
dreds of GPU hours to complete.

I Additional Experimental Results

I.1 Full Performance on LiveMathBench

Table 6 presents the comprehensive performance
results on LiveMathBench.

I.2 Full Performance on LiveMathBench
Hard Split

Table 7 presents the comprehensive performance
results on LiveMathBench hard split.

I.3 Full Performance on MATH500-L5 &
AIME2024-45

Table 8, Table 9 presents the comprehensive perfor-
mance results for MATH500-L5, AIME2024-45,
and AIME2025.

I.4 Full Performance w.r.t. Different
temperatures

Figure 8 demonstrates the performance of mod-
els across different sampling temperatures. The
values for the other sampling parameters, namely
top-p (0.8), top-k (50), and repetition-penalty (1.0),
remain constant. It can be observed that most mod-
els exhibit relatively stable performance when the
temperature values are set to {0.3, 0.5, 0.7, 1.0}.
This indicates that the G-Pass@kτ metric is ro-
bust for commonly used temperature parameters.
However, it is worth noting that certain models,
such as Qwen2.5-Math-7B-Instruct and Qwen2.5-
Math-72B-Instruct, display an unusual sensitivity
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Chinese Version of Judge Prompt

请你作为一个数学阅卷专家，判断下面的答案是否与标准答案一致，即考生是否回答正
确。下面是一些评判标准：
1. 有些答案可能包含多项内容，可能有单选题，多选题，填空题和问答题，只要答案与
标准答案一致即可,对于多选题和多个空的填空题，需要考生对应的选项或空都回答正确
才算正确。
2. 有些答案可能通过不同的方式表达，比如有些答案可能是一个数学表达式，有些答案
可能是一个文字描述，只要表达的意思一致即可。且有些公式通过不同的方式表达，但
等价，也是正确的。
3. 你不需要重新计算问题答案，因为标准答案已经给出，只需要根据问题形式来判断考
生的答案是否与标准答案一致，是否正确即可。
请你根据上述标准，判断下面的答案是否与标准答案一致，如果一致，请在最后输
出\\boxed{{yes}},否则输出\\boxed{{no}},如果难以判断，请输出\\boxed{{no}}.
原问题：{question}
标准答案：{reference_answer}
考生答案：{candidate_answer}
分析：

English Version of Judge Prompt

Please act as an expert in grading mathematics exam papers, and judge whether the following
answers match the standard answers, i.e., whether the examinee answered correctly. Here are some
evaluation criteria:
1. Some answers may contain multiple parts, such as single-choice questions, multiple-choice
questions, fill-in-the-blank questions, and problem-solving questions. As long as the answer
matches the standard answer, it is considered correct. For multiple-choice questions and fill-in-
the-blank questions with multiple blanks, the examinee must answer all corresponding options or
blanks correctly to be considered correct.
2. Some answers may be expressed in different ways; for example, some answers may be
mathematical expressions, while others may be textual descriptions. As long as the meaning
conveyed is consistent, it is considered correct. Additionally, some formulas may be expressed
differently but are equivalent, which is also considered correct.
3. You do not need to recalculate the problem answers, as the standard answers are already
provided. You only need to judge whether the examinee’s answer matches the standard answer
based on the form of the question and whether it is correct.
Please judge whether the following answer matches the standard answer according to the above
criteria. If they match, output \\boxed{{yes}}, otherwise output \\boxed{{no}}. If it is difficult to
judge, also output \\boxed{{no}}.
Original Question: {question}
Standard Answer: {reference_answer}
Examinee’s Answer: {candidate_answer}
Analysis:
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Table 5: Agreement rates between Qwen2.5-72B-as-Judge and GPT4o-as-judge.

Models Need to Judge Agreement Disagreement Accuracy (%)

Deepseek-Math-7B-RL 296 4 98.7
Qwen2.5-32B-Instruct 282 18 94.0
Qwen2.5-Math-72B-Instruct 287 13 95.7
Mistral-Large-Instruct-2411 285 15 95.0
QwQ-32B-Preview 290 10 96.7

to larger temperature coefficients. This discrepancy
may reflect the impact of different training strate-
gies on the model distribution. Intriguingly, we
discover that the model QwQ-32B-Preview shows
exceptional stability when it comes to sampling
temperatures. We speculate that models similar
to o1, which rely on long COT and reflection,
are capable of consistently identifying the correct
answers through continuous self-examination and
backtracking. This characteristic contributes to the
high reasoning stability observed in these models.

I.5 Full Performance w.r.t. Different top-p
Figure 9 illustrates the performance of mod-
els across various sampling top-p parameters.
The values for the other sampling parame-
ters, namely, temperature (1.0), top-k (50), and
repetition-penalty (1.0), remain constant. Similar
phenomena are also observed in the experiments
conducted with varying temperatures. Most mod-
els exhibit stable performance within the range of
commonly used parameters, demonstrating the ef-
fectiveness of G-Pass@kτ . Furthermore, QwQ-
32B-Preview also exhibits stability w.r.t. different
top-p values.

