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Abstract
Contemporary language models (LMs) such as
BERT (Devlin et al., 2019), T5 (Raffel et al.,
2023), GPT-4 (OpenAI, 2023), have exhibited
remarkable capabilities, effectively addressing
long-standing challenges in the field. However,
these models rely on shortcut learning, using
a decision rule that relies on superficial cues
that are spuriously correlated with the labels
(Geirhos et al., 2020). In this research, we focus
on the reliance on a specific type of shortcuts,
namely syntactic heuristics, in BERT when per-
forming Natural Language Inference (NLI), a
representative task in Natural Language Un-
derstanding (Jeretic et al., 2020). By making
use of two probing methods, one supervised,
one unsupervised, we investigate where these
shortcuts emerge, how they evolve and how
they impact the latent knowledge of the LM.
Our findings reveal that syntactic heuristics are
absent in pretrained models but emerge and
evolve as the model is finetuned with datasets
of increasing size. The adoption of these short-
cuts varies across different hidden layers, with
specific layers closer to the output contributing
more to this phenomenon. Despite the model’s
reliance on shortcuts during inference, it re-
tains information relevant to the task, and our
supervised and unsupervised probes process
this information differently.

1 Introduction

Probing the dynamics of shortcut learning.
Contemporary neural network-based language
models (LMs) such as BERT (Devlin et al., 2019),
T5 (Raffel et al., 2023), GPT-4 (OpenAI, 2023),
have exhibited remarkable capabilities, effectively
addressing long-standing challenges in the field.
Despite these achievements, and the development
of increasingly larger models that excel on various
benchmarks, certain limitations and risks have re-
cently demanded increased attention. High scores
on standard benchmarks do not necessarily indi-
cate that a model actually possesses the underlying

generalization capabilities and knowledge essen-
tial for such performance (Geirhos et al., 2020; Du
et al., 2023; Browning and LeCun, 2023; McCoy
et al., 2019). For instance, Browning and LeCun
demonstrate that the outstanding performance of
LMs on the Winograd Schema Challenge is not
driven by a genuine understanding of language,
world knowledge and common sense reasoning, ca-
pabilities originally deemed necessary to solve the
challenge. Across various fields and applications,
researchers have observed that while a model may
achieve impressive results on standard benchmarks,
this performance does not generalize well across
different datasets. Specifically, there is a substantial
drop in performance on out-of-distribution (o.o.d.)
datasets.

Geirhos et al. identify this as a manifestation of
shortcut learning, where models rely on superficial
strategies that work well on standard benchmarks
but fail when faced with more complex testing sce-
narios. Essentially, shortcut learning occurs when
models rely on surface-level cues to complete tasks,
instead of learning to reason about the task.

The problem of shortcut learning in LMs can
result from many different factors, including the
limitations of the training dataset, the model archi-
tecture and size, pretraining objectives and finetun-
ing procedures (Du et al., 2023). In this paper, we
investigate shortcuts used in Natural Language In-
ference (NLI) tasks, where the aim is to determine
if one sentence (hypothesis) is entailed by another
sentence (premise). By combining two probing
methods, one supervised, one unsupervised, we in-
vestigate where these shortcuts emerge, how they
evolve and how they impact the latent knowledge
of the LM.

Research questions and contributions. To in-
vestigate the adoption and development of these
syntactic heuristics and examine their influence on
the knowledge embedded within the hidden repre-
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sentations, we address the following research ques-
tions:

RQ1 At what point does shortcut learning begin
to manifest? Can we identify traces of it in
the representations of the pretrained model, or
only after a certain amount of finetuning?

RQ2 How does shortcut learning evolve with in-
creased finetuning dataset size, and across the
different hidden layers?

RQ3 How does shortcut learning modify the latent
knowledge of the model? Is there a discrep-
ancy between the model’s outputs and the un-
derlying knowledge encoded in the model?

To address these questions, we combine a super-
vised and unsupervised probe.

The contributions of this study are threefold.
First, it presents an empirical case study on the
emergence and evolution of syntactic heuristics in
BERT. Second, it introduces a methodological in-
novation for model analysis: a novel combination
of supervised and unsupervised probes, enabling
us to evaluate how the learning capacity and bias of
the supervised method influence the scores. Finally,
it provides evidence supporting the validity of an
experimental method, Contrast Consistent Search
(CCS, Burns et al., 2024) as an unsupervised probe,
as outlined in the methodology section 3.

