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Abstract

Document-level relation extraction (DocRE)
identifies relations between entities across an
entire document. However, as the number
and complexity of entities and entity-pair rela-
tions grow, the problem space expands quadrat-
ically, causing incomplete annotations and fre-
quent false negatives, especially in biomedical
datasets due to high construction costs. This
leads to low recall in real-world scenarios. To
address this, we propose GLiM, a novel frame-
work that reduces the problem space using
a graph-enhanced Transformer-based model
and leverages large language models (LLMs)
for reasoning. GLiM employs a cascaded ap-
proach: first, a graph-enhanced Transformer
processes entity-pair relations with finer granu-
larity by dynamically adjusting the graph size
based on the number of entities; then, LLM
inference handles challenging cases. Experi-
ments show that GLiM boosts average recall
and F1 scores by +6.34 and +4.41, respec-
tively, outperforming state-of-the-art models on
biomedical benchmarks. These results demon-
strate the effectiveness of combining graph-
enhanced Transformers with LLM inference
for biomedical DocRE. Code will be released
at https://github.com/HaoFang10/GLiM.

1 Introduction

Relation Extraction (RE) plays a crucial role in
Information Extraction (IE), aiming to identify re-
lations between entities in a given text. Document-
level relation extraction (DocRE) extends this task
by identifying relations between all entity pairs
across an entire document. DocRE is of paramount
importance for performance enhancement of down-
stream applications such as question answering,
knowledge graph construction, and recommenda-
tion systems.

*Corresponding authors.

Figure 1: Illustration of biomedical document-level
relation extraction using our cascaded framework on
ChemDisGene dataset.

Compared to sentence-level relation extraction,
which focuses on identifying entity relations within
a single sentence, DocRE faces greater challenges
in dataset quality. As the number of entities in-
creases, the problem space grows quadratically,
complicating the annotation process. Moreover,
DocRE needs to handle longer contexts and more
complex relation types, leading to inevitable issues
such as incomplete labeling and a high prevalence
of false negatives. These challenges are especially
prominent in biomedical DocRED datasets, such
as ChemDisGene. In the automatically annotated
training set for ChemDisGene, the average number
of relations per document is only about one-third of
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that in the expert-annotated test set. Consequently,
models trained on such datasets often suffer from
low recall in real-world applications, making this a
critical issue to address.

With the remarkable capabilities demonstrated
by large language models (LLMs) across various
domains, reframing relation extraction as a text
generation task and leveraging LLMs has emerged
as a promising approach to overcoming the afore-
mentioned challenges. However, the relatively un-
derwhelming performance of LLMs in RE tasks is
largely due to the massive problem space inherent
to DocRE. Therefore, our focus is on reducing the
problem space while leveraging the intrinsic knowl-
edge of LLMs to recover false negative relations
without compromising model performance.

In light of the above, we propose an innova-
tive cascaded framework named Graph LLM in-
tegration Model (GLiM). GLiM first employs
a Transformer-based model for initial process-
ing, which not only produces preliminary re-
sults but also significantly reduces the problem
space. This reduction allows subsequent LLM
to fully exploit its intrinsic knowledge, thereby
improving both recall and F1 scores. Further-
more, to enhance the first-step model’s ability
to capture finer-grained and complex entity rela-
tions, we incorporate adaptively-adjusted graph
structures into the Transformer-based model. This
enhancement enables GLiM to achieve state-of-
the-art (SOTA) performance on the biomedical
BioRED and ChemDisGene benchmark datasets,
even without utilizing LLMs. When LLMs are
used, the framework achieves further significant
performance gains. An example of GLiM is shown
in Figure 1.

The main contributions of this paper include:
(1) A novel framework for biomedical DocRE:

GLiM reduces the problem space by decompos-
ing the DocRE task into cascading processing
steps. The initial step uses a graph-enhanced Trans-
former model, followed by LLM inference. This
approach substantially enhances performance on
incompletely-annotated biomedical DocRE tasks.

(2) Adaptively-adjusted Graph structure: We
integrate a sequential graph structure into the
Transformer-based model and dynamically adjust
the graph structure size based on the number of
entities, achieving SOTA performance on BioRED
and ChemDisGene benchmark datasets even with-
out relying on LLMs.

(3) Extensive experimental validation: Experi-

mental results across multiple datasets demonstrate
the complementary effectiveness of Transformer-
based models and LLMs. GLiM achieves average
recall and F1 score improvements of +6.34 and
+4.41 on ChemDisGene and BioRED benchmark
datasets, respectively. On the general-domain Do-
cRED dataset, GLiM maintains a competitive F1
score while achieving SOTA recall performance.

2 Related Work

2.1 Document-level Relation Extraction

Document-level relation extraction (DocRE) differs
from sentence-level relation extraction because it
requires handling longer contexts and more com-
plex entity-pair relations. Moreover, a document
with N entities results in N(N − 1) possible rela-
tion predictions, causing the problem space to grow
quadratically as the number of entities increases.
This leads to significant costs in constructing a com-
plete DocRE dataset. Consequently, DocRE tasks
commonly face challenges such as multi-label re-
lations, long-tail relation distributions, and incom-
plete labeling with false negatives.

To address multi-label and multi-entity chal-
lenges, Zhou et al. (2021) proposed an adaptive
thresholding and local context pooling model (AT-
LOP). Zhang et al. (2021) introduced a docu-
ment U-shaped network (DocuNet), which regards
DocRE as a semantic segmentation task. DocuNet
predicts relation types between entity pairs via
pixel-level mask prediction and uses a balanced
softmax approach to handle relation distribution
imbalances. Similarly, several methods introduced
novel loss functions (Tan et al. (2022a); Wang et al.
(2022)) to address these issues.

