
Findings of the Association for Computational Linguistics: ACL 2025, pages 24578–24596
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Iterative Repair with Weak Verifiers
for Few-shot Transfer in KBQA with Unanswerability

Riya Sawhney‡,§, Samrat Yadav‡, Indrajit Bhattacharya†, Mausam‡
‡Indian Institute of Technology, Delhi, §Graviton Research Capital, †KnowDis AI

riya.sawhney@outlook.com, samratya23@gmail.com, indrajitb@gmail.com, mausam@cse.iitd.ac.in

Abstract

Real-world applications of KBQA require mod-
els to detect different types of unanswerable
questions with a limited volume of in-domain
labeled training data. We propose the novel
task of few-shot transfer for KBQA with unan-
swerable questions. The state-of-the-art KBQA
few-shot transfer model (FuSIC-KBQA) uses
an iterative repair strategy that assumes that
all questions are answerable. As a remedy, we
present FUn-FuSIC – a novel solution for our
task that extends FuSIC-KBQA with Feedback
for Unanswerability (FUn), which is an itera-
tive repair strategy for answerable as well as
unanswerable questions. FUn uses feedback
from a suite of strong and weak verifiers, and
an adaptation of self-consistency for unanswer-
ability for assessing answerability of questions.
Our experiments show that FUn-FuSIC signifi-
cantly outperforms suitable adaptations of mul-
tiple LLM-based and supervised SoTA models
on our task, while establishing a new SoTA
performance for answerable few-shot transfer
as well. We have made datasets and other re-
sources publicly available1

1 Introduction

The semantic parsing formulation of the Knowl-
edge Base Question Answering (KBQA) task takes
as input a Knowledge Base (KB) and a natural
language question, and outputs a logical form (or
program) that produces the answer upon execu-
tion over the KB. KBQA has important real-world
applications, which require KBQA systems to be
low-resource (i.e., trained only with a few task-
specific labeled examples), and robust, specifically
able to identify questions that cannot be answered
from the KB.

Traditional supervised models (e.g., (Ye et al.,
2022; Shu et al., 2022; Gu et al., 2023)) and even
recent LLM few-shot in-context learning (FS-ICL)

1https://github.com/dair-iitd/FUn-FuSIC

architectures (Li et al., 2023; Nie et al., 2024)
for KBQA fall short in both aspects. Limited re-
cent work has addressed these independently – in-
domain methods for KBQA with unanswerability
trained with large labeled data (Patidar et al., 2023;
Faldu et al., 2024), and FuSIC-KBQA for few-shot
transfer assuming answerable questions (Patidar
et al., 2024). No existing single KBQA model si-
multaneously addresses both desiderata.

In response, we propose the novel task of few-
shot transfer learning for KBQA with unanswer-
ability. Specifically, the target domain has only
a few labeled examples of answerable and unan-
swerable questions, while the source domain has
thousands of labeled examples, but containing only
answerable questions.

For few-shot KBQA transfer, FuSIC-KBQA
uses a retrieve-then-generate framework: retrieval
of relevant schema and KB snippets followed by
an LLM-based generation and a subsequent iter-
ative execution-error-guided repair. Specifically,
multiple feedback-guided repair iterations are exe-
cuted, checking emptiness of answers obtained by
executing the generated program as indication of
correctness, until a non-empty answer is obtained.
This naturally fails when questions are allowed to
be unanswerable.

A simple-fix for addressing Unanswerability
(FuSIC-KBQA-U) is to drop the inappropriate re-
pair step, and modify the LLM prompt to accommo-
date unanswerable questions, along with relevant
in-context exemplars. Unlike in studies for unan-
swerability in general QA (Slobodkin et al., 2023),
we found that FuSIC-KBQA-U mostly generates
incorrect logical forms for unanswerable questions.

As a remedy, we design a novel solution: FUn-
FuSIC (Feedback for Unanswerability in FuSIC-
KBQA). The key idea is to modify iterative repair,
which earlier relied on a single strong verifier for
the logical form’s incorrectness, to rely on a suite
of strong and weak verifiers, where strong veri-

24578

https://github.com/dair-iitd/FUn-FuSIC

fiers identify certain errors, whereas weak verifiers
identify potential errors in the current logical form.