I.6 Full Performance w.r.t. Different top-k
Figure 10 illustrates the performance of mod-
els across various sampling top-k parameters.
The values for the other sampling parameters,
specifically, temperature (1.0), top-p (0.8), and
repetition-penalty (1.0), remain constant. Our anal-
ysis indicates that all models exhibit stable perfor-
mance, suggesting that the top-k parameter has a
minimal effect on sampling compared to tempera-
ture and top-p.
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Table 6: Full performance of models on LiveMathBench. We report results of greedy decoding, Pass@16 (G-
Pass@16→0), G-Pass@16{0.25,0.5,0.75,1.0}, and mG-Pass@16.

LLMs Greedy G-Pass@16 (Equation (5)) / %

G-Pass@16→0 G-Pass@160.25 G-Pass@160.5 G-Pass@160.75 G-Pass@161.0 mG-Pass@16

General LLMs

Llama-3.1-8B-Instruct 24.0 53.3 29.9 18.2 11.3 4.5 10.4
Yi-1.5-34B-Chat 24.8 58.7 31.4 18.6 11.3 6.0 11.0
Gemma-2-27b-it 26.9 54.3 33.6 23.5 17.8 12.7 17.3
Llama-3.1-70B-Instruct 29.8 59.2 38.6 30.0 22.2 12.5 20.8
Qwen2.5-7B-Instruct 37.0 66.5 47.3 36.5 27.2 16.0 25.8
Llama-3.3-70B-Instruct 40.3 62.0 45.8 36.2 28.9 19.1 27.5
GPT-4o-2024-11-20 † 44.8 70.8 54.6 41.9 32.9 22.2 31.6
InternLM3-8B-Instruct 44.5 69.5 50.8 43.0 35.4 23.0 33.6
Claude-3.5-Sonnet † 46.7 71.2 54.3 44.1 36.2 26.6 35.3
Mistral-Large-Instruct-2411 41.6 47.3 42.2 39.4 37.1 32.9 36.4
Qwen2.5-72B-Instruct 51.7 69.6 55.6 47.3 39.6 29.0 37.8
Qwen2.5-32B-Instruct 50.8 72.0 57.6 48.3 39.5 28.6 38.1
Qwen2.5-Max † 52.9 74.8 62.8 52.7 44.3 31.1 42.2
Gemini-1.5-Pro-Latest † 59.1 78.8 65.7 55.9 47.3 31.0 44.3
DeepSeek-V3.0-Chat † 55.0 80.7 69.7 59.5 49.9 35.0 47.9

Mathematical Reasoning LLMs

DeepSeek-Math-7B-RL 23.5 45.0 29.0 19.8 14.0 9.7 13.7
NuminaMath-72B-CoT 40.8 63.3 43.5 34.0 27.1 14.2 25.0
Qwen2.5-Math-7B-Instruct 44.1 68.4 53.0 44.1 38.3 28.1 36.6
Qwen2.5-Math-72B-Instruct 57.6 74.2 60.4 52.7 45.4 27.9 42.3

O1-like Reasoning LLMs

Skywork-o1 45.4 61.1 47.7 39.3 31.9 21.7 30.4
QwQ-32B-Preview 72.7 89.0 81.8 74.9 65.8 40.1 61.2
DeepSeek Distill Qwen-1.5B 42.4 83.0 71.7 61.9 48.8 25.6 45.1
DeepSeek Distill LLama-8B 58.4 88.8 78.4 67.8 56.8 31.9 52.2
DeepSeek Distill Qwen-7B 65.6 88.5 81.8 73.0 66.4 48.4 63.1
OpenAI o1-mini † 74.1 ‡ 89.5 82.4 76.3 67.3 48.3 64.8
DeepSeek Distill Qwen-14B 69.8 90.5 85.9 79.9 71.2 51.6 68.0
DeepSeek Distill Qwen-32B 67.7 90.1 86.3 81.2 72.3 54.5 69.7
DeepSeek Distill LLama-70B 74.8 89.6 86.1 80.8 73.0 53.0 69.7
OpenAI o3-mini † 84.7 ‡ 94.3 90.2 85.7 78.8 65.3 76.8
DeepSeek R1 † 81.1 91.8 86.9 83.6 79.1 69.5 77.6

† API-based close-source LLMs.
‡ OpenAI o1-like series model does not provide an optional temperature parameter, so we chose the average accuracy of 20 generations as greedy
accuracy.
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Table 7: Full performance of models on LiveMathBench hard split. We report results of greedy decoding,
Pass@16 (G-Pass@16→0), G-Pass@16{0.25,0.5,0.75,1.0}, and mG-Pass@16.