2.2 Document-level Biomedical RE with
Incomplete Labeling

In the biomedical field, the high cost of construct-
ing DocRE datasets intensifies the issue of false
negatives caused by incomplete labeling. To ad-
dress this problem, mainstream methods include
knowledge distillation (Tan et al. (2022a); Ma et al.
(2023); Gao et al. (2024)), negative sampling (Li
et al., 2021) to avoid overfitting on false negatives,
and Positive-Unlabeled (PU) learning (Wang et al.
(2024); Wang et al. (2022)), which adjusts the loss
weight based on the distribution of each relation
class. Moreover, Tan et al. (2023) proposed a class-
adaptive re-sampling self-training framework that
iteratively samples pseudo-labels for training each
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Figure 2: Overall framework of GLiM.

class.
Unlike these methods, our approach fully lever-

ages the intrinsic knowledge capabilities of LLMs
to mitigate distribution shifts between training and
test sets while addressing false negatives. This
strategy ultimately improves both the recall and F1
scores.

2.3 Relation Extraction with LLMs
Large language models (LLMs) have demonstrated
significant potential across various domains. Sev-
eral recently proposed relation extraction (RE)
methods advocate leveraging LLMs’ string-based
encoding to perform RE in an interpretable manner.

Paolini et al. (2021) proposed reframing struc-
tured prediction tasks, including RE, as sequence-
to-sequence problems. Wan et al. (2023) further
advanced this approach by prompting GPT-3 for
RE. Expanding this research direction, Wadhwa
et al. (2023) explored few-shot learning within
LLMs for sentence-level RE. Meanwhile, Xue et al.
(2024) introduced AutoRE, a model that decom-
poses DocRE into three sub-tasks: extracting rela-
tions, entity heads, and entity tails. AutoRE fine-
tunes LLMs with Quantized Low-Rank Adapter
(QLoRA) to enhance performance. Similarly, Wei
et al. (2024) proposed ChatIE, which decomposes
the complex RE process into multiple rounds of
question-answering, with outputs combined into a
final structured format.

However, despite these advancements, LLM per-
formance in RE tasks still lags behind that of BERT-
based models. Han et al. (2023) found that Chat-
GPT struggles to comprehend subject-object re-
lations in RE tasks. Likewise, Li et al. (2023)
pointed out that in standard information extraction
tasks, ChatGPT typically underperforms compared
to BERT-based models. In DocRE, LLMs’ perfor-
mance remains unsatisfactory, largely due to the
vast potential problem space.

To overcome this limitation, our approach uti-
lizes a pre-trained model for the first step of pro-
cessing, significantly reducing the problem space.
This enables LLM inference in the second step
to fully exploit its reasoning capabilities, identify-
ing false negative relations and further enhancing
model performance.

3 Methodology

3.1 Problem Definition

In the DocRE task, we use a model to handle doc-
ument D that consists of M sentences, N entities,
and R candidate relation types. Given a known
set of entities E = {e1, e2, . . . , eN}, the task is
to determine whether each entity pair (ei, ej) in
the document D has a relation r from the candi-
date relation set R = {r1, r2, . . . , rR}. Each en-
tity pair may be associated with multiple relations,
and entities may appear multiple times in D un-
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der different mentions. The final problem space is
N × (N − 1)×R.

Unlike sentence-level RE tasks, document-level
RE involves more entities and candidate relations.
Additionally, the problem space grows quadrati-
cally as N2, increasing the complexity of entity
interactions and causing incomplete annotations
and frequent false negatives.

To address the challenges of DocRE, we propose
GLiM (Graph LLM Integration Model), a novel
cascaded framework illustrated in Figure 2. GLiM
first integrates a Transformer-based model with an
adaptively-adjusted graph structure for fine-grained
entity-pair relation processing. To handle complex
cases, GLiM dynamically selects high-probability
candidate relations using the Transformer’s outputs
and refines them through LLM inference, lever-
aging both internal and external knowledge. The
final results are obtained by merging the outputs
from both steps, significantly improving relation
extraction performance.

3.2 Model Based on Transformers and Graph
To improve the model’s ability to capture entity-
pair relations at a finer granularity, we intro-
duce a graph model within the backbone of a
Transformer-based pretrained model. Inspired
by the TokenGT model of Kim et al. (2022), we
adopt a Transformer-based Tokenized Graph model.
Unlike traditional message-passing Graph Neu-
ral Networks (GNNs), Transformer-based graph
models have demonstrated greater expressive-
ness. Therefore, our proposed model is entirely
Transformer-based, ensuring unified information
fusion throughout the architecture.

Entity Feature Extraction
When constructing graph nodes for the graph
model, the first step is to obtain the feature represen-
tation of the entities. Based on the ATLOP model, a
classic Transformer-based approach for entity rep-
resentation, given a document D = [xt]

l
t=1, where

l represents the total number of tokens, special sym-
bols “*” are inserted at the beginning and end of
each entity mention to mark its position. The docu-
ment is then fed into a pretrained language model
(PLM), and the embedding of the initial “*”is used
as the mention embedding:

[h1, h2, ..., hl] = PLM([x1, x2, ..., xl]). (1)

For an entity ei with multiple mentions, the logsum-
exp pooling (Jia et al., 2019) is applied to obtain

the entity embedding hei .

hei = log

Nei∑

k=1

exp(hmi
k
), (2)

where hmi
k

represents the embedding of the k-th
mention of entity ei, and Nei denotes the number
of mentions of entity ei.