FUn-FuSIC’s verifiers consider both the logical
form and the answer. For answers, non-emptiness
check is now a weak verifier, given potentially
unanswerable questions. For logical forms, we use
strong verifiers to identify obvious syntactic and
semantic errors. We also propose a novel verifier in-
volving a 3-component LLM-based pipeline: non-
equivalence of the original question and the back-
translation of the logical form. This verifier is also
weak, due to potential errors in back-translation as
well as in equivalence classification. Using such
iterative strong and weak verification based repair,
FUn-FuSIC constructs a set of candidate logical
forms. For selecting the consensus logical form
from this set, using the majority answer as in self-
consistency (Wang et al., 2023) breaks down in
the face of unanswerability. We introduce self-
consistency for unanswerability, which assesses
the likelihood of the majority answer, empty or
otherwise, to select the consensus logical form.

Since no datasets exist for our novel task, we
create two new datasets for KBQA transfer with
unanswerable questions. Our experiments show
that FUn-FuSIC comprehensively outperforms dif-
ferent categories of SoTA models suitably adapted
for this task, including LLM-based and more tradi-
tional models. We further find that iterative repair
of logical forms using weak verifiers holds promise
for even for KBQA with only answerable ques-
tions. Using experiments over benchmark datasets
for this task, we show that the restriction of FUn-
FuSIC for the answerable setting improves upon
the SoTA model for the task.

In summary, our specific contributions are as
follows. (a) We propose the problem of few-shot
transfer for KBQA with unanswerability. (b) We
present FUn-FuSIC that uses iterative repair with
error feedback from a diverse suite of strong and
weak verifiers. (c) We create new datasets for the
proposed task, which we make public. (d) We show
that FUn-FuSIC outperforms adaptations of SoTA
KBQA models for this new task. (e) We also show
that even for answerable-only KBQA, FUn-FuSIC
outperforms the corresponding SoTA model.

2 Related Work

In-domain KBQA using supervised models (Sax-
ena et al., 2022; Zhang et al., 2022; Mitra et al.,
2022; Wang et al., 2022; Das et al., 2022; Ye et al.,

2022; Chen et al., 2021; Das et al., 2021; Shu et al.,
2022; Gu et al., 2023) and using LLM few-shot
approaches (Li et al., 2023; Nie et al., 2024; Shu
and Yu, 2024) is well explored in literature. These
use high volumes of labeled data, either for training
or selecting the most relevant few shot exemplars.

For in-domain KBQA, unanswerability has re-
cently been studied (Patidar et al., 2023; Faldu
et al., 2024). Patidar et al. (2023) create the
GrailQAbility dataset with different categories of
unanswerability, and show the inadequacy of su-
perficial adaptations of answerable-only KBQA
models. RetinaQA (Faldu et al., 2024) is the SoTA
model for KBQA unanswerability. However, this
also requires large volumes of training data.

For KBQA transfer (Cao et al., 2022; Ravis-
hankar et al., 2022), low-resource was originally
not a focus. More recently, few-shot transfer for
KBQA has been addressed by FuSIC-KBQA (Pati-
dar et al., 2024). FuSIC-KBQA uses a retrieve-
then-generate framework with an LLM-based gen-
eration stage with iterative error feedback based
repair. However, this formulation assumes answer-
ability of all questions.

Simple LLM prompting techniques have been
used to address unanswerability outside of
KBQA (Slobodkin et al., 2023), but without any
notion of feedback or iterative repair. Other ap-
proaches (Shinn et al., 2023; Chen et al., 2023b)
use execution based refinement for program gener-
ation but without any notion of unanswerability.

FUn’s iterative repair idea may be useful in other
natural language to program generation tasks where
non-existence of a program with the required spec-
ification has not been studied to the best of our
knowledge, such as NL-to-SQL (Dong et al., 2023;
Pourreza and Rafiei, 2023) and program self-repair
using LLMs (Olausson et al., 2024; Madaan et al.,
2023; Grattafiori et al., 2024).

3 Background & Problem Definition

A Knowledge Base (KB) G consists of a schema
and data. The schema consists of entity types (or
classes) T and binary relations R defined over
pairs of types. The data consists of entities E
as instances of types T , and triples or facts F ⊆
E×R×E. Given a target KB Gt and a natural lan-
guage question qt, the basic KBQA task is to gen-
erate a structured query or logical form lt (in a KB
query language, such as SPARQL), which when
executed over Gt returns an answer At (At ⊂ E

