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Abstract

Multimodal large language models (MLLMs)
have shown remarkable performance for cross-
modal understanding and generation, yet still
suffer from severe inference costs. Recently,
abundant works have been proposed to solve
this problem with token pruning, which identi-
fies the redundant tokens in MLLMs and then
prunes them to reduce the computation and KV
storage costs, leading to significant accelera-
tion without training. While these methods
claim efficiency gains, critical questions about
their fundamental design and evaluation remain
unanswered: Why do many existing approaches
underperform even compared to naive random
token selection? Are attention-based scoring
sufficient for reliably identifying redundant to-
kens? Is language information really helpful
during token pruning? What makes a good
trade-off between token importance and dupli-
cation? Are current evaluation protocols com-
prehensive and unbiased? The ignorance of
previous research on these problems hinders
the long-term development of token pruning.
In this paper, we answer these questions one by
one, providing insights into the design of future
token pruning methods.

1 Introduction

Multi-modal language models (MLLMs) (Huang
et al., 2023; Driess et al., 2023; Liu et al., 2024c;
Bai et al., 2023), especially the vision-language
models have demonstrated powerful effectiveness
in various tasks. However, the extremely high com-
putational and storage costs have limited the appli-
cation of MLLMs in real-time applications, which
is caused by not only the enormous parameters
inherited from LLMs but also a large number of
tokens from the large visual information such as
high-resolution images and multi-frame videos.

*Equal Contribution.
†Corresponding authors.
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Figure 1: Comparison between FastV, SparseVLM,
and naive baselines. On several common datasets, the
performance of FastV and SparseVLM is even worse
than random token dropping and pooling.

To solve this problem, abundant efforts have
been made in token pruning (Chen et al., 2024;
Zhang et al., 2024c; Liu et al., 2024d, 2025c,a),
which aims to reduce the number of input tokens
in MLLMs. Usually, token pruning methods first
introduce a carefully-designed criterion to measure
the importance of a vision token, and then prune the
redundant tokens, or merge the redundant tokens
into fewer tokens. As a result, the following com-
putation of the pruned tokens or the merged tokens
can be removed or reduced, bringing efficiency in
both computation and storage. For instance, some
recent works show that more than 70% tokens can
be pruned with a tolerant loss in accuracy (Chen
et al., 2024). Most attractively, thanks to the natu-
ral ability of MLLMs to process tokens in different
lengths, token pruning can be applied to most ex-
isting MLLMs with no need for additional training,
and thus attracts great attention from both academic
researchers and industrial developers.

However, despite the popularity of token prun-
ing, numerous foundational questions have long
been overlooked and remain largely unexplored,
giving rise to several surprising phenomena. For
instance, Figure 1 demonstrates the comparison
between two classical token pruning methods in-
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cluding FastV (Chen et al., 2024) and SparseVLM
(Zhang et al., 2024c), and two naive baselines, in-
cluding random token selection and direct average
pooling on tokens. Surprisingly, the two base-
lines outperform the two well-designed token
pruning methods in most benchmarks by a clear
margin. This counterintuitive phenomenon may
demonstrate that the current understanding of so-
called important tokens is far away from the truth.
Unfortunately, most recent works just focus on pur-
chasing higher performance, while ignoring these
questions, which may hinder the long-term devel-
opment of token pruning.

In this paper, we have conducted massive exper-
iments and analyses to dive into the fundamental
problems of token pruning, with the main take-
aways as follows.
• Attention-based token selection methods suffer

from position bias, where vision tokens in the
later positions are more likely to be retained. Re-
ducing position bias in these methods can benefit
their performance.

• Language information is helpful in token pruning
only when a given task strongly correlates with
the language information.

• Both the importance and uniqueness (low similar-
ity) of tokens have a significant influence on the
performance of token pruning and their influence
varies from different tasks.

• FLOPs and the number of retained tokens are
unreliable metrics for token pruning methods.
Compatibility with hardware has a significant
influence on real acceleration performance.

• Training-aware token pruning which directly
merges tokens in spatially adjacent positions
may bring more benefits than carefully-designed
training-aware pruning.
We hope that this paper can provide insights into

the future design of token pruning, and correct the
long-neglected evaluation issues in this field.

2 Related Work

2.1 Multimodal Large Language Models

The remarkable success of large language mod-
els (LLMs) (Radford et al., 2019; Brown et al.,
2020; Wen et al., 2024) has spurred a growing trend
of extending their advanced reasoning capabilities
to multi-modal tasks, leading to the development
of vision-language models (VLMs) (Huang et al.,
2023; Driess et al., 2023; Liu et al., 2024c; Bai

et al., 2023). These VLMs typically consist of a
visual encoder (Radford et al., 2021) that serial-
izes input image representations and an LLM re-
sponsible for text generation. To enable the LLM
to process visual inputs, an alignment module is
employed to bridge the gap between visual and
textual modalities. This module can take various
forms, such as an MLP projector or a more com-
plex query-based network. While this integration
allows the LLM to gain visual perception, it also in-
troduces significant computational challenges due
to the long sequences of visual tokens.

Moreover, existing VLMs often exhibit limita-
tions, such as visual shortcomings or hallucinations,
which hinder their performance. Efforts to enhance
VLM capabilities by increasing input image reso-
lution have further exacerbated computational de-
mands. For instance, encoding higher-resolution
images results in a substantial increase in the num-
ber of visual tokens. A model like LLaVA-1.5 (Liu
et al., 2024a) generates 576 visual tokens for a
single image, while its successor, LLaVA-NeXT
(Liu et al., 2024b), produces up to 2880 tokens at
double the resolution, far exceeding the length of
typical textual prompts. Optimizing the inference
efficiency of VLMs is thus a critical task to facili-
tate their deployment in real-world scenarios with
limited computational resources.

