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Abstract

Image mass cytometry (IMC) enables high-
dimensional spatial profiling by combining
mass cytometry’s analytical power with spa-
tial distributions of cell phenotypes. Recent
studies leverage large language models (LLMs)
to extract cell states by translating gene or pro-
tein expression into biological context. How-
ever, existing single-cell LLMs face two ma-
jor challenges: (1) Integration of spatial in-
formation: hey struggle to generalize spatial
coordinates and effectively encode spatial con-
text as text, and (2) Treating each cell inde-
pendently: they overlook cell-cell interactions,
limiting their ability to capture biological rela-
tionships. To address these limitations, we pro-
pose Spatial2Sentence, a novel framework
that integrates single-cell expression and spa-
tial information into natural language using a
multi-sentence approach. Spatial2Sentence
constructs expression similarity and distance
matrices, pairing spatially adjacent and expres-
sionally similar cells as positive pairs while
using distant and dissimilar cells as negatives.
These multi-sentence representations enable
LLMs to learn cellular interactions in both ex-
pression and spatial contexts. Equipped with
multi-task learning, Spatial2Sentence out-
performs existing single-cell LLMs on prepro-
cessed IMC datasets, improving cell-type clas-
sification by 5.98% and clinical status predic-
tion by 4.18% on the diabetes dataset while
enhancing interpretability. The source code
can be found here: https://github.com/
UNITES-Lab/Spatial2Sentence

1 Introduction

Single-cell technologies, such as flow and mass cy-
tometry (CyTOF) and single-cell RNA sequencing,
have revolutionized our ability to analyze cellular
heterogeneity in blood and tissue samples (Bendall
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et al., 2012; Brodin et al., 2019; Jagadeesh et al.,
2022). These techniques provide high-resolution
insights into the human immune system, enabling
targeted therapeutic strategies for disease treatment
and prevention (Reece et al., 2016). CyTOF, for
instance, identifies immune cells based on protein
expression (Bendall et al., 2012). However, tra-
ditional suspension-based proteomic approaches
lack spatial context, limiting our understanding of
cell-cell interactions and tissue organization.

Recent advancements, such as imaging mass cy-
tometry (IMC) and multiplexed ion beam imag-
ing (MIBI), overcome this limitation by integrat-
ing mass cytometry with spatial profiling (Kakade
et al., 2021; Shaaban et al., 2024). These next-
generation single-cell proteomics technologies en-
able high-dimensional immune profiling while pre-
serving spatial relationships (Giesen et al., 2014;
Nair et al., 2015). Such insights are crucial for
characterizing the tumor microenvironment, where
spatial interactions between immune and tumor
cells influence prognosis (Keren et al., 2018). By
capturing cell types, states, and interactions, spa-
tial proteomics enhances our understanding of the
immune system’s complexity and disease mecha-
nisms (Hartmann and Bendall, 2020).

Inspired by the advances in natural language
processing (NLP), researchers have started con-
ceptualizing cellular information as "words" and
"sentences," enabling deep learning models to inter-
pret cellular behavior within a context-dependent
framework (Fang et al., 2024). A recent innovative
approach applies large language model to extract
cell (gene) state by translating cell (gene) expres-
sion information into biological context (Levine
et al., 2023; Chen and Zou, 2024). By leveraging
vast single-cell datasets, those models can general-
ize across gene expression dynamics, phenotype,
and disease status, paving the way for new discover-
ies in immune system and therapeutic development.
Despite their effectiveness in various downstream
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tasks, current approaches face two major bottle-
necks:

Integration of Spatial Information. With rapid
advancements in spatial transcriptomics and mul-
tiplexed imaging, capturing spatial context has be-
come increasingly important (Rao et al., 2021; Tian
et al., 2023; Yun et al., 2024). Cells interact within
their microenvironment, influencing differentiation,
immune response, and disease progression (Marx,
2021). However, current models rely solely on
expression matrices (e.g., gene or protein) and
overlook spatial organization, leading to subop-
timal representations. Spatial context is essential
for modeling intercellular interactions, uncovering
cell-type-specific behaviors, and improving bio-
logical relevance. Ignoring it risks missing key
regulatory mechanisms that shape cellular function
within complex tissues.

Treating each cell independently. Current single-
cell LLM approaches (Levine et al., 2023; Cui et al.,
2024) treat each cell as an independent entity, over-
looking broader cellular interactions across similar
or distinct groups of cells. Learning the similarities
and distinctions between cells within the same or
different functional groups (e.g., cell types or tissue
niches) can enrich the biological context captured
in cell sentences (Keren et al., 2018; Hartmann and
Bendall, 2020). Without this information, mod-
els may fail to capture key regulatory relationships
or misinterpret cellular function within a tissue-
specific context.