24579

Figure 1: Feedback with Unanswerability (FUn) and self consistency for Unanswerability (scUn) for a question
when executed over different KBs with ≤ 4 iterations. The question is answerable for KB3, but unanswerable for
KB1 (schema incompleteness) and KB2 (data incompleteness). In the KB depictions, the top graph represents the
schema with different node colors for different entity types, and the bottom graph represents the data. (Names of
different (real) books related to the author entity in the question are abbreviated in the data graph.) FUn iterations
are shown in the gray blocks , with Strong Verifiers named using red text and Weak Verifiers using green text
and i denotes the iteration number. The outcome of verification is denoted as True or False, and the non-empty
answer is shown when V4b returns False. The Syntax Error Verifier (V1) is omitted for brevity. scUn is shown in
the blue blocks . The candidate logical forms (L) for sCun are shown at the top. For Non-empty Ans and Empty
Ans agreement checks for, the outcome is either ‘Consensus’ or ‘No consensus’. At the end, FUn-FuSIC ‘Return’s
a logical form (possibly NK) and an answer (possibly NA).

in general). Other than SPARQL (Patidar et al.,
2024), niche languages such as s-expressions (Li
et al., 2023; Gu et al., 2023) are commonly used for
logical forms in KBQA. In supervised in-domain
KBQA, the target has large volumes of labeled
training examples of questions and associated logi-
cal forms. For few-shot in-domain KBQA in con-
trast, target few-shots Dt contain tens of labeled
training examples. In few-shot transfer learning
for KBQA (Patidar et al., 2024), a related source
domain has a source KB Gs (with its own types,
relations, entities and facts), and a larger source
training set Ds with thousands of labeled training
examples.

Following Patidar et al. (2023), a question q is
answerable for a KB G if it admits a corresponding
logical form l which when executed over G returns

the ideal non-empty answer A. A question is unan-
swerable if it either (a) does not have a valid logical
form for G (schema-level unanswerability), or (b)
it has a valid logical form l for G, but l returns
an empty answer upon execution on G, different
from the ideal non-empty answer (data-level unan-
swerability). Schema-level unanswerability arises
due to missing types and relations, while missing
entities and facts lead to data-level unanswerability.
However, absence in G of any entity mentioned in
the question is categorized as schema level unan-
swerability, since it invalidates the logical form.
More details are in Appendix A.1.2.

In KBQA with unanswerability (Patidar et al.,
2023; Faldu et al., 2024), given a question q, the
model needs to output (a) a logical form l and a
non-empty answer A for answerable q, (b) l = NK

24580

(No Knowledge) for schema-level unanswerable
q, or (c) a valid logical form l and a = NA (No
Answer) for data-level unanswerable q. In the su-
pervised in-domain setting, this task involves large
volumes of labeled training questions, containing
both answerable and unanswerable, for the target.

We now define our problem of interest: few-shot
transfer learning for KBQA with unanswerabil-
ity. A target question qt may be answerable or
unanswerable due to missing schema or data in the
target KB Gt. Target few-shot examples Dt contain
both answerable and unanswerable questions of dif-
ferent categories. The source training data Ds has
large volumes of labeled training data. Considering
real world constraints, where most KBQA datasets
contain only answerable questions, we assume that
Ds contains only answerable questions. Compared
to the earlier few-shot KBQA transfer task defini-
tion, now there is additionally an unanswerability
mismatch between the source and the target dis-
tribution. More details are in the Appendix (Sec.
A.1).

4 Proposed Approach: FUn-FuSIC

Our proposed model FUn-FuSIC preserves the ba-
sic architecture of FuSIC-KBQA and adapts its
iterative repair strategy for unanswerability. The
high-level algorithm is described in Algo. 1. (Since
the algorithms are not specific to the transfer task,
we use q instead of qt for brevity.) Preserving
the retrieve-then-generate framework of FuSIC-
KBQA, the retrieval stage (line 2) performs KB
retrieval for qt using a set R of one or more su-
pervised retrievers. Each retriever Ri is source-
trained and further target fine-tuned if required.
The retrieval output r of each Ri consists of rele-
vant schema elements (types and relations) for qt,
and data paths emanating from mentioned entities
in qt. The union of these, along with qt, is fed to
the generation stage, which uses prompting with an
LLM L to generate logical forms using the target
few-shots Dt. More details of the retrieval stage
are in the Appendix (Sec. A.8.1).

