
Findings of the Association for Computational Linguistics: ACL 2025, pages 14966–14985
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PGPO: Enhancing Agent Reasoning via Pseudocode-style
Planning Guided Preference Optimization

Zouying Cao1,3,4,†, Runze Wang2, Yifei Yang1,3,4, Xinbei Ma1,3,4,
Xiaoyong Zhu2, Bo Zheng2,∗, Hai Zhao1,∗

1School of Computer Science, Shanghai Jiao Tong University,
2Taobao & Tmail Group of Alibaba, 3Key Laboratory of Shanghai Education Commission

for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University,
4Shanghai Key Laboratory of Trusted Data Circulation and Governance in Web3

zouyingcao@sjtu.edu.cn, yunze.wrz@alibaba-inc.com

Abstract

Large Language Model (LLM) agents have
demonstrated impressive capabilities in han-
dling complex interactive problems. Existing
LLM agents mainly generate natural language
plans to guide reasoning, which is verbose and
inefficient. NL plans are also tailored to spe-
cific tasks and restrict agents’ ability to general-
ize across similar tasks. To this end, we explore
pseudocode-style plans (P-code Plan) to cap-
ture the structural logic of reasoning. We find
that P-code Plan empowers LLM agents with
stronger generalization ability and more effi-
ciency. Inspired by this finding, we propose a
pseudocode-style Planning Guided Preference
Optimization method called PGPO for effective
agent learning. With two planning-oriented re-
wards, PGPO further enhances LLM agents’
ability to generate high-quality P-code Plans
and subsequent reasoning. Experiments show
that PGPO achieves superior performance on
representative agent benchmarks and outper-
forms the current leading baselines. Analyses
reveal the advantage of PGPO in reducing ac-
tion errors and omissions during reasoning.1

1 Introduction

Recent advances in large language models have
promoted the development of LLM agents (Wang
et al., 2024a; Xi et al., 2025). Planning serves as a
critical component of agent reasoning (Huang et al.,
2024), allowing agents to break down complex
problems into manageable subtasks. By prompting
strategies (Wang et al., 2023; Prasad et al., 2024;
Roy et al., 2024), task-specific fine-tuning (Qiao
et al., 2024a,b) or external classical planners (Liu
et al., 2023a; Arora et al., 2024), LLM agents are
equipped with basic planning abilities. Due to

†Work done during an internship at Alibaba Group.
∗Corresponding authors. This research was supported by

the Joint Research Project of Yangtze River Delta Science and
Technology Innovation Community (No. 2022CSJGG1400),
Alibaba Group through Alibaba Innovative Research Program.

1https://github.com/zouyingcao/PGPO.

To complete the task, first check
nearby tables for the tissue box,
then locate desklamp to view
tissue box under it.

Thought: First, I need to locate
the book. I will start by
checking the nearby location …
Action: go to drawer 1

Thought: First, I should go to
the nearest table to find one
tissue box ...
Action: go sidetable 1

examine the book
with the desklamp

examine the tissuebox
with the desklamp

I should go to each drawer and
desk to find the book first, then
go to the receptacle with the
desklamp to examine the book.

1. object_name, location_name = locate_object(candidate_locations_1);
2. take(object_name, location_name);
3. desklamp_name = find_desklamp(candidate_locations_2);
4. examine(desklamp_name, object_name).

similar tasks
examine <object>

Reasoning and Acting (native: w/o plan)

w/ Natural Language Plan

w/ Pseudocode Style Plan

unchanged

: task-specific entity

Figure 1: An example demonstrating why P-code Plan
helps LLM agents generalize well. When faced with
similar tasks (e.g., examine object with desklamp), the
thought process can be recycled through P-code Plans.

the dominance of natural language (NL) in agent
reasoning (Wei et al., 2022; Yao et al., 2023), ex-
isting researches mainly focus on generating NL
plans. However, semantic ambiguities and unde-
sired verbosity in NL may not be beneficial to agent
planning, leading to low precision and inefficiency.
Meanwhile, NL plans are too specific to help LLM
agents generalize to other unseen yet similar tasks.
Therefore, it still remains underexplored whether
alternative plan formats could elicit more efficient
and generalized LLM agents.

Prior work (Wang et al., 2024c) demonstrates
the advantage of executable code as agent’s ac-
tion over text or JSON format. Inspired by this,
we explore using pseudocode to represent plan,
given that plans can be considered as high-level
abstraction of actions while pseudocode outlines
code. Our work starts by distilling pseudocode-
style plans (denoted as P-code Plan) from existing
ReAct-style (Yao et al., 2023) datasets, adhering to
predefined format requirements. We observe that
through fine-tuning with P-code Plan incorporated,
LLM agents exhibit improved out-of-distribution
generalization. As shown in Figure 1, abstract plan-

14966

https://github.com/zouyingcao/PGPO

ReAct-style Dataset 𝓓

Task

Instruction: examine the book
with the desk lamp…
Thought: First, I need to locate
the book. …
Action: go to drawer 1
Observation: On the drawer 1,
you see a CD 1, and …

Reasoning and Acting
locate
book

Location

take Object
find
desk lamp

examine
Execute

(a) Thought Extraction (b) Plan Distillation

➕
task instruction

+ agent thoughts

Summarize

Formatting

NL planpseudocode-style plan

(c) Plan Verification

Thought: First, I devise a
plan for solving the task:
1. A, B = locate_object(entity1);
2. take(A, B);
3. C = find_desklamp(entity2);
4. examine(C, A).
Now, I need to ... Action: …

Pseudocode-style Plan

Figure 2: Overview of P-code Plan generation pipeline. We first extract the thought part from existing ReAct-style
datasets. Then, we prompt GPT-4o to summarize the thought process into high-level plans. Pseudocode-style plans
are finally structured with predefined formats, followed by manual verification to ensure accuracy.

ning steps in P-code Plan can capture generalizable
task knowledge while NL plans focus on specific
knowledge and may suffer from overfitting. More-
over, agent’s planning ability learned from concise
P-code Plan facilitates a more efficient reasoning
process with fewer interactions.

Building upon these insights, we further propose
a pseudocode-style Planning Guided Preference
Optimization method named PGPO for agent ca-
pability enhancement. Specifically, we first utilize
supervised fine-tuning to build a base agent. Then,
PGPO contains two iterative phases: (1) the base
agent performs exploration on expert trajectories
to construct contrastive trajectory datasets based
on two designed planning-oriented rewards; (2) di-
rect preference optimization is employed to refine
the base agent’s pseudocode-style planning abil-
ity for task guidance. Through experiments with
four LLMs, PGPO outperforms various strong base-
lines by relative 11.6% performance gain averaged
across three representative agent benchmarks. In
summary, our contributions are as follows:
• We investigate the effectiveness of pseudocode-

style plans in agent reasoning, which are more
concise and structured than NL plans. P-code
Plan demonstrates its superiority in boosting the
generalization ability of LLM agents.

• We further introduce PGPO, a preference op-
timization method that empowers LLM agents
with enhanced reasoning capabilities under the
guidance of pseudocode-style plans.

• Experimental results reveal that our PGPO
achieves state-of-the-art performance on repre-
sentative agent benchmarks, especially when
dealing with more complex agent tasks.

2 Pseudocode-style Plan is Beneficial

In this section, we first define the structural rep-
resentation of P-code Plan and then introduce a

plan generation pipeline, followed by preliminary
experiments to show the advantage of P-code Plan.

2.1 Definition of P-code Plan

In this paper, we mainly focus on LLM agents’
multi-step reasoning usage: LLM agents interact
with the environment to accomplish complex tasks,
which can be represented as a set of Thought-
Action-Observation tuples {(t, a, o)}n. At each
interaction, the LLM agent gives the inner thoughts
t and takes an action a based on the observation
o from the environment. n denotes the number of
interaction turns. Following this task formalization,
we define the format of our pseudocode-style plans.

Planning Step. Ps = (id, name, [parameter],
[return value], [control flow]) structures each
step in the plan, uniquely identified by id. Similar
to function in programming languages, one plan-
ning step usually corresponds to a subset of actions
oriented to one subtask. name abstracts a function
identifier to describe the reasoning process of this
subtask, with parameters enclosed in parenthe-
ses. Square brackets ([...]) mean optional attributes.
If necessary, return values are indicated on the
left of the assignment operator, standing for the
observed information. control flow signifies stan-
dard programming structures such as if-else and
for, which can be omitted when planning steps are
performed sequentially.

Planning Entity. E = {e1, e2, ..., em} refs to
the prior knowledge entities used to specify some
parameters in the planning step. These entities
serve as guidance for generating valid actions and
avoiding aimless exploration.

P-code Plan. Denoted as (Ps, E), pseudocode-
style plans are the combination of abstract planning
steps and task-specific planning entities. Different
from NL plans, P-code Plans are more structured

14967

Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

(a) ALFWorld-Seen

60

65

70

75

Av
er

ag
e

R
ew

ar
d

w/o Plan w/ NL Plan w/ P-code Plan

Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

(b) ALFWorld-UnSeen

65

70

75

Av
er

ag
e

R
ew

ar
d

Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

(c) WebShop-Seen

58

60

62

64

66

Av
er

ag
e

R
ew

ar
d

Figure 3: Comparison between w/ P-code Plan and w/o Plan, w/ NL Plan during the SFT process for LLM agents.
Here w/o Plan symbolizes training on the original ReAct-style datasets, w/ NL Plan indicates incorporating natural
language plans into training data and w/ P-code Plan represents the incorporation of pseudocode-style plans.

and concise. This format helps agent better general-
ize to unseen tasks2, where unseen tasks may share
similar planning steps with seen tasks but initialize
different planning entities.

