
Findings of the Association for Computational Linguistics: ACL 2025, pages 14471–14485
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Better Process Supervision with Bi-directional Rewarding Signals
Wenxiang Chen1* Wei He1∗, Zhiheng Xi1∗,

Honglin Guo1, Boyang Hong1, Jiazheng Zhang1,
Nijun Li2, Tao Gui3,4† , Yun Li2, Qi Zhang1,4†, Xuanjing Huang1,4†

1 College of Computer Science and Artificial Intelligence, Fudan University
2 Cognitive AI Lab, Shanghai Huawei Technologies, China

3 Institute of Modern Languages and Linguistics, Fudan University
4 Institute of Trustworthy Embodied Artificial Intelligence, Fudan University
chenwx23@m.fudan.edu.cn, {tgui,qz,xjhuang}@fudan.edu.cn

Abstract

Process supervision, i.e., evaluating each step,
is critical for complex large language model
(LLM) reasoning and test-time searching with
increased inference compute. Existing ap-
proaches, represented by process reward mod-
els (PRMs), primarily focus on rewarding sig-
nals up to the current step, exhibiting a one-
directional nature and lacking a mechanism to
model the distance to the final target. To ad-
dress this problem, we draw inspiration from
the A* algorithm, which states that an effective
supervisory signal should simultaneously con-
sider the incurred cost and the estimated cost
for reaching the target. Building on this key
insight, we introduce BiRM, a novel process
supervision model that not only evaluates the
correctness of previous steps but also models
the probability of future success. We conduct
extensive experiments on mathematical reason-
ing tasks and demonstrate that BiRM provides
more precise evaluations of LLM reasoning
steps, achieving an improvement of 3.1% on
Gaokao2023 over PRM under the Best-of-N
sampling method. Besides, in search-based
strategies, BiRM provides more comprehensive
guidance and outperforms ORM by 5.0% and
PRM by 3.8% respectively on MATH-5001.

1 Introduction

With the rapid development of LLMs, how to super-
vise them has become a key research challenge, es-
pecially for complex tasks like long-term reasoning
(Zelikman et al., 2022; OpenAI, 2024b; Wan et al.,
2024). Previous work has explored training process
supervision models to provide dense supervision
on each step (Uesato et al., 2022; Lightman et al.,
2024; Wang et al., 2024b), which is intuitively and
practically better than outcome supervision models

* Equal contribution.
† Corresponding authors.
1 Our code and data are available at: https://github.

com/chenwxOggai/BiRM.

Insufficient Evaluation
PRM struggles in later stages

VM is inaccurate in early stages

Comprehensive Evaluation
BiRM consistently provide
precise supervision signals

Figure 1: Error-detection accuracy across different steps,
where step 1 and steps beyond 15 are truncated for better
visualization. We evaluate the process reward model
(PRM), value model (VM), and BiRM on PRMBench.

(Cobbe et al., 2021) that only provide sparse sig-
nals on the final answer. During test-time, process
supervision models can further guide the search of
LLMs or perform solution re-ranking by allocating
more inference compute (Snell et al., 2024; Brown
et al., 2024; Wu et al., 2024).

However, existing approaches, represented by
process reward models (PRMs) from OpenAI
(Lightman et al., 2024), typically focus on provid-
ing one-directional reward signals on the reason-
ing steps that have already been generated, with-
out consciously considering the probability of fu-
ture success (Yu et al., 2024a; Zhang et al., 2025).
Specifically, while they can accurately distinguish
between correct and incorrect steps at the current
state (i.e., backward supervision), their ability to
identify which partial solution is most likely to
reach the correct final answer (i.e., forward super-
vision) is not guaranteed, leading to sub-optimal
performance in guiding effective next-step reason-
ing (Stroebl et al., 2024; Wang et al., 2025).

To address this challenge, we draw inspira-

14471

https://github.com/chenwxOggai/BiRM
https://github.com/chenwxOggai/BiRM

tion from the classic A* algorithm, and introduce
BiRM, a novel process supervision model that pro-
vides bidirectional rewarding signals. Classically,
the A* algorithm (Hart et al., 1968) states that an
appropriate supervisory signal should take two as-
pects into account: the cumulative cost up to the
current step, and the estimated probability of reach-
ing the target (Zhuang et al., 2024; Wang et al.,
2024a). Motivated by this key insight, we redesign
the process supervision signals, which should not
only assess the correctness of steps taken so far, but
also evaluate the future success probability of the
partial solution. Specifically, BiRM introduces a
value model (VM) head to help model the forward
supervision signal (Yu et al., 2024a; Ankner et al.,
2024), so that it can estimate both the correctness
and success probability of a reasoning prefix/partial
solution (Section 4).

To validate our motivation, we conduct a prelim-
inary analysis on PRMBENCH (Song et al., 2025),
a benchmark designed to evaluate the capability
of process supervision models. We include PRM
and VM as baselines, where the former estimates
the correctness of partial solutions, and the latter
estimates the future success probability. As shown
in Figure 1, PRM performs better at detecting error
steps in the early stages of reasoning, while VM
performs better in the later stages. This indicates
that each baseline has limitations, which aligns
with the intuition we derive from the A* algorithm.
In contrast, BiRM outperforms both of them in all
stages, demonstrating the comprehensiveness and
effectiveness of our approach.

We then perform extensive experiments on three
mathematical reasoning tasks: GSM8K, MATH-
500 and Gaokao2023 (Liao et al., 2024) to demon-
strate the effectiveness of BiRM across different
model series and search strategies. For example,
BiRM trained on Qwen2.5-7B-Base achieves a
3.1% improvement on Gaokao2023 over PRM us-
ing Best-of-N sampling. Additionally, in beam
search with a total sampling size of 100, BiRM fur-
ther surpasses PRM by 3.8% and ORM by 5.0%.

In summary, our contributions are as follows:

• We draw inspiration from A* algorithm and pro-
pose BiRM, a novel process supervision model
that provides bidirectional rewarding signals.

• We conduct extensive experiments on math rea-
soning tasks to demonstrate its effectiveness in
solution re-ranking and trajectory searching.

• We present an in-depth analysis and demonstrate
that BiRM is orthogonal to existing open-source
supervision models, highlighting its robustness
and generalization capabilities.

2 Related Work

2.1 Enhancing Mathematical Reasoning
Capabilities of LLMs

Mathematical reasoning tasks remain a signifi-
cant challenge for LLMs (OpenAI, 2024a; Snell
et al., 2024). Researchers have conducted extensive
studies on both train-time and test-time improve-
ments. At train-time, supervised fine-tuning is a
well-established approach. Its core idea is to con-
struct large-scale, high-quality datasets to enhance
performance (Liao et al., 2024; Yu et al., 2024b;
Tong et al., 2024). On the other hand, experimen-
tal results from Openai-o1 (OpenAI, 2024b) and
DeepSeek-R1 (DeepSeek-AI et al., 2025) highlight
the promising potential of test-time scaling laws.
Vanilla sampling methods like Best-of-N sampling
(Liu et al., 2025) and search-based strategies such
as beam search, A*, and MCTS (Zhuang et al.,
2024; Wan et al., 2024; Zhang et al., 2024a) have
all achieved remarkable performance by allocating
more computational resources at test-time. In this
work, we focus on improving LLM’s performance
during the test-time phase.

