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Abstract

Large language models (LLMs) with instruc-
tion following capabilities have demonstrated
impressive problem-solving abilities. While
synthesizing instructional data from unsuper-
vised text has become a common approach for
training such models, conventional methods
rely heavily on human effort for data annota-
tion. Although existing automated synthesis
paradigms have alleviated this constraint, they
still exhibit significant limitations in ensuring
adequate diversity and difficulty of synthesized
instructions. To address these challenges, we
propose SELF-FOVEATE, an innovative LLM-
driven method for instruction synthesis. This
approach introduces a "Micro-Scatter-Macro"
multi-level foveation methodology that effec-
tively guides the LLM to deeply excavate fine-
grained information embedded in unsupervised
text, thereby enhancing both the diversity and
difficulty of synthesized instructions. Compre-
hensive experiments across multiple unsuper-
vised corpora and diverse model architectures
validate the effectiveness and superiority of our
proposed method. We publicly release our data
and codes: https://github.com/Mubuky/Self-
Foveate

1 Introduction

Large language models (LLMs), such as GPT-4o
(OpenAI, 2024), Claude 3.5 Sonnet (Anthropic,
2024), and Llama 3.1 (Meta, 2024), have gar-
nered significant attention due to their exceptional
instruction-following capabilities (Zhou et al.,
2023b), with their continuously enhanced problem-
solving abilities (Cobbe et al., 2021; Dua et al.,
2019) being increasingly recognized. A criti-
cal component in training such models typically
involves fine-tuning with extensive supervised
question-answering instruction data (Wang et al.,
2023b). However, substantial challenges persist
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Foveate Details:
    QuantumX processor
    <AI capabilities, architecture>
    a leap comparable..supersonic jets.

Instruction    : Name the innovative pro-
cessor that combines AI capabilities with
tra-ditional computing power.
Response: QuantumX processor
Instruction    : Explain how the architec-
ture of the QuantumX processor integrates
AI capabilities with traditional computing
power.
Instruction    : How does the architecture
of the QuantumX achieve a speed leap
comparable to the transition from horse-
drawn carriages to supersonic jets?

       Context: The innovative QuantumX processor seamlessly
integrates AI capabilities with traditional computing power. Its
architecture allows for unprecedented data processing speeds—a
leap comparable to the transition from horse-drawn carriages to
supersonic jets.
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Using Foveate Details separately in
Reverse / Direct / Transcription synthesis
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n Instruction    : What is the QuantumX
processor compared to?
Instruction    : What is the main innovation
of the QuantumX processor?
Instruction    : What is the focus of the
QuantumX processor's innovation?

(b) Baseline Self-QA

(a) Self-Foveate

LLM

LLM

Instruction Evaluation: Difficult and Diverse

Instruction Evaluation: Simple and Monotonous

Figure 1: Illustration of (a) SELF-FOVEATE in con-
trast with (b) Baseline Self-QA. For SELF-FOVEATE,
the Multi-Level Foveation enables the LLM to extract
details (highlighted in distinct colors) of the text, subse-
quently synthesizing instructions with diversity and dif-
ficulty via distinct synthesis paradigms. In comparison,
Self-QA employs single-step generation that produces
instruction candidates with simplicity and monotony.

in constructing large-scale, high-quality super-
vised fine-tuning (SFT) data for instruction tuning
(Zhang et al., 2024). The prohibitive costs associ-
ated with human annotation (Wang et al., 2023a;
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Related Data w/o Human Correctness Diversity Difficulty
Work Utilization Annotation Guarantee Augment Augment

Self-Instruct (Wang et al., 2023a) Seed QA examples ✓
Self-Align (Sun et al., 2023) Seed QA examples ✓ ✓
Self-Chat (Xu et al., 2023) Dialogue ✓
Self-QA (Zhang and Yang, 2023) Unsupervised Knowledge ✓ ✓ ✓
LongForm (Köksal et al., 2024) Web dataset ✓ ✓ ✓
Humpback (Li et al., 2024b) Web dataset ✓ ✓
ISARA (Guo et al., 2024) Seed QA examples ✓ ✓ ✓
Wiki2023 (Jiang et al., 2024) Unsupervised Text ✓ ✓
SELF-FOVEATE (Ours) Unsupervised Text ✓ ✓ ✓ ✓

Table 1: A comparative analysis of various task generation methodologies or frameworks. The gray checkmark
symbol denotes that the work may partially accomplish specific objectives (though not comprehensively). The red
cross marker indicates either the work’s failure to achieve the stated objective or absence of explicit documentation
regarding this goal.

Sun et al., 2023; Xu et al., 2023), coupled with diffi-
culties in ensuring data diversity and quality control
(Ge et al., 2024), continue to impede technological
advancements. Given the demonstrated excellence
and ongoing improvements in LLMs’ instruction-
following and generative capabilities, researchers
are actively exploring effective methodologies to
leverage these models for synthetic data generation
(Wang et al., 2023a; Zhang and Yang, 2023; Nayak
et al., 2024b; Wu et al., 2024). The primary ob-
jectives are to produce high-quality, cost-efficient
datasets that reduce reliance on expensive human
annotation (Ling et al., 2024), while enhancing
the diversity and difficulty of automatically synthe-
sized instructions to improve the performance of
fine-tuned models on downstream tasks.