2 Related work

Syntactic heuristics Solving NLI tasks typically
requires syntactic and semantic understanding,
common sense reasoning and world knowledge.
However, Niven and Kao (2019), McCoy et al.
(2019), Geirhos et al. (2020), Du et al. (2023)
and Hartmann et al. (2021) demonstrated that LMs
finetuned on NLI datasets fail to build on these
requirements, and instead rely on the use of short-
cuts. Consequently, they have learned to solve the
dataset instead of solving the task (Du et al., 2023).
Among these shortcuts are the syntactic heuris-
tics identified by McCoy et al.: the lexical over-
lap heuristic, subsequence heuristic and constituent
heuristic. The lexical overlap heuristic assumes that
a premise entails all hypotheses constructed from
words in the premise.1 The subsequence heuristic
suggests that a premise entails all its contiguous

1For example, the lexical overlap heuristic would correctly
assume that the premise ‘The pupil was asked by the teacher’
entails the hypothesis ‘The teacher asked’. However, this
hypothesis would incorrectly assume that the premise entails
the hypothesis ‘The pupil asked the teacher’.

subsequences.2 Finally, the constituent heuristic
asserts that a premise entails all complete subtrees
within its parse tree.3

These heuristics achieve (misleadingly) high ac-
curacies on the MNLI test set but fail in many o.o.d.
cases. To assess this, McCoy et al. developed a
controlled evaluation set called HANS (Heuristic
Analysis for NLI Systems), where these heuristics
fail. Their findings indicate that models finetuned
on MNLI perform poorly on the HANS challenge
set, suggesting they rely on the proposed heuristics.
Notably, BERT’s poor accuracy on the HANS set is
remarkable given that BERT has access to relevant
syntactic information (Hewitt and Manning, 2019).

Probing the dynamics of shortcut learning
Our approach focuses on the layerwise evolution of
shortcuts and uses a combined methodology of su-
pervised and unsupervised probing. It builds upon
the foundational studies on the reliance on shortcuts
in NLI, as demonstrated in McCoy et al. (2019),
as well as broader research on shortcut learning
in LMs (Geirhos et al., 2020; Branco et al., 2021;
Ray Choudhury et al., 2022; Du et al., 2023). More
recently, Zhang et al. (2024) have probed causality
manipulation hierarchically by introducing differ-
ent shortcuts to models and observing their behav-
iors, while Tang et al. (2023) have investigated
LMs’ reliance on shortcuts or spurious correlations
within prompts. Sun et al. (2024) demonstrate how
more recent, larger generative models exploit spu-
rious correlations for predictions.

Unsupervised probing for latent knowledge
For our unsupervised probe, we build on the work
of Burns et al. (2024) and use Contrast Consistent
Search (CCS). CCS is built around a key character-
istic of the notion of truth: logical consistency, a
sentence and its negation cannot both be true. As-
suming that a model internally evaluates the truth
value of an input, this can in principle be recov-
ered from the hidden representations. CCS learns a
linear transformation of the hidden representations
such that the transformed space embeds this logical
consistency (Burns et al., 2024). The input sen-
tences are converted into contrast pairs, a sentence

2For instance, this heuristic would correctly assume that
‘The experienced nurses working with the doctors refused’ en-
tails ‘Nurses working with the doctor refused’, but incorrectly
assume it equally entails ‘The doctors refused’.

3The constituent heuristic would, correctly assume that the
premise ‘If the accountants knew, they wouldn’t have resigned’
entails ‘They wouldn’t have resigned’, but equally that this
entails that ‘The accountants knew’.
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and its negation,4 and passed through the model.
The learned linear projection is applied to the gen-
erated hidden representations, enabling the model
to predict opposite labels for the two sentences of
the pair. This classification reflects whether the rep-
resentations correspond to a true or false statement.
CCS scores quantify the number of statements that
are correctly identified as ‘true’ or ‘false’.

3 Methodology

This case study focuses on a single model, a spe-
cific finetuning dataset, and one challenge set, en-
abling a controlled analysis of both the method’s
effectiveness and a concrete instance of shortcut
learning. We conduct the study on BERT, an
open-source LM widely used and studied, particu-
larly in interpretability research, where the field of
"BERTology" examines its behavior and interme-
diate representations in relation to linguistic prop-
erties (Rogers et al., 2020). Given its prominence,
BERT is a natural starting point for testing this new
methodological paradigm.

Concretely, in a first step we finetune BERT
(Devlin et al., 2019) with a binarized version (‘en-
tailment’ and ‘contradiction’ examples only) of
MultiNLI (Williams et al., 2018). Following fine-
tuning, we convert MNLI and HANS examples into
contrast pairs.5 These contrast pairs are fed into the
finetuned models, and the accuracy scores of our
supervised probe, Logistic Regression (LR), and
usupervised probe, CCS, are measured.