2.2 Visual Token Compression
Visual tokens are often significantly more numer-
ous than text tokens, with higher spatial redundancy
and lower information density. To address this is-
sue, various methods have been proposed for reduc-
ing visual token counts in vision language models.
For instance, some approaches modify model com-
ponents, such as using context tokens in Q-Former
(Li et al., 2024) or applying adaptive pooling at the
patch level, but these typically require additional
training and increase computational costs. Other
techniques, like Token Merging (ToMe) (Bolya
et al., 2023) and FastV (Chen et al., 2024), focus on
reducing tokens without retraining by merging to-
kens or selecting important ones based on attention
scores. SparseVLM (Zhang et al., 2024c) incorpo-
rates text guidance through cross-modal attention
to refine token selection. However, these methods
often overlook hardware acceleration compatibility
and fail to account for token duplication alongside
token importance. Furthermore, while token prun-
ing has been extensively explored in natural lan-
guage processing and computer vision to improve
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inference efficiency, its application to VLMs re-
mains under-explored. Existing pruning strategies,
such as those in FastV and SparseVLM, rely on
text-visual attention within large language models
(LLMs) to evaluate token importance, which may
not align well with actual visual token relevance.

3 Benchmarking

We begin by presenting the datasets, models, and
pruning methods included in our study, along with
the rationale behind the selection. Next, we outline
the experimental setup and provide guidance on in-
terpreting the results reported in our study. Finally,
we analyze the findings, emphasizing notable pat-
terns and offering insights that may inform future
research in this area.

3.1 Models
We selected several representative MLLMs, includ-
ing LLaVA-1.5-7B and 13B (Liu et al., 2024a),
LLaVA-Next-7B (Liu et al., 2024b), and Qwen2-
VL (Wang et al., 2024) series (7B-Instruct and
72B-Instruct). LLaVA-1.5-7B integrates CLIP and
LLaMA for vision-language alignment via end-
to-end training, employing MLP connectors to
fuse visual-text features for multimodal reasoning.
LLaVA-Next-7B enhances data efficiency and infer-
ence robustness with dynamic resolution and hier-
archical feature integration, improving fine-grained
visual understanding. Qwen2-VL series excel in
high-resolution input processing and instruction-
following, supporting complex tasks like docu-
ment analysis and cross-modal in-context learning
through unified vision-language representations.

3.2 Datasets
To evaluate the impact of pruning on different tasks,
we selected a diverse set of datasets, including vi-
sual understanding tasks including GQA (Hudson
and Manning, 2019), MMBench (MMB) (Liu et al.,
2025d), MME (Fu et al., 2023), POPE (Li et al.,
2023), ScienceQA (Lu et al., 2022), VQAV2 (VQA
V2) (Goyal et al., 2017) and VQAText (TextVQA)
(Singh et al., 2019), grounding task RefCOCO (Yu
et al., 2016; Mao et al., 2016) and object retrieval
task Visual Haystack (Wu et al., 2025), . We briefly
introduce these datasets in Table 9.

3.3 Token Pruning Method
To rigorously evaluate the properties of visual token
pruning, we select three representative and high-
performing methods: FastV (Chen et al., 2024),

SparseVLM (Zhang et al., 2024c), and MustDrop
(Liu et al., 2024d). FastV (Chen et al., 2024) opti-
mizes computational efficiency by learning adap-
tive attention patterns in early layers and prun-
ing low-attention visual tokens post-layer 2 of
LLMs, effectively reducing redundancy. Spar-
seVLM (Zhang et al., 2024c) introduces a text-
guided, training-free pruning mechanism that lever-
ages self-attention matrices between text and visual
tokens to assess importance. It maximizes spar-
sity while preserving semantically relevant tokens
without additional parameters or fine-tuning. Must-
Drop (Liu et al., 2024d) addresses token redun-
dancy across the entire model lifecycle. It merges
spatially similar tokens during vision encoding,
employs text-guided dual-attention filtering in pre-
filling, and implements output-aware KV cache
compression during decoding. This multi-stage ap-
proach ensures balanced retention of critical tokens
while enhancing inference efficiency. These meth-
ods exemplify diverse strategies for token pruning,
spanning adaptive attention, text-guided sparsity,
and lifecycle-aware optimization.
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Figure 2: Analysis of the distribution of tokens and
attention scores over the position of tokens. Tokens
with larger indexes are located at the bottom of images.