2.2 Process Supervision Models in LLM
Reasoning

LLMs can leverage an additional supervision
model to achieve accurate test-time reasoning.
Mainstream approaches can be divided into out-
come reward models (ORMs) and process reward
models (PRMs). ORMs are trained with rule-based
labeled data and assign one score to the entire solu-
tion path (Cobbe et al., 2021; Yu et al., 2024a). This
method achieves striking results in reasoning mod-
els like Deepseek-R1 but struggles with other tasks
where the answers are highly open-ended. On the
other hand, PRMs evaluate each intermediate steps
in the trajectory, providing more granular reward
signals (Lightman et al., 2024; Uesato et al., 2022;
Zhang et al., 2025). Depending on the practical im-
plementation, there are several variants of PRMs:
(1) Value Models (VMs, Wang et al., 2024b; Luo
et al., 2024) use Monte Carlo estimation to label
steps, reducing the burden of manual annotation.
The resulting labels represent the probability of
future success, essentially making PRMs a type

14472

of value model. (2) Generative Reward Models
(Zhang et al., 2024c) leverage the text generation
capabilities of LLMs, providing natural language
feedback, rather than traditional numerical scores.

3 Motivation

3.1 Task Formulation
Given a mathematical question q, a large language
model π generates a sequence of reasoning steps to
solve the problem. The complete reasoning trajec-
tory, i.e., chain-of-thought (Wei et al., 2022), can
be denoted as τ = {s1, s2, . . . , sm}, where si rep-
resents the i-th step and m is the number of total
reasoning steps.

3.2 The Limitations of PRMs
PRMs are typically trained to assign a numerical
score to each intermediate reasoning step, eval-
uating their correctness. For a partial trajectory
τ [1:t] = {s1, s2, . . . , st}, PRM can provide an re-
ward score for step si:

r(si, q) = p(si is correct | q), (1)

where r(·) represents the process-based reward
function provided by PRM. Further, the correct-
ness of the partial trajectory τ [1:t] can be expressed
as the accumulative correctness reward of all inter-
mediate steps, following Lightman et al. (2024):

R(τ [1:t], q) = p([s1, s2, . . . , st] is correct | q)

=

t∏

i=1

p(si is correct | q) =
t∏

i=1

r(si, q).

This equation highlights the one-directional scor-
ing nature of PRMs, which evaluate whether the
sampled trajectory {s1, s2, . . . , st} is correct given
the problem q. Instead, for the potential future
paths {st+1, st+2, . . . , sm} starting from the cur-
rent state st, PRMs lack the capability to provide
effective guidance, as Figure 2 illustrates.

3.3 Inspiration from the A* Search Algorithm
To address this limitation, we draw inspiration from
the A* algorithm. Originally, A* is a heuristic
graph search algorithm designed to find the opti-
mal path (Hart et al., 1968). The key insight from
A* is that a good supervision signal should simul-
taneously consider two aspects: the accumulative
cost g(n) up to the current step and the future cost
h(n) to the target. The final value of a step is given
by f(n) = g(n) + h(n).

In the context of LLM mathematical reasoning,
we argue that a good supervision signal should not
only consider the correctness of previous steps (i.e.,
backward supervision) but also model the probabil-
ity of future success (i.e., forward supervision). On
the one hand, PRM can naturally function as g(·).
In other words, PRM can use its one-directional
scoring ability to provide rewards for the partial
solution up to the current step st:

g(st) = Agg(r(s1), r(s2), . . . , r(st)) = R(τ [1:t]),

where Agg ∈ {∏,min,max, avg} stands for an
aggregation function to summarize the accumula-
tive rewards of all steps from s1 to st.

On the other hand, to heuristically model the
probability of reaching the correct final answer, we
seek to utilize a value model (VM) to play the role
of h(·). For the partial solution τ [1:t], a forward-
looking VM can provide a reliable probability esti-
mation:

h(st) = V(τ [1:t], q)
= Eâ∼π(·|τ [1:t],q) [p(â is correct | q)] . (2)

Here, â represents the final answer predicted by the
LLM π, and V(·) denotes the estimtation of VM
for whether the partial trajectory can reach the cor-
rect answer. In practical implementations, the VM
and PRM share the same model architecture, but
differ in the meaning of training labels, which fun-
damentally trains the VM as a reliable predictive
estimator. We will discuss more details in Section
4.2. Finally, the complete value function can be
expressed as:

f(st) = g(st) + β · h(st), (3)

where the coefficient β balances the importance
of the g(st) and h(st) terms. When a step si has
a higher f(si) value, it indicates that this step is
more promising among multiple candidates, thus
contributing to more effective next-step reasoning.

4 BiRM, a Bidirectional Process
Supervision Model

4.1 Training Methodology

For a query q from the training question set Q,
we first sample N solutions from the generator π.
Then, we annotate each intermediate step of these
solutions, i.e., annotating step-level labels. The re-
sulting dataset D for query q can be formalized as

14473

reward

: is correct , is correct – must be on the right path!

following steps

estimated value

: is correct, is also correct – but the latter seems a more promising path forward.

Value Estimation Integrated

unseen

process reward

BiRM

PRM
value

Question: Let p(x) be
a monic polynomial of
degree 4. Three of the
roots of p(x) are 1, 2,
and 3. Find p(0)+p(4).

Figure 2: An example of our proposed BiRM compared with traitional Process Reward Models (PRMs). Given
a question q, PRMs only consider the accumulated rewards up to the current step. In contrast, BiRM takes into
account two aspects: the correctness rewards received so far and the probability of reaching correct final answers.

Dq = {τi, {y1i , y2i , . . . , yji , . . . }}Ni=1, where τi de-
notes the i-th sampled trajectory, and yji represents
the step label for the j-th step in the i-th solution.
We will introduce more annotation strategies in
Section 4.2.

Following Yu et al. (2024a), we implement the
vanilla PRM by adding a linear layer for reward
prediction after the last hidden layer of the LLM.
We also retain the original language modeling head.
Formally, a vanilla PRM R(θ, ϕR) is parameter-
ized by base model parameters θ and reward head
parameters ϕR. The training objective of PRM is
to minimize the mean squared error (MSE) loss
between the predicted reward scores and the binary
step-level reward labels. Thus, we have:

LPRM(θ, ϕR)

=
1

|Q|
∑

q∈Q

[
Eτ∼π(·|q)

m∑

t=1

(
r̂θ,ϕR

(st, q)− rt
)2
]
,

where r̂(st, q) represents the predicted reward
score for the t-th step (Equation 1), and rt denotes
the ground truth step label. m represents the total
number of steps in solution τ .

Furthermore, to alleviate the one-directional lim-
itation of PRM, we introduce an additional value
head to guide process supervision. Specifically,
BiRM M(θ, ϕR, ϕV) is parameterized by three
components: θ represents the base model param-

eters, ϕR represents the reward head, and ϕV cor-
responds to the value head. The overall training
objective of BiRM is to jointly minimize the dis-
crepancy between the predicted reward score and
the reward label, as well as between the value score
and the value label. Similar to the vanilla PRM, we
employ MSE loss for the value head:

LVM(θ, ϕV) =
1

|Q|
∑

q∈Q[
Eτ∼π(·|q)

m∑

t=1

(
M̂θ,ϕV

(τ [1:t], q)− vt
)2
]
,

where M̂θ,ϕV
represents the estimated success

probability for the partial solution τ [1:t] (Equa-
tion 2), and vt denotes the value label for st.

In this way, the optimized BiRM considers not
only the actual accumulative rewards obtained so
far, but also the potential of reaching correct final
answers (Figure 2). The complete loss function for
BiRM can be defined as:

LBiRM(θ, ϕR, ϕV) = LPRM(θ, ϕR)+c·LVM(θ, ϕV).
(4)

We use a coefficient c to balance the importance of
the reward term LPRM and the value term LVM.