To obtain LR scores, we use the representations
of the contrast pairs, along with the true labels.
The hidden states are split into train and test and
LR accuracy is measured on the test set. Having
access to the labels makes this approach similar to
a regular supervised probe.

By comparing the -supervised- LR accuracies
for MNLI and HANS examples, we can determine
whether the model relies on the syntactic heuris-
tics. Since these heuristics fail on HANS examples,
consistently lower scores on the HANS examples
than on MNLI examples provide evidence for the
reliance on those heuristics. The gap between both
scores (LR MNLI versus LR HANS) can be taken

4A contrast pair consists of the same question presented
twice, once with the answer ‘yes’ and once with the answer
‘no’. To translate a premise and hypothesis into these contra-
dicting statements we make use of PromptSource Templates
(Bach et al., 2022).

5This is necessary to obtain CCS scores, as explained in
section 2.

as a measure of the reliance on syntactic heuris-
tics. We examine this gap in models fine-tuned
with datasets of different sizes and measure the pro-
gression of this difference across the hidden layers.
We identify which layers have the most significant
impact on the adoption of syntactic heuristics and
whether the presence of these heuristics increases
towards the layers closer to the output layer.

To obtain CCS scores, we use the same contrast
pair representations without the labels, and apply
the learned linear projection, enabling the model to
predict opposite labels for the two sentences of the
pair. CCS scores quantify the number of statements
that are correctly identified as ‘true’ or ‘false’. As
such, the gap between the HANS and MNLI based
CCS scores indicate whether the syntactic heuris-
tics are inherently encoded within the hidden repre-
sentations. Thereby we demonstrate that CCS can
resolve NLI questions in an unsupervised manner,
supporting its effectiveness as a probing method.
Additionally, we demonstrate the complementary
nature of CCS and LR. With a supervised probe
like LR, the performance could be attributed to the
probe’s learning capacity. By contrast, CCS is un-
supervised, which allows us to access information
inherently present in the model’s representations.
CCS shows which patterns are genuinely latent
versus those that only appear through probe train-
ing. The final research question explores the extent
to which the learned heuristics have altered the
model’s internal knowledge and its representation
of the truth6 of the input sentences. To address this
question, we examine the knowledge in the hidden
representations of the finetuned models, reflected
in the gap between MNLI and HANS LR and CCS
scores, and compare this to inference results. CCS
was initially conceived as a prototype to explore
unsupervised methods for identifying the beliefs7

of a model (Burns et al., 2024). Comparing CCS to
LR and inference results, enables us to investigate
whether a significant gap exists between the knowl-
edge the model possesses and what it outputs.

6In the context of this paper and evaluating CCS on NLI,
it is reasonable to accept that the truth coincides with the
labels, an assumption that is also used in the evaluation of
the CCS accuracy scores. In other contexts this might not
be as straightforward. We use the italic font to indicate this
ambiguity.

7The term beliefs here and further in this paper, is by no
means intended to refer to mental states in an anthropomor-
phic way, rather as the model ‘has a representation of the
validity and truthfulness of a statement, reflected in the hidden
representations’. We follow the terminology used by (Burns
et al., 2024).
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4 Experiment and Results

To examine whether the degree of reliance on syn-
tactic heuristics changes with the size of the dataset
used for finetuning, we finetuned BERT8(Devlin
et al., 2019) progressively.

4.1 Experimental setup

Finetuning datasets are binarized versions of MNLI
containing 25, 100, 1K, 8K and 16K examples.
Additionally, we finetuned the model on a mixed
dataset, containing 8K examples from MNLI and
8K from HANS.9 The following finetuning param-
eters were used: learning rate 2e-05, train batch
size 8, Optimizer Adam with betas 0.9,0.999 and
epsilon 1e-08 and number of epochs 5.10

4.2 Preliminary experiments

Preliminary experiments were strictly used to iden-
tify and select probing parameters to ensure the
probing methods are both robust and informative.
The appropriate values for the following param-
eters are determined: first, the prompts used to
create contrast pairs, specifically the prompt ‘Does
it follow that’, from the PromptSource HANS tem-
plate (Bach et al., 2022). To compare LR and CCS
accuracies across different finetuned models, we
consistently use the hidden representation from
layer 23—identified as the most informative for LR
in our initial experiments—to ensure comparabil-
ity across methods, even though CCS scores peak
slightly earlier. This approach aligns with prior
work showing that BERT’s upper layers encode in-
creasingly semantic and task-specific information
(Tenney et al., 2019; Rogers et al., 2020). Finally,
it is determined that 1.000 examples are needed to
sufficiently train the CCS probe.