FUn-FuSIC differs from FuSIC-KBQA in its it-
erative repair strategy in lines 3, 4 and 6 of Algo. 1.
The LLM generation instruction is modified to ad-
mit the possibility of unanswerability, and the few
shots are modified to include examples of unan-
swerable questions. However, this simple approach
is error-prone. So, we bias the instruction towards
one type of error. Specifically, when uncertain

Algorithm 1 FUn-FuSIC(q,Gt, Dt, R, V s, V w,L)
1: r = {}
2: for i = 1 to k do r = r

⋃
Ri(q,G

t)
3: l = PUn(L, I, q, r,Dt)
4: (e, l, A, L) = FUn(L, q, l, n, V s, V w, Gt)
5: if (e) return(l∗, A∗)
6: else return scUn(q, L,L)

about answerability of the question, Prompting for
Unanswerability (PUn) (line 3) instructs L to gen-
erate a (possibly incorrect) logical form instead of
l = NK. The detailed prompt I is in the Appendix
(Sec. A.11.1).

We now come to the more significant modifi-
cations. First, l(0) is iteratively repaired using
feedback as before, but this step is adapted for
unanswerability. This iterative repair, which we
name Feedback for Unanswerability (FUn) (line
4), either confidently outputs a single logical form
l (with corresponding answer A) (line 5) or gener-
ates a set L of candidate logical forms, which is
further analyzed for a consensus logical form and
answer. For this, we introduce self-consistency for
Unanswerability (scUn) (line 6). scUn assesses the
likelihood of the majority answer in L, empty or
otherwise, to produce the final output. In the rest of
this section, we describe FUn and then scUn. Fig. 1
illustrates flow of FUn and scUn using examples.
A real example of FUn execution is in Sec. A.12.

Algorithm 2 FUn(q, l, n, V s, V w, G,L)
1: i = 0, k = 0, L = {}, F = ""
2: while i ≤ n do
3: for j = 1 to k1 do
4: (e, f) = V s

j (l
(i), q, G)

5: F = Append(F, f)
6: if (!e) break
7: end for
8: for j = 1 to k2 do
9: (e, f) = V w

j (l(i), q, G)
10: F = Append(F, f)
11: if (e) L = L

⋃{l(i)}; k ++
12: end for
13: i = i+ 1
14: l(i) = Gen(L, I, q, F)
15: if (k = k2) return(T, l(i),X(l(i), G), L)
16: end while
17: return(F, l, {}, L)

The FUn algorithm is described in Algo. 2 Start-

24581

ing with the initial logical form l(0), FUn performs
at most n verify-and-repair iterations to create a
candidate set L of probable logical forms. Fig. 1
shows 3 FUn iterations for KB1 and KB2, and
2 for KB3. In the ith iteration, FUn generates a
new logical form l(i) by prompting L using qt and
feedback F received from checks in all previous
iterations (line 13). l(i) goes through a sequence of
verifications. FUn uses two sets of verifiers. The
strong verifiers V s are guaranteed to be correct,
while the weak verifiers V w are potentially erro-
neous. k1 and k2 denote the total number of strong
and weak verifiers respectively. The specific veri-
fiers that we use in this paper are defined later in
the section. A template-based feedback string f is
appended to the generation prompt for l(i+1) based
on the specific verifier that l(i) failed. If l(i) fails
a strong verifier, it is rejected (line 6). In the ex-
ample, this happens for all three KBs in iteration 1.
If l(i) passes all checks, strong and weak (line 15),
FUn terminates by outputting (l = l(i), A = A(i)),
where A(i) is the answer obtained by executing l(i)

(denoted X(l(i), G)). This happens in iteration 3
for KB3. Otherwise, if l(i) passes at least one weak
verifier but not all, it is added to candidate logical
form set L (line 11). This happens for iterations 2,
3 and 4 for KB1 and KB2.

Logical form verifiers: FUn uses a suite of ver-
ifiers, categorized as strong (V s) and weak (V w).
These may be syntactic, semantic, or execution-
based, defined using simple rules or complex LLM
functions over l, q and G. Note that unlike unit
tests in program synthesis, the verifiers do not have
knowledge of the gold logical form, the gold an-
swer or answerability of the question.

We now briefly describe the specific verifiers
that we use for this paper. Additional details about
the verifiers are in the Appendix (Sec. A.11.2 and
Sec. A.3). Note that FUn is a framework that is
capable of working with a wholly different suite of
meaningful verifiers.

(V1) Syntax Error: As in FuSIC-KBQA, this
verifier executes the logical form l over G and
checks for syntax error. This is a strong check
— a valid logical form cannot have syntax error.

(V2) KB Inconsistency: A logical form l may
be inconsistent with the schema of G. We iden-
tify semantic errors of different categories, such
as type-incompatibility and schema hallucinations,
implemented using rules over l and G. These are

also strong verifiers.