A promising recent paradigm in synthetic in-
struction synthesis is unsupervised text-based
instruction synthesis. The advantages of this
paradigm become particularly pronounced when
handling massive unsupervised text corpora – a
ubiquitous resource containing rich world knowl-
edge and linguistic patterns. By leveraging LLMs’
intrinsic capabilities in contextual understanding
and logical reasoning, this paradigm eliminates the
need for manual annotation while confining the
scope of instruction synthesis to the given unsuper-
vised textual materials. The pioneering work by
Zhang and Yang (2023) has demonstrated the feasi-
bility of extracting instructions from unsupervised
textual data.

Despite advancements in synthesizing instruc-
tion data from unsupervised text and the proposal
of automated LLM-based methods like Self-QA
(Zhang and Yang, 2023) to mitigate these issues

– approaches that have significantly optimized the
data generation pipeline while reducing human la-
bor costs – as shown in Table 1, the following
challenges remain unresolved: (1) Diversity of
Instructions: While existing frameworks continu-
ously refine data generation strategies and enhance
post-synthesis filtering for instruction data, limita-
tions persist in the diversity of synthesized instruc-
tions. Models trained on such synthetic datasets
frequently exhibit insufficient generalization ca-
pabilities and may even suffer from performance
degradation. (2) Difficulty of Instructions: Cur-
rent synthesis methodologies generally lack em-
phasis on instruction complexity and depth. For
instance, Self-QA (Zhang and Yang, 2023) directly
acquires instructions through single-step genera-
tion without guaranteed difficulty levels (as illus-
trated in Figure 1). Synthesized instructions often
demonstrate simplistic structures and inadequate
comprehension of inter-entity relationships, fail-
ing to effectively stimulate models to produce nu-
anced responses. This deficiency becomes particu-
larly pronounced when handling complex queries
or generating contextually rich responses. The
absence of high-difficulty instruction design con-
strains model performance in real-world applica-
tions requiring advanced cognitive engagement and
problem-solving capabilities. This collective evi-
dence indicates that unsupervised text data still har-
bors substantial untapped potential for instruction
synthesis.

To address these challenges, we attempt to lever-
age unsupervised text itself, observing that textual
data inherently contains abundant detailed informa-
tion encompassing entities (e.g., QuantumX proces-
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sor), attributes, relations, and writing techniques –
such as the metaphorical comparison of “speed” to
“not just a luxury” in the statement “In the realm
of technology, speed is not just a luxury”, which
implicitly analogizes speed as a fundamental neces-
sity through subtle analogy, thereby emphasizing
its critical importance (as multi-color annotated in
Figure 1). This information remains underutilized
in existing methods like SELF-QA.

Motivated by these observations, this paper pro-
poses SELF-FOVEATE, a comprehensive LLM-
based methodology designed to automatically syn-
thesize instructions from unsupervised text. Di-
verging from prior research, as illustrated in Fig-
ure 1, SELF-FOVEATE introduces a “Micro-Scatter-
Macro” multi-level foveation methodology to com-
prehensively excavate detailed information from
raw text, subsequently synthesizing instructions
with enhanced diversity and difficulty through
three synthesis paradigms. Furthermore, SELF-
FOVEATE integrates a data regeneration module to
improve the fidelity and quality of instructions to
source text.

To summarize, the key contributions of this pa-
per are as follows:
▷ We focus on unsupervised text-based instruction

synthesis tasks, revealing limitations in existing
works regarding diversity and difficulty.

▷ We propose SELF-FOVEATE, a method that syn-
thesizes instructions with diversity and difficulty
through LLMs based on unsupervised text.

▷ We conducted extensive experiments to evalu-
ate SELF-FOVEATE, covering diversity and diffi-
culty analysis, downstream task capabilities, and
data scale trend analysis. The results demon-
strate SELF-FOVEATE’s superiority in unsuper-
vised text-based instruction synthesis and suggest
promising directions for future research.

2 Related Work

Instruction Tuning Multitask instruction fine-
tuning (Wei et al., 2022) of language models signif-
icantly enhances their ability to follow instructions
and generalize to new unseen tasks (Sanh et al.,
2022; Mishra et al., 2022; Chung et al., 2022; Long-
pre et al., 2023; Zhou et al., 2023a; Li et al., 2024b).
In our work, we utilize data from unsupervised text
synthesis to conduct instruction tuning, enabling
the model to better adapt to specific domain tasks.

Synthetic Data Generation LLMs have show-
cased remarkable capabilities in data synthesis

(Long et al., 2024), facilitating the creation of ex-
tensive synthetic datasets for pretraining and fine-
tuning, thereby progressively supplanting labor-
intensive manual data scraping and selection (Liu
et al., 2024), and mitigating the constraints that
data imposes on model capability growth (Villalo-
bos et al., 2024).

Distinct from earlier approaches centered on
traditional language models (Schick and Schütze,
2021), LLMs present enhanced potential for gen-
erating high-quality synthetic data across diverse
applications, including online translation (Oh et al.,
2023), named entity recognition (Xiao et al., 2023),
benchmark creation (Wang et al., 2024; Wei et al.,
2024), and data diversity enhancement (Dai et al.,
2023; Chung et al., 2023; Hong et al., 2024).

The concept of synthetic input-output pairs for
instruction tuning advances by requiring that the
data generated by LLMs be diverse, accurate, and
difficult, often leveraging LLMs on a set of seed
task demonstrations or user-provided unsupervised
text to create new synthetic tasks (Wang et al.,
2023a; Honovich et al., 2023; Zhang and Yang,
2023; Taori et al., 2023; Peng et al., 2023; Yuan
et al., 2024; Li et al., 2024a).