4.2 Step Label Annotation Strategies
In this section, we discuss our annotation strategies
for two kinds of BiRM training labels.

14474

Reward Labels. Reward labels are defined as
the correctness of each current step, represented as
a binary label. We use the MetaMath dataset (Yu
et al., 2024b) as our training data. We first perform
supervised fine-tuning on the base model to obtain
the generators. Then, we sample 15 rollouts for
each query and use Deepseek-V3 (DeepSeek-AI
et al., 2024) to annotate the correctness of each
step. Detailed annotation procedures and prompts
are provided in Appendix B.2.

Value Labels. A key challenge in implementing
the value head is to accurately estimate value labels
for the partial solution τ [1:t]. We employ multiple
strategies to address this problem.

MC-based estimation (Wang et al., 2024b) is a
widely used method for automated labeling, which
can be categorized into soft-label and hard-label
annotations. Specifically, we sample N rollouts
from an intermediate step in the trajectory. If M
of them are correct, the soft-label for the current
step can be defined as: label(st) = M

N . In contrast,
the hard-label method suggests that if any of the
rollouts reaches the target, then label(st) = 1.

The essence of Monte Carlo estimation is to
assess the potential of reaching correct final answer
from the current step and assign this probability
to the step label. Thus, for estimating a partial
trajectory, we can formally express it as:

V(τ [1:t], q) ≈ 1

N

N∑

i=1

I(âi is correct | τ [1:t], q).

As the number of rollouts N increases, the esti-
mated value label becomes more accurate. Follow-
ing Wang et al. (2024b), we sample 8 solutions for
each intermediate step and analyze the effective-
ness of both soft-label and hard-label approaches.

Outcome-supervised estimation (Yu et al.,
2024a) states that using the oucome label alone
is sufficient to provide probability estimatation for
each reasoning steps. The underlying idea is that
during the training phase, we can replicate the final
answer’s correctness label across all intermediate
steps. The resulting value model implicitly learns
to foresee the future, predicting potential final out-
come (i.e. value) for partial solutions. Compared to
MC estimation, outcome-supervised estimation has
higher data efficiency, but the shortcoming is that
the automatically learned estimation in this way is
less accurate.

5 Experiments

5.1 Experimental Setup

Tasks. We conduct experiments using three
widely used math reasoning datasets: GSM8K
(Cobbe et al., 2021), MATH-500 (Lightman et al.,
2024), and an out-of-domain (OOD) dataset
Gaokao2023 (Liao et al., 2024) to evaluate the
generalization ability of BiRM. Besides, we test
our method on three base models across different
model sizes and families: Qwen2.5-3B-Base (Yang
et al., 2024), Qwen2.5-7B-Base (Yang et al., 2024),
and Llama3.1-8B-Base (Dubey et al., 2024).

Baselines. To verify the effectiveness of BiRM,
we consider a wide range of baselines, including
the outcome reward model (ORM, Cobbe et al.,
2021), process reward model (PRM, Lightman
et al., 2024) and two variants of PRM: Math-
Shepherd (Wang et al., 2024b) and ER-PRM
(Zhang et al., 2024b). Additionally, we include
the results of greedy decoding and rule-based ap-
proaches, i.e. Majority Voting. We present more
details in Appendix A.1.

Implementation Details. In the SFT phase, we
train our generators on the MATH subset of the
MetaMath dataset (Yu et al., 2024b) for two epochs,
with a learning rate set to 1 × 10−5. The global
batch size is set to 256. In the training phase, we
use 225, 000 sampled solutions to train BiRM for
one epoch based on the generator checkpoint with a
learning rate of 5×10−6. More details are provided
in Appendix A.2.

Evaluation Metrics. We conduct a comprehen-
sive evaluation of BiRM, considering both vanilla
sampling and search strategies. Best-of-N (BoN)
sampling is a commonly used evaluation metric
for PRMs. It requires the model to score N candi-
date solutions, with the highest-scoring solution se-
lected as the final outcome. We also conduct beam
search experiments to verify that BiRM can pro-
vide more promising guidance for LLM reasoning.
In practice, BiRM follows Equation 3, estimating
both rewards and values to calculate final scores. A
detailed description is provided in Appendix A.3.

5.2 Main Results

BiRM exhibits more comprehensive and su-
perior evaluations in BoN sampling. Table 1
presents a comparison of BoN accuracy across
different supervision models on GSM8K, MATH-

14475

Models Methods Avg. GSM8K MATH-500 Gaokao2023

@128 @256 @512 @128 @256 @512 @128 @256 @512

Qwen2.5-3B

Greedy 46.8 ——— 73.1 ——— ——— 40.2 ——— ——— 27.0 ———
Majority Vote 58.1 85.1 85.0 85.3 52.5 53.0 53.8 35.8 36.3 36.1
ORM 58.9 88.1 88.1 88.1 52.1 51.8 52.2 37.2 37.0 35.8
PRM 59.9 88.5 88.3 88.0 54.6 54.1 54.2 37.3 37.1 37.2
ER-PRM 58.8 88.0 88.0 87.7 52.6 52.3 52.0 36.2 36.3 35.8
Math-Shepherd 59.0 87.3 87.2 87.0 53.2 53.4 53.8 36.6 36.4 36.1
BiRM 61.0 88.4 88.6 88.9 55.9 56.1 57.4 36.9 37.8 38.7

Qwen2.5-7B

Greedy 52.3 ——— 78.5 ——— ——— 45.0 ——— ——— 33.5 ———
Majority Vote 63.6 88.1 88.0 87.8 57.3 57.5 57.6 45.5 45.4 45.2
ORM 64.7 92.0 91.6 91.3 59.6 59.9 59.4 43.6 43.5 41.3
PRM 66.3 92.7 92.8 92.9 60.3 60.1 58.4 45.8 46.2 47.3
ER-PRM 66.2 92.2 92.1 92.2 59.7 59.2 59.0 47.0 47.2 47.3
Math-Shepherd 66.3 92.1 92.2 91.7 60.3 60.2 60.4 46.4 47.0 46.5
BiRM 68.3 93.1 93.3 93.2 62.4 62.3 63.4 47.7 49.1 50.4

Llama3.1-8B

Greedy 34.7 ——— 55.7 ——— ——— 31.2 ——— ——— 17.1 ———
Majority Vote 46.4 72.1 72.0 72.3 39.2 40.2 41.1 26.5 27.2 27.1
ORM 50.3 84.1 84.5 85.0 41.5 40.9 40.8 25.4 25.2 24.9
PRM 51.5 84.1 84.8 85.2 42.5 42.2 41.8 28.2 27.7 27.3
ER-PRM 50.6 84.8 85.3 85.8 41.3 41.0 40.2 25.7 26.1 24.9
Math-Shepherd 51.3 84.4 84.9 85.3 42.7 42.9 43.6 25.8 25.8 26.2
BiRM 54.1 86.1 87.2 87.8 45.4 45.4 45.6 29.4 30.0 29.6

Table 1: Performance of Best-of-N sampling on GSM8K, MATH-500 and Gaokao2023 with three base models.
The accuracy of the BoN solution is utilized as the evaluation metric. The results are reported as the average
accuracy across five random seeds. @128, @256, and @512 denote the accuracy with Best-of-128, Best-of-256,
and Best-of-512 sampling, respectively. The results of greedy decoding are independent of N and are listed for
comparison purposes. The best results are marked in bold.