Graph Representation Learning
After obtaining the feature representation of the
entities, we construct the graph nodes. Following
TokenGT, we treat both entities and edges as graph
nodes, and introduce Entity Identifiers and Type
Identifiers in nodes to fully represent the graph
structure, thereby enhancing the graph learner.

nei = hei + [pei ; pei ] + type0

nri,j = hei + hej + [pei ; pej ] + type1
, (3)

where nei and nri,j represent the embeddings of
entity ei node and edge ri,j node, respectively. pei
and pej are orthogonal vectors, referred to as En-
tity identifiers ∈ Rd/2, and are initialized using a
random Gaussian matrix. type0 and type1 are train-
able feature vectors called Type Identifiers, each
in Rd, initialized to 0 for entity nodes, and 1 for
edge nodes, respectively. hei ∈ Rd represents the
embedding of entity ei.

Since the number of entities varies across differ-
ent documents, the sequence length input to the To-
kenized Graph Transformer also varies. We employ
a dynamic thresholding method to pad the input
length to the smallest possible upper bound, choos-
ing from [128, 256, 512, 1024, 1296, 2048, 4096].
Using a consistent input length allows for better
learning of node representation information, which
is then processed through a Graph Transformer
(GT) consisting of an alternating stack of multi-
head self-attention (MSA) layers and feed-forward
MLP layers to obtain the final graph node represen-
tations g.

g = GT (n), (4)

where n represents the sequence of input
graph nodes [ne1 , . . . , neN , nr1,2 , . . . ], and
g represents corresponding output sequence
[ge1 , . . . , geN , gr1,2 , . . . ].

Feature Fusion and Classification
After obtaining the enhanced edge node features
gri,j from the GT, we fuse these features with the
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local context embeddings c(i,j) obtained from AT-
LOP, along with the original entity embeddings.
This results in the final representations of each
head-tail entity pair, z(i,j,r)

i and z
(i,j,r)
j , which are

then input into the classifier to predict every rela-
tion r score as scorer(ei, ej):

z
(i,j,r)
i = tanh

(
W ihei +W c1c

(i,j) +W g1gri,j

)

z
(i,j,r)
j = tanh

(
W jhej +W c2c

(i,j) +W g2gri,j

),

(5)

where z
(i,j,r)
i is entity ei representation after fea-

ture fusion. W i, W c1 , W g1 , W j , W c2 , and W g2

are model parameters (∈ Rd×d).
The final score of relation r between entities ei

and ej is computed as:

scorer(ei, ej) = σ(z
(i,j,r)⊤
i W rz

(i,j,r)
j + br), (6)

σ(·) is the sigmoid activation function. W r ∈
Rd×d and br ∈ Rd are model parameters.

Loss Function
To address the issue of false negatives in the
dataset’s relation triplets, we employ positive-
unlabeled learning under the class prior shift of
training set (S-PU) to mitigate this problem, as
described by Wang et al. (2022).

The following equation formalizes the loss func-
tion for S-PU learning, which is designed to weigh
the contributions of each relation class differently
based on their prior probabilities.

πu,i =
πi − πlabeled,i

1− πlabeled,i
, (7)

LS-PU(f) =
R∑

i=1

(
πi

nPi

nPi∑

j=1

ℓ(fi(x
Pi
j ),+1)

+max

(
0,

[
1

nUi

1− πi

1− πu,i

nUi∑

j=1

ℓ(fi(x
Ui
j ),−1)

− 1

nPi

πu,i − πu,iπi

1− πu,i

nPi∑

j=1

ℓ(fi(x
Pi
j ),−1)

]))
,

(8)

where πi = p(yi = +1) represents the prior
probability of a positive relation for class i, and
πu,i = p(yi = 1 | si = −1) represents the proba-
bility of an unlabeled but positive relation for class
i. πlabeled,i = p(si = +1) represents the proba-
bility of a positive relation for class i calculated
from training set. To simplify computation, we
introduce a hyperparameter e to approximate πi
as πi = e · πlabeled,i. Here, ℓ(·) is a convex loss
function, and fi(·) is the score function.

3.3 Relation Completion Based on LLM

In response to the remaining unextracted relations
in the Transformer-based model mentioned ear-
lier, this paper utilizes a LLM for relation com-
pletion. Using the relation scores generated by
the Transformer model for each entity pair, high-
probability candidate relation samples are dynam-
ically selected. This significantly narrows down
the search space for relation extraction, allowing
the LLM to extract relations using both its internal
and external knowledge. Finally, the extracted rela-
tions are merged with the previous step’s results to
obtain the final relation extraction outcome.

Dynamic Selection of Candidate Samples
Inspired by ATLOP, the Transformer model outputs
scores for R relation types along with a threshold
(th) score, which indicates the presence or absence
of a relation. This results in a total of R+ 1 scores.
Relations with scores above this threshold are di-
rectly extracted by the Transformer model. In the
second step, the focus shifts to candidate relation
samples with scores below the threshold, identify-
ing previously unextracted relation triplets.

To dynamically construct candidate samples
for each entity pair, a scaling factor f is calcu-
lated using the development set, combined with
a hyperparameter k. We then use the thresh-
old score scoreth for each entity pair, obtained
from the Transformer-based model, to compute
scorebottom, which determines the lower bound
of candidate scores. Samples within this range are
then included in the LLM prompt.

f =
average(scoredevnf )

average(scoredevth )
, (9)

scorebottom = scoreth ∗ f ∗ k, (10)

where scoredevnf , scoredevth represent the set of
scores for undiscovered positive samples and
threshold th, respectively, in the development set
by the Transformer-based model.