LLMs Greedy G-Pass@16 (Equation (5)) / %

G-Pass@16→0 G-Pass@160.25 G-Pass@160.5 G-Pass@160.75 G-Pass@161.0 mG-Pass@16

General LLMs

Llama-3.1-8B-Instruct 2.2 35.5 11.5 0.8 0.0 0.0 0.0
Qwen2.5-7B-Instruct 13.3 23.6 11.4 6.2 3.2 2.2 3.3
Llama-3.3-70B-Instruct 4.4 23.1 11.0 8.0 4.7 2.3 4.4
Llama-3.1-70B-Instruct 4.4 25.0 17.5 12.2 7.5 2.7 7.0
InternLM3-8B-Instruct 11.1 40.0 19.3 10.7 8.2 2.7 7.1
Qwen2.5-32B-Instruct 13.3 30.0 19.1 14.1 10.5 3.5 9.1
Qwen2.5-72B-Instruct 17.8 29.0 18.1 15.3 11.3 5.4 10.5

Mathematical Reasoning LLMs

DeepSeek-Math-7B-RL 8.9 23.4 6.9 3.9 2.3 0.6 2.2
Qwen2.5-Math-7B-Instruct 15.6 21.3 13.1 8.2 3.3 2.2 3.8
NuminaMath-72B-CoT 11.1 28.9 10.3 8.8 7.3 5.9 7.3
Qwen2.5-Math-72B-Instruct 11.1 32.2 23.2 11.8 7.9 5.9 7.9

O1-like Reasoning LLMs

QwQ-32B-Preview 15.6 54.3 22.1 5.9 4.4 2.4 4.0
DeepSeek Distill Qwen-1.5B 6.7 33.9 15.8 9.8 4.5 2.2 4.6
DeepSeek Distill LLama-8B 8.9 56.5 30.7 16.1 5.6 2.4 6.2
DeepSeek Distill Qwen-7B 17.8 57.4 32.9 13.9 8.8 3.3 8.1
OpenAI o1-mini † 18.4 ‡ 68.3 45.6 21.0 10.1 0.5 8.5
DeepSeek Distill Qwen-14B 15.6 59.8 43.0 26.9 15.9 8.1 15.5
DeepSeek Distill Qwen-32B 22.2 59.1 43.8 29.9 16.9 3.3 15.1
DeepSeek Distill LLama-70B 35.6 61.2 50.1 33.1 19.0 5.8 17.3
OpenAI o3-mini † 43.3 ‡ 72.3 57.1 47.4 32.5 7.7 28.6
DeepSeek R1 † 42.2 71.5 55.9 46.6 33.6 9.8 29.6

† API-based close-source LLMs.
‡ OpenAI o1-like series model does not provide an optional temperature parameter, so we chose the average accuracy of 20 generations as greedy
accuracy.
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Table 8: Full performance of models on MATH500-L5 and AIME2024-45. Results of greedy decoding, Pass@16 (G-
Pass@16→0), G-Pass@16{0.25,0.5,0.75,1.0}, and mG-Pass@16 are reported.

LLMs Greedy G-Pass@16 (Equation (5)) / %

G-Pass@16→0 G-Pass@160.25 G-Pass@160.5 G-Pass@160.75 G-Pass@161.0 mG-Pass@16

MATH500-L5

Llama-3.1-8B-Instruct 26.1 62.2 29.9 17.8 10.7 3.5 9.7
Yi-1.5-34B-Chat 26.1 66.4 38.8 25.7 16.7 9.5 16.2
Gemma-2-27b-it 24.6 50.5 32.6 23.7 18.4 13.0 17.6
Llama-3.1-70B-Instruct 39.6 73.8 53.7 41.8 32.1 16.1 29.3
InternLM-3-8B-Instruct 51.5 72.3 56.8 49.9 40.3 26.9 38.3
Qwen2.5-7B-Instruct 56.0 76.1 66.6 54.9 43.3 28.0 41.5
Llama-3.3-70B-Instruct 54.5 73.1 63.1 55.4 49.5 35.0 47.3
Mistral-Large-Instruct-2411 55.2 58.4 54.4 52.3 51.2 45.6 50.1
Qwen2.5-72B-Instruct 63.4 78.9 69.5 62.5 54.4 44.9 53.1
Qwen2.5-Max † 63.4 87.1 73.5 65.8 57.3 38.9 54.5
Qwen2.5-32B-Instruct 64.2 79.9 71.1 66.6 59.4 41.0 55.6
Gemini-1.5-Pro-Latest † 72.4 92.7 82.7 74.4 64.9 45.3 61.8

DeepSeek-Math-7b-RL 15.7 44.0 26.3 15.5 8.7 5.7 9.0
NuminaMath-72B-CoT 41.0 67.3 51.1 36.8 26.8 16.8 25.6
Qwen2.5-Math-72B-Instruct 71.6 77.8 71.1 64.9 59.4 46.0 57.4
Qwen2.5-Math-7B-Instruct 65.7 78.9 71.4 65.0 62.2 57.6 61.5