2.2 Plan Generation Pipeline
Initially, we have ReAct-style dataset D where
each instance d consists of one task instruction u
with its collected expert trajectory τ = (t1, a1, o1,
..., on−1, tn, an, on). Then, with LLM and human
participation, as illustrated in Figure 2, our P-code
Plan generation pipeline is outlined as follows:
• Thought Extraction. We first extract agent

thoughts {t}n from expert trajectories, which
involves task-specific knowledge for planning.
The relationship between agent thoughts and
task plans can be viewed as one of abstraction.
The plan distills the essentials of thoughts while
omitting specifics, as an abstract summary does.

• Plan Distillation. Subsequently, to improve the
quality of distilled plans and obtain more accu-
rate abstract knowledge, we employ a powerful
model (e.g., GPT-4o) for generation. Given the
task instruction u with agent thoughts {t}n, we
instruct the LLM to summarize the step-by-step
plan in natural language. Next, due to the effec-
tiveness of few-shot prompting strategy for struc-
tural generation (Valmeekam et al., 2024; Liu
et al., 2023a), demonstrations of pseudocode-
style plans paired with corresponding tasks are
taken as input, converting natural language plans
into P-code Plans. See Appendix B.2 for the
prompt we used to guide plan distillation.

• Plan Verification. Last, we choose human to
verify the LLM-generated P-code Plans whether

2The term “unseen tasks” refs to task scenarios that are
not present in the training set, which can measure out-of-
distribution generalization.

Setting Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

ALFWorld-Seen
w/o Plan 12.04 11.38 11.49 11.45
w/ NL Plan 11.34 11.36 11.41 12.14
w/ P-code Plan 11.33 11.21 11.29 10.99

ALFWorld-Unseen
w/o Plan 12.93 12.22 12.59 12.84
w/ NL Plan 12.13 12.27 11.88 12.33
w/ P-code Plan 12.04 11.87 11.78 11.57

Table 1: Average interaction turns required on ALF-
World. Bold indicates the best results of each model.

follow the format requirements described in Sec-
tion 2.1. In order to guarantee accuracy and
knowledge consistency, minor manual refine-
ment are also needed.

2.3 P-code Plan Improves Generalization

We adopt supervised fine-tuning (SFT) to equip
base LLMs with agent abilities and then investigate
whether LLM agents can benefit from our designed
pseudocode-style plans. Our experiments are based
on four popular LLMs: Llama-2-7B/13B (Touvron
et al., 2023), Llama-3-8B (Dubey et al., 2024) and
Mistral-7B-v0.3 (Jiang et al., 2023). For the agent
tasks, we choose two representative datasets: ALF-
World (Shridhar et al., 2021) and WebShop (Yao
et al., 2022). We employ the average reward as
metric to reflect the agent performance. Note that
ALFWorld comprises both seen and unseen test
sets in order to evaluate the in-distribution and out-
of-distribution generalization of the agents. Please
ref to Appendix B.1 and B.4 for more details.

We first collect ReAct-style training expert tra-
jectories following Xiong et al. (2024) and then use
the above plan generation pipeline (Section 2.2) to

14968

Expert Dataset
with P-code Plan

𝓓𝒔

➕

SFT

base agent 𝝅𝜽
Thought+Action

Observation

Expert
Trajectory

Explore

Explore

…

…

…
Plan-following

Reward

Plan-driven
Reward

Contrastive Trajectory Datasets

≻ ≻

Preference
Optimization

DPO Loss 𝓛𝒑 + DPO Loss 𝓛𝒇
 + SFT Loss 𝓛%

(a) Supervised
Fine Tuning Stage (b) Exploration Stage for Planning-oriented Trajectory Collection (c) Planning-guided Agent

Learning Stage

Figure 4: The overview of PGPO. Our algorithm starts by build a SFT-based agent. Then, the base agent iteratively
performs exploration on expert trajectories to construct contrastive trajectory datasets based on two designed
planning-oriented rewards and updates itself via preference optimization to enhance agent capabilities.

obtain P-code Plans, along with natural language
plans. These two type generated plans are finally in-
corporated into the first step of original trajectories
to construct new training datasets, respectively. In
Appendix B.4, we present more details of dataset
construction procedure with some examples.

As shown in Figure 3, with the help of P-code
Plan, LLM agents generally have higher average
reward (10 out of 12 scenarios). Compared to naive
expert trajectories (w/o Plan), integrating plans into
training data (regardless of format) empowers LLM
agents with basic planning ability, which is bene-
ficial to the following agent reasoning. Regarding
planning format, although w/ P-code Plan brings
weaker performance than w/ NL Plan for Llama-2-
7B and Llama-3-8B on the seen ALFWorld tasks (2
out of 12 scenarios), it consistently achieves better
generalization to unseen ALFWorld tasks for all
four models. We consider this can be attributed that
abstract planning steps in P-code Plan capture gen-
eralizable meta-knowledge guiding task solution
but natural language plans are prone to overfitting.
We also analyze whether executable code format
could lead to higher performance (in Appendix C.2)
and find verbose plans pose a greater challenge for
generation, thereby negatively affect reasoning.

Moreover, we further calculate the average num-
ber of interaction turns on all evaluated instances.
In Table 1, LLM agents w/ P-code Plan surpris-
ingly reduce the average interaction turns compared
to the other two settings. This underscores the
superiority of P-code Plan in preventing blind ex-
ploration when dealing with agent tasks. Another
interesting finding is handling unseen tasks requires
more interactions than seen tasks, but the increase
from LLM agents w/ P-code Plan is relatively low.
This phenomenon also demonstrates our designed
P-code Plan is suitable for agent generalization.

Overall, the advantage of P-code Plans over NL

plans can be summarized into two aspects: (1) ab-
stract pseudocode format helps LLM agents better
generalize to unseen tasks; (2) concise and struc-
tured pseudocode facilitates a more efficient agent
reasoning process with fewer interactions.

3 P-code Plan-Guided Agent Learning

Despite widespread use in open LLM agents (Chen
et al., 2023; Zeng et al., 2024; Yin et al., 2024),
supervised fine-tuning approach has its drawback,
that is, the limited generalization ability due to over-
reliance on expert trajectories (Song et al., 2024;
Fu et al., 2025). Recent works focus on Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024)
and its variants to develop LLM agents with con-
trastive trajectory dataset (Yang et al., 2024b; Song
et al., 2024; Xiong et al., 2024; Shi et al., 2024).
Inspired by our findings in Section 2.3, we pro-
pose a method for improving agents’ pseudocode-
style planning ability, called PGPO, standing for
Planning Guided Preference Optimization. The
overview of our method is depicted in Figure 4.

3.1 Planning-oriented Trajectory Collection
We start off training the base agent πθ via SFT on
the expert dataset Ds = {(u, p, τ)(i)}|Ds|

i=1 with P-
code Plans p generated in Section 2.2. We denote
new plan-incorporated trajectory as τ

′
= (p, t1, a1,

o1, ..., on−1, tn, an, on) and the loss function can
be formulated as:

LSFT (θ) = −E(u,τ ′)∼Ds
{

n∑

j=1

[log πθ(tj |u, p, τj−1)

+ log πθ(aj |u, p, τj−1, tj)] + log πθ(p|u)}, (1)

where τj−1 = (t1, a1, o1, ..., aj−1, oj−1) repre-
sents the interaction history of previous j−1 rounds.

The obtained base agent πθbase is used for explo-
ration on the expert trajectory to collect contrastive

14969

action pairs. Oriented towards planning, we design
two rewards for contrastive trajectory construction:
1) plan-driven reward; 2) plan-following reward.

Plan-driven Reward rd evaluates the influence
of P-code Plans on the entire trajectory. Given each
task instruction u, we use base agent to generate
the P-code Plan p̂ ∼ πθbase(·|u) and subsequent
reasoning steps τ̂ ∼ πθbase(·|u, p̂). In our experi-
ments, agent stops exploration when task completes
or the maximum number of interaction rounds is
exceeded. Then, the environment will give the out-
come reward ro, which is positively correlated with
the quality of exploration trajectory. For simplicity,
we use this outcome reward as rd. By comparing
rd(p, τ) and rd(p̂, τ̂) for expert trajectory and ex-
ploration trajectory, we get our first contrastive tra-
jectory dataset Dp =

{
(u, pw, τw, pl, τ l)(i)

}|Dp|
i=1

.
We use (pw, τw) ≻ (pl, τ l) | u to represent the
situation where (pw, τw) with higher reward is pre-
ferred over (pl, τ l) with lower reward.

Plan-following Reward rf assesses the extent to
which agents comprehend the structured intentions
behind P-code Plans and their proficiency in follow-
ing these plans during task execution. Given the
first expert interaction round (u, p, τ1) as historical
trajectory, we query base agent to continue explo-
ration τ̂2:m ∼ πθbase(·|u, p, τ1). m denotes the to-
tal interaction rounds. Here, we select the first two
interaction rounds τ̂2 as representative to analyze
the alignment between plans and executed actions.
Inspired by Monto Carlo Tree Search (Kocsis and
Szepesvári, 2006), we quantify it as the potential
to complete task successfully. It is intuitive that
when the quality of P-code Plan is guaranteed, sub-
sequent reasoning steps that closely adhere to the
plan are likely to yield higher outcome rewards.
Therefore, we use one scorer agent to generate new
subsequent trajectory τ s3:m′ ∼ πθscorer(·|u, p, τ̂2).
By sampling N new trajectories, the average out-
come reward ro from the environment estimates
the plan-following reward:

rf (u, p, τ̂2) =

∑N
i=1 ro(τ

s
3:m′ |u, p, τ̂2)(i)
N

(2)

In our approach, we use πθbase as πθscorer . Then,
similar to the construction of Dp, we contrast
subsequent trajectory τw2:n ≻ τ l2:m | (u, p, τ1)
based on rf (u, p, τ2) and rf (u, p, τ̂2), establishing
our second contrastive trajectory dataset Df ={
(u, p, τ1, τ

w
2:n, τ

l
2:m)(i)

}|Df |
i=1

.