Our work advances the generation of synthetic
input-output pairs by developing a paradigm that
integrates multi-level foveation into the creation of
instruction tuning datasets, forming a comprehen-
sive framework without any human annotation.

3 SELF-FOVEATE

In this section, we will introduce the proposed
SELF-FOVEATE, denoted as F , a multi-level au-
tomated method for synthesizing instructions that
leverages only unsupervised text without the need
for human-annotated samples. SELF-FOVEATE

consists of three levels and a re-synthesis module.
Formally, consider an original unsupervised text set
D, the proposed method SELF-FOVEATE operates
by transforming each element di from D through
a multi-level synthesis path Fj . In practice, SELF-
FOVEATE is an operation applied independently to
each document di (di ∈ D). The final generated
dataset, Dgen, is accumulated from the data subsets
generated by all elements:

Dgen = F(D) =
∑

di∈D

∑

Fj∈F
Fj(di) (1)

During the synthesis process, the objectives of
SELF-FOVEATE emphasize maximizing the diver-
sity and difficulty of the generated instructions.
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Figure 2: The SELF-FOVEATE workflow is designed for instruction synthesis based on unsupervised text. SELF-
FOVEATE takes unsupervised text as input, extracts foveate elements, foveate groups, and foveate segments, then
synthesizes instruction tuning data through these extracted details.

To ensure optimal functionality, SELF-FOVEATE

incorporates three levels and one module as shown
in Figure 2:

▷ Micro-foveate Level: This level captures the
essential content within unsupervised text and
acquires instructions through reverse synthesis.
It plays a crucial role in maintaining the focus of
synthesized instructions on the significant infor-
mation in the text.

▷ Scatter-foveate Level: This level aims to com-
bine key information scattered throughout the
unsupervised text and uses direct synthesis to
generate instructions. It stimulates LLMs to syn-
thesize instructions that possess a profound un-
derstanding of the relationships between different
contents in the text.

▷ Macro-foveate Level: This level focuses on and
transcribes larger-grained information within the
text. It plays a key role in enhancing the instruc-
tions’ deep comprehension of the overall infor-
mation in the text.

▷ Re-synthesis Module: This module is used to
perform post-synthesis filtering on the generated
instructions, excluding outliers in the instruc-
tion synthesis process and conducting reference-
based re-synthesis for abnormally generated in-
structions to reduce information gaps in the in-
struction set and improve synthesis success rates.

3.1 Micro-foveate Level

General unsupervised text typically contains sev-
eral primary entity types, a greater number of sec-
ondary entity types, and attributes of all these entity
types. However, instruction sets directly synthe-
sized by teacher LLMs may struggle to intention-
ally and comprehensively cover all the important
content within such unsupervised text. This could
lead to the synthesized instruction sets missing crit-
ical information from the original text, thereby re-
sulting in weaker downstream model performance.
To address this, we employ the micro-foveate mech-
anism and reverse synthesis to ensure that these key
pieces of information are preserved in the synthe-
sized instruction sets. Attention to a broader range
of information enhances the diversity of the syn-
thesized instruction sets, while the exploration of
entity attributes also increases the difficulty.

Micro-foveate mechanism This mechanism
aims to guide the teacher LLM to synthesize in-
structions from a fine-grained perspective of the
unsupervised text. We introduce the concept of
“foveate elements”, which broadly encompass all
entities and their attributes within a given text. We
guide the large model to extract more foveate ele-
ments than needed and then select a certain number
of foveate elements with the highest cosine simi-
larity between the text and the embedding of each
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foveate element.

Reverse synthesis Based on the selected foveate
elements, we employ the reverse synthesis method
to generate instructions. Specifically, each foveate
element is treated as a potential answer to an in-
struction, guiding the teacher LLM to synthesize
instructions from the unsupervised text and then
re-synthesize the answers. Even though the foveate
elements can already serve as answers or parts of
answers, to enhance the fluency, completeness, and
accuracy of the answers, we choose to regenerate
the answers in the reverse synthesis step rather than
directly using the foveate elements as answers.

3.2 Scatter-foveate Level

Complete unsupervised texts often imply relation-
ships between different entities or attributes within
the text. However, instruction sets directly synthe-
sized by teacher large language models (LLMs)
may struggle to detect connections that require rea-
soning or deeper understanding in the text. This
could result in the instruction sets synthesized
by the teacher model missing deep-level informa-
tion from the text, thereby affecting downstream
model performance. To address this, we employ
the scatter-foveate mechanism and direct synthesis
method to ensure that these deep-level insights are
reflected in the synthesized instruction sets. Atten-
tion to the deeper, less obvious implicit information
enhances the diversity of the synthesized instruc-
tion sets, while insights into the relationships be-
tween entities or attributes increase the difficulty
of the instructions.

Scatter-foveate mechanism This mechanism
aims to guide the teacher LLM to synthesize in-
structions from a deeper perspective of the unsu-
pervised text. We extract foveate elements more
broadly from the text and randomly combine them
into a certain number of foveate groups based on
an empirical distribution.