Driven by these motivations, we propose
Spatial2Sentence, a novel single-cell LLM
framework that integrates spatial information into
language using a multi-sentence approach to cap-
ture cellular interactions. Specifically, we construct
an expression similarity matrix and a distance ma-
trix from the expression matrix and spatial coordi-
nates, respectively. For each cell, we identify the
most similar and adjacent cells as positive pairs,
while dissimilar and distant cells serve as nega-
tive pairs. These structured pairs are then used to
prompt an LLM, enabling it to capture cell-cell
interactions effectively. Using our newly prepro-
cessed IMC dataset, which containing protein ex-
pression matrices, spatial coordinates, and desig-
nated cell-type annotations for diabetes and brain
tumor samples, Spatial2Sentence achieves state-
of-the-art performance, improving cell-type clas-
sification by 5.98% and clinical status prediction
by 4.18% compared to recent single-cell LLM ap-
proaches. Furthermore, our approach provides new

insights into interpretability by identifying which
cell types and protein markers are most crucial for
distinguishing clinical states, offering a deeper un-
derstanding of their roles in disease progression.

In summary, our main contributions are summa-
rized as follows:

* We highlight the limitations of existing single-
cell LLMs, particularly their lack of spatial
information integration and their limitation in
capturing contextual information from neigh-
boring cells, which can be important for im-
proving annotation accuracy in spatial omics
data.

* We propose a novel single-cell LLM frame-
work, Spatial2Sentence that integrates spa-
tial information as language and introduces
multi-sentence contrastive prompting, en-
abling LLMs to capture cell interactions using
positive and negative pairs based on both ex-
pression and spatial proximity.

* We preprocess and transform two IMC
datasets into cell x protein feature matrices,
providing spatial coordinates and cell-type an-
notations for each cell.

* Our method achieves state-of-the-art perfor-
mance, surpassing previous models by 5.98%
in cell-type classification and 4.18% in clini-
cal status prediction on the Diabetes dataset.

2 Related Works

Cells as language. Transformer-based models
have made significant advances in natural language
processing due to their exceptional parallel pro-
cessing capabilities and highly adaptable atten-
tion mechanisms. Building on these successes,
researchers have begun applying transformer ar-
chitectures to the modeling of single-cell data (Lan
et al., 2024). scGPT is a deep learning-based
approach designed for cell identification, partic-
ularly in the context of single-cell RNA sequenc-
ing (scRNA-seq) (Cui et al., 2024). The model
has demonstrated strong performance in various
downstream tasks, including multi-batch integra-
tion, multiomic synthesis, cell-type classification,
genetic perturbation prediction, and gene network
inference. Cell2Sentence (C2S) is another pre-
trained model, fine-tuned from GPT-2, specifically
designed to process textual sequences containing
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gene names (Levine et al., 2023). The model gen-
erates new cell-level textual representations, and
conversely, it can transform these textual sequences
back into corresponding gene expression vectors.
By converting cell text sequences back into gene
expression profiles, C2S ranks genes based on their
expression levels and preserves key information
from the original data in the majority of cases.
However, both scGPT and C2S have not yet been
utilized for spatial datasets, such as those obtained
from imaging mass cytometry (IMC) (Walsh and
Quail, 2023). Additionally, if applied to spatial
datasets without accounting for spatial location of
individual cells, scGPT would overlook the geomet-
ric context inherent to imaging data, thereby forfeit-
ing one of the key advantages provided by spatial
modalities. Such existing approaches typically an-
alyze cell data individually, failing to account for
the potential interactions and relationships that may
exist between pairs of cells.

CyTOEF. Several methodologies have started lever-
aging CyTOF for cell annotation to study disease
status or disease pathology (Milosevic, 2023). Take
two examples of approaches that have been devel-
oped for performing cell annotation. Automated
cell-type discovery and classification (ACDC) is an
algorithm that can use in CyTOF or high-dimension
mass cytometry like IMC to classify cell and new
cell types by combining profile matching and semi-
supervised learning (Lee et al., 2017). Linear dis-
criminant analysis (LDA) also another automatic
classifier for cell classification enables the analysis
of large CyTOF datasets without requiring prior bi-
ological knowledge of marker expression patterns
across different cell types (Abdelaal et al., 2018).
While these techniques enable automated annotate
cells, they process each cell independently and dis-
regard spatial information. Our study utilizes IMC
data, which captures spatial information for each
cell across all samples. Therefore, incorporating
spatial information is crucial for a more compre-
hensive analysis. The integration of spatial char-
acterization with cell expression remains largely
unexplored, and effectively incorporating spatial
information remains a challenge.