4 Token Pruning Revisited: Are Simple
Methods Better?

When considering token pruning in multimodal
large language models, two very basic methods
naturally come to mind: random token pruning
(hereafter referred to as Random) and token pool-
ing (hereafter referred to as Pooling). Comparison
with these two simple baselines is reliable evidence
to demonstrate the significance of a well-designed
token pruning method, yet has been ignored by
most previous works. To address this gap, we in-
vestigated these two simple approaches in detail.
Specifically, we conducted experiments on multiple
widely-used benchmarks under pruning ratios of
75% and 87.5%, comparing Random and Pooling1

1In the experiments, Pooling specifically refers to applying
a pooling operation to the visual tokens at the second layer of
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Method GQA MMB MMB-CN MME POPE SQA VQAText VizWiz Avg.
Upper Bound, 576 Tokens (100%)

Vanilla 61.9 64.7 58.1 1862 85.9 69.5 58.2 50.0 100%
Retain 144 Tokens (↓ 75.0%)

Random 59.0 62.2 54.1 1736 79.4 67.8 51.7 51.9 95.0% (-5.0%)

Pooling 59.1 62.5 55.2 1763 81.4 69.1 53.4 51.9 96.4% (-3.6%)

Window FastV 59.2 59.3 51.0 1737 80.3 66.4 50.8 50.3 93.2% (-6.8%)

Vanilla FastV 56.5 59.3 42.1 1689 71.8 65.3 53.6 51.3 89.8% (-10.2%)

Reverse FastV 49.9 36.9 26.4 1239 59.8 60.9 36.9 48.4 70.8% (-29.2%)

SparseVLM 55.1 59.5 51.0 1711 77.6 69.3 54.9 51.4 93.5% (-6.5%)

Retain 64 Tokens (↓ 88.9%)
Random 55.9 58.1 48.1 1599 70.4 66.8 48.2 51.6 89.1% (-10.9%)

Pooling 54.2 56.0 46.0 1545 71.2 67.2 49.4 49.9 87.6% (-12.4%)

Window FastV 55.8 56.2 41.2 1630 72.6 66.3 47.8 50.0 87.2% (-12.8%)

Vanilla FastV 46.1 47.2 38.1 1255 58.6 64.9 47.8 50.8 78.2% (-21.8%)

Reverse FastV 44.6 24.0 15.7 1114 45.2 60.8 35.9 48.4 61.8% (-38.2%)

SparseVLM 52.7 56.2 46.1 1505 75.1 62.2 51.8 50.1 87.3% (-12.7%)

Table 1: Performance Comparison of LLaVA-1.5-7B with Different Token Retention Strategies. Reverse FastV
is a variant of the FastV that retains tokens with the smallest attention scores.

Method GQA MMB MMB-CN MME POPE SQA VQAText VizWiz Avg.
Upper Bound, 576 Tokens (100%)

Vanilla 63.3 68.9 62.3 1818 85.9 72.8 61.3 56.6 100%
Retain 144 Tokens (↓ 75.0%)

Random 60.3 65.9 58.3 1767 80.6 71.4 54.3 57.6 95.5% (-4.5%)

Pooling 60.6 65.5 57.7 1742 83.6 71.3 56.3 56.6 95.8% (-4.2%)

Window FastV 59.5 65.5 57.7 1674 82.8 57.2 48.0 60.9 91.8% (-8.2%)

Vanilla FastV 57.7 53.9 46.8 1633 79.3 57.0 51.0 60.3 86.9% (-13.1%)

SparseVLM 57.9 63.8 55.8 1704 81.1 69.9 43.9 56.3 91.1% (-8.9%)

Retain 64 Tokens (↓ 88.9%)
Random 57.5 62.6 54.4 1681 73.8 70.9 50.6 57.5 91.1% (-8.9%)

Pooling 55.4 58.3 51.4 1552 74.0 72.0 52.3 51.4 87.7% (-12.3%)

Window FastV 56.7 58.3 51.4 1599 76.5 55.4 43.2 59.5 85.7% (-14.3%)

Vanilla FastV 53.7 50.9 42.1 1567 69.3 56.8 47.1 59.2 81.6% (-18.4%)

SparseVLM 50.6 61.3 54.8 1402 65.0 69.0 22.7 54.5 79.7% (-20.3%)

Table 2: Performance Comparison of LLaVA-1.5-13B with Different Token Retention Strategies.

Method GQA MME POPE SQA VQAText Avg.
Upper Bound, 576 Tokens (100%)

Vanilla 65.3 2521 87.4 91.6 82.8 100%
Retain 144 Tokens (↓ 75.0%)

Random 63.9 2476 87.1 85.7 74.0 95.7% (-4.3%)

Pooling 63.1 2463 86.9 86.9 75.1 95.9% (-4.1%)

Window FastV 64.2 2445 88.5 85.9 75.4 96.3% (-3.7%)

Vanilla FastV 56.5 2219 80.9 85.3 75.6 90.3% (-9.7%)

Retain 64 Tokens (↓ 88.9%)

Random 61.9 2394 85.5 79.3 64.5 90.4% (-9.6%)

Pooling 61.9 2391 84.3 81.1 65.9 90.9% (-9.1%)

Window FastV 61.9 2377 85.6 83.8 65.8 91.6% (-8.4%)

Vanilla FastV 55.7 2089 78.7 83.3 66.8 86.0% (-14.0%)

Table 3: Performance Comparison of Qwen2-VL-
72B with Different Token Retention Strategies.

with several recent token pruning methods (e.g.,
FastV and SparseVLM). As shown in Table 1, sur-
prisingly, Random and Pooling outperformed care-
fully designed methods on nearly 2/3 benchmarks.

the language model. Please refer to the specific implementa-
tion in Algorithm 4.

When scaling up to larger models, the experimental
results of LLaVA-1.5-13B2 and Qwen2-VL-72B3

in Tables 2 and 3 also demonstrate the superior
performance of the simple methods Random and
Pooling. These surprising results shocked us since
its inferior performance compared with random se-
lection may demonstrate that we are on the wrong
road toward the ideal token pruning methods.