Direct Synthesis Based on the formed foveate
groups, we synthesize instructions using the direct
synthesis method. The direct synthesis method
treats each element in the foveate group as an indis-
pensable part of the instruction to be synthesized,
actively guiding the teacher LLM to consider the
deep-level connections between different entities
or attributes and solidifying such reasoning-based
or deep-thinking connections in the synthesized in-
structions. After the instructions are synthesized,

the answers are regenerated based on the text.

3.3 Macro-foveate Level

Unsupervised texts often contain content requiring
focused attention, such as figurative devices and
rhetorical exaggerations. Notably, teacher large
language models (LLMs) may require additional
prompting to specifically emphasize the critical
information embedded within these writing tech-
niques. To capture information more comprehen-
sively from a global perspective, we employ the
macro-foveate mechanism and transcription synthe-
sis method to guide teacher LLMs in developing
a profound understanding of unsupervised texts,
ensuring effective extraction of key information
conveyed through literary devices.

Macro-foveate mechanism This mechanism
aims to guide teacher LLMs in comprehending
unsupervised texts from a holistic perspective. We
specifically highlight and extract text segments em-
ploying writing techniques – including metaphor,
hyperbole, contrastive foil, rhetorical questioning,
and citation – which are extracted as foveate seg-
ments.

Transcription synthesis Based on the identified
writing technique segments, we employ transcrip-
tion synthesis to convert each foveate segment into
an instructional format. This process transforms
declarative foveate segments into interrogative or
imperative forms. Subsequently, corresponding an-
swers are synthesized according to the content of
the unsupervised text.

3.4 Re-synthesis Module

Due to limitations such as the capabilities of the
teacher LLM, not all instructions in a directly syn-
thesized instruction set may be answerable by the
referenced unsupervised text. To ensure the synthe-
sized instructions remain faithful to the referenced
unsupervised text, we employ a re-synthesis mod-
ule to repeatedly re-synthesize these failed instruc-
tions over multiple iterations, aiming to generate
instructions that can be fully answered based on
the referenced unsupervised text.

Single Sample Reference-synthesis During re-
synthesis, we process only one failed instruction
at a time and randomly sample a subset of suc-
cessfully synthesized instructions as reference ex-
amples for the teacher LLM in each iteration. By
providing the teacher LLM with different batches
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of reference samples during each re-synthesis at-
tempt, we enhance the success rate of re-synthesis.

Hyperparameter Configuration The outputs of
large language models (LLMs) are significantly
influenced by hyperparameters such as tempera-
ture, top-p, and frequency penalty. To improve re-
synthesis success rates, we meticulously calibrated
these hyperparameters to define a high-creativity
mode, enabling the teacher LLM to synthesize in-
structions more creatively based on reference sam-
ples.

4 Experiment

In this section, our experiments focus on three
critical research questions: (Q1) How effective is
SELF-FOVEATE in enhancing instruction diversity?
(Q2) How effective is SELF-FOVEATE in enhanc-
ing instruction difficulty? (Q3) How effective is
SELF-FOVEATE in improving the model’s problem-
solving capabilities during instruction fine-tuning?

4.1 Experimental Setup

Datasets We employ three independent datasets,
including the training set of the FilmWiki dataset
containing 2,385 unsupervised texts with corre-
sponding question-answer pairs. Additionally, we
sample two widely-used benchmark QA datasets
from the MRQA 2019 shared task (Fisch et al.,
2019): SQuAD (Rajpurkar et al., 2016) (following
Bonito (Nayak et al., 2024a)) and HotpotQA (Yang
et al., 2018). To maintain comparable data scale
and computational costs with the FilmWiki dataset,
we extract 2,500 unsupervised texts with corre-
sponding QA pairs from each dataset’s training
split as substitutes for the complete collections. Fur-
ther implementation details are provided in Table 2.

Baselines We consider three key baselines: zero-
shot, Self-QA, Bonito and Wiki2023. For the zero-
shot baseline, we prompt models for evaluation
without leveraging any unsupervised texts from the

Dataset
Source

# Test Examples
Question Context

SQuAD Crowdsourced Wikipedia 11639

HotpotQA Crowdsourced Wikipedia 2500

FilmWiki LLM Wikipedia 7398

Table 2: Statistics for the evaluation datasets from our
experiments.

Datasets Methods Diversity Metrics

SelfBLEU Div. Embedding Div.

SQuAD

Self-QA 0.593 0.838
Bonito 0.494 0.838

Wiki2023 0.550 0.842
SELF-FOVEATE 0.665 0.851

Test Questions 0.695 0.840

HotpotQA

Self-QA 0.463 0.823
Bonito 0.371 0.769

Wiki2023 0.554 0.822
SELF-FOVEATE 0.607 0.835

Test Questions 0.634 0.786

FilmWiki

Self-QA 0.406 0.687
Bonito 0.197 0.677

Wiki2023 0.341 0.664
SELF-FOVEATE 0.563 0.706

Test Questions 0.316 0.618

Table 3: Comparison of diversity metrics across differ-
ent methods and datasets. The table presents SelfBLEU
Diversity (SelfBLEU Div.) and Embedding Diversity
(Embedding Div.) scores for various methods on the
datasets. The diversity of the test questions from each
dataset is also provided as a reference.

target task (None). The Self-QA baseline employs
an unsupervised knowledge-guided method for ex-
tracting instruction-question-answer triples (Self-
QA) (Zhang and Yang, 2023). The Bonito baseline
utilizes a 7B-sized specialized model to generate
various types of questions from unsupervised text.
We configure it to produce questions of the “ques-
tion answering without choices” type and obtain
a sufficient number of samples through multiple
sampling iterations (Bonito). The Wiki2023 base-
line implements a text-based QA pair extraction
methodology (Wiki2023). All baselines use identi-
cal unsupervised texts as our method, as specified
in Section 4.1.