To decide which sentence representation to use,
we compared results obtained with mean pooling,
last token representation, and the [CLS] token (Ap-
pendix Table1). While mean pooling results in the
highest LR values, the CCS performance is remark-
ably low, barely exceeding chance level. Therefore,
we use the [CLS] token, which results in more infor-

8Bert-large-cased, https://huggingface.co/google-bert/bert-
large-cased, configuration: 24 layers, 1024 hidden dimensions,
16 attention heads 336M parameters

9Examples from the HANS dataset are selected from all
categories, challenging the different heuristics and subcases.

10We opted for a fixed number of epochs to ensure consis-
tent exposure across dataset sizes, ensuring the model has an
equal opportunity to see each example in the dataset a fixed
number of times, regardless of dataset size. This is particularly
important as we start with (very) small datasets.

mative CCS scores, while still obtaining relatively
high LR scores.

4.3 Results based on progressive finetuning

Figure 1: LR and CCS scores as a result of finetuning

Figure 2: LR and CCS deBERTa pretrained-only

4.3.1 Results from pretrained models
The average LR accuracy from the hidden repre-
sentations (layer 23) of BERT (pretrained-only) is
0.59 for MNLI contrast pairs. In comparison, the
accuracy is slightly higher for HANS examples, at
0.61 (Figure 1, Finetuning Dataset Size 0). The
CCS accuracy derived from the same hidden repre-
sentations are relatively low and quite similar for
MNLI and HANS examples, hovering just above
0.5.

The higher scores on HANS examples -where
the heuristics fail- suggest that the pretrained model
does not rely on syntactic heuristics as a decision
rule for NLI. However, since the scores are low
and close to chance level, the representations might
simply not be informative enough, thus this prelim-
inary conclusion needs to be verified.
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Therefore, we examined the hidden representa-
tions from deBERTa (He et al., 2021) pretrained-
only (Figure 2). The LR accuracy scores derived
from the hidden representations of deBERTa are
substantially higher than those from BERT, 0.68
on MNLI examples and 0.70 on HANS examples.
The LR and the CCS scores on MNLI are compara-
ble to those on HANS, with a slight advantage for
HANS examples, mirroring the results observed
with BERT pretrained. This consistency reinforces
the conclusion that there is no evidence of syntactic
heuristics being adopted during pretraining.

4.3.2 Results from models finetuned with
MNLI

Figure 1 illustrates that finetuning BERT on a small
number of MNLI datapoints does not enhance
the LR scores on MNLI. However, LR scores on
HANS increase, reaching values of 0.67 (25 exam-
ples), 0.68 (100 examples), and thus LR scores on
HANS-based examples remain slightly higher than
those on MNLI examples.11 As of finetuning with
over 1K examples, MNLI LR scores start increas-
ing, in contrast to the sharp decrease in HANS LR
scores observed between the models finetuned with
1K and 8K examples.12 Since the syntactic heuris-
tics fail on the HANS examples, the difference in
LR accuracies between MNLI and HANS-based
examples serves as evidence of the model’s reliance
on shortcuts. Therefore the observed gap between
the two scores, reflects the emergence of shortcuts.
Finetuning with even more examples (16K) leads
to a sharper increase of MNLI-based LR scores,
reaching a maximum of 0.86 compared to 0.72 for
HANS-based LR scores.

The CCS scores measured on MNLI examples
only exceed chance level as of finetuning with at
least 1K examples, reaching values of 0.69 (1K
finetuning examples), 0.7 (8K examples) and 0.65
(16K examples). In contrast, the CCS scores on the
basis of HANS examples remain close to chance
level, even for the models finetuned with several
thousand examples.

11Results mentioned are averages of 5 runs with 2K exam-
ples per run. For detailed results, please refer to Appendix
A.2

12This sharp decrease is unexpected and remains difficult
to fully explain. Repeated experiments consistently show the
same pattern. However, it is important to note that these results
are measured at layer 23. The decrease is less pronounced
when examining other layers, such as layer 24.

4.3.3 Results from the model finetuned with
the mixed dataset

Figure 1 additionally illustrates the results from the
model finetuned with a balanced mix of MNLI and
HANS examples. LR scores for HANS and MNLI
examples are quite similar (0.85 vs 0.83), indicat-
ing that this model does not rely on the syntactic
heuristics as the primary decision rule.

Examining the CCS scores of this model, we
observe that the accuracy for HANS-based CCS,
measured at layer 23, is still considerably lower
than for MNLI-based CCS (0.62 vs. 0.84). Despite
this gap, there is a notable increase in HANS-based
CCS scores compared to those of the other models
finetuned with MNLI examples only, where HANS-
based CCS scores remain close to chance level.

These results clearly indicate the emergence and
development of shortcuts as a result of finetuning,
as we will discuss further in section 5.