3.2 Planning-guided Agent Learning
After collecting preference data, DPO method is
utilized to optimize our base agent. First, based on
dataset Dp, agent learns to generate high-quality
P-code Plans along with subsequent reasoning by
minimizing the following loss:

Lp=− E(u,pw,τw,pl,τ l)
∼Dp

[
log σ

(
β log

πθ(p
w, τw|u)

πref (pw, τw|u)

−β log
πθ(p

l, τ l|u)
πref (pl, τ l|u)

)]
(3)

where σ denotes the logistic function, β controls
the weight of the preference for the reference model
πref . Meanwhile, agent refines its parameters to
develop the plan-following ability gathered from
dataset Df , which can be formulated as:

Lf =−E(u,p,τ1,τ
w
2:n,τ

l
2:m)

∼Df

[
log σ

(
β log

πθ(τ
w
2:n|u, p, τ1)

πref (τw2:n|u, p, τ1)

−β log
πθ(τ

l
2:m|u, p, τ1)

πref (τ l2:m|u, p, τ1)

)]
(4)

One issue of standard DPO is that log probability
of chosen trajectories may decrease over training
steps, leading to sub-optimal performance. Follow-
ing previous works (Pang et al., 2024; Xiong et al.,
2024), we add SFT loss to mitigate this issue:

Ls=−E(u,pw,τw,pl,τ l)∼Dp
[log πθ(p

w, τw|u)] (5)

Finally, the optimization objective of PGPO is:

min
πθ

(Lp + Lf + Ls) (6)

The updated agent will be used as new base agent
for exploration and iterate the above learning pro-
cess until exceeding the maximum iterations. The
overall procedure of PGPO is summarized in Ap-
pendix A Algorithm 1.

4 Experiments

4.1 Experimental Settings
Datasets and Metrics. Besides ALFWorld for
embodied household tasks and WebShop for on-
line shopping (as described in Section 2.3), we also
include one game benchmark TextCraft (Prasad
et al., 2024) for crafting Minecraft items. ALF-
World and TexCraft provide binary rewards to indi-
cate task success while WebShop provides dense
rewards from 0 to 1 to measure the task comple-
tion level. For all datasets, we choose the average
reward as evaluation metric. Detailed statistical
information of the datasets are in Appendix B.1.

14970

Method
Llama-2-7B Llama-2-13B

ALFWorld WebShop TextCraft Avg. ALFWorld WebShop TextCraft Avg.
Seen UnSeen Seen UnSeen

SFT 60.0 67.2 60.2 28.0 53.9 67.1 67.9 62.2 29.0 56.6
ETO 68.6 72.4 67.4 35.0 60.9 75.0 69.4 68.9 42.0 63.8
IPR 70.3 74.7 71.3 34.0 62.6 75.0 76.9 72.2 39.0 65.8

PGPO 76.4 76.9 72.2 43.0 67.1 77.1 77.6 73.7 48.0 69.1

Method
Llama-3-8B Mistral-7B

ALFWorld WebShop TextCraft Avg. ALFWorld WebShop TextCraft Avg.
Seen UnSeen Seen UnSeen

SFT 67.1 72.4 61.2 20.0 55.2 72.1 68.7 61.8 31.0 58.4
ETO 72.1 73.1 66.2 36.0 61.9 75.0 72.4 66.2 38.0 62.9
IPR 72.9 73.9 72.0 38.0 64.2 73.6 73.1 69.6 36.0 63.1

PGPO 75.0 76.9 72.3 46.0 67.6 75.0 77.6 69.0 45.0 66.7

Table 2: Main results of PGPO compared to training-based baselines on ALFWorld, WebShop and TextCraft. Bold
and underline indicate the best and the second-best results of each model. For all methods (except SFT), we report
the best performance across all iterations following Xiong et al. (2024). Our PGPO is evaluated in zero-shot setting.

Method ALFWorld WebShop TextCraft
Seen UnSeen

ReAct+GPT-4 42.9 38.1 63.2 28.0
ReAct+GPT-3.5 7.9 10.5 62.4 20.0
ADaPT+GPT-4 75.0 69.4 64.8 48.0
ADaPT+GPT-3.5 70.3 71.6 62.7 26.0

PGPO+Llama-2-7B 76.4 76.9 72.2 43.0
PGPO+Llama-3-8B 75.0 76.9 72.3 46.0

Table 3: Comparative experiments on PGPO vs. prompt-
based baselines. The best and second-best results are
marked in bold and underline.

Baselines. We compare PGPO with naive SFT
and other two leading agent learning methods: (1)
ETO (Song et al., 2024) applies DPO loss to im-
prove the agent from its exploration failures; (2)
IPR (Xiong et al., 2024) introduces step-wise pro-
cess supervision into LLM agent training. For
fair comparison, we also select Llama-2-7B/13B,
Llama-3-8B and Mistral-7B-v0.1 as backbone mod-
els and use the same training data. Additionally, we
include two strong closed-source LLMs: GPT-3.5-
Turbo and GPT-4, utilizing two prompt-based meth-
ods ReAct (Yao et al., 2023) and ADaPT (Prasad
et al., 2024) for comparison.

Implementation Details. During the SFT phase,
we set the learning rate as 2e-5 and the batch size
as 48 across 3 training epoches. The cosine sched-
uler is employed with a 3% warm-up ratio. In
the trajectory collection stage, the base agent ex-
plores the environment using a temperature of 0. To
construct contrastive pairs, we sample N=5 times

ALFWorld WebShop TextCraft
Seen UnSeen

PGPO 76.4 76.9 72.2 43.0
- P-code 75.7↓ 0.7 71.6↓ 5.3 69.6↓ 2.6 40.0↓ 3.0

- Lf 74.3↓ 2.1 75.4↓ 1.5 70.4↓ 1.8 41.0↓ 2.0

- Ls 69.3↓ 7.1 68.7↓ 8.2 64.8↓ 7.4 35.0↓ 8.0

Table 4: Approach ablations of PGPO. Experiments are
based on Llama-2-7B. - P-code represents using NL
plans to replace P-code Plans. - Lf denotes leaving out
the estimation of plan-following reward rf , followed by
the removal of Lf . - Ls means the removal of SFT loss.

with temperature=1 to calculate the plan-following
reward. During the following preference optimiza-
tion phase, we tune the learning rate from 5e-7 to
5e-6 and test two values for β in the DPO loss: 0.01
and 0.1. The maximum number of iterations is set
to 4. All training experiments are conducted on 8
NVIDIA A100 80 GB GPUs. See Appendix B.4-
B.6 for more details.

4.2 Main Results

Table 2 and 3 show the evaluation results of PGPO
and baselines on three agent benchmarks. First,
compared with training-based baselines, PGPO sig-
nificantly increases the average reward across all
the datasets. Specifically, PGPO with Llama-2-
7B surpasses the state-of-the-art method IPR by an
improvement of 7.2% on average reward. This indi-
cates the incorporation of P-code Plans into training
data can provide the model with enhanced reason-
ing abilities in accomplishing the agent tasks.

14971

0 1 2 3 4 5
Iterations

55

60

65

70

75
Av

er
ag

e
R

ew
ar

d
WebShop

PGPO ETO IPR

0 1 2 3 4
Iterations

55

60

65

70

75

ALFWorld-Unseen

(a) Comparison among Different Methods

PGPO ETO IPR

0 1 2 3 4 5
Iterations

65

70

75

80

Av
er

ag
e

R
ew

ar
d

WebShop
Llama-2-7B
Llama-2-13B

Llama-3-8B
Mistral-7B

0 1 2 3 4
Iterations

70

73

76

79

82
ALFWorld-Unseen

(b) Influence on PGPO across Different Models

Llama-2-7B
Llama-2-13B

Llama-3-8B
Mistral-7B

Figure 5: Ablation study on optimization iterations. (a)
provides a comparison of the performance of PGPO
against ETO and IPR across varying iterations. (b)
shows the influence of increasing iterations on PGPO
across different base models. iter=0 is the SFT stage.
Shaded regions indicate standard error across 5 trails.

Second, for prompt-based baselines, traditional
ReAct paradigm using GPT-3.5-Turbo exposes
poor performance on all agent datasets. Although
ADaPT+GPT-3.5 gains a performance boost via re-
cursive task decomposition, it still underperforms
our method. In particular, PGPO+Llama-2-7B sur-
passes ADaPT+GPT-3.5 by relative margins of
9.5% and 17% points on WebShop and TextCraft.
While prompting methods with GPT-4 improve the
agent performance, PGPO+Llama-3-8B alleviates
the need for few-shot context and achieves com-
parable or even better results. This demonstrates
smaller open-source models can be effective agents
through iterative training, rivaling or exceeding the
agent capabilities of strong closed-source models.