Instruction Synthesis As described in Section
3, we process unsupervised texts through SELF-
FOVEATE using GPT-4o-mini and DeepSeek-V3
to generate instructional data. We implement two
distinct hyperparameter configurations emphasiz-
ing high stability and high creativity, respectively,
with detailed specifications in Appendix B.

Base Models We select three state-of-the-art
open-source foundation models as our base mod-
els prior to instruction tuning: Meta-Llama-3.1-
8B (Meta, 2024), Qwen2.5-7B (Team, 2024), and
Gemma-2-9B. These decoder-only language mod-
els employ next-word prediction objectives and
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Model Settings
GPT-4o mini DeepSeek-V3

SQuAD HotpotQA FilmWiki SQuAD HotpotQA FilmWiki

Rec. Acc. Rec. Acc. Rec. Acc. Rec. Acc. Rec. Acc. Rec. Acc.

Llama-3.1-8B

None* 0.309 0.202 0.244 0.160 0.212 0.082 0.309 0.202 0.244 0.160 0.212 0.082
Self-QA 0.367 0.384 0.372 0.358 0.328 0.201 0.389 0.412 0.399 0.378 0.370 0.239
Wiki2023 0.327 0.361 0.338 0.322 0.333 0.235 0.342 0.370 0.340 0.328 0.349 0.244
Bonito* 0.386 0.405 0.360 0.372 0.219 0.153 0.386 0.405 0.360 0.372 0.219 0.153
SELF-FOVEATE 0.484 0.490 0.507 0.486 0.512 0.367 0.481 0.491 0.525 0.501 0.548 0.397

Qwen2.5-7B

None* 0.251 0.300 0.266 0.234 0.139 0.032 0.251 0.300 0.266 0.234 0.139 0.032
Self-QA 0.249 0.232 0.276 0.246 0.206 0.082 0.119 0.125 0.102 0.106 0.111 0.056
Wiki2023 0.215 0.221 0.135 0.112 0.192 0.093 0.170 0.083 0.197 0.203 0.202 0.136
Bonito* 0.143 0.109 0.212 0.199 0.168 0.098 0.143 0.109 0.212 0.199 0.168 0.098
SELF-FOVEATE 0.408 0.414 0.372 0.329 0.283 0.140 0.388 0.389 0.342 0.331 0.261 0.140

Gemma-2-9B

None* 0.224 0.121 0.175 0.078 0.211 0.099 0.224 0.121 0.175 0.078 0.221 0.099
Self-QA 0.383 0.409 0.408 0.389 0.429 0.315 0.402 0.435 0.424 0.408 0.509 0.386
Wiki2023 0.336 0.378 0.361 0.352 0.478 0.384 0.364 0.399 0.373 0.365 0.494 0.401
Bonito* 0.411 0.457 0.366 0.373 0.255 0.196 0.411 0.457 0.366 0.373 0.255 0.196
SELF-FOVEATE 0.507 0.525 0.537 0.520 0.672 0.528 0.499 0.514 0.552 0.525 0.697 0.581

Table 4: Recall (Rec.) and LLM Accuracy (Acc.) on downstream tasks: SELF-FOVEATE vs. baselines. Results
include models fine-tuned with instructions synthesized by GPT-4o mini or DeepSeek-V3, as well as reference non-
instruction-tuned models (None). * Indicates that the base model was not fine-tuned using instructions synthesized
by GPT-4o mini or DeepSeek-V3.

were pretrained on trillions of tokens without any
instruction-based fine-tuning.

4.2 Diversity Discussion

To explicitly evaluate the diversity of the instruc-
tions in a metric-driven manner, we follow es-
tablished practices recommended in Zhu et al.
(2018); Perez et al. (2022); Tevet and Berant (2021)
and employ two metrics: SelfBLEU score and
Sentence-BERT embedding distances (Reimers
and Gurevych, 2019a). These metrics capture dif-
ferent facets of diversity. SelfBLEU measures di-
versity in the form of text, while embedding dis-
tances measure diversity in the semantics of text.
For SelfBLEU scores, we compute the average Self-
BLEU scores using n-grams for n ∈ {2, 3, 4, 5},
following the approach suggested by Zhu et al.
(2018). We use the implementation of the Self-
BLEU metric in Alihosseini et al. (2019). Further
details are available in Appendix C.

Table 3 demonstrates that SELF-FOVEATE-
generated instructions achieve substantial diversity
improvements in both textual and semantic dimen-
sions, attaining or even surpassing the diversity
level of crowdsourced test questions through a low-
cost automated process.

4.3 Difficulty Discussion

To investigate the difficulty of the generated instruc-
tions, we designed prompts and employed GPT-
4o to conduct a rigorous head-to-head compari-
son between the instructions generated by SELF-
FOVEATE and those generated by baseline methods.
Specifically, for each unsupervised text in each data
subset, we used two contrasting methods to gener-
ate an equal number of instructions. We then pro-
vided GPT-4o with a set of instructions generated
by both methods under the same unsupervised text,
ensuring that the instruction sets were anonymous
and their relative positions were randomized. Sub-
sequently, we recorded GPT-4o’s judgments and
calculated the win rate for SELF-FOVEATE. The
results of the head-to-head comparison, as shown
in Table 5, demonstrate the outstanding difficulty
of the instructions synthesized by SELF-FOVEATE.
Further details can be found in Appendix D.