4.1 Token Distribution: Spatial Uniformity
Outperforms Position Bias

We further explored the underlying reasons behind
this phenomenon. Taking FastV (Chen et al., 2024)
as an example, this method leverages the attention
scores assigned to visual tokens by the last token

2https://huggingface.co/liuhaotian/llava-v1.
5-13b

3https://huggingface.co/Qwen/
Qwen2-VL-72B-Instruct
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(a) Vanilla FastV (b) Window FastVOriginal Image

Figure 3: Sparse Visualization of Vanilla FastV and
Window FastV with 25% Retained Visual Tokens.

to evaluate the importance of each visual token,
which may introduce the basis for token pruning.

Using 8,910 samples from the POPE dataset, we
conducted a statistical analysis of the visual tokens
retained by FastV. As illustrated in Figure 2, to-
kens located toward the end of the visual token
sequence were assigned significantly higher atten-
tion scores and were retained far more frequently
than tokens in other positions. This indicates that
methods relying on attention scores to select visual
tokens inherently suffer from a severe position bias
during token reduction. In contrast, tokens retained
by Random or Pooling exhibit a naturally uniform
spatial distribution. We argue that this spatial uni-
formity may be the key reason why some existing
methods underperform Random and Pooling.

4.2 Validating the Hypothesis: From Position
Bias to Spatial Uniformity

To validate our hypothesis, we proposed a modifica-
tion to FastV, introducing a variant called Window
FastV. Specifically, we incorporated a sliding win-
dow mechanism into the original FastV framework.
Within each window, a predetermined reduction
ratio and window size were used to select a fixed
number of visual tokens. For the specific imple-
mentation of Window FastV, please refer to Algo-
rithm 3 in Appendix B. Compared to Vanilla FastV,
Window FastV ensures the spatial uniformity of the
retained tokens, as shown in Figure 3.

We evaluated both Vanilla FastV and Window
FastV across eight benchmarks. As shown in Ta-
ble 1, under the setting where 75% of visual tokens
are reduced, Window FastV exhibits an average
performance drop that is 3.4% less than that of
Vanilla FastV. When adopting a more aggressive
reduction ratio (↓ 88.9%), this gap widens to 9%.
These results not only validate our hypothesis but
also inspire us to consider strategies that encour-
age the spatial uniformity of retained tokens when
designing token pruning methods.

To further investigate the impact of token prun-
ing on spatial position understanding, we selected

Method RefCOCO RefCOCO+ RefCOCOg Avg.
TestA TestB Val TestA TestB Val Test Val

Vanilla 72.3 51.5 73.3 66.3 29.7 68.3 49.5 51.5 100%
SparseVLMs 4.0 6.9 4.0 2.9 5.9 0.9 7.9 5.9 4.8% (↓ 95.2%)

Vanilla FastV 20.8 13.9 27.7 17.8 8.9 26.7 19.8 14.9 18.8% (↓ 81.2%)

Window FastV 22.8 22.8 25.7 18.8 7.9 18.8 20.8 23.8 20.2% (↓ 79.8%)

Random 22.8 27.7 32.7 17.8 13.9 32.7 20.8 16.8 23.2% (↓ 76.8%)

Pooling 34.7 17.8 26.7 23.8 17.8 24.8 14.9 20.8 22.7% (↓ 77.3%)

Table 4: Performance Comparison on RefCOCO Se-
ries Grounding Tasks. Evaluation is based on Preci-
sion@1, with a reduction ratio of 77.8%.

the RefCOCO (Yu et al., 2016) dataset, which re-
quires the MLLM to generate a bounding box for a
specified object phrase within an image. We con-
sider this dataset to be an effective atomic bench-
mark for evaluating the spatial understanding ca-
pabilities of MLLMs. Our evaluation criterion is
that a prediction is considered correct if the Inter-
section over Union (IoU) between the predicted
bounding box and the ground truth area exceeds
0.5. As shown in Table 4, compared to conven-
tional tasks, various token pruning methods ex-
hibit a significant degradation in performance when
applied to precise object localization. Notably,
there is a marked difference between globally uni-
form attention-based pruning methods (e.g., Win-
dow FastV, or even naive approaches like Random
and Pooling) and spatially non-uniform strategies
(FastV, SparseVLM). This indicates that current to-
ken pruning techniques, particularly those that are
spatially non-uniform, still possess substantial lim-
itations in comprehending the spatial positioning
of objects within images.

Summary 1. The position bias in the distri-
bution of retained visual tokens is a key factor
affecting the performance of some existing to-
ken pruning methods. This insight suggests
that ensuring the spatial uniformity of retained
tokens should be an important consideration
when designing token pruning strategies.

5 Language in Visual Token Pruning:
When and Why Does Language
Matter?

Token pruning methods for multimodal models can
be broadly categorized into two types: those guided
by textual information (e.g., FastV (Chen et al.,
2024), SparseVLM (Zhang et al., 2024c), Must-
Drop (Liu et al., 2024d)) and those that rely solely
on visual information (e.g., FasterVLM (Zhang
et al., 2024b)). While both approaches achieve
comparable performance on common benchmarks,
however, we hypothesize: Could it be that the im-
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portance of language information is not evident
simply because there has been a lack of testing on
tasks where language information is especially crit-
ical? To validate our hypothesis, we select a typical
scenario: Visual Haystack.

