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Abstract

Model knowledge editing enables the efficient
correction of erroneous information and the
continuous updating of outdated knowledge
within language models. While existing re-
search has demonstrated strong performance in
single-instance or few-instance sequential edit-
ing and one-time massive editing scenarios, the
batched sequential editing paradigm remains
a significant challenge. The primary issue lies
in the model’s tendency to gradually forget
previously edited knowledge and become in-
creasingly unstable after multiple iterations of
batched editing. To address these challenges,
we propose SeqMMR, an enhanced framework
for batched sequential knowledge editing that
leverages Sequential Model Merging and a
model Router. Our approach iteratively merges
parameters from current batch-edited models
with those of their predecessors, ensuring that
newly emerging knowledge is integrated while
mitigating the forgetting of previously edited
knowledge. Furthermore, the model router di-
rects queries unrelated to the edited knowl-
edge to an unedited model backup, prevent-
ing unintended alterations in model predictions.
Extensive experiments across various datasets
demonstrate that our approach effectively mit-
igates knowledge forgetting, improves perfor-
mance across all previous batches, and better
preserves the model’s general capabilities.

1 Introduction

Large language models (LLMs) have exhibited re-
markable performance across a wide range of nat-
ural language processing (NLP) tasks, serving as
repositories of extensive factual knowledge within
their parameters (Touvron et al., 2023; OpenAl,
2023; DeepSeek-Al et al., 2025). However, their
knowledge remains inherently limited in cover-
age and accuracy, often relying on outdated infor-
mation (Onoe et al., 2022; Dhingra et al., 2022;
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Liska et al., 2022) or generating erroneous, hal-
lucinatory, and biased content (Zhao et al., 2023;
Ji et al., 2023; Lazaridou et al., 2021; Agarwal
and Nenkova, 2022; Gallegos et al., 2023). Given
the continuous evolution of world knowledge and
the necessity of correcting inaccuracies, the field of
knowledge editing has garnered increasing research
attention.

Existing knowledge editing methods can be
broadly classified into parameter-updating and
parameter-preserving approaches.  Parameter-
updating methods (Cao et al., 2021; Meng et al.,
2022a,b; Li et al., 2023; Fang et al., 2024) follow
the locate-then-edit paradigm to modify specific
model parameters associated with knowledge stor-
age. In contrast, parameter-preserving methods
(Mitchell et al., 2022a; Tan et al., 2024; Zheng
et al., 2023; Zhong et al., 2023; Hartvigsen et al.,
2023; Yu et al., 2024a) either train hypernetworks
to dynamically adjust model outputs or modify out-
puts by appending constructed prompts to input
queries, leaving the model parameters unchanged.

While prior research has primarily focused on
single-instance sequential editing or one-time mas-
sive editing, real-world model maintenance re-
quires batched and sequential editing to contin-
uously update knowledge as it evolves. ICL-based
methods (Zheng et al., 2023; Zhong et al., 2023)
face inefficiencies and temporary edits, while meta-
learning-based methods (Mitchell et al., 2022a; Tan
et al., 2024) are optimized for individual instances,
limiting batch effectiveness. In contrast, parameter-
updating approaches (Meng et al., 2022b; Li et al.,
2023; Fang et al., 2024) enable large-scale editing
in a single step, making them more practical for
continuous model updates.

A critical challenge in batched sequential edit-
ing is ensuring the stability of sequential parame-
ter updates. Recent studies (Gu et al., 2024; Ma
et al., 2024; Fang et al., 2024) have shown that
parameter-updating methods in sequential editing
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tasks suffer from model degradation due to the ac-
cumulation of parameter shifts, prompting efforts
to mitigate this issue. (Gupta et al., 2024b) also ob-
served that models continuously forget previously
edited knowledge and loses the ability to perform
downstream tasks. Addressing these limitations is
crucial for developing scalable and stable knowl-
edge editing frameworks capable of supporting con-
tinuous, large-scale updates in LLMs. To this end,
we propose an enhanced batched sequential knowl-
edge editing framework based on sequential model
merging and a model router.

Specifically, we iteratively merge the parame-
ters of the current batch-edited model with those of
the previous model, enabling the merged model
to retain the latest edited knowledge while pre-
venting the forgetting of previously stored knowl-
edge. Similar to sequential parameter updates, se-
quential model merging needs to address interfer-
ence between merging parameters. Unlike multi-
task model merging, sequential merging does not
have access to model parameters from future time
steps, necessitating an interference handling solu-
tion based on self-awareness at the current time
step. Furthermore, to better handle knowledge out-
side the editing scope, we design a model router
that routes edit-unrelated queries to the unedited
model backup, ensuring their predictions are unaf-
fected by the editing process. The main contribu-
tions of our work can be summarized as follows:

1. We apply model merging methods to the
batched sequential knowledge editing task,
iteratively enabling the model to acquire
new knowledge while preserving the original
knowledge of the predecessor model. We treat
a batch of edits as a “fask” in model merging
and perform interference handling based on
self-awareness on the corresponding task vec-
tors to alleviate potential parameter conflicts
across time steps.