3 Methodology

Spatial2Sentence consists of three stages: ex-
pression similarity and distance matrix genera-
tion, contrastive multi-sentence learning, and multi-
sentence prompting. In Section 3.1, we define the

preliminaries and notations used in this paper. In
Section 3.2, we describe the generation of expres-
sion similarity and distance matrices, enabling each
cell to identify its similar counterparts based on ex-
pression and spatial information. In Section 3.3, we
introduce the multi-sentence technique, designed
to capture interactions between cells through con-
trastive prompting with positive and negative pairs
derived from the similarity and distance matrices.
Figure 1 provides a detailed illustration of the over-
all framework of Spatial2Sentence.

3.1 Preliminary Definitions

Let B = {by,bo,...,bp} € RYM represent the
names of the proteins, where each element by, cor-
responds to the name of the k-th protein. Let
V € RVXM represent the protein expression pro-
files, where N is the number of cells and M is the
number of proteins. Each entry v; ; in the matrix
V' corresponds to the expression level of protein j
in cell ¢, and the spatial positions of the cells are
denoted by C' € RV*2, where each row {z;,;}
represents the 2D spatial coordinates of cell ¢.
Following C2S (Levine et al., 2023), we convert
the expression data for each cell into a linguis-
tic sentence. Specifically, each cell’s protein ex-
pression profile v; = {v; 1,v;2, ... ,vi7M} 18 trans-
formed into a sentence by rank-ordering the pro-
teins according to their expression levels. This is
based on the hypothesis that the rank of protein
expression reflect the property of cell (i.e., certain
cell types may exhibit higher expression levels of
specific proteins). More formally, we convert the
expression matrix V' into a cell sentence by order-
ing the proteins in decreasing order of expression:

ik = Rank(v; k, v;) (1)

where Rank(v; 1, v;) denotes the descending rank
of v; j, within v;. The resulting cell protein sen-
tence is then given by:

Si = {b’riJ ) b’!’iﬂza ) bTi,M} (2)

This transformation represents a cell’s high-
dimensional expression data as a token sequence,
making it more accessible for LLMs.

3.2 Expression Similarity & Distance Matrix

To effectively incorporate both expression values
and spatial information into the multi-sentence
prompt design, we first compute two types of pair-
wise similarity measures: the cosine similarity
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(a) Expression Similarity & Distance Matrix Generation

(b) Contrastive Multi-Sentence

(c) Multi-sentence Prompting

Figure 1: Overall framework of Spatial2Sentence. (a) Given IMC data, we integrate both the protein expression
matrix and the spatial coordinate information simultaneously. The protein expression matrix (with cells as rows
and proteins as columns) is transposed (i.e., V7) and multiplied to compute cosine similarity. Similarly, the spatial
coordinate matrix (with columns representing the X and Y coordinates) is processed to obtain a distance matrix. For
cell *X’, we rank the cells based on their expression similarity (from highest to lowest) and their spatial proximity
(from farthest to nearest). (b) Using these ranked cell indices, we perform Contrastive Multi-Sentence Generation.
Here, the positive pairs consist of the top-k cells in terms of both expression similarity and proximity to cell ‘X’,
while the negative cases use the top-k cells with the most dissimilar expressions and that are most distant from cell
‘X’. (c) Finally, equipped with both positive and negative pairs, we prompt these pairs into LLMs to leverage their
capability in handling proteins and spatial information within a multi-sentence framework that captures interactions
among different cells. In the illustration, the top-1 case is used as an example; however, any k can be used.

based on the expression profiles and the Euclidean
distance based on the spatial coordinates.
Expression Similarity. Let V € RY*M represent
the matrix of protein expression profiles, where
each row v; is the expression vector of cell ¢ across
M proteins. The cosine similarity between two
cells 7 and j is computed as:

’Ul'-’Uj

g1 = CosSim(i ) = [T

3)
The resulting expression similarity matrix G €
RNXN captures the pairwise cosine similarities be-
tween the expression profiles of all cells, and each
entry g; j represents the cosine similarity between
cells 7 and j.