500, and the out-of-domain Gaokao2023 dataset.
Our observations are as follows: (1) BiRM consis-
tently outperforms vanilla ORM, PRM, and their
variants on both GSM8K and MATH-500. For in-
stance, BiRM trained on Llama3.1-8B outperforms
PRM on GSM8K by 2.6%, while BiRM based on
Qwen2.5-7B achieves an additional 5.0% improve-
ment on MATH-500. (2) BiRM exhibits better gen-
eralization ability. Since supervision models are
trained solely on the query sets from GSM8K and
MATH, Gaokao2023 serves as an out-of-domain
(OOD) test set. BiRM-Qwen2.5-7B surpasses the
finely labeled Math-Shepherd by 3.9%. In contrast,
other supervision methods show fluctuating per-
formance across different base models. (3) As N
increases, some supervision methods fail to provide
consistent supervision. For example, ORM trained
on Qwen2.5-3B shows a decrease on Gaokao2023
from 37.2% to 35.8%. In contrast, BiRM main-
tains a continuous increase in accuracy. We provide
more detailed discussions in Section 6.1.

BiRM demonstrates more meaningful and
promising guidance in search-based strategies.

To fully demonstrate the superiority of BiRM’s
bidirectional supervision capability, we conduct
further experiments under search-based strategies .
We run step-level beam search and choose vanilla
ORM and PRM as baselines. The detailed algo-
rithm is provided in Appendix A.3. From Table
2, we can conclude that: (1) BiRM achieves the
highest accuracy in most cases. For example, on
GSM8K, Qwen2.5-7B-BiRM achieves an accuracy
of 89.4 at K = 8, which is a notable improvement
over PRM’s 88.1%. (2) As beam size increases,
BiRM’s performance continues to improve. On
the Llama3.1-8B base model, BiRM outperforms
ORM by 2.8% at K = 20 and achieves a notable
5.0% improvement at K = 100 in MATH-500
dataset. These results emphasize the valuable bidi-
rectional supervision signals provided by BiRM,
which significantly contributes to guiding the LLM
toward more successful and promising final an-
swers in solution searching.

14476

Models # Total Size GSM8K MATH-500 Gaokao2023

ORM PRM BiRM ORM PRM BiRM ORM PRM BiRM

Qwen2.5-3B
K = 4 83.0 82.1 82.8 48.6 49.3 50.1 35.6 34.9 36.1
K = 8 84.6 83.9 85.1 50.1 50.9 52.5 36.1 37.9 37.9
K = 20 86.7 85.7 86.9 53.0 54.3 55.0 37.7 38.4 39.1
K = 100 87.5 85.9 87.6 53.0 53.9 55.1 38.1 37.9 39.0

Qwen2.5-7B
K = 4 86.2 86.5 87.0 55.7 55.8 57.1 42.8 44.0 44.5
K = 8 88.6 88.1 89.4 58.3 59.1 60.1 44.2 45.6 46.8
K = 20 90.4 89.2 90.6 59.1 61.5 62.3 45.5 48.1 48.4
K = 100 91.2 88.4 91.7 60.1 60.7 62.5 46.8 48.3 50.0

Llama3.1-8B
K = 4 72.8 71.7 72.9 38.5 39.9 40.7 23.9 25.1 25.4
K = 8 77.4 75.9 78.3 40.2 40.1 43.3 25.6 26.6 27.5
K = 20 81.4 79.2 81.7 41.5 42.1 44.3 27.0 28.6 29.2
K = 100 82.7 80.3 85.4 41.1 42.3 46.1 26.2 29.6 30.7

Table 2: Performance of beam search on GSM8K, MATH-500 and Gaokao2023 with three base models. “# Total
Size” stands for total sampling size K in beam search and we report the best performance among all beam sizes.
The results are reported as the average accuracy across three random seeds. The best results are marked in bold.

0 200 400
0.56

0.58

0.60

0.62

0.64
Qwen2.5-7B MATH-500

0 200 400

0.40

0.45

0.50

Qwen2.5-7B Gaokao2023

0 200 400

0.40

0.42

0.44

0.46

Llama3.1-8B MATH-500

0 200 400

0.24

0.26

0.28

0.30

Llama3.1-8B Gaokao2023

ORM PRM BiRM

Figure 3: Scaling decline phenomenon in Best-of-N
sampling. We present the BoN accuracy results across
five random seeds. For better visualization, we apply
the moving average with a window size of 10.

6 Analysis and Discussions

6.1 Scaling Decline in BoN sampling

We conduct a further analysis of the scaling decline
phenomenon in our main results. The complete
BoN accuracy curve, shown in Figure 3, is plotted
for N ranging from 1 to 512. As N increases, we
observe that BiRM shows a consistent improve-
ment. In contrast, the post-verification accuracy of
vanilla ORM and PRM plateaus and even declines,
which contradicts our intuition learned from the
test-time scaling laws (Snell et al., 2024).

We attribute this decline to verifier failures. Im-
perfect verifiers misrank candidates, erroneously

Models Methods MATH-500 Gaokao2023

@128 @512 @128 @512

Qwen2.5-7B
+ Outcome 61.8 61.1 46.8 49.4
+ MS. (Hard) 62.1 62.8 47.3 49.7
+ MS. (Soft) 62.4 63.4 47.7 50.4

Llama3.1-8B
+ Outcome 44.9 44.2 29.0 29.6
+ MS. (Hard) 45.1 45.4 29.2 29.4
+ MS. (Soft) 45.4 45.6 29.4 29.6

Table 3: Different value label annotation strategies for
BiRM. “Outcome” stands for Outcome-supervised es-
timation. “MS. (Hard)” and “MS. (Soft)” represents
Math-Shepherd hard and soft estimation respectively.

classifying positive samples as negative. As the
sample size increases, this misjudgment becomes
more pronounced. Traditional PRMs exhibit a one-
directional scoring nature, limiting their ability to
evaluate candidates from a comprehensive perspec-
tive. In contrast, BiRM estimates both rewards and
values, providing more reliable supervision signals.

6.2 Annotation Strategies for Value Labels

As discussed in Section 4.2, we explore various
strategies for annotating precise value labels. We
aim to demonstrate that our method has good or-
thogonality with existing annotation strategies.

Table 3 presents the accuracy of BiRM in BoN
sampling under different strategies. We can con-
clude that: (1) More accurate annotations lead to
greater improvements. The mash-shepherd soft
estimation, which uses the potential success proba-
bility of intermediate steps as explicit labels, offers
the finest granularity and achieves the best perfor-

14477

BoN@4 BoN@16 BoN@64 BoN@256
48.0

50.7

53.4

56.1

58.8

50.0

53.6
52.6

51.4
50.8

55.6
56.6 56.6

50.6

56.2
57.2

57.8

RLHFlow-8B-Deepseek-Data

BoN@4 BoN@16 BoN@64 BoN@256
33.6

36.8

40.0

43.2

46.4

37.4

43.2 43.0 42.8

35.6

41.4
42.4

43.6

38.0

43.4 43.6

45.4

RLHFlow-8B-Mistral-Data

ORM PRM BiRM

Figure 4: Performance comparison of ORM, PRM and
BiRM under BoN sampling. The base models are open-
source RLHFlow-8B-Deepseek-Data and RLHFlow-8B-
Mistral-Data (Xiong et al., 2024). We follow Equation 3
to calculate the BiRM score at test-time.

mance. In contrast, outcome-supervised estimation,
which relies on outcome labels for implicit learning,
exhibits greater variability. (2) Even the weakest
method, outcome-supervised estimation, shows a
notable improvement over PRM. This highlights
the flexibility and applicability of BiRM.