2. We introduce a model router component to
route queries unrelated to knowledge editing
to the unedited model backup, while ensuring
editing-related queries are routed to the edited
model. This improves the accuracy of process-
ing the model’s original knowledge without
compromising the editing performance.

3. Extensive experiments on different datasets
demonstrate that our proposed method mit-
igates the forgetting of previously edited

knowledge, leading to comprehensive perfor-
mance improvements across all past batches
while better preserving the model’s general
capabilities.

2 Related Works
2.1 Knowledge Editing

The knowledge editing task aims to correct erro-
neous knowledge or update outdated knowledge
within a language model while ensuring that other
knowledge remains unaffected. Previous works
(Mitchell et al., 2022a; Meng et al., 2022b; Li et al.,
2023; Qiao et al., 2024; Tan et al., 2024; Mitchell
et al., 2022b; Jiang et al., 2024) have made grad-
ual progress and achieved excellent performance
on standard knowledge editing datasets, such as
CounterFact (Meng et al., 2022a) and ZsRE (Levy
et al., 2017). Recently, the issue of model degrada-
tion in sequential knowledge editing scenarios has
garnered widespread attention.

Some studies have explored the instability of
models in sequential knowledge editing, highlight-
ing issues such as forgetting previously edited
knowledge (Gupta et al., 2024b; Huang et al.) and
degradation of general capabilities (Li et al.). Con-
sequently, recent works have focused on achieving
lifelong knowledge editing (Hartvigsen et al., 2023;
Chen et al., 2024; Hu et al., 2024a; Gupta et al.,
2024a), though most are designed for sequential
editing in single-instance scenarios. Meanwhile,
other studies (Gu et al., 2024; Ma et al., 2024) also
aim to stabilize model parameters to preserve gen-
eral capabilities. The recently proposed AlphaEdit
(Fang et al., 2024) achieves strong editing perfor-
mance and stable general capabilities in batched
sequential editing scenarios.

Moreover, some studies have explored knowl-
edge editing in different paradigms, such as multi-
hop editing (Zhong et al., 2023; Bi et al., 2024; Lu
et al., 2024), ripple effects of edits (Cohen et al.,
2024), commonsense knowledge editing (Huang
et al., 2024), event-level editing (Liu et al., 2024),
and long-form evaluation (Rosati et al., 2024).
These efforts introduce meaningful directions and
challenges, further advancing research in the field
of knowledge editing.

2.2 Model Merging and LLM Router

Model merging was initially introduced as a
training-free approach to integrate multiple mod-
els fine-tuned on downstream tasks. The process
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Figure 1: Overview of our methods. Figure (a) illustrates our batched sequential model merging workflow, which
iteratively merges the current sequentially edited model M, with the last timestep merged model M, _, resulting
in the merged model M, for the current set of editing batches. Figure (b) details the model merging process
within a single time step. The task vector 7; is computed as the parameter difference between M, and M.
Self-awareness weights W, ¢ are then computed to guide the pruning of redundant parameters. The pruned task
vector 7; is subsequently integrated with the predecessor merged model M;_1 to update the model parameters.
Figure (c) illustrates the model router process. Given a user query ¢, the router calculates the similarity between its
embedding and the corpus embeddings. The corpus samples with top-k similarity weights are selected to compute a
routing score s4, which is then binarized and used as the routing label [, for the query.

involves computing the parameter differences be-
tween fine-tuned models and the base model, re-
ferred to as task vector (Ilharco et al.). The core
challenge in model merging is managing inter-
ference among multiple task vectors. Recent ap-
proaches, such as weighted merging (Matena and
Raffel, 2022), sign election (Yadav et al., 2023),
and parameter sparsification (Yu et al., 2024b; Du
et al., 2024), have contributed to advancements in
model merging tasks.

Model router aims to address the challenge of
balancing time, computational costs, and task per-
formance across numerous large models with vary-
ing capabilities and costs (Stripelis et al., 2024;
Hu et al., 2024b). It typically involves analyzing or
training preference datasets corresponding to differ-
ent models (Ong et al., 2024; Shnitzer et al., 2023).
Various model routers can be designed, including
training-free or model-based approaches.

3 Method

3.1 Preliminaries

Batched Sequential Knowledge Editing  Exist-
ing mainstream methods capable of batch editing
typically involve adding a trained perturbation A

to the model’s parameters ®, thereby altering the
model’s predictions for specified queries. When a
piece of knowledge is formalized as (s, r,0), the
subject s, relation r, and object o constitute a fac-
tual statement (e.g., s ="Cybertruck", » = "is man-
ufactured by", o = "Tesla"). It can be represented
as k — v pairs in the model parameter, where &
encodes the query prompt (s, ) and v encodes the
answer o.