4.4 Results across the hidden layers

Figure 3: LR and CCS evolution across the hidden
layers BERT finetuned with 8K examples

4.4.1 Results across the hidden layers from
models finetuned with MNLI

Figures 3 and 4 illustrate the evolution of LR and
CCS accuracy scores measured across the hidden
layers of the two models finetuned on the largest
datasets (8K and 16K finetuning examples). The
results reveal certain similarities: accuracy values
remain relatively low (under 0.6) throughout the
first 19 layers.13

From layer 20 onward, we see a strong in-
crease in the MNLI-based LR and CCS scores,

13Note that Figure 3 and Figure 4 show only the last 10
layers; for results spanning all hidden layers, refer to Appendix
A.3.
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Figure 4: LR and CCS evolution across the hidden
layers BERT finetuned with 16K examples

whereas HANS-based LR scores show only a lim-
ited increase. The difference between MNLI- and
HANS-based LR scores, reflecting the syntactic
heuristics, is most pronounced in the final 5 layers.
The HANS-based CCS values remain close to 0.5
across all layers of both models.

Despite these important similarities, the results
reveal striking differences in how LR and CCS
scores evolve across the hidden layers of the two
models. Firstly, while the CCS scores of the model
finetuned with 8K examples remain relatively sta-
ble during the last 4 layers, those of the 16 K model
demonstrate a sharp drop at layer 22.14 Secondly,
most of the maximum scores are reached at pre-
final layers, but the specific layers differ: for the
8K model, they occur at layer 24 (LR) and layers
21–23 (CCS), whereas for the 16K model, they are
found at layer 23 (LR) and layer 21 (CCS). These
differences will be examined in more detail in 5.2.

4.4.2 Results across the hidden layers from
the model finetuned with the mixed set

Focusing on the evolution across the hidden lay-
ers of the model finetuned with the mixed dataset
(Figure 5), we see a different picture: as expected,
there is no gap between the MNLI and HANS
LR scores. The HANS-based CCS scores for this
model finetuned with the mixed dataset are substan-
tially higher than those of the MNLI-only finetuned
models, but remain well below its MNLI-based
CCS scores.

14The sudden drop in CCS results for the model finetuned
with 16K examples is surprising. It may indicate that deeper
layers adapt to MNLI-specific parameters based on heuristic
cues, complicating true/false classification. However, similar
patterns are less pronounced in other models, where CCS
increases stop around layer 22 but without a comparable drop.

Figure 5: LR and CCS evolution across the hidden
layers BERT finetuned with the mixed dataset

Figure 6: Inference versus LR and CCS scores

4.5 Inference results vs. LR and CCS

Figure 6 illustrates the evolution of inference
scores, alongside LR and CCS, on MNLI and
HANS examples, based on progressive finetun-
ing.15 Focusing on the difference between MNLI
and HANS-based scores, we observe a notable in-
crease of this difference, particularly in the infer-
ence scores. Finetuning with more MNLI data
consistently enhances (inference) performance on
MNLI examples, while only marginally improving
results on HANS examples.

In contrast with the inference scores, the clear in-
crease of HANS LR scores of our model finetuned
with the biggest dataset is remarkable, reaching a
maximum score of 0.72 (16K finetuning examples).
However, CCS scores for HANS examples -similar
to the inference scores- barely exceed chance level.

15We consistently use the LR and CCS accuracy scores
measured on the hidden representations of layer 23, where
the scores are usually relatively high, but not necessarily the
maximal scores for both LR and CCS for all models.
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Figure 7: Differences between LR accuracies for MNLI and HANS Examples

5 Analysis and Discussion

5.1 Adoption of syntactic heuristics as a result
of finetuning

The results presented in 4.3.1, with higher accuracy
scores for HANS than for MNLI examples, demon-
strate that the investigated syntactic heuristics are
absent in the pretrained models. Although NLI
classification is a challenging task for BERT, its
hidden representations contain some relevant infor-
mation. In a supervised manner, this information
can be leveraged, to a certain extent, to classify
MNLI and HANS examples, resulting in LR scores
for both datasets around 0.6. As the pretrained
model is trained on extensive and diverse datasets
to develop a rich contextualized understanding and
representation of language, it is unsurprising that
we do not observe the reliance on these specific
syntactic heuristics within this model. It is not in-
centivized to learn decision rules tailored to any
particular dataset.