I g1 g1,N
g1 1 9o.N
G=| . ) 4
gN,1 gN;2 1

Spatial Proximity. Given the matrix of spatial co-
ordinates C' € R™V*2 where each row corresponds

to the spatial coordinates {z;, y;} of cell 4, the Eu-
clidean distance between cells ¢ and j is

dig = /@i =2’ + ) O
which is done pairwise for all cells, resulting in
the distance matrix D € RV*/ where each entry
D; ; represents the Euclidean distance between the
spatial coordinates of cells ¢ and j. We compute
this for all pairs of cells, which output the full
spatial distance matrix:

0 dip di,N
do1 0 do N
=1 . : (6)
dni dnp 0

Ranking Cells Sentences. Once we compute D
and G, we rank the cells in terms of their prox-
imity and similarity. For each cell i, we generate
two ordered lists: @ Expression Similarity Ranked
Sentences: This list contains the indices of cells or-
dered by their cosine similarity to cell 7, indicating
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how similar their protein expression profiles are. @
Spatial Proximity Ranked Sentences: This list con-
tains the indices of cells ordered by their Euclidean
distance to cell ¢, indicating how physically close
the cells are in the tissue.

3.3 Contrastive Multi-sentence Generation &
Prompting

Motivation. Traditional single-cell approaches of-
ten represent each cell by a single sentence de-
rived from its feature expression profile. While this
method captures a cell’s individual characteristics,
it fails to account for the complex interrelationships
between cells or provide a comprehensive under-
standing of cellular behavior. In particular, such
representations overlook the potential nuances in
how cells relate to each other in a biological con-
text, especially in the presence of heterogeneous
tissue environments. Therefore, relying on only
one sentence per cell limits the model’s ability to
discern subtle differences or similarities between
cells, which is crucial for tasks such as cell-type
identification or disease status prediction.
Multi-sentence Prompt. To address this limita-
tion, we introduce the concept of multi-sentence
prompts, where each prompt includes the protein
expression profiles of multiple cells. Instead of
relying on a single sentence, the model processes
pairs (or more) of sentences from different cells,
which enhances its ability to capture both similar-
ities and differences in protein expression across
different cell types.

For two cells ¢ and 7, each with their respective
protein expression sentences .5; and .S;, the multi-
sentence prompt consists of:

Si = {bn',l 2brigy e vbm‘,M}7
Sj = {ij,1 ) ij,w SRR ijJ\/I}

Here, r; ;. and r; ;, denote the rank of the k-th pro-
tein in cell ¢ and cell 7, respectively. This design
encourages the LLMs to consider relationships be-
tween cells and can help identify commonalities or
distinctions in cell types or disease status.

Once we have computed the spatial proximity
and expression similarity for each cell, we design
the multi-sentence contrastive prompting frame-
work. This involves using both positive-pair
and negative-pair prompts to provide the model
with the necessary context for learning relation-
ships between cells.

Positive-pair Prompt. In the positive-pair
prompt, the goal is to guide the model to identify

(7

common characteristics between cells that share
similar expression profiles and spatial proximities.
We use cells that are close both in terms of ex-
pression similarity and spatial proximity. Specif-
ically, for each cell i, we generate a positive-pair
prompt by selecting the top K most similar cells in
terms of expression and the top K spatially closest
cells. The input prompt is formatted as {Prompt,
Sis Stopk(Di)» STopk(G;)» Task (Predict cell
type)} (See Figure 1 for details). This prompt
encourages the model to consider both molecular
similarity and spatial proximity in making its pre-
dictions.

Negative-pair Prompt. For the negative-pair
prompt, the objective is to contrast cells that ex-
hibit dissimilar expression profiles and spatial dis-
tances. This allows the model to learn to distin-
guish between cells that are fundamentally differ-
ent in terms of their biological properties. For
each cell 7, we generate a negative-pair prompt
by selecting the top K most dissimilar cells in
terms of expression and the top K spatially fur-
thest cells. The negative-pair prompt is formatted
as {Prompt, S, Stopk(Drar ) s STopK(Gaissin) » 125K} (
See Figure 1 for details). This prompt helps the
model learn the distinctions between cells that
are biologically or spatially divergent. With the
positive-pair prompt and negative-pair prompt, the
objective is to effectively distinguish between simi-
lar and dissimilar cells by leveraging both expres-
sion profiles and spatial contexts. The model is
trained to predict cell types based on the infor-
mation from the positive-pair and negative-pair
prompts, enabling it to understand cellular behavior
in the context of tissue heterogeneity.

4 Experiments

4.1 Datasets

To assess the model’s ability to predict cell types
and status, as well as to summarize cell-type abun-
dances, we applied it to two multi-sample IMC im-
age datasets, which are described below (Damond
et al., 2019; Karimi et al., 2023).