Given a batch of new knowledge £ = {ei}ZB:p
where e; = (s;,7;,0;), the perturbation A is op-
timized under the constraint: (@ + A)K = V,
where K and V are the collections of k; and v;,
respectively. In the context of batched sequential
editing, for a total of 7" editing batches, each batch
generates a A; based on the predecessor model,
responsible for updating the parameters. Therefore,
for a given knowledge editing method G, at the -
th editing batch, the process of batched sequential
knowledge editing can be formally expressed as:

My =G(M_1,A),t€{1,2,.... T} (1)
where M, is the model after ¢ batches of editing.

Model Merging Model merging can integrate
the task-specific capabilities of two or more models
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by computing and processing task vectors. Tech-
niques such as pruning and sparsification serve as
important strategies for mitigating interference be-
tween task vectors. Given N task vectors {7;} 1\ |
derived from N fine-tuned models’ parameters
{0, }fV: 1» they are individually or collectively pro-
cessed using interference mitigation methods F,
after which the processed task vectors {7;}Y | =
F({r:}X,) are merged into the base model M:

N
M= O+ N )
i=1
where )\; are the merge coefficients for different
task vectors.

To align with the batched sequential editing
task, the perturbation A computed during batch
editing can be regarded as a task vector, here-
after denoted as 7. When applying model merg-
ing sequentially during knowledge editing, each
merge at the ¢-th batch involves two models: the
currently edited model M, and the predecessor
merged model M,_1. Since only a single task vec-
tor 7, is generated at each step, no interference oc-
curs between task vectors within the same timestep.
Howeyver, due to the accumulation of task vectors
over timesteps, interference mitigation remains nec-
essary to reduce the impact on model parameter
distribution and prevent potential conflicts arising
across different timesteps.

3.2 Sequential Model Merging for Batched
Knowledge Editing

Our approach aims to integrate the recently edited
knowledge of the current model with the memory
of previous batches of edits from the predecessor
model through model merging, the workflow as
illustrated in Figure 1(a).

We define the model after ¢ batches of sequential
editing as M, and the model after our sequential
merging process as M;, where My = M repre-
sents the unedited base model. In each batch of
editing, we merge the model after the current batch
of edits with the predecessor merged model, the
corresponding task vector is computed as:

=0, — Oy, (3)

Similar to the instability and forgetting issues
caused by the iterative accumulation of parameters
in sequential editing, sequential model merging
also involves the iterative accumulation of task vec-
tors. Therefore, handling interference between task

vectors across time steps is crucial for achieving op-
timal merging performance and stability. Since the
task vectors to be generated in future batches are
not visible during the current batch, and maintain-
ing task vectors from past batches incurs additional
memory overhead as the number of iterations in-
creases, we focus on optimizing the current task
vector to reduce any potential interference and con-
flicts. Inspired by (Du et al., 2024), we employ a
self-awareness weight-based pruning approach to
sparsify the task vectors.

Given a current task vector 7, we first compute
its normalized Hadamard-product H with itself to
quantify the importance of its parameters:

H = Normalize(t; ® 7¢) 4)

Subsequently, we apply the So ftmax function as a
nonlinear activation to emphasize parameters with
significant contributions while suppressing redun-
dant parameters with minor contributions, thereby
obtaining self-awareness weights W, ¢ for param-
eter pruning:

eHi

D :
Zj:l efls

where H; denote the i-th row of H, D is the di-
mension of task vector. We then specify a pruning
ratio r to sparsify the task vector based on the self-
awareness weights. Specifically, we retain only the
top (1 — 7)% of the parameters while discarding
the rest, the pruning mask Pr can be defined as:

Weerg = [h1, ho, ..., hp], hi = )

Pr; — 1, if h; intop-(1 — r)(Wiers) ©)
0, else

In our experiments, we observed that the majority
of the parameters are redundant, with over 80% of
them being prunable.

After obtaining the pruned task vector, we apply
it to the predecessor merged model to generate the
merged model for the current iteration:

%t:PT@Tt (7)
./\;lt<—(9/\;lt_l+7~'t

Figure 1(b) illustrates the merging process
within a single time step, as described above. Due
to the highly sparse nature of effective parameters
in the task vector, extensive pruning based on self-
awareness weights effectively retains the current
knowledge while reducing potential interference
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Method Score 1 Efficacy T Generalization T Locality T Fluency Consistency
Unedited 12.87 7.85 10.58 89.48 635.44 24.15
FT 60.08 87.95 80.90 38.17 391.14 5.54
PRUNE 77.20 86.15 83.35 65.56 610.79 29.26
PMET 71.92 79.50 77.48 61.62 529.97 20.66
SeqMMRppmET 79.33 84.80 82.90 72.62 563.63 26.69
RECT 81.25 91.40 85.45 70.02 621.02 30.00
SeqMMRREcT 84.89 92.35 85.55 78.00 621.98 29.90
MEMIT 78.37 89.35 87.20 64.02 614.21 32.11
SeqMMRyeMmir  85.15 93.35 89.55 74.89 618.44 32.10
AlphaEdit 88.01 99.85 96.02 73.22 622.88 34.82
SeqMMR pjpha 90.95 99.90 95.00 80.34 623.68 33.86