Skywork-o1 61.2 70.9 60.0 56.5 52.2 42.9 50.7
DeepSeek Distill Qwen-1.5B 53.0 89.5 82.3 72.1 62.1 34.5 57.0
QwQ-32B-Preview 82.8 95.9 92.5 87.2 78.8 57.4 75.6
DeepSeek Distill LLama-8B 65.7 92.2 86.6 79.5 70.0 39.5 64.5
DeepSeek Distill Qwen-7B 78.4 96.8 94.2 87.9 80.5 62.6 77.6
DeepSeek Distill Qwen-14B 76.1 97.1 93.4 91.1 85.9 67.7 82.6
DeepSeek Distill LLama-70B 87.3 96.5 93.5 89.6 85.5 66.8 81.9
DeepSeek Distill Qwen-32B 83.6 96.1 93.6 89.9 83.8 70.4 81.9

AIME2024-45

Yi-1.5-34B-Chat 2.2 20.5 5.9 0.5 0.0 0.0 0.0
Llama-3.1-8B-Instruct 4.4 28.1 4.9 2.2 1.6 0.0 1.2
Gemma-2-27b-it 6.7 21.0 8.3 5.2 1.8 0.0 1.8
InternLM-3-8B-Instruct 11.1 20.5 13.3 7.2 4.3 1.0 3.7
Qwen2.5-32B-Instruct 11.1 32.0 14.9 7.1 3.4 2.2 3.7
Mistral-Large-Instruct-2411 13.3 15.4 11.1 10.4 6.8 2.4 6.1
Qwen2.5-7B-Instruct 11.1 26.3 11.2 8.9 8.1 4.7 7.5
Llama-3.1-70B-Instruct 15.6 41.2 23.5 15.0 8.1 3.0 8.0
Gemini-1.5-Pro-Latest † 13.3 45.7 26.5 16.8 8.7 2.5 8.1
Qwen2.5-72B-Instruct 13.3 33.7 16.3 13.7 12.9 7.5 11.7
Llama-3.3-70B-Instruct 22.2 37.1 28.7 25.3 18.2 6.9 16.4
Qwen2.5-Max † 22.2 44.4 25.2 15.5 9.9 5.3 9.8

DeepSeek-Math-7b-RL 2.2 16.3 4.4 1.5 0.1 0.0 0.1
NuminaMath-72B-CoT 2.2 21.3 4.8 2.9 2.2 0.1 1.6
Qwen2.5-Math-7B-Instruct 11.1 20.8 8.5 4.6 2.6 2.2 2.8
Qwen2.5-Math-72B-Instruct 20.0 35.2 24.8 18.7 16.2 6.7 14.1

Skywork-o1 11.1 22.1 13.6 11.2 10.3 1.5 8.2
DeepSeek Distill Qwen-1.5B 17.8 68.7 41.6 23.9 14.9 2.8 13.5
QwQ-32B-Preview 44.4 74.3 59.3 41.0 28.6 8.1 24.7
DeepSeek Distill LLama-8B 44.4 82.1 72.6 53.9 30.4 9.0 28.0
DeepSeek Distill Qwen-7B 44.4 79.6 73.9 56.3 35.4 17.5 33.8
OpenAI o1-mini † 60.3 ‡ 86.7 80.0 62.2 53.3 15.6 43.1
DeepSeek Distill Qwen-14B 62.2 86.5 79.3 75.8 62.9 26.5 56.0
DeepSeek Distill LLama-70B 62.2 84.4 76.9 72.9 63.4 32.2 57.6
DeepSeek Distill Qwen-32B 62.2 86.3 79.7 77.0 66.5 31.3 59.3

† API-based LLMs.
‡ OpenAI o1 series model does not provide an optional temperature parameter, so we chose the average accuracy of 20 generations as greedy
accuracy.
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Table 9: Full performance of models on AIME2025. We report results of greedy decoding, Pass@16 (G-
Pass@16→0), G-Pass@16{0.25,0.5,0.75,1.0}, and mG-Pass@16.

LLMs Greedy G-Pass@16 (Equation (5)) / %

G-Pass@16→0 G-Pass@160.25 G-Pass@160.5 G-Pass@160.75 G-Pass@161.0 mG-Pass@16

General LLMs

Llama-3.1-8B-Instruct 0.0 8.9 0.0 0.0 0.0 0.0 0.0
Gemma-2-27b-it 0.0 9.5 0.0 0.0 0.0 0.0 0.0
Yi-1.5-34B-Chat 0.0 14.8 4.8 0.1 0.0 0.0 0.0
GPT-4o-2024-11-20 † 0.0 25.5 7.4 0.1 0.0 0.0 0.0
Llama-3.1-70B-Instruct 6.7 21.3 8.3 4.6 0.2 0.0 0.7
InternLM3-8B-Instruct 13.3 30.3 16.2 6.7 0.1 0.0 0.8
Qwen2.5-32B-Instruct 20.0 33.3 28.1 11.5 0.2 0.0 1.4
Claude-3.5-Sonnet † 13.3 34.4 16.9 6.4 1.2 0.0 1.7
Qwen2.5-7B-Instruct 6.7 25.2 13.5 9.7 6.2 0.2 4.7
Qwen2.5-72B-Instruct 20.0 33.2 23.4 12.2 5.8 0.1 4.9
Llama-3.3-70B-Instruct 6.7 13.6 6.7 6.7 6.6 0.5 5.0
Gemini-1.5-Pro-Latest † 20.0 40.9 25.8 10.8 6.7 4.4 6.8
Qwen2.5-Max † 13.3 39.9 24.0 11.9 6.8 2.9 6.8
Mistral-Large-Instruct-2411 13.3 19.7 14.4 10.8 6.8 6.7 7.2
Gemini-2.0-Flash-Exp † 26.7 44.7 30.3 26.5 21.5 14.0 21.2