(V3) Question-Logical Form Disagreement:
This verifier checks if l is semantically equiva-
lent to the original natural language question q.
In Fig. 1, LF3 for KB1 disagrees with q. This is a
weak verifier. First, q may not have any equivalent
logical form for G due to intrinsic ambiguities even
when it is answerable. For example, q mentions
a PERSON from a COUNTRY, when G has the re-
lations born in and works in between these types.
Secondly, this verifier is a probabilistic classifier
that naturally makes occasional mistakes. We de-
fine equivalence check between l and q using a
multi-stage LLM pipeline, involving naturaliza-
tion of l to ln, back-translation of ln to natural
language question qb and semantic equivalence
check between q and qb. More details are in the
Appendix (Sec.A.3).

(V4) Answer Inconsistency: This verifier ex-
ecutes l over G to obtain an answer A and then
checks its compatibility with q. This may fail for
different reasons, such as (V4a) A containing an
entity mentioned in q, (V4b) A being empty, and
others. Note that V4a is a strong verifier while
V4b is weak, since an empty answer is valid for
unanswerable questions (as for LF3 for KB2), but
invalid for answerable ones.

Identifying Candidate Logical Forms: Unless
some logical form passes all checks and is there-
fore returned (Algo. 2 line 15), FUn constructs a
candidate set L of logical forms that are potentially
flawed but not certainly so. For our specific suite
of weak verifiers, l(i) is added to L if it passes one
of V4b (A is non-empty) as for LF3 for KB1, or
V3 (li is equivalent to q), as for LF3 for KB2.

Self Consistency for Unanswerability (scUn):
Given a candidate set L of logical forms and a
question q, scUn assesses if the best candidate l∗ ∈
L has sufficient confidence. If so, it outputs (l = l∗,
A = A∗), as for KB2, A∗ being the answer from
executing l∗ (may be NA). Otherwise, scUn outputs
(l = NK, A = NA), as for KB1. For identifying the
consensus choice from L, one possibility is self-
consistency (sc) (Wang et al., 2023; Chen et al.,
2023a) that considers the answer for each l ∈ L,
and returns those with the most common answer.
This requires some answer to accumulate enough
probability by aggregation over reasoning paths.
However, for unanswerable questions, no single

24582

answer accumulates sufficient probability, and sc
returns some low probability answer.

To address this, scUn first identifies via execu-
tion the most popular non-empty answer A∗ among
logical forms in L, and decides using a threshold t

if it has enough supporters in L (we use t = ⌊ |L|2 ⌋).
If so, scUn uses LLM prompting to select the most
appropriate supporting logical form l∗ ∈ L consid-
ering q, and outputs (l = l∗, A = A∗). However,
for KB1, the 3 logical forms among the candidates
have 3 different answers, and therefore no consen-
sus emerges (⌊ |L|2 ⌋ = 1). Here, scUn considers
logical forms from L that agree on A = NA. If there
are multiple such candidates, scUn selects the most
suitable candidate l∗, again using LLM prompting,
and outputs (l = l∗, A = NA). If there is no such
candidate, scUn outputs (l = NK, A = NA). For
KB2 in the example, scUn selects LF3 – the only
logical form with empty answer. Further details on
scUn are in the Appendix (Sec. A.2).

5 Experiments

We now present experimental evaluation of FUn-
FuSIC. First, for few-shot KBQA transfer with
unanswerability, we address the following research
questions. (R1) How does FUn-FuSIC compare
against SoTA KBQA models suitably adapted for
this setting? (R2) How does FUn-FuSIC per-
form across different categories of unanswerabil-
ity? (R3) How do the different components of
FUn-FuSIC contribute to its performance? Then,
for answerable KBQA few-shot transfer, we ask:
(R4) How does FUn-FuSIC compare against SoTA
KBQA models for this setting?

5.1 Experimental Setup

Datasets: For in-domain and answerable KBQA,
the three most popular datasets are GrailQA (Gu
et al., 2021), GraphQA (Su et al., 2016) and We-
bQSP (Yih et al., 2016). All of these have the same
back-end KB (Freebase). For few-shot KBQA
transfer, the only available datasets also have
only answerable questions (Patidar et al., 2024).
GrailQAbility is the only available KBQA dataset
with unanswerable questions (Patidar et al., 2023).
This was constructed starting from GrailQA (Gu
et al., 2021) by systematically deleting schema
and data elements from the back-end KB to in-
troduce different categories of unanswerability into
the queries.