Table 1: Performance comparison of LLaMA3-8B model on the CounterFact dataset. The batch size is set to 200,
with a total of 10 sequential editing batches, resulting in 2,000 knowledge edits. SeqMMRperine represent the
results of applying model merging and the model router under different baseline knowledge editing methods. The

best results are in bold, second-best are underlined.

and conflicts with future task vectors. This merg-
ing process consistently preserves knowledge from
the previous model during sequential execution,
mitigating the issue of forgetting previously edited
knowledge and leading to comprehensive improve-
ments in editing performance across all batches.

3.3 Top-k Similarity Weighted Router

Although our model merging method mitigates for-
getting of previously edited knowledge, frequent
parameter updates inevitably affect the model’s
prior knowledge outside the editing scope, which
should ideally be handled by the unedited model.
To address this, we designed a training-free model
router that routes queries related to edited knowl-
edge to the sequentially merged model, while di-
recting unrelated queries to the unedited backup
model.

To formally describe the details of the routing
process, let £ = {e;} , denote the set of n
newly edited knowledge examples, labeled as 1,
and U = {w;};", denote m examples unrelated
to editing, sampled from data outside the test set
(detailed in Appendix B), labeled as —1. Here,
the label indicates whether the example should be
routed to the edited model or the original model.
The computation corpus C consists of £ and U, i.e.,
C = {&,U}. We then use an embedding model to
compute embeddings ¢; for each instance in the cor-
pus. For a given query ¢, we compute its similarity
weight 3; with each corpus instance as follows:

€q €

Bi=exp(l+ ———
' [leql1]edl |

) ®)

This similarity weight is then used to compute
the routing score. To ensure the significance of
high-weighted samples, we retain the top-k largest
weights and set the remaining weights to 0, thereby
eliminating the influence of weakly similar sam-
ples on the score computation, i.e., 3; = top-k(0;).
Then, the routing score s, can be computed as fol-
lows:

n+m

s = argmin (5 L5, 1)) ©)
7 4=1

where [; € {—1, 1} denote the model label of ex-
amples, L represent the Binary Cross-Entropy loss.
The routing label [, used for final model selection
is obtained by simply binarizing s,:

p L s >0 (10)
-1, ifs, <0

where a label of 1 routes the query to the edited
model, while a label of —1 routes it to the unedited
model. The overall process of the router is shown
in Figure 1(c).

4 Experiments

4.1 Datasets and Baselines

We evaluate our method on widely used knowledge
editing datasets, CounterFact (Meng et al., 2022a)
and KnowEdit (Zhang et al., 2024), with detailed
descriptions and examples provided in Appendix C.

To evaluate the general capabilities of the model,
we conducted tests on the General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang
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Method Edit Succ. 1 Portability 1 Locality 1
Rewrite Acc. Res. Acc. Subj. Ali. Logic. Gen. Rel. Sepc.
Unedited 31.48 50.92 22.17 52.83 -
MEMIT 70.17 54.66 29.15 46.84 58.59
SeqMMRMEMIT 75.05 56.16 30.72 49.44 65.53
AlphaEdit 93.68 58.63 33.85 4791 59.98
SeqMMR A1pha 93.78 58.83 33.31 48.63 65.35

Table 2: Performance comparison of LLaMA3-8B model on the ZsRE subset of KnowEdit dataset. The batch size
is set to 100, with a total of 10 sequential editing batches, resulting in 1,000 knowledge edits. The best results are in

bold, second-best are underlined.

et al., 2018), which includes six downstream tasks:
Stanford Sentiment Treebank (SST) (Socher et al.,
2013), Massive Multi-task Language Understand-
ing (MMLU) (Hendrycks et al., 2021), Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005), Recognizing Textual Entailment
(RTE) (Bentivogli et al., 2009), Corpus of Linguis-
tic Acceptability (CoLA) (Warstadt et al., 2019),
and Natural Language Inference (NLI) (Williams
et al., 2018).

We select the fine-tuned model and representa-
tive knowledge editing methods as baselines for
comparison, including PMET (Li et al., 2023),
RECT (Gu et al., 2024), PRUNE (Ma et al.,
2024), MEMIT (Meng et al., 2022b), and Al-
phaEdit (Fang et al., 2024). Since our method can
be broadly applied to parameter-updating knowl-
edge editing methods, we choose MEMIT, which
performs well in batched knowledge editing, and
the recently proposed state-of-the-art AlphaEdit as
base models to test the effectiveness of our method
across different knowledge editing approaches.