Diabetes dataset. This dataset profiles 67 diabetic
and non-diabetic donors longitudinally from hu-
man pancreatic tissue. Among these, 33 samples
are from non-diabetic donors, while 34 samples
represent donors who developed long-term Type
1 diabetes. Long-term Type 1 diabetes refers to
individuals who have lived with the disease for an
extended period, typically several years after diag-
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Figure 2: Given a (a) multi-sample IMC dataset (b), we used Cellpose to detect cell centers within superpixels (c¢)
and extracted cells from IMC images for cell-type annotation. (d) We then applied the SLIC algorithm to segment
images into superpixel region, (e) generating a cell x protein feature matrix for analysis.

Table 1: Comparison of different models including scGPT, Geneformer, C2S, GenePT, scELMo, LangCell,
and Spatial2Sentence on diabetes and brain tumor datasets. Table shows classification accuracy (%) across
various settings, where Single-Task (Multi-Task) denotes single-tasking (multi-tasking), Type represents cell-type
classification, and Status indicates clinical status prediction. Best results for each column are bolded.

‘ Diabetes ‘ Brain Tumor
Model . . . .

‘ Single-Task Multi-Task ‘ Single-Task Multi-Task

‘ Type Status Type Status ‘ Type Status Type Status
Geneformer 31.62 5578 3429 62.02 | 48.10 54.09 50.14 58.16
GenePT 3733 60.15 3998 64.02 | 51.90 5220 53.67 58.31
scELMo 3433 56.14 3795 62.03 | 4944 50.26 51.66 55.27
LangCell 40.83 64.64 41.17 72.51 | 53.38 5570 55.16 63.80
scGPT 3245 58.12 3450 65.38 | 4792 56.27 50.11 62.04
scGPT w/ Spatial Info 3398 57.78 3635 67.23 | 49.68 56.16 5298 62.98
C2S8 36.37 6045 37.54 7255 | 49.03 52.06 51.86 54.04
C2S w/ Spatial Info 3698 62.15 38.03 74.11 | 51.12 5393 5322 56.09
Spatial2Sentence w/o Spatial Info | 37.89 62.08 3826 72.05 | 51.50 5548 5298 65.19
Spatial2Sentence 4135 64.12 4198 74.02 | 53.89 57.25 55.67 63.31

nosis. For those patients in the advanced stages of
Type 1 diabetes are typically marked by prolonged
autoimmune responses and extensive destruction
of some particular cell-type, which lead to irre-
versible impairment of endogenous insulin produc-
tion. Each cell in the dataset was characterized by
38 measured proteins. Moreover, we associated a
clinical outcome with each sample in the dataset
as @ long-duration diabetes or @ non-diabetic con-
trol. We annotated the cells into seven cell types,
including T cell, Helper T cell, CD8 T/Cytotoxic
T cell, Neutrophils, Monocytes/Macrophages, Im-
mune cell, and other cell types.

Brain tumor dataset. The glioblastoma IMC
dataset includes samples from 118 glioblastoma pa-
tients, allowing detailed characterization of the tu-
mor microenvironment (TME), and 46 brain metas-
tasis (BrM) tumors from distinct patients. A to-
tal of 21 protein markers were selected for analy-
sis across both conditions. After excluding sam-
ples with missing information or that lack all com-
mon markers, we balanced the dataset to include
samples from 37 glioblastoma donors and from
37 brain metastasis donors. Glioblastoma patients

have a primary brain tumor that originates in the
brain, typically from glial cells, and is known for
being highly aggressive and fast-growing. In other
condition, brain metastasis patients have secondary
tumors that spread to the brain from other cancers
in the body, such as lung or breast cancer. While
both affect the brain, their origins, progression, and
treatment strategies are fundamentally different.
The images cover multiple tissue regions, including
the tumor core, tumor margin, and tumor-adjacent
normal tissue. Some samples contain multiple tis-
sue regions, resulting in a final collection of 100
brain metastasis samples and 72 glioblastoma sam-
ples. For cell annotation, the cells were phenotyped
into six distinct cell types, such as Tc cell, B cell,
Astrocytes, M1-like MDMs, M2-like MDMs, and
undefined cells.

For the data pre-processing, we utilized Cell-
pose to detect cell centers (Stringer et al., 2021).
After extracting cells from the IMC images, we
performed downstream analyses, including cell
clustering and cell-type annotation (Stanley et al.,
2020). Cell-type annotation was manually defined
at the cluster level rather than on a per-cell ba-
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Table 2: Ablation study of model components, showing
the accuracy of the model with different components
removed on diabetes and brain tumor datasets.