Mathematical Reasoning LLMs

DeepSeek-Math-7B-RL 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NuminaMath-72B-CoT 0.0 21.0 10.3 6.7 6.7 4.4 6.4
Qwen2.5-Math-7B-Instruct 20.0 36.8 16.2 8.7 6.7 6.7 6.8
Qwen2.5-Math-72B-Instruct 13.3 30.1 15.7 13.3 13.3 13.3 13.3

O1-like Reasoning LLMs

Skywork-o1 13.3 31.2 21.5 15.3 13.3 7.2 11.8
DeepSeek Distill Qwen-1.5B 26.7 54.6 38.1 31.9 23.8 1.4 18.6
DeepSeek Distill LLama-8B 40.0 62.2 55.3 40.4 21.2 7.9 21.0
QwQ-32B-Preview 26.7 60.5 43.5 34.5 32.4 15.6 28.1
OpenAI o1-mini † 46.7 ‡ 62.0 41.0 39.9 32.5 14.0 28.4
DeepSeek Distill Qwen-7B 46.7 62.1 53.2 46.6 38.3 22.7 36.1
DeepSeek Distill Qwen-14B 46.7 67.7 60.1 58.8 41.1 25.2 40.8
DeepSeek Distill LLama-70B 46.7 75.1 54.9 52.5 38.6 26.8 37.4
DeepSeek R1 † 66.7 68.9 63.7 52.6 46.8 24.3 42.5
OpenAI o3-mini † 53.3 ‡ 80.0 77.7 59.0 46.5 29.4 43.6
DeepSeek Distill Qwen-32B 46.7 72.6 63.6 59.7 50.2 29.5 47.3

† API-based close-source LLMs.
‡ OpenAI o1-like series model does not provide an optional temperature parameter, so we chose the average accuracy of 20 generations as greedy
accuracy.
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Figure 8: G-Pass@kτ performance of LLMs w.r.t. different temperatures.
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Question 1

In △ABC, given cosC = sinA+cosA
2 = sinB+cosB

2 , find the value of cosC.

QwQ-32B-Preview Response for Question 1

Let’s tackle this problem step by step. So, we have a triangle ABC, and we’re given that cosC
equals both (sinA+ cosA)/2 and (sinB + cosB)/2. Our goal is to find the value of cosC.
First, let’s write down what we know:

cosC =
sinA+ cosA

2
=

sinB + cosB

2
.........
Therefore, cosC = (

√
7)/4.

Wait, but earlier steps led to cos C = -cos 2A, and now cos C = (
√
7)/4.

Let me verify if this makes sense.
We have cosC = (

√
7)/4, and from cosC = − cos 2A.

So, − cos 2A = (
√
7)/4 → cos2A = −

√
7/4.

But cos 2A = 2 cos2A− 1.
Substitute cosA = (

√
7− 1)/4:

2

(√
7− 1

4

)2

− 1 = 2

(
7− 2

√
7 + 1

16

)
− 1 = 2

(
8− 2

√
7

16

)
− 1 =

8− 2
√
7

8
− 1

=
8− 2

√
7− 8

8
= −

√
7

4

This matches cosC = − cos 2A = −(−
√
7/4) =

√
7/4.

Therefore, cosC =
√
7/4.

Wait, but I thought cosC = (
√
7)/4, and cos 2A = −

√
7/4, which satisfies cosC = − cos 2A.

Therefore, the value of cosC is
√
7/4.

So, the answer should be
√
7

4
.

Final Answer√
7

4

17621



Qwen2.5-32B-Instruct-Preview Response Question 1

Given the equation in △ABC:

cosC =
sinA+ cosA

2
=

sinB + cosB

2

We will denote the common value of these expressions by x:

cosC = x

sinA+ cosA

2
= x

sinB + cosB

2
= x

From these equations, we derive:
sinA+ cosA = 2x

sinB + cosB = 2x

1. Square both sides of each equation:

(sinA+ cosA)2 = (2x)2

(sinB + cosB)2 = (2x)2

2. Expand the squares:

sin2A+ cos2A+ 2 sinA cosA = 4x2

sin2B + cos2B + 2 sinB cosB = 4x2

3. Use the Pythagorean identity sin2 θ + cos2 θ = 1:

1 + 2 sinA cosA = 4x2

1 + 2 sinB cosB = 4x2

4. Subtract 1 from both sides:

2 sinA cosA = 4x2 − 1

2 sinB cosB = 4x2 − 1

..............
16. Since sinA = cosA when A = B:

sinA = cosA =⇒ sinA =

√
2

2

2 sin2A = 1

17. Substitute back to find x:

x = −1 + 1 = 0

Thus, the value of cosC is: √
2

2
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Figure 11: CoE-Score of QwQ and Qwen on Question 1.