5.1 Visual Token Pruning in Strongly
Text-Guided Tasks

Tasks such as Visual Haystack (Wu et al., 2025)
(needle-in-a-haystack task on visual scenario) are
inherently text-driven. In Visual Haystack task,
the MLLM needs to select an image from a set
of confusing images with an anchor phrase, and
determine whether an object matching a target tex-
tual description exists within the selected image.
These tasks demand precise alignment between tex-
tual and visual modalities. To evaluate the impact
of text-guided pruning, we conducted experiments
using the LLaVA-1.5-7B model on the VH dataset.

Method # Input Images (More images means harder to retrieve)
Oracle 2 3 5 10

LLaVA-1.5-7B 86.46±1.25 70.04±1.49 66.18±1.58 58.29±1.49 53.47±1.48

Reduction ratio 77.8%
SparseVLM 81.26±1.11 66.14±1.54 66.54±1.33 58.22±1.51 53.99±1.65

FastV 76.30±1.36 61.17±1.56 58.34±1.61 53.39±1.51 52.06±1.63

FastVVIS 71.90±1.58 61.55±1.46 55.82±1.49 52.72±1.63 52.83±1.54

Random 75.15±1.30 62.14±1.61 55.59±1.49 51.26±1.36 50.76±1.75

Table 5: Performance comparison of different meth-
ods on Visual Haystack (VH). VH requires MLLMs
to select an image from multiple images based on an
anchor word and determine the existence of a target
word object in the image. FastVVIS means FastV with-
out language information guided.

To validate the importance of text guidance, we
modified FastV to operate without textual infor-
mation and denote it FastVVIS. Originally, FastV
calculates the importance of visual tokens based
on the attention score with the last text token.
FastVVIS computes with the last visual token in-
stead, thereby eliminating the influence of text
information while preserving the essence of the
method. Our results in Table 5 show that this modi-
ficaiton FastVVIS reveals a significant drop in per-
formance, confirming the importance of leveraging
textual cues in strongly text-guided tasks. The com-
parison of different pruning methods also reveals
that approaches utilizing textual information ex-
hibit significantly better overall performance. It
is noteworthy that SparseVLM, guided by text in-
formation, achieves a compression rate of 77.8%
while maintaining nearly identical accuracy to the
uncompressed model, particularly in scenarios with

a higher number of confusing images.
However, there are also recent works methods

(Zhang et al., 2024b; Liu et al., 2025b) that per-
form pruning solely in ViT without textual infor-
mation and reports better performance than FastV
and SparseVLM in common VQA benchmarks.

Therefore, for tasks with high reliance on lan-
guage information, pruning strategies should be
tailored to incorporate textual guidance effectively,
and how to balance the use of linguistic information
still requires further research.

Summary 2. Text-guided pruning improves
performance in text-heavy tasks. Pruning meth-
ods should adapt to task needs.

6 The α Dilemma: Importance vs.
Redundancy in Token Pruning

In this section, we systematically analyze the fun-
damental tension in token pruning for multimodal
large language models: should we prioritize remov-
ing redundant tokens to preserve structural pat-
terns, or eliminate less important tokens to main-
tain predictive capacity?

6.1 Redundancy Criteria

This criterion adopts a task-agnostic perspective,
focusing exclusively on input patterns. The core
objective is to eliminate redundant tokens while
preserving the input’s structural integrity and mini-
mizing information loss - analogous to finding the
minimal sufficient statistics in information theory.

Through the lens of mutual information (Latham
and Roudi, 2009), we formulate this as maximizing
information preservation between original tokens
X and retained tokens X′:

max
P

I(X;X′) = H(X)−H(X|X′), (1)

where P denotes the pruning operator. This ensures
the X′ retains maximal dependence on X under
length constraint ∥X′∥ = ∥X∥ −∆L. The formu-
lation directly connects to the compression phase of
the information bottleneck principle (Tishby et al.,
2000), where P∗ solves:

P∗ = argmin
P

∥X′∥ s.t. I(X;X′) ≥ γ, (2)

with γ as the minimal acceptable mutual informa-
tion. This preserves structural patterns without
task-specific considerations.
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Benchmark Vanilla Balance between Importance and Redundancy α
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MME 1862 1707 1714 1711 1706 1707 1711 1702 1699 1680 1688 1689
POPE 85.9 82.8 82.6 82.4 82.4 81.9 81.6 80.9 79.7 77.9 75.6 71.8
SQA 69.5 64.8 65.2 65.2 65.1 65.1 65.3 65.3 65.2 65.5 65.7 65.3

VQAText 58.2 53.6 53.8 54.8 54.0 54.1 54.3 54.3 54.5 54.4 54.2 53.6

Table 6: Performance comparison under different α balancing importance and redundancy criteria.

6.2 Importance Criteria
In contrast, this task-oriented criterion explicitly
considers the target output Y. The goal shifts to
preserving tokens critical for prediction accuracy,
formalized through predictive sufficiency:

I(X′;Y) ≥ I(X;Y)− ϵ, (3)

where ϵ is the tolerable information loss. Expand-
ing via the chain rule:

I(X;Y)︸ ︷︷ ︸
Original

= I(X′;Y)︸ ︷︷ ︸
Pruned

+ I(X \X′;Y|X′)︸ ︷︷ ︸
Discarded

. (4)

The bound I(X \X′;Y|X′) ≤ ϵ implies that dis-
carded tokens provide negligible additional infor-
mation about Y when conditioned on retained to-
kens. This captures the essence of importance -
truly critical tokens contain non-decomposable pre-
dictive information.