Finally, we focus on the effectiveness of PGPO
across different base models on various datasets.
(1) Generalization on different models: Besides
the LLaMA family of models, we also include
Mistral-7B in Table 2 and Qwen2.5 series in Ap-
pendix C.3. Regardless of model sizes and families,
our method consistently exhibit the advantage of
P-code Plans guiding agent reasoning. (2) Gener-
alization on diverse unseen tasks: To comprehen-
sively assess its capability in out-of-distribution
scenarios, we conduct additional experiments on
ScienceWorld (Wang et al., 2022) in Appendix C.4
Table 13. PGPO outperforms the ETO and IPR
baselines in generalizing to unseen tasks, where
the performance gap is larger when dealing with
more complex interactive tasks.

iter1 iter2 iter3 iter4 iter5
Optimization Iterations

50

100

150

200

250

300

350

400

Tr
aj

ec
to

ry
 N

um

win loss

60

63

66

69

72

75

Av
er

ag
e

R
ew

ar
d

Figure 6: The correlation between collected contrastive
trajectory dataset distribution and agent performance
during iterative optimization. Here, "win" means agent-
generated trajectory surpassing expert trajectory while
"loss" represents falling short.

ALFWorld
-Seen

ALFWorld
-UnSeen

WebShop
-Seen

65

70

75

80

Av
er

ag
e

R
ew

ar
d

PGPO PGPO+

Figure 7: Comparison between PGPO+ and PGPO.

4.3 Ablation Study

Approach Ablations. Table 4 illustrates that the
performance of PGPO obviously declines after re-
moving certain key components. We observe that
the most significant performance drop comes from
the removal of SFT loss (- Ls), which is consis-
tent with previous findings (Pang et al., 2024). To
demonstrate the advantage of P-code Plans over NL
plans, we specifically replace P-code Plans with
NL plans (generation pipeline is same with Sec-
tion 2.3) in training data and then employ PGPO.
As expected, the results indicate even with subse-
quent iterative preference optimization, the perfor-
mance upper bound brought by P-code Plans is still
superior to that of NL plans. Additionally, the ef-
fect of using plan-following reward to include Lf

in optimization loss is better than - Lf , indicating
the necessity of plan-following rewards.
Ablation on Optimization Iterations. Figure 5
shows the iteration ablation results from two as-
pects: (a) With optimization iterations increase, all
methods first exhibit performance improvements
and then deteriorate due to excessive iterations.
Among them, PGPO consistently achieves the high-

14972

for location in ["fridge 1", "drawer 1", "drawer 2",
"cabinet 1", "cabinet 2", "cabinet 3",
"cabinet 4", "cabinet 5", "cabinet 6",
"cabinet 7", "cabinet 8", "cabinet 9",
"cabinet 10 ", "a countertop 1"]:

res = goto(location)
if "apple" in res:

apple_location = location
break

take_from(res, apple_location)
goto("microwave 1")
heat(res, "microwave 1")
goto("diningtable 1")
put(res, "diningtable 1")

You are in the middle of a room. Looking quickly around you, you see a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a
cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a diningtable 1, a
drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a
stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: heat some apple and put it in diningtable.

Task Instruction:

NL Plan: Execode Plan (Python format):

Step 1. look for the apple in the environment;
Step 2. take the apple;
Step 3. go to a microwave or other suitable appliance;
Step 4. heat the apple using microwave or other suitable appliance;
Step 5. go to the diningtable;
Step 6. put the heated apple in/on the diningtable.

P-code Plan:

Abstract planning steps:
Step 1. object_name, location = locate_object(candidate_locations);
Step 2. take(object_name, location);
Step 3. go_to(microwave);
Step 4. heat(object_name, microwave);
Step 5. go_to(diningtable);
Step 6. put(object_name, diningtable).

Task-specific entities:
object = apple
candidate_locations
= fridge 1, cabinets

Figure 8: Case study for our P-code Plan compared with other formats.

Method ALFWorld
Seen UnSeen

ETO 34.28% 32.83%
IPR 30.71% 28.35%

PGPO 23.57% 26.86%

Table 5: Invalid action rate
on ALFWorld.

Method Webshop

ETO 37.5
IPR 40.5

PGPO 41.0

Table 6: Success rate
on WebShop.

est peak performance. We consider that this can be
attributed to the excellent starting point (i.e., iter=0)
in PGPO since the incorporation of P-code Plans
into SFT data effectively enhances the agent reason-
ing capability. (b) Despite different base models,
the peak performance of PGPO can be achieved
within 4 iterations. However, the performance vari-
ation trend across them quite differs, which reflects
the distinct extent of each model grasping the meta-
knowledge inherent in P-code Plans. Furthermore,
as depicted in Figure 6, agent achieves optimal per-
formance during iterative optimization when the
number of its exploration trajectory surpassing ex-
pert trajectory reaches a peak.

4.4 Analysis

Analysis on training time efficiency. We com-
pare the time consumption of PGPO with two
training-based baselines on WebShop. Under the
same resource constraints, ETO, IPR and PGPO
first undergo a 1-hour SFT phase and additionally
require 1.5h, 4.5h and 3.2h per optimization itera-

tion, respectively. Therefore, PGPO delivers a 9%
performance improvement while maintains reason-
able training efficiency, requiring less than twice
the time cost of ETO.

P-code Plan guidance can reduce the incidence
of action errors and omissions in reasoning.
Taking ALFWorld as an example, we calculate the
proportion of trajectories containing invalid actions
for each method on Llama-2-7B in Table 5. The
results demonstrate PGPO decreases action errors
with the help of P-code Plans. Then we analyze the
action omissions of agents via the task success rate.
Since WebShop provides dense rewards, the trajec-
tory is considered success only when final reward
is 1.0, i.e., agent has selected all necessary product
attributes without any omissions. From Table 6,
it can be observed that PGPO achieves the high-
est success rate, indicating guidance from P-code
Plans indeed reduces the agent’s action omissions.

Step-wise reward does not necessarily elicit bet-
ter LLM agents. Regarding the design of plan-
following reward in PGPO, we only consider the
alignment between the first step (containing the
generated plans) and the second step to construct
contrastive trajectory pairs. Since step-level pro-
cess supervision has been effectively utilized in
reasoning tasks (Lightman et al., 2024), we eval-
uate whether introducing step-wise reward to our
PGPO could further facilitate agent reasoning. Fol-

14973

lowing IPR (Xiong et al., 2024), we add step-level
rewards into our method (denoted PGPO+). It can
be observed from Figure 7 that step-wise reward
negatively impacts the PGPO performance. To
speculate on the reason behind, we manually check
the quality of training data collected by PGPO+ and
find that although step-level process supervision in-
creases the data scale, some constructed preference
pairs may be ambiguous, which poses a potential
risk of reward hacking (Gao et al., 2023). There-
fore, it is still challenging to accurately determine
the contribution of the intermediate step, thus intro-
ducing step-wise reward instead plays a negative
role in agent reasoning (Guo et al., 2025).

4.5 Case Study

In Figure 8, we show the generated P-code Plan
compared with other two plan formats within the
same task in ALFWorld. First, NL plans are less
structured than plans in pseudocode or executable
code format since elements such as articles and con-
junctions may have no role in complex reasoning
logic. Second, as described in Appendix C.2, Exe-
code Plan is more verbose than P-code Plan. In this
case, the Execode Plan lists almost all of locations
for agent to explore, guaranteeing the solvability
of this agent task. However, this may introduce un-
necessary context and lead to blind trial-and-error,
resulting in task failure due to exceeding the max-
imum interaction turns. By contrast, our P-code
Plan strikes a balance between structural rigor and
concision, thereby facilitating agent reasoning.

5 Related Works

LLM Agents. The remarkable capabilities of
LLMs have spurred research into developing AI
agents. These LLM agents are generally equipped
with reasoning and acting capabilities, enabling
them to handle a wide range of tasks (Richard,
2023; Nakajima, 2023; Liu et al., 2024). Prompt-
based methods like ReAct (Yao et al., 2023), Re-
flexion (Shinn et al., 2024) and ADaPT (Prasad
et al., 2024) utilize strong closed-source LLMs to
build powerful agents. However, prompting strate-
gies are heavily dependent on those enhanced but
expensive LLMs, resulting in high usage costs. Re-
cent studies explore the fine-tuning methods based
on open-source LLMs to improve agent intelli-
gence (Chen et al., 2023; Zeng et al., 2024).

Agent Planning. Planning plays a crucial role in
agent reasoning, with different planning paradigms,

such as Plan&Solve (Wang et al., 2023) and Plan-
Act (Liu et al., 2023b), offering diverse approaches
to agent tasks. Few works have explored the po-
tential of alternative plan formats beyond natural
language. To utilize the precision of formal lan-
guage, Li et al. (2024) constructs a context-free
grammar to control the NL plan generation. Zhang
et al. (2024) rely on translating NL tasks into Plan-
ning Domain Definition Language (PDDL) and
then solve problems with PDDL planners. Silver
et al. (2024) consider PDDL domains and directly
use LLMs for generalized planning. However, the
above studies just use such structured language to
assist agent planning rather than empower LLMs to
generate structured plans for enhanced reasoning.
Concurrently with our work, Wen et al. (2025)
introduce code-form plans to do reasoning tasks
under the few-shot setting without fine-tuning.

Agent Learning. Previous works focus on learn-
ing from expert trajectory data to align agent behav-
ior with expert (Chen et al., 2024; Yin et al., 2024).
Recently, learning from preference has shown
promise for developing LLM agents. NAT (Wang
et al., 2024b) teaches the model to differentiate
between correct and incorrect interactions during
fine-tuning. ETO (Song et al., 2024) leverages it-
erative explored trajectories for training via DPO
loss. IPR (Xiong et al., 2024) constructs step-wise
contrastive action pairs using estimated step-level
rewards to guide the agent optimization process.
These efforts highlight iterative preference learning
techniques unlock sophisticated agent capabilities.