6.3 Orthogonality to Existing PRMs
To further demonstrate the generalization ability
of our method, we conduct experiments using sev-
eral existing open-source reward models. We se-
lect ORMs and PRMs trained by RLHFlow (Xiong
et al., 2024; Dong et al., 2024) as baselines and
reuse the N sampled solutions they provided for
testing. Then we follow Equation 3 to calculate the
BiRM scores for BoN sampling.

Experiment results in Figure 4 clearly reveal that
BiRM consistently outperforms both ORM and
PRM across different values of N , maintaining a
consistent upward trend. Furthermore, this trend ex-
pands at larger sampling sizes, where BiRM main-
tains its lead, reaching an accuracy of 57.8% at
BoN@256, compared to PRM’s 56.6% and ORM’s
51.4%, respectively. These findings indicate the re-
liability and generalization of BiRM when using
existing open-source reward models.

6.4 Query Scaling or Response Scaling
We also explore a key issue in training supervi-
sion models: which matters more, query scaling or
response scaling?

We first fix the number of queries and use the

original GSM8K and MATH datasets, which con-
tain approximately 15, 000 queries. We then test
BiRM’s performance with response sizes of 8,15,
and 30. The results in Table 4 reveal that BiRM
performs best when the response size is 15 on both
datasets. The possible reason is that when the

Query # Resp. MATH-500 Gaokao2023

@128 @512 @128 @512

15, 000
×30 61.3 61.6 47.3 48.3
×15 62.0 63.0 46.8 49.4
×8 61.3 61.2 46.4 46.8

7, 500 ×15 59.0 58.8 45.4 44.7

3, 750 ×30 57.9 58.2 43.4 42.8

Table 4: Training data scaling for queries and responses.
The base model is Qwen2.5-7B and we use outcome-
supervised estimation for simplicity.

number of responses is too low, BiRM cannot learn
sufficient and diverse supervision signals. On the
other hand, the model struggles with overly sim-
ilar data patterns per query when # Resp. = 30,
leading to overfitting.

Furthermore, we control the total size of the
training dataset. Specifically, we conduct experi-
ments with three following settings: 15, 000 × 8,
7, 500 × 15, and 3, 750 × 30. The results demon-
strate that BiRM performs best with the 15, 000×8
configuration. Additionally, we observe that mod-
els with fewer queries go through more severe
degradation when facing OOD test sets. In the
MATH-500 experiments, the gap between the
7, 500 × 15 and 3, 750 × 30 settings ranges from
0.6% to 1.1%, but this gap significantly widens to
2.0% on the Gaokao2023 benchmark. To sum up,
we believe that maintaining an appropriate response
size while scaling the number of queries is critical
to training process supervision models. We hope
this provides valuable insights to the community.

7 Conclusion

In this work, we introduce BiRM, a novel pro-
cess supervision model for large language models
(LLMs), inspired by the A* algorithm. BiRM pro-
vides bidirectional supervision signals, evaluating
both the correctness of reasoning steps taken so far
and the probability of reaching correct answers in
the future. Our extensive experiments demonstrate
the effectiveness of BiRM across various mathe-
matical reasoning tasks, outperforming existing su-
pervision models like ORM and PRM. Through de-

14478

tailed analysis, we highlight the strengths of BiRM
in guiding the search process and improving solu-
tion re-ranking. We hope that our approach con-
tributes valuable insights to the field of process
supervision and opens avenues for future research
in enhancing LLM-based reasoning.

Limitations

Our work has some limitations, which we leave
for future work to address: (1) High computational
cost in test-time searching. In order to improve
the performance of LLMs at test-time, we employ
vanilla sampling and search-based strategies for so-
lution searching. However, this process requires a
significant amount of computational resources. In
our work, we use vLLM (Kwon et al., 2023) to alle-
viate this limitation. Besides, we also observe that
search-based strategies sometimes perform worse
than repeated sampling due to verifier failures (Yu
et al., 2025), even under the same computational
budget. We will explore this problem in the future.
(2) Generalization across different data patterns and
base models. In our experiments, we train our gen-
erators and supervision models based on the same
base models, ensuring the same data patterns. How-
ever, in practical scenarios, an optimal supervision
model should be independent of the data pattern
and capable of supervising different kinds of rea-
soning paths. We hope our work provides insights
to the community and contributes to the develop-
ment of more robust and generalized supervision
models.

Acknowledgements

The authors wish to thank the anonymous review-
ers for their helpful comments. This work was par-
tially funded by National Natural Science Founda-
tion of China (No.62441602,62076069,62206057),
Shanghai Rising-Star Program (23QA1400200),
and Natural Science Foundation of Shanghai
(23ZR1403500).

References
Zachary Ankner, Mansheej Paul, Brandon Cui,

Jonathan D. Chang, and Prithviraj Ammanabrolu.
2024. Critique-out-loud reward models. CoRR,
abs/2408.11791.

Bradley C. A. Brown, Jordan Juravsky, Ryan Saul
Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré,
and Azalia Mirhoseini. 2024. Large language mon-

keys: Scaling inference compute with repeated sam-
pling. CoRR, abs/2407.21787.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-

14479

https://doi.org/10.48550/ARXIV.2408.11791
https://doi.org/10.48550/ARXIV.2407.21787
https://doi.org/10.48550/ARXIV.2407.21787
https://doi.org/10.48550/ARXIV.2407.21787
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, and Wangding Zeng. 2024. Deepseek-v3
technical report. CoRR, abs/2412.19437.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. Preprint,
arXiv:2405.07863.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and

et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael.
1968. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern., 4(2):100–107.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611–
626. ACM.

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and
Kai Fan. 2024. MARIO: math reasoning with code
interpreter output - A reproducible pipeline. In Find-
ings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, pages 905–924. Association for
Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou,
and Juanzi Li. 2025. Pairwise rm: Perform best-of-n
sampling with knockout tournament. arXiv preprint
arXiv:2501.13007.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi.
2024. Improve mathematical reasoning in language
models by automated process supervision. CoRR,
abs/2406.06592.

OpenAI. 2024a. GPT-4o.

OpenAI. 2024b. Introducing openai o1.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters.
CoRR, abs/2408.03314.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou,
and Yu Cheng. 2025. Prmbench: A fine-grained
and challenging benchmark for process-level reward
models. arXiv preprint arXiv:2501.03124.

Benedikt Stroebl, Sayash Kapoor, and Arvind
Narayanan. 2024. Inference scaling laws: The limits
of llm resampling with imperfect verifiers. arXiv
preprint arXiv:2411.17501.

14480

https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.48550/ARXIV.2412.19437
https://arxiv.org/abs/2405.07863
https://arxiv.org/abs/2405.07863
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.53
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.53
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.48550/ARXIV.2406.06592
https://doi.org/10.48550/ARXIV.2406.06592
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://doi.org/10.48550/ARXIV.2408.03314
https://doi.org/10.48550/ARXIV.2408.03314

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu,
and Junxian He. 2024. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving.
In Advances in Neural Information Processing Sys-
tems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024. Alphazero-like tree-search can guide large
language model decoding and training. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Zeng Liang,
Jujie He, Shuicheng Yan, and Bo An. 2024a. Q*:
Improving multi-step reasoning for llms with deliber-
ative planning. CoRR, abs/2406.14283.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 9426–9439. Association for Computa-
tional Linguistics.