The task dependence manifests in the informa-
tion plane:

R(β) = max
X′

[
I(X′;Y)− β−1I(X;X′)

]
, (5)

where β controls redundancy-importance tradeoff.

6.3 Empirical Validation of Adaptive Criteria
Balancing

Building on Eq. 5, we implement an adaptive scor-
ing mechanism with tunable parameter α:

Score(xi) =

α ·I(xi;Y|x\i)︸ ︷︷ ︸
Predictive Criticality

+(1− α) · [1− I(xi;X\i)]︸ ︷︷ ︸
Pattern Uniqueness

.

(6)

Here I(xi;Y|x\i) measures a token’s unique pre-
dictive value, while 1 − I(xi;X\i) quantifies its
pattern distinctiveness.

Specifically, FastV is a typical token pruning
method that follows the importance criterion by
selecting important visual tokens based on the at-
tention scores of the last token in the sequence. We
modify this approach by introducing a redundancy

criterion, which calculates the cosine similarity be-
tween each visual token and the last token to derive
a similarity score4. Ultimately, the final score in
Eq. 6 is obtained by balancing these two metrics
with a parameter α. Our experiments results in
Table 6 reveal two key insights:
• Perception-Dominant Tasks (MME, POPE)

achieve peak performance at α = 0.1 and 0.0,
respectively, favoring redundancy-first pruning
to maintain structural integrity (↑ I(X;X′)).

• Knowledge-Intensive Tasks (SQA, VQAText)
achieve optimal performance with α = 0.8 ∼
0.9, favoring importance-first pruning to enhance
semantic coherence (↑ I(X′;Y)).

Summary 3. Prune by task: Redundancy-
first preserves structural fidelity for perception
tasks, while importance-first prioritizes predic-
tive power for knowledge reasoning.

7 Limitations and Challenges in Token
Pruning Evaluation

Token pruning has emerged as a promising tech-
nique to improve the efficiency of MLLMs. How-
ever, despite its potential, the evaluation of token
pruning methods remains fraught with challenges.
In this section, we critically examine two key issues
that hinder the accurate and meaningful assessment
of token pruning techniques: (i) the over-reliance
on FLOPs as a proxy for speed gains, and (ii) the
failure to account for training-aware compression
in some advanced MLLMs. We argue that address-
ing these challenges is crucial for developing more
robust and reliable token pruning approaches.

7.1 Beyond FLOPs: Shifting the Focus to
Actual Latency Gains

Phenomenon. Many existing token pruning ap-
proaches tend to measure the speedup of their meth-
ods by calculating or estimating the reduction in
FLOPs resulting from token reduction, or even di-
rectly using the token reduction ratio as a metric.

4Notably, since the similarity score and attention score are
on different scales, we apply min-max normalization to both
before computing the final score.
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Methods Tokens ↓ Latency ↓ FLOPs ↓ KV Cache ↓ POPE ↑
(Min:Sec) (MB) (F1-Score)

Vanilla LLaVA-Next-7B 2880 36:16 100% 1512.1 86.5
+ FastV 320 18:17 12.8% 168.0 78.3
+ SparseVLM 320 23:11 15.6% 168.0 82.3
+ MustDrop 320 23:40 11.5% 168.0 82.1

Table 7: Inference costs of the number of tokens, Total-
Time, FLOPs, and KV Cache Memory.

However, can FLOPs or token reduction ratios truly
reflect the actual acceleration achieved?

To investigate this question, we examined the
speedup effects reported by several works. Our
findings reveal that even when different methods
exhibit identical or similar reduction ratios and
FLOPs, their measured speeds can vary signifi-
cantly. Table 7 presents the efficiency-related exper-
imental results of these methods on LLaVA-Next-
7B5. Specifically, under the same setting, Sparse-
VLM’s FLOPs are only 2.8% higher than those
of FastV, yet its latency is 26.8% greater. This
strongly suggests that relying on FLOPs to evaluate
acceleration effects of proposed methods is inade-
quate. When assessing speed gains, it is imperative
to shift our focus to actual latency measurements.
Reason. We also conducted a detailed analysis of
the design intricacies of the three methods to un-
cover the underlying reasons for their performance
differences. Specifically, FastV, SparseVLM, and
MustDrop all fail to support the efficient Flash
Attention operator (Dao et al., 2022; Dao, 2024),
as they rely on the complete attention map to se-
lect visual tokens. However, FastV performs token
pruning in only one layer of the language model,
whereas the other two methods conduct pruning
across four layers. This implies that, compared
to FastV, these methods have more layers that are
forced to use the traditional attention operator with
O(N2) memory costs. This could be one of the key
factors contributing to their slower speeds. Addi-
tionally, performing pruning layer by layer requires
more complex operations to handle token selection.
If the runtime overhead introduced during this stage
becomes significant, it may offset the speed gains
achieved by shortening the token sequence. More-
over, some of the transformer layers where these
methods perform pruning are located deeper within
the model. Pruning tokens in such deep layers
may yield limited benefits, as the impact of token
reduction diminishes at later stages of the network.
Appeal. This insight motivates us to consider
the compatibility with efficient attention operators

5https://huggingface.co/liuhaotian/llava-v1.
6-vicuna-7b

when designing token pruning methods. Addition-
ally, it encourages us to implement the token prun-
ing process as early as possible in the shallow lay-
ers using simpler approaches, avoiding the risk of
excessive runtime overhead that could otherwise
overshadow the intended acceleration benefits.