‘ Diabetes ‘ Brain Tumor

Component

‘ Type Status ‘ Type Status
Spatial2Sentence 4135 64.12 5389 57.25
w/o Multi-sentence Prompting | 36.37 60.45 | 49.03 52.06
w/o Negative Pair 38.78 62.12 | 51.87 56.35
w/o Positive Pair 36.97 59.13 | 50.23 54.05
w/o Expression Similar Sentences 39.86 60.24 | 52.12 52.14
w/o Spatial Proximal Sentences 40.16 61.53 | 53.04 54.45
w/o Cosine Similarity (Random Select) 36.02 62.13 | 4945 53.82
w/o Euclidean Distance (Random Select) | 35.54 58.68 | 48.12 51.57

sis. Following cell detection, we employed the
SLIC algorithm to segment the image into multi-
ple super-pixel regions(Achanta et al., 2010). This
ultimately produced a matrix of cells x protein
features within the defined superpixels for subse-
quent analysis. The overview of data preprocessing
shown in Fig. 2.

4.2 Experimental Details

Baselines. We compare our proposed method with
several state-of-the-art and relevant models. Our
comparisons include the widely-used large foun-
dation model scGPT (Cui et al., 2024), a deep
learning-based approach for cell-type identification
in single-cell RNA sequencing; we also evaluate
a variant, scGPT w/ Spatial Info, where spatial
coordinates are explicitly provided as input. Addi-
tionally, we benchmark against Geneformer (Lan
et al., 2024), a transformer-based model for multi-
omics data integration, and C2S (Levine et al.,
2023), which generates cell-level textual represen-
tations from protein expression profiles. An ex-
tension, C2S w/ Spatial Info (Walsh and Quail,
2023), which incorporates spatial data, is also con-
sidered. Furthermore, we include GenePT (Chen
and Zou, 2024), an embedding model for single-
cell biology focusing on feature-level representa-
tions; scELMo (Liu et al., 2023), which combines
metadata and expression profiles using embeddings
from language models; and LangCell (Zhao et al.,
2024), a pre-training framework integrating gene
ranks with metadata for language-cell understand-
ing. All these baseline models are evaluated on the
diabetes and brain tumor datasets to assess their
performance in cell-type classification and clinical
status prediction tasks.

Tasks. We perform both single-task and multi-task
predictions to comprehensively assess our model’s
performance. Specifically, we evaluate cell Type
and Status at the individual cell level. The perfor-

Diabetes Type

70 Diabetes Status
=@= Brain Tumor Type
6 5 Brain Tumor Status
5, 60
]
=1 53.89
£ 55 . 53 t.)
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Figure 3: Accuracy performance of Spatial2Sentence
across different values of the hyperparameter K.

mance metrics is classification accuracy.
Experiment Details. We use the Llama-3.2-
1B (Dubey et al., 2024) model for our experiments
by default, fine-tuning it with the following train-
ing parameters: the batch size is set to 8 per device,
and we apply a learning rate of 2e-4 with a cosine
learning rate scheduler. The model is trained for 5
epochs, with a warm-up ratio of 0.05. The training
is carried out using PyTorch on an NVIDIA RTX
6000 Ada Generation 48GB GPU. The data set is
divided into 90% for training and 10% for valida-
tion, with a separate test set reserved for the final
evaluation. To ensure reproducibility, each experi-
ment is repeated three times with different random
seeds, and the results are averaged for reporting.

4.3 Primary Results

Comparison to State-of-the-Art. Table 1 pro-
vides a detailed comparison of our method with
several state-of-the-art and relevant models, now
including scGPT with added spatial information,
GenePT (Chen and Zou, 2024), scELMo (Liu et al.,
2023), and LangCell (Zhao et al., 2024), Gene-
former (Theodoris et al., 2023), alongside the base-
lines like scGPT (Cui et al., 2024), and C2S (Levine
et al., 2023) with and without spatial information.
While the performance landscape varies across
different tasks and datasets, Spatial2Sentence
demonstrates leading results in several key areas,
particularly in cell-type classification tasks and cer-
tain clinical status prediction scenarios, underscor-
ing the benefits of its spatial-aware multi-sentence
framework (further details in Table 1). For in-
stance, Spatial2Sentence achieves top perfor-
mance in Diabetes single-task cell-type classifica-
tion (41.35%) and Brain Tumor single-task cell-
type classification (53.89%). The inclusion of
spatial information within the Spatial2Sentence
framework generally enhances its ability to capture
relevant patterns effectively.
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Table 3: Classification accuracy comparison between the C2S method and Spatial2Sentence across various LLMs
on diabetes and brain tumor datasets. Single and Multi denote single-task and multi-task learning, respectively.