Incorporating External Knowledge
To improve the LLM’s performance in relation ex-
traction, additional detailed relation definitions and
example samples for each relation are added using
external knowledge bases such as Comparative Tox-
icogenomics Database (CTD) (Davis et al., 2021)
and wiki. For the DocRED relation descriptions,
a revised version of AutoRE is referenced. An
example is shown below:
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“Chemical-Gene: activity - affects”: “A
chemical (head entity) that modifies the
activity of a gene (tail entity), potentially
altering the gene’s functional outcome
without specifying the direction of the
change (e.g., chemical Z alters the ex-
pression of gene A, leading to unpre-
dictable changes in cellular responses).”

Details about the prompt and relation definitions
can be found in Appendix D and Appendix E.

Inference and Merging of Results
After applying Chain-of-Thought (CoT) reasoning
for relation extraction inference and performing
regularization, the final determination of whether
a candidate sample is valid is obtained. This re-
sult is then merged with the first step outcomes.
Since the score threshold selection intervals are
non-overlapping, the recall scores from both parts
can be directly combined, significantly improving
the final recall and F1 scores.

4 Experimental Settings

4.1 Datasets

ChemDisGene: ChemDisGene (Zhang et al.,
2022) is a biomedical multi-label document-level
RE dataset. In its training set, entity mentions are
obtained from PubTator Central (Wei et al., 2019),
while relations are sourced from the CTD. The test
set consists of 523 abstract documents manually
annotated by a team of biologists. As a result, the
average number of relations per document in the
test set significantly exceeds the average number in
the training set, suggesting the presence of incom-
plete annotations and underreporting in the training
data.
BioRED: BioRED (Luo et al., 2022) is a biomed-
ical multi-label document-level RE dataset, de-
signed to predict multiple associations between
gene, chemical, disease, and variants. The dataset
is manually annotated by experts based on 600
abstracts. Due to the high cost of manual annota-
tion, BioRED is smaller than ChemDisGene but
contains more complete annotations.
DocRED: DocRED (Yao et al., 2019) is a large-
scale, widely used benchmark for general-domain
relation extraction. However, it is known to contain
many missing annotations. Re-DocRED (Tan et al.,
2022b) is a revised version of DocRED with more
complete annotations. In our experiments, we use

the incompletely annotated training set from Do-
cRED and the revised development and test sets
from Re-DocRED to evaluate the model’s effec-
tiveness.

4.2 Baselines

We compare GLiM with the following four types
of baselines: (1) Standard baseline: SOTA model
ATLOP (Zhou et al., 2021), trained under a fully su-
pervised setting; (2) PU learning-based methods:
Methods that adjust the loss weights assigned to
relational classes in relation extraction, including
SSR-PU (Wang et al., 2022) and P3M (Wang et al.,
2024); (3) Sub-symbolic self-training methods:
Approaches that leverage self-training techniques,
such as CAST (Tan et al., 2023); 4) Memory
augmented methods: Memory-based approaches,
such as TTM-RE (Gao et al., 2024).

4.3 Implementation Details

For relation representation learning, we follow the
SOTA TTM-RE method and apply PubmedBert-
Large (Gu et al., 2021) to ChemDisGene and
BioRED, and RoBERTa-Large (Liu et al., 2019)
to DocRED. All models are implemented using
Huggingface’s Transformers (Wolf et al., 2020),
with AdamW (Loshchilov and Hutter, 2019) used
as the optimizer. More information can be found
in Appendix A.

For LLM inference, we conduct experiments us-
ing Llama3-8B (Grattafiori et al., 2024), Qwen2.5-
7B (Yang et al., 2024), gpt-4o-mini, and DeepSeek-
V3 (Liu et al., 2024).

4.4 Evaluation Metric

For ChemDisGene and BioRED, we use micro F1
(F1), precision, and recall as evaluation metrics.
For DocRED, we use micro F1 (F1), micro ignored
F1 (Ign F1), precision, and recall. Ign F1 mea-
sures the F1 score while excluding relations shared
between the training and test sets. All results are
obtained on the test set.

5 Results

5.1 Main Results

Table 1 presents the experimental results on
ChemDisGene. The results indicate that the main
factor limiting the F1 score is the lower recall.
Methods such as P3M-ATLOP show significant
improvements in F1 scores compared to ATLOP,
primarily due to their enhanced recall. Meanwhile,
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Model
ChemDisGene BioRED DocRED

F1 Precision Recall F1 Precision Recall IgnF1 F1 Precision Recall

ATLOP* 42.73 76.17 29.70 42.89 45.96 40.20 49.16 49.32 92.62 33.61
SSR-PU* 48.56 54.27 43.93 46.81 49.44 44.44 59.48 61.05 65.71 57.01
P3M-ATLOP* 53.62 60.20 48.34 49.80 50.52 49.09 61.98 63.06 69.22 57.95
CAST-ATLOP* 42.66 78.41 29.30 44.80 45.26 44.34 64.25 65.32 72.83 59.22
TTM-RE* 53.59 53.83 53.34 43.65 42.88 44.44 - - - -

GLiM (w/o LLM) 54.03 64.67 46.39 50.62 54.21 47.47 62.02 63.17 67.62 59.26
GLiM (Llama3-8B) 56.95 57.01 56.90 51.93 49.81 54.24 60.56 61.98 60.59 63.44
GLiM (Qwen2.5-7B) 58.12 58.57 57.67 53.24 50.36 56.46 62.15 63.42 64.60 62.28
GLiM (gpt-4o-mini) 58.21 59.19 57.27 52.11 48.24 56.67 61.96 63.30 62.86 63.76
GLiM (DeepSeek-V3) 59.00 59.56 58.44 53.18 50.18 56.57 62.76 64.00 65.04 63.00

Table 1: Experimental results across test datasets: ChemDisGene, BioRED, and DocRED. Models marked with *
have some results from Wang et al. (2024), Gao et al. (2024), and Tan et al. (2023).

the proposed GLiM achieves the highest F1 score
across all evaluations.