4.4 Problem-solving Capabilities

To evaluate the impact of instruction-tuning
datasets on model performance in downstream
tasks, we fine-tuned open-source models and as-
sessed their performance on in-distribution prob-
lems. Table 4 illustrates the effects of instruction
sets synthesized by two models (GPT-4o mini and
DeepSeek-V3) during fine-tuning on open-source
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Figure 3: Impact of instruction set scale from SELF-FOVEATE and baselines on model fine-tuning performance.

model performance, with equal quantities of in-
structions per unsupervised text. As answers in test
problems often consist of phrase-level or sentence-
fragment extractions from source texts while large
language models (LLMs) tend to generate more
comprehensive responses, we selected both recall
and LLM-evaluated accuracy as evaluation met-
rics. Here, higher recall indicates a greater proba-
bility of generated answers containing correct re-
sponses, while higher LLM-evaluated accuracy re-
flects stronger consistency between answers gener-
ated by DeepSeek-V3 and ground truth labels. To
control potential confounding effects from the num-
ber of instructions synthesized per unsupervised
text and examine the agreement between these two
metrics, we investigated the influence of instruction
set scale synthesized by SELF-FOVEATE and base-
line methods on model fine-tuning performance
using the HotpotQA dataset, as shown in Figure 3.
Additional details regarding downstream task eval-
uations are provided in Appendix E.

Dataset Baseline
SELF-FOVEATE WR.

Win Lose

SQuAD
Self-QA 70.64% 29.36%
Wiki2023 80.83% 19.17%
Bonito 99.96% 00.04%

HotpotQA
Self-QA 89.52% 10.48%
Wiki2023 91.17% 08.83%
Bonito 100.00% 00.00%

FilmWiki
Self-QA 85.12% 14.88%
Wiki2023 95.08% 04.92%
Bonito 96.31% 03.69%

Table 5: Head-to-Head Comparison of Instruction Dif-
ficulty for SELF-FOVEATE Against Baselines Through
Win Rates (WR.) Across Datasets.

Table 4 demonstrates that two state-of-the-
art (SOTA) models achieve optimal performance
across all downstream tasks in both metrics when
using instructions synthesized via SELF-FOVEATE.
Notably, during the fine-tuning process of the
Qwen2.5-7B model, we observed that instruction
data synthesized by baseline methods may lead to
performance degradation compared to the pre-fine-
tuned model, further demonstrating the advance-
ment of the SELF-FOVEATE method in instruction
synthesis. Our analysis presented in Figure 3 re-
veals that as the number of instructions synthesized
per unsupervised text by SELF-FOVEATE increases,
the performance of downstream fine-tuning tasks
improves significantly, with an expanding perfor-
mance gap compared to other baseline methods.
Figure 3 also visually demonstrates the consistency
between recall and LLM-evaluated accuracy, vali-
dating the appropriateness of these two metric se-
lections.

4.5 Ablation Studies

To validate the effectiveness and necessity of each
component in SELF-FOVEATE, we conduct com-
prehensive ablation studies focusing on two key
aspects: (1) the contribution of each core compo-
nent in the multi-level foveation framework, and (2)
the impact of the answer regeneration mechanism
in reverse synthesis.

4.5.1 Component-wise Analysis

We evaluate the necessity of each core component
by systematically removing individual modules
from the complete SELF-FOVEATE framework.

Table 6 presents the ablation results on the
SQuAD dataset using Llama-3.1-8B as the base
model. The results demonstrate that each compo-
nent contributes significantly to the overall perfor-
mance.
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Setting Recall LLM Acc.

w/o Micro-Foveate 0.283 0.277
w/o Scatter-Foveate 0.274 0.260
w/o Macro-Foveate 0.344 0.339

SELF-FOVEATE (Full) 0.484 0.490

Table 6: Ablation study results showing the contribu-
tion of each core component in SELF-FOVEATE on the
SQuAD dataset with Llama-3.1-8B.

The removal of any single component leads to
performance degradation, validating the comple-
mentary necessity of all three core components.

4.5.2 Answer Regeneration Analysis

In our reverse synthesis paradigm, although foveate
elements (e.g., "QuantumX processor") can directly
serve as answers, we regenerate answers to enhance
fluency, completeness, and semantic coherence. To
validate this design choice, we compare the qual-
ity of answers with and without the regeneration
mechanism.

Table 7 presents the comparative analysis on
the SQuAD dataset, evaluating both fluency and
completeness of generated answers through GPT-
4o evaluation. The results demonstrate significant
improvements in both aspects when employing an-
swer regeneration.

Setting High (%) Medium (%) Low (%)

Fluency
w/o Regeneration 64.9 19.5 15.6
Reverse Synthesis 93.0 6.8 0.2

Completeness
w/o Regeneration 36.7 27.5 35.7
Reverse Synthesis 76.6 19.7 3.7

Table 7: Comparison of answer quality with and with-
out regeneration mechanism in reverse synthesis on the
SQuAD dataset. Fluency and completeness are evalu-
ated on a three-point scale (High/Medium/Low).