Yu Wang, Nan Yang, Liang Wang, and Furu Wei.
2025. Examining false positives under inference
scaling for mathematical reasoning. arXiv preprint
arXiv:2502.06217.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws: An
empirical analysis of compute-optimal inference for
llm problem-solving. In The 4th Workshop on Math-
ematical Reasoning and AI at NeurIPS’24.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang.
2024. An implementation of generative prm. https:
//github.com/RLHFlow/RLHF-Reward-Modeling.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,

Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2024a.
Ovm, outcome-supervised value models for planning
in mathematical reasoning. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2024,
Mexico City, Mexico, June 16-21, 2024, pages 858–
875. Association for Computational Linguistics.

Fei Yu, Yingru Li, and Benyou Wang. 2025. Scaling
flaws of verifier-guided search in mathematical rea-
soning. arXiv preprint arXiv:2502.00271.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024b. Meta-
math: Bootstrap your own mathematical questions
for large language models. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. In Advances in Neural Information Pro-
cessing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yuqiang Li, Wanli Ouyang, and Dongzhan
Zhou. 2024a. Llama-berry: Pairwise optimization
for o1-like olympiad-level mathematical reasoning.
CoRR, abs/2410.02884.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong
Lin, Rui Pan, Hanze Dong, Dylan Zhang, Pavlo
Molchanov, and Tong Zhang. 2024b. Entropy-
regularized process reward model. CoRR,
abs/2412.11006.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024c.
Generative verifiers: Reward modeling as next-token
prediction. CoRR, abs/2408.15240.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor S. Bursztyn, Ryan A. Rossi, Somdeb Sarkhel,
and Chao Zhang. 2024. Toolchain*: Efficient ac-
tion space navigation in large language models with
a* search. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

14481

http://papers.nips.cc/paper_files/paper/2024/hash/0ef1afa0daa888d695dcd5e9513bafa3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/0ef1afa0daa888d695dcd5e9513bafa3-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://openreview.net/forum?id=C4OpREezgj
https://openreview.net/forum?id=C4OpREezgj
https://doi.org/10.48550/ARXIV.2406.14283
https://doi.org/10.48550/ARXIV.2406.14283
https://doi.org/10.48550/ARXIV.2406.14283
https://doi.org/10.18653/V1/2024.ACL-LONG.510
https://doi.org/10.18653/V1/2024.ACL-LONG.510
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.55
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=N8N0hgNDRt
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2410.02884
https://doi.org/10.48550/ARXIV.2410.02884
https://doi.org/10.48550/ARXIV.2412.11006
https://doi.org/10.48550/ARXIV.2412.11006
https://doi.org/10.48550/ARXIV.2408.15240
https://doi.org/10.48550/ARXIV.2408.15240
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8

A Experiment Details

A.1 Baselines.

Outcome Reward Model (ORM, Cobbe et al.,
2021). The vanilla ORM assigns a score to the
entire solution as the final reward. We train ORMs
through outcome supervision. Following (Cobbe
et al., 2021), we replicate the binary correctness la-
bel rt ∈ {0, 1} across the entire solution sequence.
The reward head is then trained to predict reward
scores for each token, enhancing robustness.

Process Reward Model (PRM, Lightman et al.,
2024; Uesato et al., 2022). The vanilla PRM as-
signs scores to each step along a solution path.
For training stability , we place the reward la-
bel rt at the last token of each step. In other
words, for t-th step-level sequence, the label vector
yt = [0, 0, . . . , 0, rt].

Math-shepherd PRM (Wang et al., 2024b). Dif-
ferent from the vanilla PRM, Math-Shepherd PRM
uses Monte-Carlo Estimation to annotate step la-
bels. This estimation is essentially considered as
training a value model (Zhang et al., 2025). In our
experiments, we first sample 15 solutions for each
query. Then, for each intermediate step, we sample
8 rollouts. We provide a detailed description of this
method in Section 4.2.

ER-PRM (Zhang et al., 2024b). Similar to
Math-Shepherd PRM, ER-PRM integrates entropy-
regularized step labels to train the supervision
model. After Monte-Carlo sampling, ER-PRM
calculates the label for the t -th step according to
the following equation:

label(st) =
1

η
lnEτ−[t]∼πe

ηy(τ)

where τ represents the complete rollout starting
from the step st, π represents the LLM genera-
tor, and y(·) represents the final correctness of the
solution τ .

A.2 BiRM Training Details

In the BiRM training phase, we collect problems
from the original GSM8K and MATH dataset .
Then we use LLM generators to sample 15 tra-
jectories per query, resulting in a training set of
approximately 225, 000 solutions for each base
model. We annotate reward and value labels using
the Deepseek-V3 (DeepSeek-AI et al., 2024) and
Math-shepherd soft-label methods, respectively.

We set training labels on the last token of each step,
following (Wang et al., 2024b). The coefficient c
in Equation 4 is set to 1.0.

A.3 Evaluation Metrics
At test-time, BiRM estimates both reward scores
and value scores for partial solutions at the same
time. We follow Equation 3 to calculate the final
score. The coefficient β for different base models
on GSM8K, MATH-500, and Gaokao2023 are set
to βQwen2.5−3B = {1.0, 2.5, 2.0}, βQwen2.5−7B =
{1.5, 3.0, 3.5}, βLlama3.1−8B = {2.5, 1.0, 3.5} re-
spectively.

Best-of-N Sampling. For a given question q,
we sample multiple rollouts from the LLM, re-
sulting in a candidate set of N reasoning paths
T = {τ1, τ2, . . . , τN}. Subsequently, an additional
supervision model R , such as PRM, is used to
score each candidate path, yielding R(τi), where
i ∈ {1, 2, . . . , N}. The candidate with the highest
score represents the most promising solution and
is selected as the final output:

τ∗ = arg max
τ∈{τ1,τ2,...,τN}

R(τ)

Beam Search. We present all search results from
the main experiment in Table 5, Table 6, and Table
7. The procedure of the step-level beam search
is as follows: We first set the total sampling size
K and beam size b (K should be divisible by b) .
In each round, we only expand one step forward.
For a given query, we sample K rollouts in the
first round. Then, we use the supervision model
M to re-rank these candidates and select the top b
rollouts for the next step. Starting from the second
round, we expand K

b trajectories for each candidate,
getting K candidates in total. We repeat the re-
ranking process until a final answer is found or
the maximum step count is reached. A detailed
pseudocode is provided in 1.

B Step Label Annotation Details

B.1 Dataset preprocessing
Before the SFT phase, we first preprocess the train-
ing data and restructure the delimiters at different
levels of granularity. This is because we discover
that original solution paths contain numerous mean-
ingless text segments, which hinder the effective
learning of process supervision models. Similar
findings are reported by (Liao et al., 2024). To
address this, we utilize Deepseek-V3 to clean the

14482

MATH subset in the MetaMath dataset, reannotate
the delimiters, and ensure that each step is logically
complete and meaningful. The prompt template for
data preprocessing is shown in Figure 5.

B.2 Reward Label Annotaion
We also use Deepseek-V3 to annotate the correct-
ness of each step (i.e., reward label) in our experi-
ments. The prompt template is provided in Figure 6.