Analyzing the results obtained with the finetuned
models (4.3.2, Figure 1), we observed a stronger
increase in MNLI-based LR scores compared to
the limited rise in HANS-based LR scores. This
results in a widening gap between the scores on
both datasets, thereby demonstrating the model’s
increasing reliance on syntactic heuristics, pro-
viding strong evidence that finetuning with larger
datasets leads to a greater reliance on the syntactic
heuristics. The shortcuts begin to emerge when the
finetuning dataset contains more than 1K examples.
This trend is also reflected in the results from CCS,
our unsupervised probe: for MNLI examples, fine-
tuning leads to more informative representation,

enabling the construction of a linear transformation
that reflects the truth value of a statement. This is
not the case for HANS-based contrast pairs: their
CCS scores do not benefit from finetuning on more
MNLI examples. Consequently, the gap between
CCS scores on MNLI and HANS widens. Further-
more, the results obtained with the mixed dataset
model (4.3.3) provide additional support for CCS
as an effective unsupervised probing method: the
higher CCS scores on HANS examples achieved by
the mixed dataset model demonstrate that obtain-
ing above-chance performance on HANS is indeed
possible. This contrasts with the low HANS CCS
scores seen in models finetuned solely on MNLI.
This supports the conclusion that the low scores ob-
served in those models are caused by their reliance
on syntactic heuristics.

The increased adoption of the heuristics by the
MNLI-only finetuned models coincides with the
improved performance on MNLI examples. This
suggests that the model’s enhanced performance is
largely due to a developed decision rule based on
these shortcuts, learned from the dataset. Conse-
quently, finetuning with diverse datasets -including
challenging examples- may help to prevent the
adoption of shallow heuristics. Our combined
results with the model finetuned with the mixed
dataset (Figure 1) illustrate how incorporating chal-
lenging examples can mitigate the adoption of shal-
low heuristics. For HANS examples, we observed
a substantial increase in all accuracy measures (LR,
CCS, and Inference) compared to models finetuned
exclusively on MNLI.
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5.2 Evolution of the shortcuts across the
hidden layers

The differences in the evolution of LR values in the
two models investigated (4.4.1, Figure 3 and Fig-
ure 4) suggest that, although similar information
may be encoded, it is distributed across different
layers in each model. These differences indicate
varying reliance on shortcuts within the two mod-
els, as reflected in the scores obtained with our
supervised probe at identical layers. Focusing on
the reliance on shortcuts as illustrated by the gap
between MNLI and HANS based LR results (Fig-
ure 7), we even observe negative values in the first
10 layers. This indicates that, prior to the trans-
formations across layers and the construction of
the learned decision rule, HANS examples are eas-
ier to solve compared to MNLI examples. Cer-
tain layers contribute more to the development of
the heuristics, most salient in a steep increase on
MNLI examples, compared to a limited increase
on HANS examples. The layers contributing most
to these heuristics are those close to the output
layer, though typically not the final hidden layer.
This suggests that the reliance on shortcuts is not
exclusively output-driven.16 Similarly, the analy-
sis of CCS scores across layers in the two models
(Figures 3 and 4) identified important differences,
indicating that the increased adoption of the syntac-
tic heuristics in the representation of the truth of a
sentence occurs in different layers for each model.
Analysis of the layerwise LR scores from the model
finetuned with the mixed dataset (4.4.2) shows no
reflection of the heuristics in the 3 final layers, de-
spite a limited gap at layer 21 (Figure 7). However
the unsupervised CCS scores on MNLI are consis-
tently higher than on HANS examples. Examining
the evolution across the layers revealed that our
supervised and unsupervised probes capture differ-
ent knowledge in the hidden representations, high-
lighting their complementarity. The differences
between the LR and CCS results obtained on spe-
cific layers illustrate that the two probes capture
NLI-relevant information in different ways, and
build on different aspects of what is encoded in the
representations. Some signals may be more useful
for LR, where the probe can leverage its learning
capacity to extract predictive patterns — even if

16If the shortcut reliance were exclusively output-driven,
in a sense of mimicking the training data, we would expect a
gradual increase towards the final hidden layer. However, here
we observe their emergence and accumulation across various
layers of the model.

these are less explicitly structured. CCS, on the
other hand, relies on internal logical consistency in
the representation space, which may be stronger in
slightly earlier layers (before task-specific patterns
dominate).

5.3 Impact on the latent knowledge
While our finetuned models fully rely on syntactic
heuristics as the main decision rule during infer-
ence, resulting in HANS-based inference scores at
chance level, this is not reflected in the LR values
(4.5). The increase in LR scores on HANS exam-
ples with more finetuning suggests that finetuning
on MNLI provides the model with some relevant
knowledge to classify HANS examples. This is not
reflected in the inference scores, where the learned
decision rule completely fails on the HANS exam-
ples.