Our task needs source-target pairs, where the

target contains unanswerable questions as well. We
construct our own transfer datasets using existing
ones. For the transfer task to be non-trivial, the
various distributions in the source and target need
to be sufficiently dissimilar. WebQSP contains real
user questions, which are manually annotated with
logical forms, unlike GraphQA and GrailQA in
which algorithmically generated logical forms are
verbalized by crowd-workers. Since the source
needs only answerable questions, we use WebQSP
as source. We select GrailQAbility as one of
our targets, since it already contains unanswerable
questions, to create the WebQSP→GrailQAbility
dataset. We create our second target dataset using
GraphQA, by introducing unanswerability into it.
We do so by replacing its KB with the modified
KB in GrailQAbility, which renders a subset of
questions unanswerable. We label these appropri-
ately as schema-level or data-level unanswerable.
We name this dataset GraphQAbility. Using this,
we create the WebQSP→GraphQAbility dataset.
The WebQSP training set has 2,858 labeled ques-
tions. We create the test sets for GrailQAbility and
GraphQAblity by selecting 250 answerable and
250 unanswerable questions uniformly at random
from the GrailQAbility and GraphQA test sets. We
create few-shots by selecting 100 questions (50
answerable and 50 unanswerable) uniformly at ran-
dom from the GrailQAbility dev set and GraphQA
train set respectively.

The test sets of both datasets have 50% each
of answerable and unanswerable questions. Of
the unanswerable questions, the percentages of
schema-level and data-level unanswerable are 66%
and 34% in WebQSP→GrailQAbility and 51.6%
and 48.4% in WebQSP→GraphQAbility. Addition-
ally, the average number of relations per logical
form is higher for GraphQAbility than for GrailQA-
bility, while it is the reverse for questions (using
average number of tokens). This suggests that
GraphQAbility is harder for few-shot transfer, re-
quiring more reasoning with shorter context. Other
statistics for the datasets are in Tab. 6 and dis-
cussed in the Appendix (Sec. A.4).

Models for comparison: As few-shot transfer
for KBQA with unanswerability is a novel task,
there are no existing baselines. For in-domain
KBQA with unanswerability, RetinaQA (Faldu
et al., 2024) and the unanswerability-adapted ver-
sion of Pangu (Gu et al., 2023) are the SoTA mod-

24583

WebQSP → GrailQAbility WebQSP → GraphQAbility
Model Overall Answerable Unanswerable Overall Answerable Unanswerable

F1 EM-s F1 EM-s F1(L) F1(R) EM-s F1 EM-s F1 EM-s F1(L) F1(R) EM-s
RetinaQA 58.4 42.2 28.7 26.0 88.0 84.8 58.4 49.7 35.8 18.7 15.2 80.7 78.7 56.4
Pangu 54.5 43.8 31.2 29.6 83.8 80.4 58.0 53.4 33.0 30.3 26.4 76.5 74.8 39.6
FuSIC-KBQA-U 76.6 48.2 67.5 59.2 85.6 80.4 37.2 67.5 34.8 49.3 40.0 85.7 82.8 29.6
KB-Binder 43.7 33.0 19.5 16.5 67.9 66.5 49.5 44.3 36.1 27.5 21.6 61.0 61.0 50.7
FUn-FuSIC 76.6 60.2 67.1 61.2 85.1 80.0 59.2 70.0 53.8 50.7 42.8 89.2 86.5 64.8

Table 1: Performance of different models on two datasets for few-shot KBQA transfer with unanswerability.
Answerable and Unanswerable record performance for corresponding subsets and Overall for the entire dataset.

WebQSP → GrailQAbility WebQSP → GraphQAbility
Model Schema Level Data Level Schema Level Data Level

F1(L) F1(R) EM-s F1(L) F1(R) EM-s F1(L) F1(R) EM-s F1(L) F1(R) EM-s
RetinaQA 94.1 90.9 79.4 76.3 72.9 14.1 83.2 82.0 72.3 73.7 72.7 12.1
Pangu 91.1 87.9 87.9 69.6 65.9 00.0 77.3 74.4 74.4 73.3 72.7 00.0
FuSIC-U 85.4 80.6 30.9 86.0 80.0 49.4 86.6 82.6 19.0 83.3 83.3 51.5
KB-Binder 75.1 73.9 70.1 53.1 51.5 09.5 67.0 65.9 60.9 41.2 41.2 06.8
FUn-FuSIC 85.8 81.2 70.9 83.8 77.6 36.5 92.4 87.5 75.6 80.3 80.3 34.8

Table 2: Model performance for categories of unanswerable questions. FuSIC-U is short hand for FuSIC-KBQA-U.

els. For these, we use the available code.2,3 More
details are in the Appendix (Sec. A.8.3).