Summary 4. (i) FLOPs are not a reliable
metric for evaluating speed gains; greater em-
phasis should be placed on actual latency. (ii)
We advocate for the implementation of token
pruning in the shallow layers of MLLMs using
simple or efficient operations, while ensuring
compatibility with Flash Attention.

7.2 The Overlooked Role of Training-Aware
Compression in MLLMs

Method GQA MMB MMB-CN MME POPE SQA VQAText Avg.
Qwen2-VL-7B Upper Bound, All Tokens (100%)
Vanilla 62.2 80.5 81.2 2317 86.1 84.7 82.1 100%
Qwen2-VL-7B Token Reduction (↓ 66.7%)

+ FastV 58.0 76.1 75.5 2130 82.1 80.0 77.3 94.0% (-6.0%)

+ FastV† 61.9 80.9 81.3 2296 86.2 84.6 81.7 99.8% (-0.2%)

Qwen2-VL-7B Token Reduction (↓ 77.8%)

+ FastV 56.7 74.1 73.9 2031 79.2 78.3 72.0 91.0% (-8.0%)

+ FastV† 61.9 80.8 81.2 2300 86.1 86.4 81.4 100.0% (0.0%)

Qwen2-VL-7B Token Reduction (↓ 88.9%)

+ FastV 51.9 70.1 65.2 1962 76.1 75.8 60.3 84.0% (-16.0%)

+ FastV† 61.9 81.1 81.0 2289 86.2 84.4 81.3 99.6% (-0.4%)

Table 8: Comparative Experiments on Qwen2-VL-7B.

In recent years, some of the latest MLLMs have
adopted various advanced techniques during the
training phase to enhance their efficiency. For in-
stance, Qwen2-VL employs token merging strategy
during training, consolidating four adjacent patches
into a single visual token. Similarly, MiniCPM-V-
2.6 incorporates a learnable query within its re-
setting module, mapping variable-length segment
features into more compact representations.

This raises an intriguing question: If MLLMs al-
ready implement training-aware compression tech-
niques, should we take this into account when de-
signing and evaluating token pruning methods for
the inference stage? Given that the visual tokens
encoded by these models possess higher informa-
tion density, removing the same number of visual
tokens could result in greater information loss com-
pared to traditional approaches.

To this end, we selected a representative MLLM
that employs training-aware compression, Qwen2-
VL-7B-Instruct6 and conducted a series of exper-
imental analyses. Specifically, we applied FastV
in two sets of experiments: one disregarding the
token compression performed during Qwen2-VL’s

6https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct
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training phase, and the other taking it into account:
Let P denote the original number of image patches,
and after processing with PatchMerger, the number
of visual tokens V is:

V =
P

TACR
, (7)

where TACR means training-aware compression
ratio and the value is 4.

Finally, the Token Reduction Rate (TRR) can be
formally defined as:

TRR(FastV†) ≜ TACR︸ ︷︷ ︸
Training-aware

× TFRR︸ ︷︷ ︸
Training-free

. (8)

Surprisingly, as shown in Table 8, we find that
when taking training-aware compression into ac-
count, the same token pruning method achieves
performance on par with the vanilla model across
multiple benchmarks, even under varying reduc-
tion ratios. This observation prompts us to reflect:
perhaps more research effort should be directed to-
ward training-aware token compression techniques.
Even in cross-model comparisons, such as between
LLaVA-1.5-7B (Vanilla FastV) in Table 1, which
does not employ training-aware compression, and
Qwen2-VL-7B-Instruct (FastV†), the latter clearly
demonstrates less performance degradation.

Summary 5. Training-aware token compres-
sion techniques deserve more research attention
due to their potential for delivering superior
performance guarantees.

8 Conclusion

Our systematic investigation into token pruning
for MLLMs reveals several critical yet overlooked
issues. While existing methods prioritize attention-
based scoring and language-guided strategies, we
demonstrate that naive spatial uniformity, achieved
through random selection or pooling, often outper-
forms complex designs due to inherent positional
biases in visual tokens. Notably, the effectiveness
of linguistic guidance depends on task alignment:
it enhances performance in text-driven scenarios
through cross-modal attention but risks degrada-
tion in vision-centric tasks. From an information-
theoretic perspective, we shed light on the core
principles of token pruning, i.e., the pursuit of struc-
tural integrity versus prediction accuracy. Further-
more, we challenge the conventional reliance on
FLOPs for efficiency evaluation, showing that la-
tency serves as a more practical and meaningful

metric. These findings provide a refined framework
to guide the development of future token pruning
methods, balancing simplicity, effectiveness, and
task-specific adaptability.

9 Limitations

Our experiments and analyses have been primarily
conducted on LLaVA, LLaVA-Next, and Qwen2-
VL. While these multimodal large language models
are highly representative, our exploration should be
extended to a broader range of model architectures.
Such an expansion would enable us to uncover
more intriguing findings and gain more robust and
comprehensive insights. Additionally, we should
apply our analytical framework and experimental
evaluations to models of varying sizes, ensuring
that our conclusions are not only diverse but also
applicable across different scales of architecture.
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A Future Works

In this work, we have conducted an in-depth explo-
ration of a series of issues related to token pruning.
These include the position bias problem inherent in
methods based on attention scores, the guiding role
of linguistic information during token pruning, the
importance and redundancy of tokens, as well as
certain limitations in the evaluation of token prun-
ing methods. Looking ahead, we plan to further
expand the scope of our research by considering
whether token pruning or token merging should
be prioritized in the context of token reduction.
Additionally, we aim to evaluate and analyze vari-
ous token reduction methods on more challenging
OCR benchmarks (Zhang et al., 2024a; Ouyang
et al., 2024), particularly datasets featuring rich-
text OCR images. This future work will not only
deepen our understanding of token reduction strate-
gies but also provide valuable insights into their
practical applications in complex scenarios.