Finetuning on MNLI examples suppresses the
capability of performing inference on HANS ex-
amples, while some relevant information in the hid-
den representations of certain layers is still present.
This information proves to be relevant for classify-
ing contrast pair examples, but only in a supervised
way. The relatively high LR scores on HANS ex-
amples, despite very low inference scores, suggest
the model retains relevant information in the cer-
tain hidden layers. However, it fails to produce the
correct answer for examples where the heuristics
break down. This suggests the model’s internal
knowledge is not entirely overridden by the syntac-
tic heuristics.

The striking contrast between the high LR scores
and low CCS and inference scores on HANS pairs
suggests that while the supervised probe builds on
relevant knowledge less affected by the heuristics,
this may not hold for the unsupervised approach.
The low unsupervised CCS and inference scores
indicate that shortcut reliance may be even stronger
than supervised LR scores imply. This highlights
the supervised probe’s role in reconstructing un-
derlying knowledge, which may be represented
in hidden layers but not always observable in out-
puts. Consequently, the learning capacity of the
supervised probe could be a critical factor in in-
terpreting the observed outcomes (Pimentel et al.,
2020; Singh et al., 2024).
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6 Conclusions

In this research, we traced the evolution of the adop-
tion of syntactic heuristics as a decision rule for
NLI classification, adopted by BERT, finetuned on
MNLI datasets. To identify the learned heuristics,
we used a challenge dataset, HANS, and combined
supervised and unsupervised probing methods. Our
findings demonstrate the progressive adoption of
these shortcuts as a result of finetuning dataset size,
observable across the model’s hidden layers, with
specific layers closer to the output contributing
more to this phenomenon. Our study illustrates the
need for finetuning with diverse datasets, including
examples where shallow heuristics fail. A deeper
understanding of the inductive biases of LMs and
ongoing research into o.o.d. challenge datasets can
aid in ensuring the diversity of training data.

Despite the model’s reliance on shortcuts during
inference, it retains information relevant to the task,
and our supervised and unsupervised probes pro-
cess this information differently. A key challenge
remains in effectively leveraging this latent knowl-
edge and encouraging the model to reason over it.
Further research is needed to uncover the underly-
ing mechanisms and explore strategies to harness
this knowledge. One of the key contributions of
this paper is therefore methodological: integrating
results obtained with supervised and unsupervised
probing with inference results mitigates individual
limitations of these approaches.

Limitations

In this research, we focused on BERT (Devlin et al.,
2019), a relatively small and widely studied model.
This choice allows for controlled experimentation
and comparability with existing probing research,
but it also strongly limits the scope of our findings.
The observed shortcut behaviors and the patterns
revealed through the combination of supervised
and unsupervised probing may not directly general-
ize to larger or more recent architectures. However,
even larger generative models might rely on shal-
low heuristics in a similar manner (Du et al., 2023).
Extending our approach to more recent and diverse
models would help assess the robustness of our find-
ings across architectures with different inductive
biases, training objectives, and internal represen-
tation structures. This would require adapting the
probing setup to account for variations in architec-
ture (e.g., encoder-only vs. encoder-decoder), layer
depth, and pretraining strategies.

We examined the effects of full finetuning on
the development of shortcuts in LMs and did not
explore less extensive task adaptation techniques.
Parameter-efficient finetuning methods, such as the
use of adapter modules (Houlsby et al., 2019), and
their impact on shortcut learning were beyond the
scope of this research, but would be an interesting
extension of this work.

Another limitation of this study is that we as-
sessed reliance on shortcuts by considering lexical
overlap, subsequence, and constituent heuristics as
a whole, rather than isolating and investigating the
specific impact of each heuristic.

Additionally, future work can look at more
datasets and heuristics to confirm the findings of
this case study.
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A Appendix

A.1 Results preliminary experiments to determine sentence representation

Sentence Representation FTE LR CCS
Mean pooling 8,000 0,73 0,50
Mean pooling 16,000 0,86 0,50
Last token 8,000 0,84 0,62
Last token 16,000 0,81 0,52
CLS token 8,000 0,73 0,70
CLS token 16,000 0,86 0,65

Table 1: Preliminary Results with different sentence representations, dataset MNLI.

A.2 Detailed results of several runs

Examples Dataset LR 1 LR 2 LR 3 LR 4 LR 5 LR Average
25 MNLI 0,598 0,540 0,586 0,624 0,622 0,59
100 MNLI 0,574 0,544 0,586 0,576 0,632 0,58
1,000 MNLI 0,694 0,708 0,714 0,706 0,734 0,71
8,000 MNLI 0,730 0,736 0,724 0,738 0,712 0,73
16,000 MNLI 0,852 0,858 0,876 0,858 0,874 0,86
16,000 MIXED 0,838 0,874 0,828 0,824 0,798 0,83

Table 2: MNLI LR Results based on progressive finetuning 5 runs with 2K examples per run.