4.2 Metrics and Settings

We use a variety of metrics across different datasets
to evaluate our method. In the CounterFact dataset,
three main knowledge editing metrics are included:
Efficacy, Generalization and Locality, with de-
tailed definitions provided in Appendix A. The
overall edit Score is represented by the harmonic
mean of the above three metrics. Additionally, Flu-
ency measures excessive repetition in the model
outputs, while Consistency evaluates the cosine
similarity between the TF-IDF vectors of the model
outputs and a reference Wikipedia text. In the
KnowEdit dataset, the evaluation metrics are also
categorized into three types: Edit Success, Porta-
bility, Locality, as detailed in Appendix A. For
evaluating the general capabilities of the model, we
use the F1 scores on six downstream tasks from the

GLUE dataset as the evaluation metric.

We use the widely used open-source model
LLaMAZ3-8B as the backbone for experimental test-
ing. For the hyperparameters, in model merging,
we set the pruning ratio Pr to 85%, and in the
model router, we set top-k value k to 2. For the
embedding model used in the model router, we use
the text-embedding-3-small model from OpenAl.
All of our experiments were conducted on NVIDIA
RTX A6000 48G GPUs.

5 Results

5.1 Performance on CounterFact

Table 1 presents the results of our method on the
CounterFact dataset. We apply model merging and
model routing to different baseline methods, de-
noted as SeqMMRp5¢sine. All approaches demon-
strate improvements in overall Score. Compared
to PMET, MEMIT and RECT, SeqMMR shows
a significant enhancement in editing performance.
Even when applied to AlphaEdit, a strong base-
line known for both stability and effectiveness,
SeqMMR pjph, further improves overall editing per-
formance.

Among all evaluation metrics, locality shows
the most notable improvement, primarily due to
the combined effects of model merging, which
enhances overall performance, and the model
router, which directs editing-unrelated queries to
the unedited model with optimal locality. These re-
sults demonstrate that our method better preserves
the prior knowledge and mitigates the forgetting
issue in batched sequential knowledge editing.

5.2 Performance on KnowEdit

We further evaluated our method on the ZsRE
subset of the KnowEdit dataset, as it provides a
more diverse set of evaluation metrics. Table 2
shows that SeqMMRyEMrT improves performance
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Figure 2: Comparison of general capabilities. The edited model is expected to retain the general capabilities of the

unedited model.

across all metrics compared to the MEMIT base-
line. When applied to the stronger AlphaEdit base-
line, SeqMMR pjpna shows a slight decrease in the
Subject Aliasing Accuracy but achieves improve-
ments on the remaining four metrics, ultimately
leading to better overall performance.

5.3 Varying Batch Size and Number of Edits

We evaluated SeqMMR under different batch sizes
and numbers of edits. Table 3 presents the results
under more challenging settings (6000 edits with a
batch size of 300 and 5000 edits with a batch size
of 100), where SeqMMR demonstrates substantial
performance improvements across all metrics.

5.4 Performance on Different Language
Models

To test the performance of SeqMMR on other pop-
ular LLMs, we conducted experiments to evaluate
the performance on the Qwen-2.5-7B and GPT-J-
6B models. As shown in Table 4, SeqMMR consis-
tently demonstrates effective performance improve-
ments across different models and baselines. This
indicates the high compatibility of SeqMMR with
different language models.

5.5 General Capability

In addition to evaluating the knowledge editing ca-
pability, an important criterion for assessing the
stability of knowledge editing methods is whether
the ability to handle other downstream tasks is pre-
served. To this end, we tested the model’s general

capabilities across six downstream task datasets
from the GLUE benchmark.

Figure 2 compares the F1 scores of SeqMMR
with other baseline models across six downstream
tasks. SeqMMR outperforms its corresponding
baselines in five tasks—SST, MMLU, CoLA,
MRPC, and NLI—achieving scores comparable to
the unedited model. Interestingly, in the RTE task,
the model after editing performed better than the
unedited model, while SeqMMR showed a slight
decrease, aligning its performance more closely
with the unedited model. Overall, SeqMMR im-
proves the stability of the edited model’s perfor-
mance across various downstream tasks, effectively
preserving the model’s general capabilities.

5.6 Ablation Studies

We conducted comprehensive ablation experiments
to evaluate the effectiveness of our proposed se-
quential model merging method and model router
component, as well as to test the model’s perfor-
mance under different hyperparameter settings.

5.6.1 Ablation Study on Modules

We evaluate the contributions of the merging oper-
ation and the model router to each batch of edits
on the CounterFact dataset. The results of MEMIT
baseline as shown in Table 5 (more details in Ta-
ble 9), and the AlphaEdit baseline, as shown in
Table 8, demonstrate that applying our sequential
model merging method to the baseline leads to
an overall improvements across previously edited
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Method Batch Size Num. Edits Score Efficacy Generalization Locality
AlphaEdit 100 5000 68.71 79.14 72.16 58.25
SeqMMR pjpha 100 5000 75.96  82.26 75.24 71.19
AlphaEdit 300 6000 80.76  97.47 91.86 62.50
SeqMMR pjpha 300 6000 86.72  98.10 92.49 73.60
Table 3: Performance of varying sequential edit settings on LLaMA3-8B model.