Question 2

The sequence {an} satisfies a1 = 1, and for any positive integer n, we have an+1 = 10na2n. What
is the general term formula for {an}?
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QwQ-32B-Preview Response for Question 2

Let’s tackle this problem step by step. We have a sequence defined by a recursive formula, and we
need to find a general term for it. The sequence is given by a1 = 1, and for any positive integer n,
an+1 = 10na2n. Our goal is to find a formula for an in terms of n.
First, I’ll try to compute the first few terms of the sequence to see if there’s a pattern.
Given:

a1 = 1

For n = 1:
a2 = 101 · a21 = 10 · (1)2 = 10

For n = 2:
a3 = 102 · a22 = 100 · (10)2 = 100 · 100 = 10, 000

For n = 3:

a4 = 103 · a23 = 1, 000 · (10, 000)2 = 1, 000 · 100, 000, 000 = 1012

.........
Wait a minute, let’s check this with the earlier terms to verify.

For n = 1:

a1 = 102
1−1−1 = 102−1−1 = 100 = 1

Correct.
For n = 2:

a2 = 102
2−2−1 = 104−2−1 = 101 = 10

Correct.
For n = 3:

a3 = 102
3−3−1 = 108−3−1 = 104 = 10, 000

Correct.
For n = 4:

a4 = 102
4−4−1 = 1016−4−1 = 1011 = 100, 000, 000, 000

Wait, but earlier I calculated a4 = 1012. Hmm, there’s a discrepancy here.

Wait, let me double-check my earlier calculation for a4:
Given a3 = 104, then:

a4 = 103 · (104)2 = 103 · 108 = 1011

Ah, I made a mistake earlier. I thought a4 = 1012, but actually, it’s 1011. So, my general formula
an = 102

n−n−1 gives a4 = 1011, which matches the correct calculation. Great!
Therefore, the general term formula for the sequence {an} is:

an = 102
n−n−1

Final Answer

an = 102
n−n−1
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Qwen2.5-32B-Instruct-Preview Response Question 2

To find the general term formula for the sequence {an} defined by a1 = 1 and an+1 = 10na2n for
any positive integer n, we will proceed step by step.
1. Initial Condition: a1 = 1
2. First Iteration: a2 = 101a21 = 10 · 12 = 10
3. Second Iteration: a3 = 102a22 = 102 · 102 = 104

4. Third Iteration: a4 = 103a23 = 103 · (104)2 = 103 · 108 = 1011

From these calculations, we observe a pattern in the exponents of 10. Let’s hypothesize the general
form of an and then prove it by induction.
5. Hypothesis: Suppose an = 10bn , where bn is some function of n.
6. Base Case: For n = 1,

a1 = 1 = 100 =⇒ b1 = 0

7. Inductive Step: Assume ak = 10bk for some k ≥ 1. We need to show that ak+1 = 10bk+1 .
By the recurrence relation,

ak+1 = 10ka2k = 10k(10bk)2 = 10k · 102bk = 10k+2bk

Thus, if ak = 10bk , then ak+1 = 10bk+1 with bk+1 = k + 2bk.
8. Solving the Recurrence for bn: We have the recurrence relation:

bk+1 = k + 2bk

with the initial condition b1 = 0.
To solve this, we will find a pattern by calculating the first few terms:

b1 = 0

b2 = 1 + 2b1 = 1 + 2 · 0 = 1

b3 = 2 + 2b2 = 2 + 2 · 1 = 4

b4 = 3 + 2b3 = 3 + 2 · 4 = 11

Observing the pattern, we hypothesize:

bn =
2n − n− 2

3

9. Verification: We verify by induction: - Base case n = 1:

b1 =
21 − 1− 2

3
=

2− 1− 2

3
=

−1

3
= 0

- Inductive step: Assume bk = 2k−k−2
3 . Then,

bk+1 = k + 2bk = k + 2

(
2k − k − 2

3

)
=

3k + 2k+1 − 2k − 4

3
=

2k+1 + k − 4

3

which matches our hypothesis.
Therefore, the general term of the sequence is:

an = 10bn = 10
2n−n−2

3

The final answer is:

10
2n−n−2

3

17625



0 250 500 750 1000 1250 1500 1750 2000
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Sc
or

e

QwQ-32B-Preview/CoE-R-Score
true answer
false answer

0 250 500 750 1000 1250 1500 1750 2000
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Sc
or

e

QwQ-32B-Preview/CoE-C-Score
true answer
false answer

0 200 400 600 800 1000

0.15

0.20

0.25

0.30

0.35

Sc
or

e

Qwen2.5-32B-Instruct/CoE-R-Score
true answer
false answer

0 200 400 600 800 1000
0.25

0.30

0.35

0.40

0.45

Sc
or

e

Qwen2.5-32B-Instruct/CoE-C-Score
true answer
false answer

Figure 12: CoE-Score of QwQ and Qwen on Question 2.