Examples Dataset LR 1 LR 2 LR 3 LR 4 LR 5 LR Average
25 HANS 0,684 0,66 0,654 0,672 0,670 0,67
100 HANS 0,724 0,668 0,670 0,644 0,688 0,68
1,000 HANS 0,694 0,702 0,696 0,688 0,732 0,70
8,000 HANS 0,566 0,595 0,596 0,582 0,566 0,58
16,000 HANS 0,738 0,658 0,748 0,748 0,718 0,72
16,000 MIXED 0,822 0,844 0,826 0,840 0,834 0,83

Table 3: HANS LR Results based on progressive finetuning 5 runs with 2K examples per run.

Examples Dataset CCS 1 CCS 2 CCS 3 CCS 4 CCS 5 CCS Average
25 MNLI 0,532 0,528 0,510 0,513 0,504 0,52
100 MNLI 0,52 0,546 0,522 0,526 0,55 0,53
1,000 MNLI 0,658 0,690 0,682 0,712 0,722 0,69
8,000 MNLI 0,704 0,724 0,576 0,760 0,734 0,70
16,000 MNLI 0,762 0,544 0,876 0,522 0,546 0,65
16,000 MIXED 0,812 0,876 0,846 0,868 0,810 0,84

Table 4: MNLI CCS Results based on progressive finetuning 5 runs with 2K examples per run.

Examples Dataset CCS 1 CCS 2 CCS 3 CCS 4 CCS 5 CCS Average
25 HANS 0,538 0,51 0,520 0,538 0,538 0,53
100 HANS 0,512 0,506 0,508 0,508 0,52 0,51
1,000 HANS 0,518 0,504 0,532 0,55 0,53 0,53
8,000 HANS 0,516 0,505 0,514 0,504 0,532 0,51
16,000 HANS 0,511 0,508 0,506 0,520 0,506 0,51
16,000 MIXED 0,646 0,602 0,672 0,672 0,654 0,65

Table 5: HANS CCS Results based on progressive finetuning 5 runs with 2K examples per run.
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A.3 Results across all hidden layers

Layer LR MNLI LR HANS CCS MNLI CCS HANS
24 0,80 0,64 0,66 0,51
23 0,73 0,58 0,70 0,51
22 0,80 0,61 0,68 0,53
21 0,76 0,59 0,70 0,52
20 0,68 0,51 0,56 0,51
19 0,61 0,55 0,52 0,51
18 0,56 0,52 0,52 0,52
17 0,58 0,54 0,52 0,52
16 0,60 0,57 0,52 0,51
15 0,58 0,58 0,52 0,51
14 0,52 0,56 0,51 0,52
13 0,55 0,58 0,52 0,52
12 0,56 0,55 0,51 0,52
11 0,56 0,55 0,51 0,53
10 0,54 0,55 0,53 0,52
9 0,52 0,53 0,55 0,53
8 0,51 0,52 0,54 0,53
7 0,51 0,57 0,52 0,52
6 0,51 0,55 0,51 0,52
5 0,51 0,54 0,53 0,52
4 0,52 0,53 0,52 0,53
3 0,49 0,55 0,53 0,53
2 0,49 0,54 0,52 0,51
1 0,49 0,53 0,52 0,51

Table 6: Results all hidden layers model finetuned with 8K FTE.

Layer LR MNLI LR HANS CCS MNLI CCS HANS
24 0,85 0,67 0,61 0,52
23 0,86 0,72 0,65 0,51
22 0,85 0,69 0,59 0,52
21 0,84 0,57 0,81 0,52
20 0,77 0,53 0,79 0,51
19 0,61 0,57 0,52 0,53
18 0,58 0,53 0,53 0,52
17 0,57 0,54 0,53 0,52
16 0,57 0,53 0,52 0,52
15 0,61 0,57 0,53 0,51
14 0,61 0,57 0,51 0,52
13 0,61 0,58 0,53 0,52
12 0,60 0,57 0,53 0,51
11 0,59 0,57 0,51 0,52
10 0,57 0,55 0,52 0,52
9 0,53 0,59 0,51 0,51
8 0,52 0,55 0,52 0,52
7 0,51 0,56 0,52 0,52
6 0,50 0,55 0,52 0,51
5 0,50 0,56 0,52 0,52
4 0,50 0,54 0,52 0,52
3 0,51 0,55 0,52 0,52
2 0,50 0,55 0,51 0,53
1 0,50 0,54 0,51 0,52

Table 7: Results all hidden layers model finetuned with 16K FTE.
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