FuSIC-KBQA is the SoTA model for few-
transfer for KBQA with only answerable questions.
KB-Binder (Li et al., 2023) is the SoTA for in-
domain few-shot KBQA. Overall, FuSIC-KBQA
and KB-Binder outperform all other supervised
and LLM-equipped KBQA models adapted for few-
shot transfer (Patidar et al., 2024). We use available
code for KB-Binder4, and our own implementation
for FuSIC-KBQA. To adapt these two baselines for
unanswerability, for fair comparison, we modify
their logical form generation prompt in the same
fashion as PUn for FUn-FuSIC. Additionally, for
FuSIC-KBQA, we remove execution-guided feed-
back (EGF) since it fails for unanswerability. We
denote this model FuSIC-KBQA-U. Observe that
FuSIC-KBQA-U can also be seen as an ablation
of FUn-FuSIC, without FUn. More details about
KB-Binder and FuSIC-KBQA are in the Appendix
(Sec. A.9.1).

We use L =gpt-4-0613 for all LLM-equipped
models. For fair comparison, we allocate to all such
models the same maximum aggregated prompt
length for a question. This is satisfied by equipping
FUn-FuSIC with zero-shot generation and n = 4
FUn iterations, FuSIC-KBQA-U with 5-shot gen-
eration and KB-Binder with 25-shot generation.

Though FUn-FuSIC and FuSIC-KBQA allow
flexible use of multiple supervised retrievers, for
meaningful comparison with RetinaQA, we adapt

2https://github.com/dair-iitd/RetinaQA
3https://github.com/dki-lab/Pangu
4https://github.com/ltl3A87/KB-BINDER

RetinaQA as retriever for FUn-FuSIC and FuSIC-
KBQA-U. More details about FuSIC-KBQA’s re-
triever and compute infrastructure are in the Ap-
pendix (Sec. A.8.2).

Evaluation Measures: For KBQA as semantic
parsing task, evaluation of logical forms is primary.
For this, the existing EM measure (Ye et al., 2022)
is defined only for logical forms represented using
s-expressions. FuSIC-KBQA-U and FUn-FuSIC
output logical forms in SPARQL, and Pangu, Reti-
naQA and KB-Binder in s-expression. So we pro-
pose a new measure EM-s that checks approxi-
mate equivalence for a pair of programs either in
SPARQL or s-expression. More details are in the
Appendix (Sec. A.5).

As in standard KBQA evaluation, we also eval-
uate answers. This is a secondary evaluation for
giving the benefit of the doubt for getting the right
answer, possibly via a logical form not equivalent
to the gold-standard according to EM-s. For answer
evaluation in KBQA with unanswerability, (Patidar
et al., 2023) introduced lenient F1, denoted F1(L),
in addition to regular F1, denoted F1(R). F1(L)
relaxes F1(R) by not penalize the original answer
for the complete KB. Note that obtaining the right
answer by chance has much higher probability than
for logical forms, particularly for unanswerable
questions with NA as the correct answer.

5.2 Unanswerability Setting

We first address research question R1. Perfor-
mances of different models for few-shot transfer
with unanswerability are recorded in Tab. 1. First,

24584

https://github.com/dair-iitd/RetinaQA
https://github.com/dki-lab/Pangu
https://github.com/ltl3A87/KB-BINDER

WebQSP → GrailQAbility WebQSP → GraphQAbility
Model Answerable Schema L. UnAnswerable Data L. UnAnswerable Answerable Schema Level UnAns Data Level UnAns

F1 EM-s F1(L) F1(R) EM-s F1(L) F1(R) EM-s F1(L) EM-s F1(L) F1(R) EM-s F1(L) F1(R) EM-s
FUn-FuSIC 74.0 70.0 90.9 87.9 75.8 64.7 64.7 11.8 59.0 48.0 97.1 91.4 80.0 86.7 86.7 26.3
scUn ⇒ sc 74.0 70.0 73.0 72.7 33.3 58.8 52.9 23.5 64.0 54.0 74.4 68.6 22.9 80.0 80.0 13.3
w/o syntax 67.3 64.0 87.9 90.9 42.4 76.5 70.6 17.7 57.0 46.0 81.0 76.9 26.9 75.8 75.0 16.7
w/o kb-inc 70.3 66.0 90.9 90.9 9.1 76.5 70.6 29.4 51.7 42.0 100.0 100.0 4.2 79.5 75.0 20.8
w/o q-lf 71.0 68.0 69.7 63.6 0.0 41.2 35.3 5.9 47.7 38.0 69.5 65.4 07.7 67.0 62.5 20.8
w/o ans-inc 72.0 70.0 85.9 84.9 33.3 70.6 70.6 23.5 55.0 44.0 80.8 76.9 26.9 79.5 79.2 25.0