Model Method Score Efficacy Generalization Locality

Qwen-2.5 AlphaEdit 68.49  80.12 65.85 61.97

Qwen-2.5 SeqMMRypha  72.86  80.48 66.78 72.61

GPT-J MEMIT 78.65  96.07 91.45 59.52

GPT-J SeqMMRyEeMiT  83.54  96.60 91.67 68.26

Table 4: Performance on different language models. The results of Qwen-2.5-7B was tested under the setting of
5000 edits with batch size 100, and the results of GPT-J-6B was tested under the setting of 6000 edits with batch

size 300.

batches. Notably, earlier batches, which suffer
from more severe forgetting, benefit more signifi-
cantly from our approach. Only under the strong
baseline AlphaEdit does the editing performance
of the final batch experience some degradation,
primarily due to task vector sparsification during
the model merging process. However, with the
further incorporation of the model router, editing
performance improves further across all batches.
Ultimately, the combined approach significantly
mitigates the forgetting issue across all previously
edited batches, leading to a notable enhancement
in overall editing performance.

top-k Edit. Req. Para. Pro. Neigh. Pro.

2 100 99.98 57.52
3 99.85 98.88 60.29
5 98.60 98.00 62.46
10 96.35 95.48 65.56

Table 6: Classification accuracy under different top-k
values in the model router for the CounterFact dataset.
Edit. Req., Para. Pro., and Neigh. Pro. represent
Editing Request, Paraphrase Prompt, and Neighborhood
Prompt, respectively.

5.6.2 Ablation Study on Pruning Ratio

Seq Ablation of Modules
MEMIT +MM +MM+R

g ; g;gg ;g'gi(f'io) ;?'?§(+8‘()9) We further investigated the impact of different prun-
@3 75'31 80'00(%.02) 83.72(+8'2 ) ingratios in model merging on editing performance.

' " (+4.69) V(841 gpecifically, we evaluated the performance of each
@4 7640 8091 (1451) 8449(45.00) editing batch under four different pruning ratios
@5 80.13  84.25(1412) 87.65(4752) using SeqMMRajpha- As shown in Figure 3, higher
@6 80.77 83411204 87997 pruning ratios better preserve the editing perfor-
@7 8072 83.0l(1220) 87.14(1642)  ance of earlier batches, as the increased sparsity
@8 B1.98  83.85(1157) 88.68(1670)  4f the task vector reduces its impact on the param-
@9 83.09  84.26(11.47) 88.24(1515)  eper distribution of the merged model. However,
@10 81.09 8139030 B8496(1387)  excessive pruning can lead to substantial loss of re-
Overall 78.37 8142(1305 85.15(467s) cently edited knowledge, particularly for the latest

Table 5: Editing Scores under the ablation study. +MM
and +R indicate the use of model merging and model
routing methods, respectively. @k represents the results
at the k-th sequential editing batch. The values in paren-
theses indicate the difference compared to the baseline
model.

batch. Since it has not yet been compensated by
subsequent task vectors, aggressive pruning results
in a sharp decline in editing performance. There-
fore, we select 85% as an appropriate pruning ratio,
ensuring a highly sparse task vector while maintain-
ing the integrity of the knowledge from the most
recently edited batches.
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Figure 3: Performance of Se qMMR aiph, under differ-
ent pruning ratios. The horizontal axis represents the
batched sequential editing rounds, while the vertical
axis represents the editing Score.

5.6.3 Ablation Study on Router Top-£

We also tested the impact of different values of k
for selecting the top-k corpus embeddings in the
model router. In the CounterFact dataset, in-scope
queries (Editing Request and Paraphrase Prompt)
should be routed to the edited model. Incorrectly
routing them to the unedited model would severely
degrade the knowledge editing performance, as
the unedited model is not capable of handling the
new knowledge. On the other hand, out-of-scope
queries (Neighborhood Prompt) are expected to
be routed to the unedited model, as it provides
untouched original knowledge, leading to better
locality. If routed to the edited model, the locality
performance would follow that of the edited model.
Based on this, we prioritize ensuring accurate
routing for in-scope queries while routing a por-
tion of out-of-scope queries to the unedited model
to improve locality without compromising editing
performance. Table 6 shows the effect of different
k-values on routing accuracy. As k increases, the
proportion of out-of-scope queries routed to the
unedited model also increases. However, this also
impacts the routing accuracy for in-scope queries,
which introduces greater risk. Therefore, we se-
lected k = 2 to achieve the desired effectiveness.

5.7 Efficiency Analysis

We conducted a comprehensive efficiency analysis
of SeqMMR on LLaMA3-8B and compared it to
other methods.