6 Conclusion

In this paper, we propose PGPO, which empowers
LLM agents with enhanced reasoning capabilities
under the guidance of pseudocode-style plans. Our
motivation is based on that abstract P-code Plan
can capture efficient structural logic of reasoning
compared with NL plans, suitable for LLM agent’s
generalization to analogous agent tasks. After in-
corporating automatically generated P-code Plans
into existing ReAct-style datasets, PGPO starts by
a competent base agent through SFT. Then, PGPO
iteratively refines the base agent via preference op-
timization based on two planning-oriented rewards.
Experimental results demonstrate PGPO effectively
achieves new SOTA performance across three agent
benchmarks. Further analysis shows that P-code
Plan exhibits robust potential in mitigating action
errors and critical step omissions during reasoning.

14974

Limitations

This paper focuses on incorporating pseudocode-
style plans to guide agent preference optimization.
Despite its new SOTA performance, we acknowl-
edge the following limitations of our work: 1) Our
method deploys Monte Carlo sampling to estimate
plan-following reward, incurring additional infer-
ence costs compared to the ETO baseline. How-
ever, sampling only needs to be conducted for one
step per iteration, which is more efficient than the
design of step-wise reward in IPR baseline. And
ablation studies in Section 4.3 demonstrates the ne-
cessity of plan-following rewards. 2) Our method
designs structured P-code Plan to enhance agent
reasoning. Although powerful GPT-4o guarantees
the plan quality to a certain extent, it is still neces-
sary to research how to verify plans automatically
beyond human verification.

In the future, we plan to conduct research on
rule-based rewards (Guo et al., 2025) since the
structured nature of our P-code Plan provides an
interpretable scaffold for automating rule-based
reward design. Furthermore, we explore extending
our method to a multi-task training scenario, which
can contribute to more generalized LLM agents.

References
Raghav Arora, Shivam Singh, Karthik Swami-

nathan, Ahana Datta, Snehasis Banerjee, Brojeshwar
Bhowmick, Krishna Murthy Jatavallabhula, Mohan
Sridharan, and Madhava Krishna. 2024. Anticipate
& act: Integrating llms and classical planning for ef-
ficient task execution in household environments. In
International Conference on Robotics and Automa-
tion.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-FLAN: Designing data and
methods of effective agent tuning for large language
models. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 9354–9366.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong,
Zhuoma Gongque, Weihao Zeng, Wei Wang, Jin-
gang Wang, Xunliang Cai, and Weiran Xu. 2025.

Agentrefine: Enhancing agent generalization through
refinement tuning. arXiv preprint arXiv:2501.01702.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages
10835–10866. PMLR.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024. Formal-llm: Integrating for-
mal language and natural language for controllable
llm-based agents. arXiv preprint arXiv:2402.00798.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023a. Llm+ p: Empowering large language models
with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
and 1 others. 2023b. Bolaa: Benchmarking and
orchestrating llm-augmented autonomous agents.
arXiv preprint arXiv:2308.05960.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei
Yang, Zuxin Liu, Juntao Tan, Prafulla K Choubey,
Tian Lan, Jason Wu, Huan Wang, and 1 others. 2024.
Agentlite: A lightweight library for building and
advancing task-oriented llm agent system. arXiv
preprint arXiv:2402.15538.

Yohei Nakajima. 2023. Babyagi: an experimental
framework for a self-building autonomous agent.

14975

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Iterative reasoning preference optimization.
arXiv preprint arXiv:2404.19733.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2024. Adapt: As-needed decompo-
sition and planning with language models. In Find-
ings of the Association for Computational Linguistics:
NAACL 2024, pages 4226–4252.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu,
Xiang Chen, Shumin Deng, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. 2024a. Agent
planning with world knowledge model. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Jiang, Chengfei Lv, and
Huajun Chen. 2024b. AutoAct: Automatic agent
learning from scratch for QA via self-planning. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3003–3021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Toran Bruce Richard. 2023. Significant-
gravitas/autogpt: A collection of tools and
experimental open-source attempts to make gpt-4
fully autonomous.

Shamik Roy, Sailik Sengupta, Daniele Bonadiman, Saab
Mansour, and Arshit Gupta. 2024. Flap: Flow-
adhering planning with constrained decoding in llms.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 517–539.

Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang,
and Fuli Feng. 2024. Direct multi-turn preference
optimization for language agents. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 2312–2324.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. Alfworld: Aligning text and em-
bodied environments for interactive learning. In In-
ternational Conference on Learning Representations.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B
Tenenbaum, Leslie Kaelbling, and Michael Katz.

2024. Generalized planning in pddl domains with
pretrained large language models. In Proceedings of
the AAAI conference on artificial intelligence, pages
20256–20264.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization of LLM
agents. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7584–7600.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024. Planbench: An extensible benchmark for eval-
uating large language models on planning and reason-
ing about change. Advances in Neural Information
Processing Systems, 36.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, and 1 others. 2024a. A survey
on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609–2634.

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang,
and Timothy Baldwin. 2024b. Learning from fail-
ure: Integrating negative examples when fine-tuning
large language models as agents. arXiv preprint
arXiv:2402.11651.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022. Scienceworld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11279–11298.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024c. Exe-
cutable code actions elicit better llm agents. In Pro-
ceedings of the 41st International Conference on Ma-
chine Learning.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35.

14976

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and
Minlie Huang. 2025. Unlocking reasoning potential
in large language models by scaling code-form plan-
ning. In The Thirteenth International Conference on
Learning Representations.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yi-
wen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, and 1 others. 2025. The
rise and potential of large language model based
agents: A survey. Science China Information Sci-
ences, 68(2):121101.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang
Hong, Honglin Guo, Junzhe Wang, Dingwen Yang,
Chenyang Liao, Xin Guo, Wei He, and 1 others. 2024.
Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint
arXiv:2406.04151.

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Watch every step! llm agent learn-
ing via iterative step-level process refinement. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 others.
2024a. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lu-
song Li, Li Shen, Xiaodong He, Jing Jiang, and Yuhui
Shi. 2024b. Embodied multi-modal agent trained by
an llm from a parallel textworld. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 26275–26285.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024. Agent lumos: Unified and
modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12380–12403.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTuning:
Enabling generalized agent abilities for LLMs. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 3053–3077.

Xiaopan Zhang, Hao Qin, Fuquan Wang, Yue Dong,
and Jiachen Li. 2024. Lamma-p: Generalizable
multi-agent long-horizon task allocation and plan-
ning with lm-driven pddl planner. arXiv preprint
arXiv:2409.20560.

A PGPO Algorithm

We summarize the workflow of PGPO in Algo-
rithm 1. Our algorithm starts by a Supervised Fine
Tuning (SFT) stage. In this stage, expert dataset
with P-code Plans generated in Section 2.2 is uti-
lized to equip the base LLM with agent capabilities.
Next, the algorithm proceeds with the data prepa-
ration stage. For each expert trajectory, the plan-
following reward is calculated via Monte Carlo
sampling method. Then, the base agent explores
on expert trajectories to collect new trajectory data.
Based on two planning-oriented rewards, two con-
trastive trajectory datasets are constructed. Finally,
in the preference optimization stage, the base agent
refines its parameters to improve its reasoning ca-
pability. The above data preparation and preference
optimization stage will be repeated until exceeding
the maximum iterations.

B Implementation Details

B.1 For Datasets

Table 7 summarizes the statistics information of the
three agent datasets. For ALFWorld and WebShop,
we choose the ReAct-style expert trajectories col-
lected by Xiong et al. (2024). For TextCraft, we pri-
marily use the train set from AgentTraj-L (Xi et al.,
2024). Note that unseen tasks in ALFWorld ref
to new task instances with possibly known object-
receptacle pairs, but always in unseen rooms with
different receptacles and scene layouts than in train-
ing data.

Dataset #Train #Test #Turns

ALFWorld 2851 274 (140-Seen, 134-Unseen) 7.97
WebShop 1624 200 (200-Seen) 3.64
TexrtCraft 373 100 (100-Unseen) 7.86

Table 7: Statistics information of ALFWorld, WebShop
and TextCraft. "#Turns" denotes the average number of
iteraction turns for the expert trajectories.