‘ ‘ Diabetes ‘ Brain Tumor
Model | Method | gingle | Muli | Single |  Mul
‘ ‘ Type Status ‘ Type Status ‘ Type Status ‘ Type Status
GPT-2-Small C2S 36.56 58.24 | 37.01 72.24 | 53.23 55.23 | 52.56 53.34
Ours 38.43 59.70 | 39.54 71.40 | 56.02 57.26 | 55.48 52.78
GPT-2-XL C2S 37.13  62.34 | 37.81 76.96 | 57.68 60.34 | 59.26 61.83
Ours 37.07 62.72 | 3530 74.83 | 59.28 61.21 | 60.78 63.51
Llama-2-7B C2S 3745 62.89 | 38.17 75.68 | 53.25 54.12 | 55.67 58.98
Ours 38.17 59.72 | 39.54 7440 | 56.02 57.26 | 5548 56.78
Llama-3.2-1B C2S 36.37 60.45 | 37.54 72.55 | 49.03 52.06 | 51.86 54.04
' Ours 41.35 64.12 | 4198 74.02 | 53.89 57.25 | 55.67 63.31
Gemma-2-9B C28 38.34  65.12 | 38.01 76.78 | 59.53 57.39 | 60.32 59.32
Ours 40.45 67.24 | 4031 75.89 | 62.13 63.23 | 6245 61.23
. it : : : Ground Truth
Table 4: Sensitivity on different spatial distances. Brain Metastasis t Glioblastoma
‘ Diabetes ‘ Brain Tumor
Component 2% 20%
‘ Type Status ‘ Type Status
L1 Norm 4135 6311 | 5319 5603 5% 3 63% "
Cosine Distance 38.25 62.24 | 50.56 53.31 0% 7% %
Euclidean Distance | 41.35 64.12 | 53.89 57.25
atial2Sentence
Table 5: Sensitivity on different expression similarities. Brain Metastasis Spatialasent Glioblastoma
‘ Diabetes ‘ Brain Tumor .
Component 37% 20% 34%
‘ Type Status ‘ Type Status
3% o, 2%
Pearson Correlation | 39.16  65.56 | 49.76  56.86 % 1% 58% 32‘%
Euclidean Distance | 39.22 63.87 | 48.94 5432 21%
Cosine Similarity | 41.35 64.12 | 53.89 57.25
Astrocytes Mi-like MDMs Mz2-like MDMs B Cell Te cell Undefined

Effect of Multi-task learning. The results in Ta-
ble 1 demonstrate the effectiveness of multi-task
learning in improving model performance across
both the diabetes and brain tumor datasets. For
instance, on the diabetes dataset, the multi-task
setting improves cell-type prediction accuracy by
3.44% and status prediction accuracy by 0.91%
over the single-task approach. We argue that this
performance boost can be attributed to the model’s
ability to learn shared representations across re-
lated tasks, enhancing its generalization capability.
Furthermore, patient-level status information can
aid in improving cell-type prediction, as the model
learns broader context about disease states. Simi-
larly, knowing the cell types contributes to better
status prediction, as it provides crucial biological
insights into the patient’s condition, reinforcing the
interdependence between these tasks.

Figure 4: Cell-type distribution in brain tumor dataset
between ground truth and Spatial2Sentence result.

Cell-Type Frequency Analysis. To summarize the
cell type distribution in different disease statuses,
we conduct experiment on brain dataset shown in
Fig. 4. The finding from Spatial2Sentence indi-
cates a sharp increase in M1-like MDMs in brain
metastasis patients, which aligns with the trend ob-
served in the ground truth pie chart. Additionally,
previous studies have reported that brain metastases
appear in higher proportion of M1-like monocyte-
derived macrophages (MDMs) which further sup-
ports our finding (Karimi et al., 2023; Schreurs
et al., 2025).
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Table 6: Ablation study on contrastive negative pair selection strategies for Spatial2Sentence.

Negative Pair Size

| Diabetes (Multi-Task) | Brain Tumor (Multi-Task)

‘ Type Status ‘ Type Status
Top-1 41.08 73.72 54.25 62.78
Top 1-3 41.98 74.02 55.67 63.31
Top 4-6 40.42 73.15 54.93 63.64
Top 7-9 39.09 73.37 53.56 62.18

4.4 Diagnostic Analysis

Ablation Study. In parallel, we conduct ablation
experiments to assess the impact of various model
components on the overall performance. The re-
sults in Table 2 shows that @ removing multi-
sentence prompting decreases contextual under-
standing, while excluding either pair type (positive
or negative) reduces ability to differentiate cells,
with positive pairs being more critical. @ Remov-
ing expression similarity harms performance more
than spatial proximity, highlighting the importance
of molecular features. @ Replacing structured sim-
ilarity with random selection leads to a significant
performance drop, emphasizing the importance of
these measures.