Question 3

If the real part of the complex number z is greater than 0, and z(z + 1) = 20
3+i , then z =?
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QwQ-32B-Preview Response for Question 3

Let’s tackle this problem step by step. So, we have a complex number z with a positive real part,
and it satisfies the equation z(z + 1) = 20

3+i . We need to find what z is.
First, let’s recall that for any complex number z = a + bi, where a and b are real numbers, the
complex conjugate z is a− bi.
So, if z = a+ bi, then z = a− bi.
Given that, the equation becomes:
(a− bi)((a+ bi) + 1) = 20

3+i
Simplify the left side:
First, compute z + 1 = (a+ bi) + 1 = (a+ 1) + bi.
Then, z(z + 1) = (a− bi)((a+ 1) + bi).
Let’s multiply these two complex numbers:
(a− bi)((a+ 1) + bi) = a(a+ 1) + a(bi)− bi(a+ 1)− bi(bi)
= a(a+ 1) + abi− bai− bi+ b2i2

Wait, that seems messy. Maybe there’s a better way to expand this.
Actually, let’s use the distributive property more carefully:
(a− bi)((a+ 1) + bi) = a(a+ 1) + a(bi)− bi(a+ 1)− bi(bi)
Now, compute each term:
a(a+ 1) = a2 + a
a(bi) = abi
−bi(a+ 1) = −bai− bi
−bi(bi) = −b2i2 = −b2(−1) = b2

Now, combine all these:
a2 + a+ abi− bai− bi+ b2

Notice that abi− bai = 0, since they cancel each other out.
So, we’re left with:
a2 + a+ b2 − bi
Wait, but that doesn’t seem right because the imaginary parts should cancel out completely since

the right side is a real number (as we’ll see when we simplify it).
Wait, actually, no. Let’s check the right side:
20
3+i
............................
However, the problem states that the real part of z is greater than 0. So, a > 0.

Therefore, a = 1 (since a = −2 is less than 0 and doesn’t satisfy the condition).
So, z = a+ bi = 1 + 2i.
Let me verify this solution by plugging back into the original equation.
Compute z(z + 1):
z = 1− 2i
z + 1 = (1 + 2i) + 1 = 2 + 2i
Now, z(z + 1) = (1− 2i)(2 + 2i)
Compute this product:
(1)(2)+(1)(2i)+(−2i)(2)+(−2i)(2i) = 2+2i−4i−4i2 = 2−2i−4(−1) = 2−2i+4 = 6−2i
And the right side is 20

3+i = 6− 2i, as we calculated earlier.
So, both sides match, confirming that z = 1 + 2i is indeed the correct solution.

Final Answer

1 + 2i
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Qwen2.5-32B-Instruct-Preview Response Question 3

To solve the problem, let’s first set up the equation and use the given conditions to find the complex
number z.
Given: z(z + 1) = 20

3+i
Let’s start by simplifying the right-hand side of the equation:

20

3 + i
=

20(3− i)

(3 + i)(3− i)
=

20(3− i)

32 − i2
=

20(3− i)

9 + 1
=

20(3− i)

10
= 2(3− i) = 6− 2i

So, the equation becomes:

z(z + 1) = 6− 2i

Let z = x+ yi where x, y ∈ R and x > 0. Then, z = x− yi.
Substituting z and z into the equation:

(x− yi)((x+ yi) + 1) = 6− 2i

Simplifying the left-hand side:

(x− yi)(x+ 1 + yi) = (x− yi)(x+ 1 + yi)

= x(x+ 1) + xyi− yix− yi2 + (−yi)(yi)

= x(x+ 1) + y2 + xyi− xyi

Since i2 = −1, we get:

x(x+ 1) + y2 + xyi− xyi = x2 + x+ y2

So, the equation becomes:

x2 + x+ y2 = 6− 2i

Separating the real and imaginary parts, we have:

x2 + x+ y2 = 6 and 0 = −2i

Since the imaginary part of the left-hand side is zero and the imaginary part of the right-hand side
is −2i, it must be that the imaginary part of z is such that it cancels out. This means y = −2.
Substituting y = −2 into the real part equation:

x2 + x+ (−2)2 = 6

x2 + x+ 4 = 6

x2 + x− 2 = 0

Solving the quadratic equation x2 + x− 2 = 0:

x =
−1±

√
1 + 8

2
=

−1± 3

2

So, x = 1 or x = −2. Since the real part of z is greater than 0, we have x = 1.
Thus, z = 1− 2i.
The solution is:

1− 2i
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Figure 13: CoE-Score of QwQ and Qwen on Question 3.