B.2 For P-code Plan Generation

We illustrate the plan generation pipeline in Fig-
ure 2. Based on existing ReAct-style datasets (see
Appendix B.1 for data source), we first extract the
agent thoughts part for preparation. Then, we use

14977

Algorithm 1: Workflow of PGPO
Input: Base LLM πθ, Expert Dataset Ds = {(u, p, τ)(i)}|Ds|

i=1 : τ = (t1, a1, o1, ..., tn, an, on),
Training Epoch T1 for Supervised Fine Tuning, Training Epoch T2 for Preference Optimization, Sampling
Number N for Reward Estimation, Maximum Number of Iterations I
Output: The Enhanced LLM agent πθ

// Supervised Fine Tuning Stage
1 for epoch = 1 to T1 do

2 πθ ← argmin
πθ

−E(u,p,τ)
∼Ds

{
n∑

j=1

[log πθ(tj |u, p, τj−1) + log πθ(aj |u, p, τj−1, tj)] + log πθ(p|u)};

3 πscorer = πθ;
4 for (u, p, τ) ∈ Ds do
5 Given the first two expert interaction rounds τ2 = (t1, a1, o1, t2, a2, o2) as historical trajectory, use

scorer agent to sample N subsequent trajectories: τs3:m′ ∼ πθscorer (·|u, p, τ2);
6 Compute plan-following reward rf (u, p, τ2) =

1
N

∑N
i=1 ro(τ

s
3:m′ |u, p, τ2)(i) of expert trajectory;

7 for iter = 1 to I do
8 πbase = πθ; πref = πθ

// Exploration Stage for Planning-oriented Trajectory Collection
9 for u ∈ Ds do

10 Get the P-code Plan and subsequent reasoning steps from base agent: p̂ ∼ πθbase
(·|u),

τ̂ ∼ πθbase
(·|u, p̂);

11 Compare plan-driven rewards rd of (p̂, τ̂) with expert trajectory (p, τ) to get (pw, τw) ≻ (pl, τ l) | u;
12 Given the first expert interaction round (u, p, τ1) as historical trajectory, get subsequent trajectory

from base agent: τ̂2:m ∼ πθbase
(·|u, p, τ1);

13 Similar to line 5-6, compute plan-following reward rf (p, u, τ̂2) of agent-generated trajectory;
14 Compare rf (p, u, τ̂2) and rf (u, p, τ2) to get τw2:n ≻ τ l2:m | (u, p, τ1);

15 Construct two contrastive trajectory datasets: Dp =
{
(u, pw, τw, pl, τ l)(i)

}|Dp|
i=1

,

Df =
{
(u, p, τ1, τ

w
2:n, τ

l
2:m)(i)

}|Df |
i=1

;
// Planning-guided Agent Learning Stage

16 for epoch = 1 to T2 do
17 πθ ← argmin

πθ

(Lp + Lf + Ls) using Eq. 3, Eq. 3 and Eq. 5;

18 return the enhanced LLM agent πθ.

GPT-4o to summarize the step-by-step plan follow-
ing our predefined P-code Plan format via few-shot
prompting strategy. For each expert trajectory, only
one P-code Plan is generated since we use greedy
inference (temperature=0) in GPT-4o. One exam-
ple prompt for plan distillation is shown below:

Example Prompt for Plan Distillation

Given the [Task Description], [Task] and
[Solution Trajectory], you should sum-
marize the step-by-step [Plan] in natural
language for solving the task. Please note
that the generated [Plan] should be global
and do not contain the information from
"Observation" part of [Solution Trajectory].
Then, you should format the generated
[Plan] to strictly follow the pseudocode

format and output in this format:
Step 1. ...
Step 2. ...
Step 3. ...
....
Here is one example.
<one-shot demonstration>

Now is your turn.
[Task Description]: <task_description>
[Task]: <task>
[Solution Trajectory]: <agent_thoughts>
[NL Plan]:
[P-code Plan]:

B.3 For Human Verification
To guarantee the quality of generated P-code Plans,
we ask three NLP researchers to check the plan

14978

formats and their consistency with original trajecto-
ries. According to statistic, only nearly 15% of the
generated data need to be refined by human, while
85% are well structured. This demonstrates the
reliability of our automatic P-code Plan generation
pipeline, enabling scalable and quality-controlled
data synthesis.

B.4 For SFT Stage

First, after distilling P-code Plans from agent
thoughts, we need to incorporate these plans into
original ReAct-style datasets. As described in Sec-
tion 2.3, they are added into the first step of original
trajectories. We prefix the plans with "First, I de-
vise a plan for solving the task:" for incorporation
and list one example of new constructed training
data as below:

SFT Data Example

{
"from": "human",
"value": "<task_description>"
},{
"from": "gpt",
"value": "OK"
},{
"from": "human",
"value": "<task>"
},{
"from": "gpt",
"value": "Thought: First, I devise a plan for
solving the task: <distilled P-code Plan>
Now, I need to first check ...
Action: go to toiletpaperhanger 1"
},{
"from": "human",
"value": "Observation: On the toiletpaper-
hanger 1, you see ..."
}, ...

Next, we choose full-parameter fine-tuning for
all models using FastChat framework. We detail
the hyperparameters for SFT stage in Table 8.

B.5 For Baselines

In this section, we provide a detailed introduction
to the baselines, as well as our reproduction details.

• ETO (Song et al., 2024): This framework com-
prises two training phases: (1) behavior cloning
stage, wherein the agent undergoes fine-tuning
on expert trajectory data, followed by (2) learn-

Name Value

num_train_epochs 3
train_batch_size 48

per_device_train_batch_size 4
per_device_eval_batch_size 4
gradient_accumulation_steps 2

learning_rate 2e-5
weight_decay 0.
warmup_ratio 0.03

lr_scheduler_type "cosine"
model_max_length 4096

Table 8: Detailed hyperparameters used in SFT stage.

ing from failures, which employs DPO (Rafailov
et al., 2024) for subsequent policy refinement.

• IPR (Xiong et al., 2024): The iterative step-
level process refinement framework enhances
agent learning through step-by-step guidance.
Via step-level reward estimation, IPR identifies
discrepancies between agent-generated trajecto-
ries and the expert trajectories, thereby boosting
the agent performance.

To reproduce experimental results, we maintain all
the default hyperparameters in their public code3

and carefully extend them to TextCraft dataset.

• ReAct (Yao et al., 2023): ReAct first inte-
grates Chain-of-Thought (CoT) into LLM agent
systems through a structured Thought-Action-
Observation reasoning format. For the ReAct
implementation, we adopt one-shot prompting
for agent reasoning.

• ADaPT (Prasad et al., 2024): ADaPT dynami-
cally decomposes complex tasks through recur-
sive planning, automatically adjusting decompo-
sition depth based on real-time feedback to align
LLM competencies with evolving task demands.
In our paper, we constrain the maximum inter-
action turns for fair comparison and directly use
the open-source code for reproduction4.

Regarding other traditional prompting methods
like Plan&Solve (Wang et al., 2023) and Reflex-
ion (Shinn et al., 2024), we do not include them for
comparison in Table 3 because our chosen ADaPT
baseline is enough strong and substantially outper-
forms them (see Table 9 for reference).

3ETO: https://github.com/Yifan-Song793/ETO,
IPR: https://github.com/WeiminXiong/IPR

4https://github.com/archiki/ADaPT

14979

Method ALFWorld WebShop TextCraft
Seen UnSeen

Plan&Solve+GPT-3.5 46.4 43.3 61.8 22.0
Reflexison+GPT-3.5 56.4 57.5 62.4 25.0
ADaPT+GPT-3.5 70.3 71.6 62.7 26.0

PGPO+Llama-2-7B 76.4 76.9 72.2 43.0

Table 9: Comparative experiments on PGPO with more
prompt-based baselines. The best and second-best re-
sults are marked in bold and underline.

Method ALFWorld WebShop
Seen UnSeen

w/o Plan 72.1 68.7 61.8
w/ NL Plan 70.7 69.4 63.0

w/ P-code Plan 75.0 72.4 63.6

Table 10: Comparative experiments using P-code Plans
generated by the model itself.

B.6 For Benchmark Evaluation

Our evaluation framework follows previous
works (Song et al., 2024; Xiong et al., 2024) and
extends it to TextCraft benchmark. The maxi-
mum number of steps for ALFWorld, WebShop
and TextCraft is set to 20, 10 and 20, respectively.

C Additional Experimental Results

C.1 Using Self-generated P-code Plan

As described in Section 2.2, we use one powerful
closed-source LLM (i.e., GPT-4o) to generate P-
code Plans from existing ReAct-style datasets for
good quality control. To further demonstrate the
format advantage of P-code Plan in agent reason-
ing, not knowledge distillation from other strong
models, we conduct supplementary experiments
that uses the plans generated by the model itself
to construct new SFT data. Taking Mistral-7B
as an example, Table 10 shows SFT w/ P-code
Plan maintains its advantage over w/o Plan and w/
NL Plan, even when utilizing self-generated plans.
This proves that the enhanced agent reasoning capa-
bilities should be attributed to the structured nature
of P-code Plan, rather than knowledge distillation
from other models.

C.2 Compared with Executable Code Format

Similar to the generation of P-code Plan, we first
meticulously curate few Execode Plan (standing for
plans in executable code format) demonstrations
and then utilize GPT-4o to synthesize the plan data

Setting Llama-2
-7B

Llama-2
-13B

Llama-3
-8B

Mistral
-7B

ALFWorld-Seen
w/o Plan 60.0 67.1 67.1 72.1
w/ Execode Plan 62.1 60.0 67.1 61.4
w/ P-code Plan 65.0 72.9 68.6 75.0

ALFWorld-Unseen
w/o Plan 67.2 67.9 72.4 68.7
w/ Execode Plan 68.7 63.4 64.9 64.2
w/ P-code Plan 70.1 70.9 75.4 72.4

Table 11: Comparison between w/ P-code Plan and w/o
Plan, w/ Execode Plan on ALFWorld. Bold indicates
the best results of each model.

Method Qwen2.5-7B Qwen2.5-14B

SFT 62.6 64.8
PGPOSFT 65.3 65.9

ETO 67.7 68.8
PGPO 70.7 72.3

Table 12: Average reward on WebShop.

via few-shot prompting. Taking ALFWorld as an
example, we report the average reward of SFT w/
P-code Plan, w/ Execode Plan and w/o Plan across
four open-source LLMs in Table 11. The results
show that SFT w/ P-code Plan maintains better per-
formance than SFT w/ Execode Plan. Sometimes
SFT w/ Execode Plan even falls behind SFT w/
Plan. Through error analysis, we attribute this to
two reasons: 1) executable code generation is more
challenging than natural language or pseudocode
generation; 2) Execode Plan is more verbose than
P-code Plan, which may introduce some noise in-
formation into subsequent reasoning.