Without using LLM for relation completion in-
ference, GLiM improves precision while maintain-
ing a strong recall score, already outperforming
the current SOTA models. This suggests that the
adaptively-adjusted Graph structure effectively pro-
cesses and extracts correct relations with finer gran-
ularity.

After incorporating LLM for relation completion
inference, recall improves significantly, leading to
an overall boost in F1. The F1 score surpasses
that of the best-performing SOTA model, P3M-
ATLOP, by 5.38 points (59.00 vs. 53.62), while
recall increases by 5.1 points compared to TTM-
RE (58.44 vs. 53.34). These results demonstrate
that GLiM effectively leverages LLM to extract
additional correct relations, thereby mitigating the
issue of false negatives in the dataset.

For the BioRED dataset results in Table 1, al-
though its training set is much smaller than that of
ChemDisGene, our model still achieves the highest
scores on the low-data dataset. The first step GLiM
model outperforms all SOTA approaches, and after
incorporating LLM, recall improves significantly,
exceeding the best SOTA recall (P3M-ATLOP) by
7.58 points (56.67 vs. 49.09), and the F1 score by
3.44 points (53.24 vs. 49.80). These results suggest
that even with smaller training datasets, GLiM still
effectively extracts correct relations, demonstrating
its ability to handle multi-label biomedical relation
extraction tasks.

In the general domain, our model remains com-
petitive with SOTA approaches. Specifically,
GLiM model achieves a recall score higher than
the best SOTA model (CAST-ATLOP) on DocRED.

After LLM inference, the recall score surpasses
that of CAST-ATLOP by 4.54 points (63.76 vs
59.22). This suggests that, even in a broader set of
general-domain relations, GLiM can still identify
more hidden correct relations while maintaining
precision.

Overall, the experimental results across both
biomedical and general domains demonstrate that
integrating Graph Transformer with LLM inference
improves recall and F1 scores, thereby enhancing
overall performance. Moreover, GLiM achieves a
better balance between recall improvement and pre-
cision maintenance, leading to a higher F1 score.

5.2 Ablation Study

We conduct an ablation study to evaluate the ef-
fectiveness of the key components of GLiM: LLM
inference (LLM), Graph Transformer (GT), and S-
PU loss (S-PU). Four versions of GLiM are tested:
(1) GT + S-PU, without LLM; (2) GT, without S-
PU and LLM; (3) S-PU, without GT and LLM; (4)
Base, without all three components. When S-PU
loss is removed, adaptive thresholding loss from
ATLOP is used as a replacement. The results in
Table 2 reveal three key observations.

First, LLM inference is crucial for improving the
model’s recall. Removing LLM inference leads to
a decrease in recall and F1 scores by 8.99 and 2.62
points, respectively.

Second, the S-PU loss, which incorporates Posi-
tive Unlabeled learning with prior shift, improves
the model’s recall performance.

Finally, the Graph Transformer enhances the
model’s ability to extract correct relations at a finer
granularity, further improving overall performance.
These findings indicate that each component con-
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Model F1 Precision Recall

GLiM (Qwen2.5-7B) 53.24 50.36 56.46
GT + S-PU, w/o LLM 50.62 54.21 47.47
GT, w/o (S-PU, LLM) 49.97 53.65 46.77
S-PU, w/o (GT, LLM) 45.71 46.19 45.25
Base, w/o (GT, S-PU, LLM) 45.23 50.56 40.91

Table 2: Ablative experiments on BioRED. LLM, S-PU,
GT represent LLM inference, S-PU loss, and Graph
Transformer component, respectively.
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Figure 3: Effect of different k values.

tributes to improving the model’s overall effective-
ness.

5.3 Effect of k
We further analyze the impact of the dynamic se-
lection coefficient k on the final relation extraction
results. The experiment is conducted on BioRED
using Qwen2.5-7B, and the results are presented in
Figure 3.

It is observed that when k is small, the selection
range is broader, resulting in a higher recall after
LLM inference for relation completion, though at
the cost of slightly reduced precision. As k in-
creases, the selection sample range narrows, lead-
ing to fewer newly added correct samples. This
causes the recall score to drop, while precision im-
proves accordingly. Therefore, as k increases, a
balance between recall and precision emerges, al-
lowing the F1 score to peak. Specifically, when k
is set to 1.4, the F1 score reaches its highest value.

Effect of k on other datasets can be found in
Appendix B.

5.4 LLM Studies
Figure 4 shows an F1 performance comparison of
different LLMs across multiple datasets. The per-
formance of DeepSeek-V3, gpt-4o-mini, Qwen2.5-

7B and Llama3-8B, as well as a base model with-
out LLM (base), is evaluated on the ChemDisGene,
BioRED, and DocRED datasets.

DeepSeek-V3 significantly outperforms the
other LLMs, achieving the highest scores across
multiple datasets and demonstrating strong capa-
bility in handling complex documents and relation
extraction tasks. Given its overall performance,
DeepSeek-V3 is the preferred model for this task.

It is worth noting that the performance of
Llama3-8B declines compared to the base model,
primarily due to a decrease in precision caused by
LLM hallucination, which leads to a lower F1 score.
More information about hallucination can be found
in Appendix C.

Figure 4: F1 Comparison of different LLMs. DocRED
(I) reports IgnF1.

5.5 Efficiency Analysis

Our method adopts a cascaded architecture, where
the Stage 1 Transformer-based pre-trained model
significantly reduces the candidate relation search
space before the Stage 2 LLM Inference.