In terms of editing time per update, SeqMMR in-
volves an additional model merging operation com-

pared to other baselines. We tested the average time
required to compute the task vector and perform the
merging for each model layer on the AMD EPYC
7543 Processor, which were 0.085s and 1.138s,
respectively. For most models and editing meth-
ods, where typically five layers of the model are
edited, the additional time overhead for each batch
of editing is 5 x (0.085 + 1.138) = 6.115 seconds.
When averaged over each editing sample (divided
by batch size), the additional time overhead per
sample is negligible. Furthermore, as this opera-
tion can be entirely performed on the CPU, it does
not introduce any extra GPU memory usage.

For the inference stage, we measured the average
additional inference time introduced by the model
router under the same settings as in Table 1. The
average routing computation time per sample was
0.131s. In summary, we present a comparison of
the efficiency of SeqMMR in Table 7, showing
that SeqMMR does not introduce significant addi-
tional computational, time, or memory overhead
compared to other baselines.

Method Ed.T Inf.T MEM.

MEMIT 7.112s 0.459s 40.88 GB
SeqMMRMEMIT 7.143s 0.590s 40.88 GB
AlphaEdit 7.251s 0.459s 38.54 GB
SeqMMRAaph,  7.282s  0.590s  38.54 GB

Table 7: Efficiency analysis. Ed.T denote the average
edit time per update, Inf.T denote the average inference
time per sample, and MEM. is the total GPU memory
cost during editing.

6 Conclusion

In this work, we introduces SeqMMR, a novel ap-
proach to addressing the challenges in batched se-
quential knowledge editing for large language mod-
els. By iteratively merging the current batch-edited
model with the previous merged one, our method
preserves newly integrated knowledge while mit-
igating the forgetting of prior edits. Addition-
ally, the incorporation of a model router enables
editing-unrelated queries to be processed by an
unedited model backup, leading to optimal locality
on these queries. Extensive experiments show that
SeqMMR effectively alleviates knowledge forget-
ting and enhances the model’s performance across
all previous edit batches, while also ensuring stable
general capabilities. This framework provides a
scalable and stable solution for continuous knowl-
edge updates in large language models.
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Limitations

Current work has shown success on standard knowl-
edge editing datasets and general capability bench-
marks. However, further exploration is needed for
more diverse model ability tests, such as handling
the ripple effects of knowledge editing and long-
form questions. We plan to conduct experiments
in future work to evaluate the effectiveness of our
method across additional aspects of knowledge edit-
ing. Furthermore, for multi-hop question answer-
ing and event-level knowledge editing tasks, exist-
ing methods primarily rely on in-context-learning
or chain-of-thought approaches, which are difficult
to integrate with the parameter-updating-based ap-
proach we employ. Exploring solutions for these
tasks within the parameter-updating paradigm will
be a valuable direction for future research.

Additionally, our current model router is a
training-free approach, which requires maintaining
an embedding set of edited knowledge for com-
puting routing scores. While other model-based
routers do not require the maintenance of additional
data, their accuracy often falls short of expectations.
Therefore, exploring more effective model routing
methods, or even leveraging the model itself for
routing, represents a promising avenue for improv-
ing our work.
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A Details of Metrics

The definitions of the three main metrics in Coun-
terFact are as follows:

* Efficacy measures the accuracy of the editing
process, specifically reflecting the successful
modification of the factual knowledge state-
ment in the dataset.

* Generalization evaluates whether the edit can
be effectively applied to paraphrased or con-
textually related sentences within the dataset.

* Locality refers to the preservation of original
knowledge that unrelated to editing requests,
ensuring it remains intact. This is evaluated
using irrelevant natural questions or neighbor-
hood questions in the dataset.

Formally, the metrics for Efficacy and Generaliza-
tion are defined as follows:

E[Py(0l(s, 7)) > Py lof(s,r))] (1)

and the metric on Locality is defined as follows:

E[P ((6l(s,7)) < P yy(ol(s,7))] (12)
where o denote the subject corresponding to the
new knowledge, and M denote the post-edited
model.

The detailed description of the metrics in
KnowEdit is as follows:

» Edit Success is similar to the combination
of Efficacy and Generalization in the Coun-
terFact dataset. The edited model should not
only provide correct answers to the original
questions but also accurately respond to inputs
with similar expressions.

* Portability evaluates whether the edited
model can infer downstream knowledge re-
lated to the edited facts, comprising three as-
pects: Alias: Tests whether the same knowl-
edge remains valid when presented with dif-
ferent subject aliases. Reasoning: Requires
the edited model to perform reasoning based
on the edited facts to infer related knowledge.
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Logical Generalization: Knowledge seman-
tically related to the edited facts should also
be modified, such as in cases of inverse rela-
tionship reasoning.

* Locality, primarily referring to Relation
Specificity in the ZsRE subset, asserts that any
other attributes of the previously updated sub-
ject should remain unchanged after the editing
process.

B Data Sampling

Here, we provide a detailed description of how the
data is sampled for constructing the computational
corpus used in the model router.