Question 4

Integers a and b are randomly chosen without replacement from the set of integers with absolute
value not exceeding 10. What is the probability that the polynomial x3 + ax2 + bx + 6 has 3
distinct integer roots?
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QwQ-32B-Preview Response for Question 4

So I’ve got this probability problem here. It says that integers a and b are randomly chosen without
replacement from the set of integers with absolute value not exceeding 10. So, first things first, I
need to understand what that set is. If the absolute value of the integers doesn’t exceed 10, that
means they can range from -10 to 10, inclusive. So the set is {−10,−9,−8, . . . , 9, 10}. That’s 21
integers in total.
Now, we’re choosing a and b without replacement from this set, meaning that a and b are distinct
integers from this set. So the total number of possible pairs (a, b) is 21× 20 = 420, since there
are 21 choices for a and then 20 remaining choices for b.
The problem is asking for the probability that the polynomial x3 + ax2 + bx+ 6 has 3 distinct
integer roots. So, for the polynomial to have 3 distinct integer roots, it must be factorable into
(x− r)(x− s)(x− t), where r, s, t are distinct integers.
Let’s expand (x− r)(x− s)(x− t) to see how the coefficients relate to a and b:

(x− r)(x− s)(x− t) = x3 − (r + s+ t)x2 + (rs+ rt+ st)x− rst

Comparing this to the given polynomial x3 + ax2 + bx+ 6, we can see that:




−(r + s+ t) = a

rs+ rt+ st = b

−rst = 6
............................
All these calculations seem correct.
Now, is there any possibility that different sets of roots could lead to the same (a, b) pair? For
example, if two different triplets of roots result in the same a and b, then that would mean that pair
is counted only once in the favorable outcomes.
But in our case, each set of roots gives a distinct (a, b) pair, as we can see:

- (0,−7)
- (−2,−5)
- (−6,−1)
- (−4, 1)
No overlaps here.
Therefore, the number of favorable outcomes is indeed 4.
Total possible outcomes are 21× 20 = 420.
Thus, the probability is 4

420 = 1
105 .

Wait, but perhaps I should consider that a and b are chosen without replacement , meaning that
(a, b) and (b, a) are different unless a = b, which isn’t the case here. But in our favorable
outcomes, each (a, b) is unique and distinct from (b, a), since none of the a and b pairs have a = b.
Therefore, no need to adjust for that.
Alternatively, if the problem considered (a, b) and (b, a) as the same, but since it’s about choos-

ing without replacement and the polynomial has distinct roots, I think the ordered pairs are
appropriate here.
So, I think 1

105 is the correct probability.
Final Answer

1

105
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Qwen2.5-32B-Instruct-Preview Response Question 4

To solve this problem, we need to analyze the conditions under which the polynomial x3 + ax2 +
bx+ 6 has three distinct integer roots.
1. Identify the Set of Integers: The set of integers with absolute value not exceeding 10 is
{−10,−9,−8, . . . , 9, 10}. There are 21 integers in this set.
2. Polynomial Roots: Let the roots of the polynomial x3 + ax2 + bx+6 be r, s, and t. By Vieta’s
formulas, we know:

r + s+ t = −a, rs+ rt+ st = b, rst = −6

3. inding Integer Roots: The integer roots r, s, and t must satisfy rst = −6. We list the possible
sets of integer roots:

{1, 2,−3}, {1,−2, 3}, {−1, 2, 3}, {−1,−2,−3}

4. Counting Valid Combinations: We need to count the number of ways to choose a and b
such that the polynomial has these roots. Each set of roots {r, s, t} must be chosen from the set
{−10,−9, . . . , 9, 10} without replacement.
5. Calculate a and b for Each Set: For each set of roots, calculate a and b: - For {1, 2,−3}:

r + s+ t = 1 + 2− 3 = 0 =⇒ a = 0

rs+ rt+ st = 1 · 2 + 1 · (−3) + 2 · (−3) = 2− 3− 6 = −7 =⇒ b = −7

- For {1,−2, 3}:
r + s+ t = 1− 2 + 3 = 2 =⇒ a = −2

rs+ rt+ st = 1 · (−2) + 1 · 3 + (−2) · 3 = −2 + 3− 6 = −5 =⇒ b = −5

- For {−1, 2, 3}:
r + s+ t = −1 + 2 + 3 = 4 =⇒ a = −4

rs+ rt+ st = (−1) · 2 + (−1) · 3 + 2 · 3 = −2− 3 + 6 = 1 =⇒ b = 1

- For {−1,−2,−3}:
r + s+ t = −1− 2− 3 = −6 =⇒ a = 6

rs+ rt+ st = (−1) · (−2) + (−1) · (−3) + (−2) · (−3) = 2 + 3 + 6 = 11 =⇒ b = 11

6. Total Possible Choices for a and b: The total number of ways to choose a and b from the set of
integers {−10,−9, . . . , 9, 10} without replacement is:

(
21

2

)
=

21× 20

2
= 210

7. Probability Calculation: There are 4 valid combinations of (a, b) that make the polynomial
have three distinct integer roots. Therefore, the probability is:

4

210
=

2

105

Thus, the probability that the polynomial x3 + ax2 + bx + 6 has three distinct integer roots is
2

105
.
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Figure 14: CoE-Score of QwQ and Qwen on Question 4.
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