As shown in Table 3, the reduction rates for the
ChemDisGene, BioRED, and DocRED are 1.01%,
3.03%, and 2.82%, respectively. Notably, for
ChemDisGene, even though the candidate entity-
pair space volume is reduced to just 1.01% of the
original, our optimal model successfully extracts
approximately 12% of all correct relations in the
test set. Similar recall improvements are observed
for the other two datasets.

Dataset (test) Origin Reduced Reduction rate Recall increment

ChemDisGene 250,590 2,534 1.01% +12.05
BioRED 16,034 486 3.03% +9.20
DocRED 198,670 5,616 2.82% +4.50

Table 3: Reduction in candidate entity pair-space vol-
ume after Stage 1 filtering and corresponding recall
improvement in Stage 2, evaluated across multiple
datasets.
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Model Training LLM Inference Total

SSR-PU 1h 13m - 1h 13m
P3M-ATLOP 1h 52m - 1h 52m
TTM-RE 1h 19m - 1h 19m
GLiM (Llama3-8B) 1h 14m 1m32s 1h 16m
GLiM (Qwen2.5-7B) 1h 14m 4m10s 1h 18m
GLiM (gpt-4o-mini) 1h 14m 2m2s 1h 16m
GLiM (DeepSeek-V3) 1h 14m 30m 1h 44m

Table 4: Training time and LLM Inference times for
different models over 50 epochs with batch size of 2 on
BioRED dataset.

These results indicate that our dynamic thresh-
old selection mechanism effectively identifies high-
density false-negative samples. In particular, for
ChemDisGene, where the automatically labeled
training data is of relatively low quality, the first-
stage model struggles to correctly identify all valid
relations. This further justifies the necessity of
Stage 2 LLM inference, which leverages the LLM’s
internal knowledge and reasoning ability to miti-
gate noise from low-quality training labels.

By dynamically selecting candidate samples,
LLM inference is applied to a much smaller and
refined search space, enabling efficient processing
and improved recall.

As showed in Table 4, we evaluate multi-
ple LLMs on the BioRED dataset by process-
ing 486 Stage-1-filtered instruction inputs using
parallelized API calls with a batch size of 25.
The results reveal distinct performance character-
istics across models: gpt-4o-mini and Llama3-8B
achieve rapid inference times of approximately 2
minutes, Qwen2.5-7B completes processing in 4
minutes and 10 seconds, while DeepSeek-V3 re-
quires around 30 minutes for full inference execu-
tion.

Compared to the baseline models, the LLM in-
ference time is minimal and does not impose signif-
icant computational overhead. Furthermore, across
all three datasets, the total API cost remained under
$10, confirming that our framework preserves com-
putational efficiency and remains cost-effective,
with all tested LLMs demonstrating practical in-
ference times and budget-friendly usage.

6 Conclusion and Future Work

In this paper, we propose GLiM, a novel frame-
work that combines Transformer-based pre-trained
model with LLM inference. This approach sig-
nificantly improves recall and overall F1 scores
for biomedical document-level relation extraction.

Notably, by incorporating a Graph Transformer
into the Transformer-based model to enhance fine-
grained relation handling, GLiM surpasses the per-
formance of current SOTA models. Furthermore,
its effectiveness is validated through experiments
on three benchmark datasets.

For future work, we plan to further explore the
relation reasoning capabilities of LLM, with a fo-
cus on improving precision while maintaining high
recall to achieve a higher F1 score.

Limitations

Although our model achieves SOTA performance
in multi-label biomedical document-level relation
extraction, it does not yet surpass existing models
in overall F1 score on general-domain datasets.

While GLiM achieves a higher recall score, the
increase in misclassified relations prevents it from
outperforming current models in terms of F1. This
discrepancy is primarily due to the greater number
of relation types and more complex interactions in
general-domain datasets, which limit the effective-
ness of LLM inference for relation completion.

Future work will focus on refining LLM infer-
ence methods to improve precision and mitigate
misclassification errors.
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the information. Therefore, based on the meth-
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A Parameter Settings

We apply a linear warm-up (Goyal et al., 2018) for
the first 6% of steps, followed by a linear decay
to zero. For the ChemDisGene, BioRED, and Do-
cRED datasets, we set the learning rates to 1e-5,
2e-5, and 1e-5, the batch sizes to 4, 2, and 4, the
epochs to 2, 50, and 40, and the e values to 3, 1,
and 3, respectively.

Baseline models are trained using the optimal
hyperparameters reported in their original papers,
ensuring consistency in pre-trained encoder models,
batch sizes, and epochs.

B Effect of k

The effect of k on model performance is illustrated
in Figures 5 and 6. All experiments in this section
use Qwen2.5-7B. For DocRED (Figure 5), Preci-
sion increases as k rises, while Recall decreases,
leading to a peak in F1 and IgnF1 scores around
k = 1.52. For ChemDisGene (Figure 6), Preci-
sion rises and Recall falls as k increases, with F1
peaking near k = 0.9. These results highlight the
trade-off between Precision and Recall, emphasiz-
ing the need to tune k for each dataset.

Through experiments, we find that the optimal k
value primarily depends on the inherent data distri-
bution of the dataset. To validate this, we conduct
tests on three datasets (ChemDisGene, BioRED,
and DocRED) by randomly sampling 5% of the
data from each. Based on the results, we select the
optimal k for each dataset.

Table 5 demonstrates that the optimal k values
closely align with those reported in the original
paper (0.9, 1.4, and 1.52, respectively). These find-
ings indicate that the selection of k is largely in-
dependent of dataset size and is instead primarily
determined by the dataset’s inherent data distribu-
tion.