The results reveal that answer regeneration dra-
matically improves both fluency and completeness.
This validates our methodological choice to main-
tain consistency across all synthesis paradigms by
generating contextually appropriate and semanti-
cally coherent answers from the source text, rather
than directly using extracted foveate elements.

5 Conclusion

In this paper, we proposed SELF-FOVEATE, an
unsupervised text-based instruction generation
method powered by LLMs, which further explores
key challenges in diversity and difficulty. Its in-
novative multi-level foveation and Re-synthesis
Module ensure the acquisition of high-quality, text-
faithful instructions from unsupervised text. Ex-
tensive experiments, including performance eval-
uations on downstream tasks, demonstrate the ef-
fectiveness of SELF-FOVEATE. Our study has ob-
tained many insightful findings, laying the founda-
tion for future research in areas such as instruction
difficulty assessment.
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Limitations

Although SELF-FOVEATE provides significant im-
provements in generating diverse and difficulty-
oriented fine-tuning instruction data based on un-
supervised text data, several limitations must be
acknowledged. First, the computational cost of
processing large-scale unsupervised text data us-
ing closed-source SOTA large language models
(LLMs) remains substantial. Ensuring data qual-
ity requires multi-step reasoning and iterative pro-
cessing on unsupervised text data, which further
escalates computational demands. Second, al-
though SELF-FOVEATE aims to fully synthesize
data from unsupervised text and incorporates verifi-
cation mechanisms, the inherent tendency of LLMs
to hallucinate or generate erroneous information
persists as a challenge. While precise prompting
strategies and higher-quality unsupervised text data
can mitigate these inaccuracies, they cannot be en-
tirely eliminated.

Ethical Consideration

We state that any research or application arising
from this study is strictly authorized solely for re-
search purposes. In our work, any unsupervised
text datasets used are from public sources and do
not contain any private information. In this pa-
per, we have fully presented the prompts used by
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SELF-FOVEATE in the Appendix. All synthesized
instructions rely on the provided unsupervised text
and are inspected by relevant modules. Therefore,
our method strives to minimize potential safety
and ethical risks as much as possible. However,
during the process of synthesizing fine-tuning in-
struction data, maliciously provided unsupervised
text data can lead the model to produce harmful or
inappropriate outputs, which is a shared problem.
Additionally, potential unfairness and discrimina-
tion present in the unsupervised text data might be
amplified by LLMs during the instruction gener-
ation process. Ensuring the quality of generated
fine-tuning instruction data in a safe and highly con-
trollable manner is crucial. The application of these
techniques should be guided by ethical considera-
tions, with safeguards in place to prevent misuse
and reduce the likelihood of producing harmful
outcomes.
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A Datasets

A.1 Dataset Details

This section provides comprehensive details regard-
ing the datasets utilized in this study.

SQuAD(Rajpurkar et al., 2016) This Dataset
serves as a benchmark for extractive question an-
swering, containing over 100,000 human-generated
question-answer pairs anchored to Wikipedia pas-
sages. In our work, we utilize this dataset from the
MRQA 2019 shared task(Fisch et al., 2019). Con-
sidering computational costs, we employ 2,500 ran-
domly selected articles or contexts from the train-
ing set.

HotpotQA(Yang et al., 2018) The original pur-
pose of proposing this dataset was to challenge
models with multi-hop reasoning across 113k
Wikipedia-based QA pairs requiring synthesis of
information from multiple documents. In our work,
we utilize this dataset from the MRQA 2019 shared
task(Fisch et al., 2019). Considering computational
costs, we employ 2,500 randomly selected articles
or contexts from the training set.

FilmWiki(Saito et al., 2024) This dataset was
initially constructed to investigate a phenomenon
called the perplexity curse, with all texts sourced
from Wikipedia. Our study employs its film-
themed subset containing the complete collection
of 2,385 unsupervised texts and their correspond-
ing questions.

A.2 Usage of Datasets

During the synthesis process, we use the articles
or contexts from the dataset (excluding the ques-
tions) and generate instructions through the SELF-
FOVEATE. In the evaluation of problem-solving
capabilities, we assess the fine-tuned models using
the corresponding questions in the dataset.

B Instruction Synthesis

Taking into account both performance and API
costs, and to eliminate potential biases in experi-
mental results caused by specific teacher models
(such as prompt hacking), we employ two models,
GPT-4o mini(gpt-4o-mini-2024-07-18)(OpenAI,
2024) and DeepSeek-V3(DeepSeek-AI, 2024), to
generate instructions from unsupervised text us-
ing the same methodology and sampling hyperpa-
rameters. Detailed hyperparameters are provided
in Table 8, where, as described in Section 3, the
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normal mode is utilized for the initial foveate syn-
thesis, and the high-creativity mode is adopted for
re-synthesis.

Hyperparameters Values

Normal Mode
frequency_penalty 0.5
max_completion_tokens None
presence_penalty 0
temperature 0.5
top_p 1.0

High-creativity Mode
frequency_penalty 0.5
max_completion_tokens None
presence_penalty 0
temperature 1.2
top_p 1.0

Table 8: Hyperparameters of Synthetic Task Generation.