C.3 Results on Qwen Series

To further validate the generalization of our method
on more models, we test PGPO on Qwen2.5-7B
and Qwen2.5-14B model (Yang et al., 2024a). Tak-
ing WebShop as an example, Table 12 shows that
when applying to Qwen2.5 series, our method still
achieves the best performance. PGPOSFT repre-
sents the SFT model in our pipeline, which still has
an advantage over the naive SFT baseline due to the
incorporation of our designed P-code Plans. Since
IPR baseline requires enormous inference costs for
step-wise reward estimation, we are unable to re-
produce them due to limited time constraints. We
leave comprehensive comparisons as future work.

14980

Method
ScienceWorld

Seen Unseen
AR SR(%) AR SR(%)

SFT 67.7 70.1 52.4 57.8
ETO 69.0 70.7 56.8 66.8
IPR 70.2 70.6 54.4 61.6

PGPO 75.5 75.8 66.2 76.8

Table 13: Evaluation results of PGPO and baselines on
ScienceWorld. Experiments are based on Llama-2-7B.
The evaluation metrics are the average reward (AR) and
success rate (SR).

Dataset Size 10% 30% 50% 70% 100%

ALFWorld-Seen 55.0 70.7 71.4 75.0 76.4
ALFWorld-Unseen 45.5 61.9 63.4 69.4 76.9

Table 14: Average reward on ALFWorld when PGPO
applied on smaller training data subsets.

C.4 Evaluation on ScienceWorld

ScienceWorld (Wang et al., 2022) is one agent
benchmark for testing scientific reasoning abili-
ties, which provides dense rewards from 0 to 1. For
training, we use the expert trajectories collected
from Song et al. (2024), comprising 1483 instances.
For evaluation, we includes the development set
(ScienceWorld-seen) with 194 seen scenarios and
the test set (ScienceWorld-unseen) consisting of
211 new unseen task scenarios. The ScienceWorld-
seen set can assess in-distribution capability while
the ScienceWorld-unseen set can measure out-of-
distribution generalization of the agents. Since its
evaluation pipeline runs relatively slowly, we only
conduct comparative experiments on the Llama2-
7B model. Table 13 shows the average reward and
success rate of PGPO and baselines on Science-
World. We can observe that PGPO maintains better
performance than ETO and IPR, further indicat-
ing the advantage of P-code Plan guidance. More-
over, IPR baseline even falls short compared to
the ETO baseline on ScienceWorld-Unseen, which
once again confirms that step-wise reward does not
necessarily elicit better LLM agents.

C.5 Using Smaller Training Data Subsets

We supplement the PGPO experiments about train-
ing Llama2-7B on smaller subsets (10%, 30%,
50%, 70%, 100%). Taking ALFWorld benchmark
as an example, the evaluation results are shown in
Table 14. The results indicate with 30% of training
data, the in-distribution performance of our method

is already strong. However, the out-of-distribution
performance continues to improve as the dataset
size increases, demonstrating its scalability. This
aligns with expectations since OOD tasks are more
challenging, but with the full dataset, our method
achieves significantly better performance.

C.6 Collected Contrastive Trajectory Dataset
Distribution over Iterations

Figure 6 illustrates a connection between the trajec-
tories collected and the performance of the agent
over optimization iterations. It indicates that for the
agent, maintaining an increasingly number of win-
ning trajectories leads to improved average rewards
during the optimization process. Thus, we can uti-
lize this finding to select our optimal optimization
iterations.

D Case Study

We present one trajectory example for each agent
benchmark compared with the current leading base-
line IPR in Figure 9, 10, 11 and 12, respectively.
• In the WebShop example, we find IPR baseline

tends to select the product item located in the
first position of one page, which is sub-optimal.
In contrast, our PGPO agent carefully browses
through the whole page and successfully selects
the optimal product located in the middle posi-
tion of the page.

• In the ALFWorld example, our PGPO agent
quickly locates the pencil with the guidance of
generated P-code Plan, thus completing the task
with the minimum interaction turns. Neverthe-
less, IPR agent blindly searches for the pencil
in the shelves and drawers and fails to find the
desired pencil due to exceeding the maximum
interaction turns.

• In the TextCraft example, we observe IPR agent
made a mistake in the thinking process, thereby
ending in a collapse. On the contrary, guided
by the generated P-code Plan, PGPO agent effi-
ciently complete the crafting task.

14981

Task Instruction: I need a clear glass wall mounting
lamp for my bath room. and I would prefer 2-light size,
and price lower than 120.00 dollars
Thought: I need to find a clear glass wall mounting lamp
with 2 lights for my bathroom that is under $120. I‘ll start
by searching for these specific criteria.
Action: search[wall mounting lamp glass clear 2-light
bathroom]
Observation: Page 1 (Total results: 50) [SEP] Next >
[SEP] B097BFLS8Q [SEP] MOTINI 2 Light Bathroom
Vanity Light Modern Wall Sconce Metal Wall Mount
Lamp Fixture with 5 Inches Round Glass Canopy Black
[SEP] $49.99 [SEP] B09KMCGTR1 [SEP] YAOHONG
Industrial Wall Sconce 2-Lights Modern Vanity/Bathroom
Lamp in Black with Clear Glass Globe Shades Wall
Mount Light Fixtures for Hallway Kitchen Living Room
[SEP] $59.99 [SEP] B095JTF9KC [SEP] Bathroom
Vanity Light Fixtures, 2-Light Black Wall Sconce
Lighting Wall Lamp with Clear Glass Shade, Vintage Wall
Mounted Lights Bathroom Lights for Mirror, Living
Room, Bedroom, Hallway, Porch [SEP] $39.99 …
Thought: There are several options available, but I'm
interested in the MOTINI 2 Light Bathroom Vanity Light
because it fits the description and is well within my
budget at $49.99. I'll click on this one for more details.
Action: click[B097BFLS8Q]
Observation: <product details>
Thought: The product details for the MOTINI lamp show
that it comes in two sizes. Since I prefer a larger size, I'll
select the 22"*10" option to ensure it fits the space I have
in mind.
Action: click[22"*10"]
Observation: <product details>
Thought: The price is still within my budget, and the
lamp fits the size and light requirements I have. ..., so I'll
go ahead and make the purchase by clicking the 'Buy
Now' button.
Action: click[buy now]
Reward: 0.66

Case Study of WebShop

IPR Agent PGPO Agent

Task Instruction: I need a clear glass wall mounting
lamp for my bath room. and I would prefer 2-light size,
and price lower than 120.00 dollars
Thought: First, I devise a plan for solving the task:
Step 1. selected_item = search_item(\“wall mounting
lamp with clear glass shade for bathroom 2-light size
price lower than 120.00 dollars\”);
Step 2. click(selected_item);
Step 3. select_size(\“2-light\”);
Step 4. buy().
I think I should use the search bar to look for the wall
mounting lamp with clear glass shade for the bathroom
that meets my criteria.
Action: search[wall mounting lamp clear glass
bathroom 2-light size price < 120.00]
Observation: Page 1 (Total results: 50) [SEP] Next >
[SEP] B07786JG8X [SEP] Aspen Creative 62104, Four-
Light Metal Bathroom Vanity Wall Light Fixture,
32\“ Wide, Transitional Design in Satin Nickel with
Clear Glass Shade [SEP] $121.73 … [SEP]
B095JTF9KC [SEP] Bathroom Vanity Light Fixtures, 2-
Light Black Wall Sconce Lighting Wall Lamp with
Clear Glass Shade, Vintage Wall Mounted Lights
Bathroom Lights for Mirror, Living Room, Bedroom,
Hallway, Porch [SEP] $39.99 …
Thought: I think I should click on the option that meets
my criteria, which is B095JTF9KC - Bathroom Vanity
Light Fixtures, 2-Light Black Wall Sconce Lighting
Wall Lamp with Clear Glass Shade.
Action: click[B095JTF9KC]
Observation: <product details>
Thought: I think I should click on the '2-light' option to
select the size I prefer for the wall mounting lamp.
Action: click[2-light]
Observation: <product details>
Thought: I think I should click on the 'Buy Now' button
to purchase the wall mounting lamp.
Action: click[Buy Now]
Reward: 1.0

Figure 9: Case study for WebShop based on Llama-2-7B.