C LLMs Hallucination Risks

One potential drawback of leveraging LLM infer-
ence in Stage 2 is hallucination, where the model
incorrectly infers relations that do not exist in the
text. To investigate this issue, we evaluate preci-
sion changes across different LLMs. The results in
Table 6 reveal three findings:

First, while recall improves significantly after
introducing LLM inference, the associated drop
in precision limits the potential gains in F1 score.
This precision drop is mainly attributed to LLM hal-
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Figure 5: Effect of different k values on DocRED.
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Figure 6: Effect of different k values on ChemDisGene.

lucinations, where the model mistakenly identifies
non-existent relations.

Second, we observe missing annotations in the
test set, which results in correctly inferred relations
being mislabeled as incorrect. This highlights a
potential confounding factor when evaluating hal-
lucination.

Third, different LLMs exhibit varying degrees
of hallucination. Among the models tested,
DeepSeek-V3 incurs the smallest precision reduc-
tion, followed by gpt-4o-mini.

D LLM Prompt

The prompts used for LLM inference consist of
four main parts:
Instruction: The LLM is guided with the instruc-
tion “You are a good reasoner”, to ensure it follows
the provided task and reasoning process.
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ChemDisGene
k 0.6 0.7 0.8 0.85 0.9 1.0 1.1
F1 55.53 60.77 61.05 61.36 60.53 59.94 57.94

BioRED
k 1.1 1.2 1.3 1.4 1.5 1.6 1.7
F1 48.08 48.54 48.54 49.02 47.52 47.52 47.42

DocRED
k 1.40 1.46 1.50 1.52 1.54 1.56 1.60
F1 59.36 59.64 59.78 59.74 59.80 59.69 59.52

Table 5: Effect of different k values on 5% test sets of ChemDisGene, BioRED, and DocRED.

Model Predictions Correct Predictions Precision Final Precision Reduction

Llama3-8B 1059 397 37.49 57.01 -7.66
Qwen2.5-7B 1008 426 42.26 58.57 -6.10
gpt-4o-mini 944 411 43.54 59.19 -5.48
DeepSeek-V3 995 455 45.73 59.56 -5.11

Table 6: Precision of LLMs inference (Correct Predictions / Predictions) and corresponding final Precision reduction
on ChemDisGene test dataset, compared to the base model without LLM Inference (precision: 64.67).

Supplementary Text: This contains the relevant
document content for context.
Directed Candidate Relation: This part defines
the candidate relation using external knowledge
base augmentation.
Task Definition: This part instructs the LLM:
“Given the supplementary text, judge whether the
directed candidate relation directly exists from the
head entity to the tail entity without other entities.”

Table 7 shows the detailed prompt template used
for LLM inference. Chain-of-Thought (CoT) rea-
soning is employed to support relation extraction
inference, and regularization techniques are applied
to help the model reach a final judgment. An illus-
trative example is shown in Figure 7.

E Relation Definitions

To enhance LLM performance in relation extrac-
tion, we enrich the dataset with detailed relation
definitions and example samples for each relation.
Comprehensive relation definitions are presented in
Tables 8 and 9, which provide a structured overview
of the relations used in the ChemDisGene dataset.

### Instruction:
You are a good reasoner. Give you a text.
You need to understand the task definition,
and answer the question.
### Supplementary Text:
{text}
### Directed Candidate Relation:
{“relation type”: relation definitions}
### Task Definition:
Given the supplementary text, you need
to judge whether the directed Candidate
relation directly exists from the head en-
tity (“Type”: “mention”) to the tail entity
(“Type”: “mention”) without other entities.
You must carefully judge based on the infor-
mation provided in the supplementary text.
Let’s think step by step.
### Answer:

Table 7: Prompt for relation inference
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Example for LLM Inference Prompt

Instruction:
You are a good reasoner. Give you a text. You need to understand the task definition,
and answer the question.
Supplementary Text:
Sulfated glucosamine inhibits MMP-2 and MMP-9 expressions in human fibrosarcoma
cells. In the present study, sulfated glucosamine (SGlc) that has been reported to relieve
joint pain and inflammation in many arthritis patients was studied for its inhibitory
effects on MMP-2 and MMP-9 in human fibrosarcoma cells...
Directed Candidate Relation:
"chem_disease:therapeutic": A chemical(head entity) that has a known or potential
therapeutic role in a disease(tail entity) (e.g., chemical X is used to treat leukemia).
Task Definition:
Given the supplementary text, you need to judge whether the directed Candidate
relation directly exists from the head entity("Type-Chemical": "glucosamine") to the
tail entity("Type-Disease": "arthritis") without other entities. You must carefully judge
based on the information provided in the supplementary text. Let’s think step by step.

Answer:
Let’s break down the task step by step:
1. Identify the Head Entity and Tail Entity:
- Head Entity: "glucosamine" (Type-Chemical)
- Tail Entity: "arthritis" (Type-Disease)
2. Understand the Directed Candidate Relation:
- The relation "chem_disease:therapeutic" means that the chemical (glucosamine) has a
known or potential therapeutic role in the disease (arthritis).
3. Analyze the Supplementary Text:
- The text mentions that sulfated glucosamine (SGlc) has been reported to relieve joint
pain and inflammation in many arthritis patients.
- It also states that SGlc inhibits MMP-2 and MMP-9 expressions in human fibrosarcoma
cells, which are involved in joint inflammation.
- The text suggests that the inhibition of MMP-2 and MMP-9 can be one of the mecha-
nisms of SGlc to be an effective drug in relieving the symptoms of osteoarthritis.
4. Determine if the Relation Exists:
- The text directly states that SGlc (a form of glucosamine) relieves joint pain and
inflammation in arthritis patients.
- It also implies that SGlc can be an effective drug in relieving the symptoms of os-
teoarthritis, which is a type of arthritis.
5. Conclusion:
- Based on the information provided in the supplementary text, the directed candidate rela-
tion "chem_disease:therapeutic" does exist from the head entity "glucosamine" to the tail
entity "arthritis". Therefore, the directed candidate relation "chem_disease:therapeutic"
directly exists from "glucosamine" to "arthritis" based on the information provided in
the supplementary text.