C Diversity Experiment

Mathematically, we define the diversity metrics
as follows (’D’ denotes ’Diversity’, ’SB’ denotes
’SelfBLEU’, and ’EB’ denotes ’Embedding’):

DSB = 1− 1

|Xτ |
∑

xi∈Xτ

5∑

n=2

SelfBLEUXτ (xi, n)

(2)

DEB = 1− 1

2|Xτ |
∑

xi∈Xτ

∑

xj∈Xτ

ϕ(xi) · ϕ(xj)
∥ϕ(xi)∥2∥ϕ(xj)∥2

(3)

For computing sentence embeddings, we employ
sentence-transformers/paraphrase-multilingual-
mpnet-base-v2(Reimers and Gurevych, 2019b),
which maps sentences to a 768-dimensional
dense vector space. Compared to other sentence
embedding transformation models, it offers
a balanced mapping dimension and accuracy,
enabling the computation of cosine similarity
matrices at an acceptable computational cost while
obtaining relatively accurate diversity evaluation
metrics.

D Difficulty Head-to-Head Experiment

We prompt GPT-4o (gpt-4o-2024-08-06)(OpenAI,
2024) to determine which method-synthesized in-
struction set is more challenging. The prompts are
shown below.

Difficulty Head-to-Head Experiment
System Prompt

Please compare two sets of instructions/questions
for a given content to determine which set is more
difficult for a language model to generate coherent
and accurate responses. A set of instructions is
considered more difficult if it requires:
1. More complex reasoning or multi-step analysis
2. Integration of multiple concepts or contexts
3. Explanation of nuanced relationships or processes
4. Handling of ambiguous or less-documented
information
5. Synthesis of information from diverse sources or
time periods

Please respond with ’1’ if the first set of in-
structions is more difficult, or ’2’ if the second set of
instructions is more difficult.
Please respond with the number only, no other text
or characters.

Difficulty Head-to-Head Experiment
User Prompt

Content: {unsupervised text}
Instruction Set 1: {instruction set a}
Instruction Set 2: {instruction set b}

The hyperparameters set during sampling are
listed in Table 9.

Hyperparameters Values

frequency_penalty 0.0
max_completion_tokens 5
presence_penalty 0
temperature 0.5
top_p 1.0

Table 9: Hyperparameters of Difficulty Head-to-Head
Experiment.

E Downstream Experiment

E.1 Software and Hardware Details

The implementation leverages the LLaMA-Factory
framework (Zheng et al., 2024) with computa-
tional optimizations from FlashAttention2 (Dao
et al., 2022; Dao, 2024) and Unsloth libraries
(Daniel Han and team, 2023). For training, we em-
ploy NVIDIA A100, A800, and H800 GPUs based
on availability within our computational cluster.
The entire work required approximately 110 GPU
hours.
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E.2 Hyperparameters

The hyperparameters and technical configurations
for the instruction tuning process are documented
in Table 10.

Hyperparameters Values

cutoff_len 2048
learning_rate 0.0001
num_train_epochs 5.0
effective_batch_size 16
lr_scheduler_type cosine
max_grad_norm 1.0
warmup_steps 0
optim adamw_torch
quantization_bit 4
quantization_method bitsandbytes
lora_rank 8
lora_alpha 16
lora_dropout 0

Table 10: Hyperparameters of Instruction Tuning with
Q-LoRA Quantization.

E.3 LLM Accuary Evaluation

LLM Accurary Evaluation
System Prompt

You are a fair judge. Your task is to determine if
the generated answer correctly answers the question,
even if it contains additional explanations. Rules:
1. The generated answer is correct if it contains the
key information from the ground truth
2. Additional explanations or context in the generated
answer should not make it incorrect
3. Only respond with ’Correct’ or ’Incorrect’

LLM Accurary Evaluation
User Prompt

Compare the following answers:
Question: {question}
Ground Truth Answer: {ground_truth}
Generated Answer: {generated}

Is the generated answer correct, regardless of
any additional explanation? Respond only with
’Correct’ or ’Incorrect’.

F Answer Regeneration Evaluation

This section provides detailed documentation of the
evaluation methodology used in the ablation study
for answer regeneration analysis (Section 4.5). To
assess the quality of answers generated with and

without the regeneration mechanism, we employed
GPT-4o (gpt-4o-2024-08-06) to evaluate fluency
and completeness on a three-point scale.

F.1 Evaluation Prompt
The following system prompt was used to evaluate
question-answer pairs:

Answer Regeneration Evaluation
System Prompt

Please evaluate the given question and answer pair
based on two criteria:

1. Fluency: How well does the answer flow
and connect with the question?

- High: The answer naturally follows from the
question

- Medium: The connection is somewhat clear but
could be improved

- Low: The answer feels disconnected from the
question

2. Completeness: How thoroughly does the
answer address the question?

- High: The answer fully addresses all aspects of
the question

- Medium: The answer covers most aspects but
misses some points

- Low: The answer only partially addresses the
question

Please respond with a JSON object in the fol-
lowing format:
{

"fluency": "high|medium|low",
"completeness": "high|medium|low"

}

Do not include any other text or explanation.

F.2 Evaluation Hyperparameters
The hyperparameters used for the answer regenera-
tion evaluation are provided in Table 11.

Hyperparameters Values

frequency_penalty 0.0
max_completion_tokens 50
presence_penalty 0
temperature 0.2
top_p 1.0

Table 11: Hyperparameters for Answer Regeneration
Evaluation.

G Use of AI Assistants

In this study, we utilized AI-powered tools, includ-
ing ChatGPT and Grammarly, to enhance the lin-
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guistic accuracy of our manuscript through spell-
checking and minor grammatical corrections. Addi-
tionally, the codebase was developed using Cursor
to improve coding efficiency and accuracy.
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