Sensitive Study. @ Hyperparameter K determines
amount of cell sentences for generating the positive-
pair and negative-pair multi-sentence prompts. We
evaluated Spatial2Sentence across various K
values in Figure 3. Spatial2Sentence (K > 1)
consistently ourperforms baseline (X = 0). @
Sensitivity studies on spatial distance methods (Ta-
ble 4) and expression similarity methods (Table 5)
show that Euclidean Distance and Cosine Similar-
ity yield the best results.

Performance Across Different LLMs. We eval-
uate the performance of our method across differ-
ent LLMs, including GPT-2-Small (Radford et al.,
2019), GPT-2-XL (Radford et al., 2019), Llama-2-
7B (Touvron et al., 2023), Llama-3.2-1B (Dubey
et al., 2024), and Gemma-2-9B (Team et al., 2024).
Table 3 presents the classification accuracy of both
the C2S model and our proposed method under
each LLM configuration on the diabetes and brain
tumor datasets. We find that © Our method out-
performs C2S in cell-type classification and dis-
ease status prediction for most LLM configurations.
@ On the diabetes dataset, our method achieves
41.35% accuracy in cell-type classification using
Llama-3.2-1B, compared to C2S’s 36.37%, but
some models like GPT-2-Small show less improve-

ment. We argue this is because smaller models
like GPT-2-Small have relatively limited capacity
to handle longer prompts.

Impact of Negative Pair Selection Strategy. The
construction of informative negative pairs is crucial
for contrastive learning. Our framework selects the
top- K most dissimilar cells (in terms of expression
and spatial distance) to form negative pairs, rather
than relying on random sampling or a single ex-
treme case. To evaluate the impact of this selection,
we performed an ablation study by varying the cri-
teria for dissimilar cells. Table 6 shows the perfor-
mance of Spatial2Sentence when using different
top-K ranges for selecting negative cells for the
multi-sentence prompts. The results indicate that
using the top 1-3 most dissimilar and distant cells
provides the most effective contrastive signal, lead-
ing to the best performance in multi-task settings.
This suggests that carefully chosen, highly con-
trasting negative examples are more beneficial than
moderately or extremely dissimilar ones beyond a
certain threshold.

5 Conclusion

We proposed Spatial2Sentence, a novel frame-
work that jointly integrates spatial information and
cell expression by modeling cells as sentences.
Spatial2Sentence effectively captures cellular
similarities and distinctions across diverse cell
types, enhancing the biological context encoded
in language. Experiments on two IMC datasets
show that Spatial2Sentence consistently outper-
forms existing methods. By introducing a multi-
sentence contrastive prompting strategy that lever-
ages both spatial proximity and cell-level similarity,
we demonstrate that even lightweight LL.Ms can
gain substantial performance boosts from spatially
informed prompts. These findings suggest that scal-
ing to stronger models could further advance this
direction, offering a promising bridge between spa-
tial biology and large language models.
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Limitations and Future Works

However, there are still substantial opportunities
to expand this methodology to multi-model frame-
work, incorporating multi-omic data such as ge-
nomics, transcriptomics, or proteomics. A full bio-
logical view of cell heterogeneity and disease mech-
anisms. Additionally, enhancing our model into
large LLMs, e.g., with 70B-80B parameters will
further improve its ability to capture more complex
biological insights. Furthermore, we plan to ex-
plore robust learning strategies for scenarios when
some modalities are missing, ensuring the model
remains effective even given incomplete data. By
addressing these challenges, we aim to develop
flexible and powerful framework for biology analy-
sis.

Ethical Statement

To the best of our knowledge, the Diabetes and
Brain datasets used in this study have been com-
piled from publicly available sources, ensuring
compliance with ethical guidelines and avoiding
the inclusion of sensitive or private information.
The primary focus of Spatial2Sentence is to en-
hance the representation of single-cell expression
and spatial interactions by leveraging a multi-
sentence natural language approach. This method
is specifically designed for biomedical research,
distinguishing it from general-purpose language
models used in dialogue systems. However, we
acknowledge potential ethical concerns, including
biases in dataset representation and the risk of mis-
interpretation of biological findings. While our
framework inherently reduces the likelihood of gen-
erating harmful content, we emphasize the need for
responsible usage and validation to prevent poten-
tial misuse, particularly in clinical or diagnostic
applications.
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