Figure 7: Example for LLM inference prompt
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Relation Description
chem_gene:
affects^expression

A chemical(head entity) that alters the expression of a gene(tail entity),
potentially leading to changes in the amount or activity of its gene product,
without specifying the direction of the change (e.g., compound X affects
the expression of gene Y, leading to unpredictable variations in protein
levels and cellular functions).

chem_disease:
therapeutic

A chemical(head entity) that has a known or potential therapeutic role in a
disease(tail entity) (e.g., chemical X is used to treat leukemia).

chem_disease:
marker/mechanism

A chemical(head entity) that correlates with a disease(tail entity) (e.g.,
increased abundance in the brain of chemical X correlates with Alzheimer
disease) or may play a role in the etiology of a disease (e.g., exposure to
chemical X causes lung cancer).

chem_gene:
affects^binding

A chemical(head entity) that interacts with a gene(tail entity) or its prod-
uct, potentially influencing the binding affinity or stability of molecular
complexes, leading to functional alterations (e.g., compound X affects the
binding of transcription factor Y to gene Z, resulting in changes to gene
expression and cellular activity).

chem_gene:
increases^activity

A chemical(head entity) that increases the activity of a gene(tail entity),
potentially enhancing its function or contributing to disease progression
(e.g., chemical X enhances the expression of gene Y, leading to increased
inflammatory responses in autoimmune diseases).

gene_disease:
marker/mechanism

A gene(head entity) that may be a biomarker of a disease(tail entity) (e.g.,
increased expression of gene X correlates with breast cancer) or play a
role in the etiology of a disease (e.g., mutations in gene X causes liver
cancer).

chem_gene:
decreases^activity

A chemical(head entity) that decreases the activity of a gene(tail entity),
potentially leading to therapeutic effects in disease treatment (e.g., admin-
istration of drug Y reduces the expression of gene Z, resulting in decreased
tumor growth).

chem_gene:
increases^metabolic
_processing

A chemical(head entity) that increases the metabolic processing of a
gene(tail entity) or its product, potentially enhancing its biochemical mod-
ifications and activity (e.g., chemical Y increases the metabolic processing
of protein X, leading to enhanced phosphorylation and activation of sig-
naling pathways).

chem_gene:
decreases^expression

A chemical(head entity) that decreases the expression of a gene(tail entity),
potentially leading to a reduction in the production of its gene product,
which could have therapeutic implications (e.g., drug Z reduces the expres-
sion of gene A, leading to lower levels of protein B, which helps mitigate
inflammation in autoimmune diseases).

Table 8: 18 relation definitions in ChemDisGene.
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Relation Description
chem_gene:
increases^expression

A chemical(head entity) that increases the expression of a gene(tail entity),
potentially enhancing the production of its gene product and influencing
biological pathways (e.g., chemical Y boosts the expression of gene X,
leading to increased production of protein Z, which may promote tissue
repair following injury).

chem_gene:
decreases^transport

A chemical(head entity) that decreases the transport of a gene(tail entity)
product into or out of a cell, potentially limiting its bioavailability and
impairing its biological function (e.g., drug Z decreases the transport of
protein A into the nucleus, leading to reduced transcriptional activity).

chem_gene:
affects^activity

A chemical(head entity) that modifies the activity of a gene(tail entity),
potentially altering the gene’s functional outcome without specifying the
direction of the change (e.g., chemical Z alters the expression of gene A,
leading to unpredictable changes in cellular responses).

chem_gene:
decreases^metabolic
_processing

A chemical(head entity) that decreases the metabolic processing of a
gene(tail entity) or its product, potentially leading to reduced modifications
or activity of the molecule (e.g., drug Z decreases the metabolic processing
of protein A, resulting in reduced post-translational modifications and
lower enzymatic activity).

gene_disease:
therapeutic

A gene(head entity) that is or may be a therapeutic target in the treatment
a disease(tail entity) (e.g., targeted reduction of gene X expression reduces
susceptibility to emphysema).

chem_gene:
affects^metabolic
_processing

A chemical(head entity) that alters the metabolic processing of a gene(tail
entity) or its product, potentially modifying its biochemical structure
without affecting expression, stability, folding, localization, splicing, or
transport (e.g., compound X affects the metabolic processing of protein Y,
leading to changes in its post-translational modifications and functional
activity).

chem_gene:
affects^localization

A chemical(head entity) that alters the localization of a gene(tail entity) or
its gene product within the cell, potentially influencing its functional role in
specific cellular compartments (e.g., compound X affects the localization
of protein Y, leading to its redistribution from the cytoplasm to the nucleus,
which may modulate gene expression and cellular signaling pathways).

chem_gene:
increases^transport

A chemical(head entity) that increases the transport of a gene(tail entity)
product into or out of a cell, potentially enhancing its functional activity
and cellular effects (e.g., chemical Y increases the transport of protein B
into the mitochondria, promoting enhanced energy production and cellular
respiration).

chem_gene:
affects^transport

A chemical(head entity) that alters the transport of a gene(tail entity) prod-
uct into or out of a cell, potentially influencing its availability and activity
within cellular compartments (e.g., compound X affects the transport of
protein Y across the cell membrane, leading to changes in its intracellular
concentration and function).

Table 9: 18 relation definitions in ChemDisGene (Continued).
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