14982

Task Instruction: You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2, a
desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a garbagecan 1, a laundryhamper 1,
a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2,
and a shelf 1.
Your task is to: put a pencil in shelf.
Thought: I need to locate a pencil and place it on a shelf.
I'll start by checking the nearest shelf to see if there's
already a pencil there.
Action: go to shelf 1
Observation: On the shelf 1, you see nothing
Thought: Shelf 1 is empty, so I need to check the next
shelf for a pencil.
Action: go to shelf 2
Observation: On the shelf 2, you see a mug 1.
Thought: Shelf 2 has a mug, but no pencil. I'll continue
searching the next shelf.
Action: go to shelf 3
Observation: On the shelf 3, you see a desklamp 1.
Thought: Shelf 3 has a desklamp, but still no pencil. I
must keep looking.
Action: go to shelf 4 # Blind trail-and-error
Observation: On the shelf 4, you see a alarmclock 1.
…
Thought: Drawer 5 has a credit card and a keychain, but
no pencil. I'll check drawer 6 next.
Action: go to drawer 6
Observation: The drawer 6 is closed
Thought: Drawer 6 is closed. I need to open it to see if
the pencil is inside.
Action: open drawer 6
Observation: You open the drawer 6. The drawer 6 is
open. In it, you see nothing
Thought: The drawer is empty. Drawer 7 is my last
option to find a pencil in this room.
Action: go to drawer 7 # Invalid action
Observation: Nothing happens.
Reward: 0.0 # Task failure due to not finding the pencil

Case Study of ALFWorld

IPR Agent PGPO Agent

Task Instruction: You are in the middle of a room.
Looking quickly around you, you see a bed 1, a desk 2,
a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3,
a drawer 2, a drawer 1, a garbagecan 1, a laundryhamper
1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a
shelf 2, and a shelf 1.
Your task is to: put a pencil in shelf.
Thought: First, I devise a plan for solving the task:
Step 1. pencil_name, location_name =
locate_a_pencil(candidate_locations);
Step 2. take_pencil(pencil_name, location_name);
Step 3. go_to_a_shelf();
Step 4. put_pencil_on_shelf().
The task is to put a pencil in a shelf. I need to locate a
pencil first. The desk is a common place where pencils
are kept, so I should check there.
Action: go to desk 1 # With the p-code plan guidance,
the agent quickly locates the mostly likely place.
Observation: On the desk 1, you see a desklamp 1, and
a pencil 1.
Thought: I see a pencil on desk 1. I need to pick it up to
complete the task.
Action: take pencil 1 from desk 1
Observation: You pick up the pencil 1 from the desk 1.
Thought: Shelf 1 is the closest and most accessible
shelf. I should go there to place the pencil.
Action: go to shelf 1
Observation: On the shelf 1, you see nothing.”
Thought: The shelf is empty, which is perfect for
placing the pencil without causing any clutter. I will put
the pencil here to complete the task.
Action: put pencil 1 in/on shelf 1
Observation: You put the pencil 1 in/on the shelf 1.
Reward: 1.0 # Task success with only 4 interactions

Figure 10: Case study for ALFWorld based on Llama-2-7B.

14983

Task Instruction: Crafting commands:
craft 8 cyan stained glass using 8 glass, 1 cyan dye\ncraft
8 black stained glass pane using 8 glass pane, 1 black
dye\ncraft 8 gray stained glass using 8 glass, 1 gray
dye\ncraft 2 gray dye using 1 black dye, 1 white
dye\ncraft 1 black dye using 1 ink sac\ncraft 1 black dye
using 1 wither rose\ncraft 8 yellow stained glass using 8
glass, 1 yellow dye\ncraft 8 pink stained glass using 8
glass, 1 pink dye\ncraft 8 black concrete powder using 1
black dye, 4 sand, 4 gravel\ncraft 3 light gray dye using 1
black dye, 2 white dye\ncraft 8 black stained glass using 8
glass, 1 black dye\ncraft 8 black terracotta using 8
terracotta, 1 black dye\ncraft 8 orange stained glass using
8 glass, 1 orange dye
Goal: craft black stained glass
Thought: I should check if I can get black stained glass
directly from the environment or the inventory.
Action: inventory
Observation: Inventory: You are not carrying anything
Thought: I need to get black stained glass from the
environment.
Action: get black stained glass
Observation: Could not execute get black stained glass
Thought: I cannot get black stained glass directly, I need
to craft it. From the crafting commands, I can use: craft 8
black stained glass using 8 glass, 1 black dye. Ingredients
needed: 8 glass, 1 black dye. Input assumption: I have the
ingredients needed in my inventory. Let me verify this
first.
Action: inventory
Observation: Inventory: You are not carrying anything.
Thought: I need to get the ingredients: 8 glass and 1
black dye.
Action: get 8 glass
Observation: Got 8 glass
Thought: I have obtained the ingredients: 8 glass. Now, I
need to get 1 black dye.
Action: get 1 black dye
Observation: Could not find black dye
Thought: I cannot get black dye directly, I need to craft it.
From the crafting commands, I can use: craft 1 black dye
using 1 ink sac, craft 1 black dye using 1 wither rose, craft
1 black dye using 1 black dye, craft 1 black dye using 1
white dye, craft 1 black dye using 1 black concrete
powder. Input assumption: I have the ingredients needed
in my inventory. Let me verify this first.
Action: inventory
Observation: Inventory: [glass] (8)
Thought: I don't have any ingredients in my inventory. I
need to get the ingredients: 1 ink sac, 1 wither rose, 1
black dye, 1 white dye, 1 black concrete powder.
Action: get 1 ink sac
Observation: Got 1 ink sac

Case Study of TextCraft

IPR Agent PGPO Agent

Task Instruction: Crafting commands:
craft 8 black stained glass pane using 8 glass pane, 1
black dye\ncraft 2 gray dye using 1 black dye, 1 white
dye\ncraft 8 lime stained glass using 8 glass, 1 lime
dye\ncraft 16 glass pane using 6 glass\ncraft 1 black dye
using 1 wither rose\ncraft 8 black stained glass using 8
glass, 1 black dye\ncraft 8 orange stained glass using 8
glass, 1 orange dye\ncraft 1 beacon using 1 nether star, 5
glass, 3 obsidian\ncraft 8 cyan stained glass using 8
glass, 1 cyan dye\ncraft 1 black bed using 1 white bed, 1
black dye\ncraft 1 black dye using 1 ink sac\ncraft 1
writable book using 1 book, 1 ink sac, 1 feather\ncraft 8
gray stained glass using 8 glass, 1 gray dye
Goal: craft black stained glass.
Thought: First, I devise a plan for solving the task:
Step 1. had_objects = inventory();
Step 2. if \"black stained glass\" not in had_objects:
find_flag = get(\"black stained glass\");
Step 3. if find_flag == False: \"craft 8 black stained
glass using 8 glass, 1 black dye\" =
choose_crafting_commands(\"black stained glass\"),
needed_ingredients = [\"8 glass\", \"1 black dye\"],
get(\"8 glass\");
Step 4. find_dye_flag = get(\"1 black dye\");
Step 5. if find_dye_flag == False: \"craft 1 black dye
using 1 wither rose\" = choose_crafting_commands(\"1
black dye\"), needed_ingredients = \"1 wither rose\",
get(\"1 wither rose\");
Step 6. craft 1 black dye using 1 wither rose;
Step 7. craft 8 black stained glass using 8 glass, 1 black
dye
I should check if I can get black stained glass directly
from the environment or the inventory.
Action: inventory
Observation: Inventory: You are not carrying anything.
Thought: There is no black stained glass in my
inventory. I should try to get it from the environment.
Action: get black stained glass
Observation: Could not execute get black stained glass
Thought: I cannot get black stained glass directly, I
need to craft it. From the crafting commands, I can use:
craft 8 black stained glass using 8 glass, 1 black dye.
Ingredients needed: 8 glass, 1 black dye. I should check
if I have these ingredients in my inventory.
Action: inventory
Observation: Inventory: You are not carrying anything
Thought: My inventory is empty. I need to get the
ingredients: 8 glass and 1 black dye first.
Action: get 8 glass
Observation: Got 8 glass
Thought: I have got the glass. Now, I need to get 1
black dye.
Action: get 1 black dye

Figure 11: Case study for TextCraft based on Llama-2-7B.

14984

Thought: I have obtained the ingredient: 1 ink sac. Now,
I need to get 1 wither rose.
Action: get 1 wither rose
Observation: Got 1 wither rose
Thought: I have obtained the ingredient: 1 wither rose.
Now, I need to get 1 black dye.
Action: get 1 black dye # Wrong action
Observation: Could not find black dye
Thought: I cannot get black dye directly, I need to craft it.
From the crafting commands, I can use: craft 1 black dye
using 1 ink sac, craft 1 black dye using 1 wither rose, craft
1 black dye using 1 black dye, craft 1 black dye using 1
white dye, craft 1 black dye using 1 black concrete
powder. Input assumption: I have the ingredients needed
in my inventory. Let me verify this first.
Action: inventory
Observation: Inventory: [glass] (8) [ink sac] (1) [wither
rose] (1)
Thought: I don‘t have any ingredients in my inventory. I
need to get the ingredients: 1 ink sac, 1 wither rose, 1
black dye, 1 white dye, 1 black concrete powder. # Wrong
thoughts leads to repeated wrong actions
Action: get 1 ink sac
…
Thought: I don't have any ingredients in my inventory. I
need to get the ingredients: 1 ink sac, 1 wither rose, 1
black dye, 1 white dye, 1 black concrete powder.
Action: get 1 ink sac
Observation: Got 1 ink sac
Thought: I have obtained the ingredient: 1 ink sac. Now,
I need to get 1 wither rose.
Action: get 1 wither rose
Observation: Got 1 wither rose
Reward: 0.0 # Task failure due to exceeding the
maximum interaction turns

Case Study of TextCraft

IPR Agent PGPO Agent

Observation: Could not find black dye
Thought: I cannot get black dye directly, I need to craft
it. From the crafting commands, I can craft 1 black dye
using 1 wither rose or 1 ink sac. I should check if I have
these ingredients in my inventory.
Action: inventory
Observation: Inventory: [glass] (8)
Thought: My inventory only has glass. I need to get
either a wither rose or an ink sac to craft black dye.
Action: get 1 wither rose
Observation: Got 1 wither rose
Thought: I have got the wither rose. Now, I can craft
the black dye.
Action: craft 1 black dye using 1 wither rose
Observation: Crafted 1 minecraft:black_dye
Thought: I have crafted the black dye. Now, I have all
the ingredients needed to craft the black stained glass: 8
glass, 1 black dye.
Action: craft 8 black stained glass using 8 glass, 1 black
dye
Observation: Crafted 8 minecraft:black_stained_glass
Reward: 1.0

Figure 12: Case study for TextCraft based on Llama-2-7B (Continuations in Figure 11).

14985