Algorithm 1 Step-Level Beam Search
1: Input: Question q, Total Sampling Size K, Beam size b,

Maximum step count T
2: Output: Best solution path for q
3: Model: Generator π and BiRMM
4: procedure STEPLEVELBEAMSEARCH(q,K, b)
5: Initialize partial solutions T← {}
6: Sample initial steps {τ1

1 , τ
1
2 , . . . , τ

1
K}

7: Estimate scores {s11, s12, · · · , s1K} for each step
8: Select top b scored steps and add to T
9: t← 1

10: while solutions in T are not complete and t < T do
11: New candidate solutions Tnew ← {}
12: Scores S ← {}
13: for each partial solution τ [1:t] in T do
14: for i = 1 to K/b do
15: τ

[1:t+1]
i ∼ π(τ [1:t], q)

16: s
[1:t+1]
i =M(τ

[1:t+1]
i , q)

17: Tnew ← Tnew + τ
[1:t+1]
i

18: S ← S + s
[1:t+1]
i

19: end for
20: end for
21: Tnew ← top b scored partial solutions in Tnew
22: T← Tnew
23: t← t+ 1
24: end while
25: return solution with the highest score in T
26: end procedure

14483

Total Size Beam Size GSM8K MATH-500 Gaokao2023

OVM PRM BiRM OVM PRM BiRM OVM PRM BiRM

K = 4
4 81.50 ± 0.45 82.11 ± 0.28 81.96 ± 0.38 48.60 ± 0.16 48.13 ± 1.20 47.27 ± 0.96 33.85 ± 0.53 33.16 ± 0.74 33.07 ± 0.44
2 82.97 ± 0.14 81.53 ± 0.72 82.76 ± 0.28 48.27 ± 1.61 49.27 ± 0.81 50.07 ± 0.84 35.15 ± 1.80 34.55 ± 0.56 36.10 ± 0.76
1 80.82 ± 0.51 80.57 ± 0.77 81.93 ± 0.64 47.60 ± 0.59 47.80 ± 1.14 47.67 ± 0.57 35.58 ± 1.29 34.89 ± 1.56 32.47 ± 0.56

K = 8

8 83.70 ± 0.73 83.65 ± 0.25 84.41 ± 0.35 49.33 ± 0.38 50.13 ± 1.00 50.07 ± 0.66 35.93 ± 1.17 34.63 ± 0.49 35.06 ± 1.39
4 84.61 ± 0.56 83.93 ± 0.16 85.11 ± 0.40 48.87 ± 0.68 50.87 ± 0.41 52.53 ± 0.90 36.10 ± 1.10 37.92 ± 0.76 37.92 ± 0.21
2 84.10 ± 0.36 83.17 ± 0.25 84.00 ± 0.39 50.07 ± 1.06 50.33 ± 0.94 50.67 ± 1.64 35.32 ± 1.10 37.58 ± 1.09 36.97 ± 1.07
1 83.27 ± 0.40 82.66 ± 1.05 82.99 ± 0.23 48.47 ± 2.03 49.67 ± 0.25 49.93 ± 0.41 33.42 ± 1.59 35.24 ± 0.32 35.06 ± 1.12

K = 20

20 85.27 ± 0.04 85.65 ± 0.50 86.13 ± 0.11 52.13 ± 1.15 53.20 ± 0.59 53.33 ± 1.48 36.54 ± 0.44 35.67 ± 1.56 36.10 ± 1.85
10 86.73 ± 0.65 84.66 ± 0.34 86.91 ± 0.25 53.00 ± 0.16 54.27 ± 0.77 55.00 ± 0.65 37.66 ± 1.48 38.35 ± 1.24 37.23 ± 1.38
5 86.23 ± 0.28 84.86 ± 0.54 86.28 ± 0.33 52.20 ± 0.59 53.40 ± 0.85 54.27 ± 0.52 36.88 ± 1.06 37.49 ± 0.86 37.58 ± 0.24
4 86.20 ± 0.16 84.76 ± 0.22 85.04 ± 0.19 51.73 ± 0.66 51.80 ± 0.75 53.60 ± 0.75 37.49 ± 0.88 35.41 ± 1.00 39.05 ± 1.17
2 85.32 ± 0.25 84.74 ± 0.36 85.19 ± 0.19 49.00 ± 0.33 50.33 ± 1.00 51.80 ± 0.49 35.67 ± 0.44 35.84 ± 0.97 36.62 ± 0.85
1 83.60 ± 0.09 82.56 ± 0.74 84.23 ± 0.39 49.00 ± 0.91 50.67 ± 0.90 50.87 ± 0.84 34.29 ± 1.29 34.46 ± 1.41 37.06 ± 2.51

K = 100
50 87.29 ± 0.22 85.87 ± 0.64 87.34 ± 0.22 52.87 ± 0.82 53.87 ± 0.19 55.13 ± 0.34 37.06 ± 0.74 37.40 ± 0.97 38.96 ± 0.92
25 87.54 ± 0.26 85.52 ± 0.80 87.64 ± 0.65 53.00 ± 1.50 53.20 ± 0.33 54.73 ± 0.75 38.10 ± 1.17 37.75 ± 1.09 38.18 ± 0.21
10 85.90 ± 0.33 84.51 ± 0.77 86.71 ± 0.37 51.27 ± 1.32 49.80 ± 0.57 53.40 ± 1.23 38.01 ± 1.05 37.92 ± 1.10 37.40 ± 1.85

Table 5: Qwen2.5-3B performance of beam search on GSM8K, MATH-500 and Gaokao2023.

Total Size Beam Size GSM8K MATH-500 Gaokao2023

OVM PRM BiRM OVM PRM BiRM OVM PRM BiRM

K = 4
4 86.10 ± 0.52 86.48 ± 0.43 87.04 ± 0.16 55.73 ± 1.52 53.73 ± 1.51 57.13 ± 1.15 40.09 ± 0.12 41.13 ± 1.24 43.90 ± 0.92
2 86.20 ± 0.53 86.00 ± 0.25 86.99 ± 0.13 55.53 ± 0.47 55.80 ± 1.72 55.87 ± 0.93 42.77 ± 0.24 42.68 ± 0.88 43.55 ± 0.61
1 85.65 ± 1.01 85.04 ± 0.50 86.76 ± 0.31 53.80 ± 1.77 54.93 ± 1.46 56.33 ± 1.04 41.47 ± 0.74 43.98 ± 0.12 44.50 ± 1.17

K = 8

8 86.73 ± 0.62 88.12 ± 0.36 88.93 ± 0.49 58.27 ± 0.50 58.20 ± 0.71 58.13 ± 0.90 44.19 ± 0.76 44.24 ± 0.68 45.11 ± 0.68
4 88.63 ± 0.19 87.89 ± 0.73 89.36 ± 0.22 57.60 ± 0.85 59.07 ± 1.32 59.53 ± 1.24 43.72 ± 0.86 45.63 ± 1.21 46.84 ± 0.65
2 88.55 ± 0.37 87.45 ± 0.19 88.30 ± 0.53 57.00 ± 0.43 57.20 ± 1.56 58.67 ± 1.27 43.98 ± 1.41 44.68 ± 0.56 45.45 ± 0.97
1 87.57 ± 0.38 86.45 ± 0.40 87.47 ± 0.19 54.67 ± 1.09 57.27 ± 1.23 57.73 ± 1.32 44.24 ± 1.09 44.94 ± 1.27 43.38 ± 0.52