For the CounterFact dataset, which contains
20,877 samples, we randomly selected 2,000 sam-
ples for knowledge editing and testing. The query
prompts corresponding to these samples form the
set £ = {e;}" 4, (n = 2000). For the negative
samples, we randomly selected 2,000 samples from
the remaining 18,877, which are unrelated to the
editing samples, using their query prompts to form
U = {u;}I", where m = 2000, thus constructing
the computational corpus.

For the KnowEdit (ZsRE) dataset, which con-
tains 1,301 samples, we randomly selected 1,000
samples for knowledge editing and testing. The cor-
responding query prompts for these samples form
the positive set £ = {¢;}1_;, (n = 1000). For the
negative set, we used the locality prompts from
the remaining 301 samples, where each sample has
two different locality prompts unrelated to the edit-
ing samples, thus forming &/ = {w;}!",, where
m = 602, to construct the computational corpus.

C Details of Datasets

In the CounterFact dataset, each data example con-
sists of a factual knowledge statement, 2 para-
phrased sentences, and 10 neighborhood questions,
an example as follows:

{
"case_id": 2099,
"requested_rewrite": {
"prompt": "{}, produced by",
"target_new": “str": "Toyota",,
"target_true": "str": "Cadillac",,

"subject": "Cadillac Fleetwood"

b

"paraphrase_prompts": [
"Cadillac Fleetwood is produced by",
"Cadillac Fleetwood is a product of"

I,

"neighborhood_prompts": [
"Cadillac STS Wheels, created by",
"Cadillac ATS is produced by",
"Cadillac Type 51, developed by",
"Cadillac Series 62 is produced by",
"Cadillac Brougham, produced by",
"M41 Walker Bulldog is created by",
"Cadillac XLR is a product of",
"Cadillac Series 62, developed by",
"Cadillac STS Wheels is created by",
"Cadillac ATS, created by"

In the ZsRE subset of KnowEdit (Zhang et al.,
2024) dataset, each data example includes a new
knowledge statement along with various test ques-
tions designed to assess different model capabili-
ties, with each sample containing 5 test point, as
example as follows:

"subject": "GNOME Chess",
"target_new": "Python",
"prompt": "What programming language
was used to write GNOME Chess?",
"ground_truth": "Vala",
"rephrase_prompt": "How is the program-
ming language for GNOME Chess?",
"locality": {
"Relation_Specificity": [
{ "prompt":
"The platform of GNOME Chess is",
"ground_truth":
"Unix-like operating system", }
{ "prompt":
"GNOME Chess platform",
"ground_truth":
"Unix-like operating system", }
I
}

"portability": {
"Reasoning": [
{ "prompt":
"Who created the programming lan-
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guage used to write GNOME Chess?",
"ground_truth":
"Guido van Rossum", },

I
}

D Ablation Study on Modules: More
Details
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Ablation of Modules

Sed  —AiohaEdit MM +R +MM+R

@l 8458  8537(.0s7) 8658500 87111253
@2 89.62  90.23(.041) O91.60 108 92.02(15.40)
@3 8697 87781051 90.34(1557 90750575
@4 88.45 8942007 O91.24( 1579 9181 1550
@5 90.01 911204111 92634042 9328(1507)
@6 87.99 8915115 90711070 91A44(5us)
@7 86.85  87.98(.1 15 89.66( 551 90.22( 557
@8 88.18  89.28(.110) O91.67( 1549 9197 1370
@9 88.54  89.64(.110) 91.07 553 91571503
@10 8839 87.07( 1, 9108 500 8891052
Overall 88.01 88.77(+0_76) 90'70(4-2.69) 90.95(4_2.94)

Table 8: Editing Scores under the ablation study. +MM and +R indicate the use of model merging and model routing
methods, respectively. @k represents the results at the k-th sequential editing batch. The values in parentheses

indicate the difference compared to the baseline model.

Seq Ablation of Modules
MEMIT +MM +R +MM+R

@1 67.96  73.06(,510) 70.691237) 76.05( 1509
@2 7292 1844 550 76.10(1318) 81.15(;523)
@3 75.31 80.00(1469) 79.30(1399) 83.72(1g541)
@4 7640 8091 ,1451) 80.46( 406 84491509
@5 80.13 84251 412) 843314000 87.65( 759
@6 80.77  83.41(1264) 8526, 449) 87.99( ;729
@7 80.72  83.01(;229) 85.18( 446 87.14(,6.49)
@8 81.98  83.85(;1g7) 88.10(,612) 88.68( 670
@9 83.09  84.26(,117) 87.96(, 457 88.24( 515
@10 81.09  81.39(;0.30) 86.64(. 555 84.96( 357
Overall 78.37 81.42(+;5.05) 82.69(+4_32) 85-15(+6.78)

Table 9: Editing Scores under the ablation study. +MM and +R indicate the use of model merging and model routing
methods, respectively. @k represents the results at the k-th sequential editing batch. The values in parentheses

indicate the difference compared to the baseline model.
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