B Algorithms

In this section, we present some core algorithms
for the methods mentioned in the main text. Vanilla
FastV (Algorithm 1) selects tokens with the highest
attention scores for retention. Reverse FastV (Algo-
rithm 2) modifies this strategy by selecting tokens
with the lowest attention scores instead. Window
FastV (Algorithm 3) introduces a spatially-aware
token selection mechanism by dividing the image
tokens into local windows and performing token
selection within each window. Finally, Pooling
(Algorithm 4) applies a pooling operation over to-
ken grids to retain a structured subset of tokens,
ensuring spatial consistency.

C Dataset

In this section, we introduce the content of the
datasets used, as well as the input and output for-
mats in Table 9.

Algorithm 1 Vanilla FastV

Require: Input token sequence X ∈ RL×d, image
token range [s, e], retention ratio r

Ensure: Compressed sequence representation X ′

1: Initialize layer parameters {Wi}Ni=1

2: for layer l = 1 to N do
3: if l = K − 1 then
4: Compute attention matrix A
5: Record global attention scores α =

mean(A)[s : e]
6: else if l = K then
7: Select top-k indices I = topk(α, ⌊(e−

s)r⌋)
8: Construct retention indices I = [0 :

s) ∪ I ∪ [e : L]
9: Compress sequence X ′ = X[I, :]

10: Update attention mask M ′ = M [I, I]
11: else
12: Regular Transformer computation
13: end if
14: end for

Algorithm 2 Reverse FastV

Require: Input token sequence X ∈ RL×d, image
token range [s, e], retention ratio r

Ensure: Compressed sequence representation X ′

1: Initialize layer parameters {Wi}Ni=1

2: for layer l = 1 to N do
3: if l = K − 1 then
4: Compute attention matrix A
5: Record global attention scores α =

mean(A)[s : e]
6: α = −α ▷ Difference from Vanilla

FastV
7: else if l = K then
8: Select top-k indices I =

topk(−α, ⌊(e− s)r⌋)
9: Construct retention indices I = [0 :

s) ∪ I ∪ [e : L]
10: Compress sequence X ′ = X[I, :]
11: Update attention mask M ′ = M [I, I]
12: else
13: Regular Transformer computation
14: end if
15: end for
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Type Dataset Brief Description Input Output

Visual
Understanding

VQAText Rich textual viusal QA Single image and question Question Answer

VQA V2 Open-ended viusal perception Single image and question Question Answer

ScienceQA Natural and social science QA Single image and question Question Answer

POPE Object hallucination evaluation Single image and question Question Answer

GQA Visual scene understanding Single image and question Question Answer

MMBench Perception and reasoning tasks Single image and question Question Answer

MME Perceptual ability evaluation Single image and question Question Answer

Object
Recognition

Visual
Haystack Visual need-in-a-haystack Multiple images, an image

phrase and an object phrase
Existence of

specified objects

Grounding RefCOCO Phrase object localizing 1 image and referring
phrase of an object

Bounding box of
the specified object

Table 9: The datasets we use for benchmarking.

Algorithm 3 Window FastV

Require: Input sequence X ∈ RL×d, image re-
gion Ω = [s, e], window size (h,w)

Ensure: Compressed sequence representation X ′

1: Initialize layer parameters {Wi}Ni=1

2: for layer l = 1 to N do
3: if l = K − 1 then
4: Compute attention matrix A
5: Record global attention scores α =

mean(A)[s : e]
6: else if l = K then
7: Reshape the image region into a 2D

grid Γ ∈ Rh×w

8: Divide the grid into window patches
{Wij}m,n

i=1,j=1, where Wij ⊂ Γ
9: for each window Wij do

10: Compute local attention scores
Aij = mean(α[Wij ])

11: Select local top-k indices Iij =
topk(Aij ,mn)

12: Convert local indices to global co-
ordinates Gij = loc2glob(Iij)

13: end for
14: Aggregate all window indices I =⋃

i,j Gij

15: Construct the retained sequence: X ′ =
X [[0 : s) ∪ I ∪ [e : L], :]

16: else
17: Regular Transformer computation
18: end if
19: end for

Algorithm 4 Pooling

Require: Input sequence X ∈ RL×d, image re-
gion Ω = [s, e], window size a× a

Ensure: Compressed sequence representation X ′

1: for layer l = 1 to N do
2: if l = K then
3: Extract image tokens: Ximg = X[s :

e, :]
4: Reshape into a 2D grid: F ∈ Rh×w×d

5: ▷ Where h× w = e− s
6: Perform window pooling:

F̂ = Pool(F, a, ρ) ∈ R(h/a)×(w/a)×d

7: Construct index mapping:

M = {(i, j) 7→ argmax
(p,q)∈Wij

∥F [p, q, :]∥1}

8: Build the retained index set:

I = {s+M(k)|∀k ∈ [1, (h/a)(w/a)]}

9: Generate the compressed sequence:

X ′ = X [[0 : s) ∪ I ∪ [e : L], :]

10: else
11: Regular Transformer computation
12: end if
13: end for
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