K = 20

20 86.33 ± 0.38 88.65 ± 0.09 90.04 ± 0.58 59.07 ± 0.82 59.60 ± 0.59 60.33 ± 0.68 44.76 ± 1.38 45.89 ± 1.21 47.71 ± 0.44
10 90.40 ± 0.18 89.18 ± 0.42 90.40 ± 0.65 58.73 ± 1.16 61.53 ± 1.05 62.27 ± 1.09 45.19 ± 0.76 48.14 ± 0.74 48.23 ± 0.12
5 90.30 ± 0.12 88.98 ± 0.26 90.60 ± 0.28 57.53 ± 0.34 59.40 ± 0.49 60.73 ± 0.19 45.45 ± 0.64 47.36 ± 1.17 47.36 ± 1.22
4 89.56 ± 0.25 87.52 ± 0.62 89.94 ± 0.09 56.53 ± 0.90 58.40 ± 1.28 59.67 ± 0.34 45.02 ± 0.53 45.54 ± 0.88 48.31 ± 2.21
2 88.55 ± 0.06 88.05 ± 0.07 89.69 ± 0.34 56.93 ± 0.90 57.47 ± 1.11 58.87 ± 0.62 43.72 ± 1.07 44.59 ± 0.74 47.62 ± 0.96
1 87.79 ± 0.22 86.96 ± 0.47 88.07 ± 0.38 56.27 ± 0.34 57.73 ± 1.52 58.33 ± 0.77 42.68 ± 1.71 45.63 ± 0.74 45.80 ± 0.86

K = 100
50 91.00 ± 0.22 88.32 ± 0.57 91.28 ± 0.12 60.13 ± 0.47 60.73 ± 0.34 62.53 ± 0.77 46.84 ± 0.44 48.31 ± 0.85 49.96 ± 0.32
25 91.18 ± 0.53 88.40 ± 0.21 91.66 ± 0.33 58.40 ± 1.23 59.27 ± 0.34 62.00 ± 0.98 46.32 ± 0.53 47.97 ± 0.12 47.62 ± 0.68
10 89.97 ± 0.25 88.15 ± 0.16 91.00 ± 0.09 57.47 ± 1.32 59.20 ± 1.31 61.20 ± 0.43 43.64 ± 0.42 46.93 ± 0.49 49.00 ± 0.32

Table 6: Qwen2.5-7B performance of beam search on GSM8K, MATH-500 and Gaokao2023.

Total Size Beam Size GSM8K MATH-500 Gaokao2023

OVM PRM BiRM OVM PRM BiRM OVM PRM BiRM

K = 4
4 71.44 ± 0.36 71.65 ± 0.33 71.37 ± 0.41 37.53 ± 0.66 38.67 ± 0.50 38.07 ± 0.68 23.81 ± 0.65 24.94 ± 0.21 23.29 ± 0.86
2 72.76 ± 0.41 71.11 ± 1.11 72.91 ± 0.80 38.53 ± 2.22 39.87 ± 0.68 40.73 ± 0.52 23.90 ± 1.10 25.11 ± 1.36 26.06 ± 0.68
1 70.74 ± 0.16 68.99 ± 0.67 71.57 ± 0.38 36.80 ± 0.75 39.60 ± 0.85 39.33 ± 0.98 23.20 ± 0.74 24.33 ± 0.74 24.59 ± 0.65

K = 8

8 76.52 ± 0.45 75.92 ± 0.20 76.90 ± 0.53 39.93 ± 1.48 39.00 ± 0.59 41.27 ± 0.09 25.63 ± 1.07 25.71 ± 0.56 26.75 ± 0.56
4 77.36 ± 0.47 75.84 ± 0.54 78.32 ± 0.55 40.20 ± 0.49 40.13 ± 1.64 43.27 ± 0.57 25.19 ± 1.29 26.49 ± 1.53 27.45 ± 1.56
2 75.51 ± 0.49 73.79 ± 1.02 76.17 ± 0.04 39.07 ± 0.50 39.80 ± 1.85 41.47 ± 1.23 25.02 ± 0.96 26.58 ± 2.04 26.23 ± 1.18
1 74.00 ± 0.66 72.40 ± 0.57 74.60 ± 0.62 37.27 ± 1.64 40.13 ± 1.57 41.47 ± 0.77 23.72 ± 0.74 25.28 ± 1.59 25.80 ± 1.17

K = 20

20 79.93 ± 0.22 79.23 ± 0.48 80.46 ± 0.29 41.53 ± 0.84 41.00 ± 0.75 44.13 ± 0.19 26.15 ± 0.74 25.71 ± 0.21 27.62 ± 0.44
10 81.40 ± 0.25 78.82 ± 0.22 81.73 ± 0.62 40.73 ± 0.68 41.60 ± 0.86 44.27 ± 0.34 25.97 ± 0.97 28.57 ± 1.18 29.18 ± 0.86
5 79.76 ± 0.37 76.90 ± 0.35 81.00 ± 0.20 40.80 ± 0.71 42.07 ± 1.09 43.93 ± 1.00 27.01 ± 0.37 28.14 ± 0.98 28.57 ± 0.73
4 79.56 ± 0.26 76.02 ± 0.36 80.16 ± 0.64 40.13 ± 1.55 42.00 ± 1.07 44.00 ± 0.43 24.33 ± 0.32 28.23 ± 0.12 26.93 ± 0.80
2 77.96 ± 0.60 75.39 ± 1.04 79.53 ± 1.08 39.07 ± 0.90 39.53 ± 0.50 42.40 ± 0.65 26.58 ± 1.41 26.75 ± 0.85 26.84 ± 0.12
1 76.27 ± 0.80 73.24 ± 1.02 78.17 ± 0.87 39.27 ± 0.82 40.00 ± 1.82 41.53 ± 1.36 25.54 ± 0.24 27.36 ± 1.44 27.27 ± 0.56

K = 100
50 82.71 ± 0.11 80.34 ± 0.84 85.39 ± 0.52 41.07 ± 0.50 42.33 ± 0.66 46.13 ± 0.98 26.23 ± 2.02 29.61 ± 0.37 30.65 ± 0.37
25 82.71 ± 0.61 78.44 ± 0.43 84.53 ± 0.60 40.93 ± 1.32 42.00 ± 0.71 44.07 ± 0.68 25.37 ± 0.61 28.14 ± 0.86 29.00 ± 0.61
10 81.10 ± 0.46 77.81 ± 0.93 83.35 ± 0.70 39.87 ± 0.77 40.27 ± 1.06 45.00 ± 0.16 25.80 ± 0.32 27.19 ± 0.86 29.70 ± 0.80

Table 7: Llama3.1-8B performance of beam search on GSM8K, MATH-500 and Gaokao2023.

14484

SFT Dataset Preprocessing

You are an expert math examiner, skilled at transforming complex mathematical solution steps
into clear formats. Your task is to insert the symbol <step_end> to mark the end of each step in
the following math problem's solution. A step should represent a complete statement, structure or
calculation process. You must not omit any original content and only insert this symbol at the end
of each step. Your output should only include the revised solution, without any additional text.

Figure 5: The prompt template for MetaMath dataset preprocessing.

Reward Label Annotation

You are an expert math examiner. Your task is to review the student's solution and evaluate each
step. Mark a step as correct only if it is based on accurate premises and contributes to solving the
problem. Mark it as unnecessary if it is logically valid but does not aid in solving the problem.
Your judgments should include a very concise analysis of each step and the final judgement.

You must provide your evaluations in JSON format like:
{"step_1": {"analysis": "<concise analysis of the step>", "judgement":
"<correct/incorrect/unnecessary>"}, "step_2": {...}, ...}

Below is the question, reference answer, and student's solution that you need to evaluate. Note
that the student's solution does not need to match the reference solution exactly.

[Question]
{question}

[Reference Answer]
{answer}

[Solution]
{solution}

Now, provide your evaluations in JSON format.

Figure 6: The prompt template for reward label annotaion.

14485