Table 3: Ablation performance of FUn-FuSIC (removing individual components with replacement) on subset of
WebQSP → GraphQAbility. scUn ⇒ sc denotes replacing scUn with self consistency. Other rows remove verifiers
for syntax error (w/o syntax) (V1), KB inconsistency (w/o kb-inc) (V2), question logical form disagreement (w/o
q-lf) (V3) and answer incompatibility (w/o ans-inc) (V4). Evaluations are on 100 instances from test sets (50
answerable and 50 unanswerable questions sampled uniformly at random)

we observe that FUn-FuSIC significantly outper-
forms all baselines in terms of EM-s, and performs
at par with FuSIC-KBQA-U and significantly bet-
ter than all other models in F1. The other LLM-
equipped models are not significantly better than
the supervised models. All the baselines perform
almost at par for GraphQAbility, and KB-Binder
performs worse than the other 3 for GrailQAbil-
ity. This establishes usefulness of FUn equipped
with scUn for few-shot transfer KBQA with unan-
swerability, beyond LLM-usage. Secondly, each
model trades off performance differently between
answerable and unanswerable questions. Reti-
naQA, Pangu and also KB-Binder fare better for
unanswerable questions, while FUn-FuSIC and
FuSIC-KBQA-U fare better for answerable ones.
However, FUn-FuSIC achieves the best balance
across the two subsets.

We next briefly address research question R2.
Performance of different models for different cat-
egories of unanswerability are recorded in Tab. 2.
All models struggle to fare well simultaneously
for data-level and schema-level unanswerability.
FuSIC-KBQA-U performs the best for data-level
while performing poorly (in terms of EM-s) for
schema-level. Conversely, RetinaQA performs
well for schema-level, but has poor data-level EM-s.
FUn-FuSIC outperforms other models in schema-
level unanswerability while being slightly worse in
data-level unanswerability. But among all models,
it achieves the best tradeoff by far across unanswer-
ability categories.

We next address research question R3. Tab. 3
records the ablation analysis of FUn-FuSIC. We
see that the KB-Inconsistency verifier (V2) and the
Q-LF Disagreement verifier (V3) lead to significant
improvements in EM-s. The biggest benefit comes
from V3 for both answerable and unanswerable
questions. Without V3, the correct LF for schema-

level unanswerability is almost never generated,
though answer accuracy stays high, indicating in-
ability to reason. Similarly, removing V2 reduces
EM-s for schema-level unanswerable questions,
with answer accuracy remaining high, indicating
that answers are often correct despite flawed logical
forms. The Answer Incompatibility verifiers (V4)
also makes significant contributions to the perfor-
mance. This analysis highlights the necessity of a
mix of weak and strong verifiers for structural and
semantic validity. Beyond verifiers, replacing scUn
with self-consistency, as expected, leads to a dras-
tic drop in unanswerable performance (though this
comes with a benefit for answerable questions).

WebQSP → WebQSP →
Model GrailQA-Tech GraphQA-Pop
FuSIC-KBQA 70.8 52.3
FUn-FuSIC(sc) 73.6 67.0
FuSIC-KBQA-U 62.6 43.4
FUn-FuSIC(scUn) 71.2 65.0

Table 4: Performance using F1 of different models for
few-shot KBQA transfer with only answerable ques-
tions. The models in the top block have prior knowledge
of answerability, while those in the bottom block do not.

Finally, we report accuracy for the weak
verifiers. The Q-LF Disagreement Veri-
fier (V3) has accuracies of 90% and 88%
overall for WebQSP→GraphQAbility and
WebQSP→GrailQAbility, with its back-translation
component has 90% and 94%. The accuracy of
the Empty Answer Verifier (V4b) depends on the
nature and fraction of unanswerable questions. Its
accuracies are 75% and 68% for the two datasets,
corresponding to ∼25% and ∼17%of questions
respectively with l∗ ̸= NK and A∗ = NA. More
details are in the Appendix (Sec. A.10).

24585

5.3 Answerable Setting

We now address research question R4 for
answerable-only KBQA transfer. We use two
datasets from existing literature (Patidar et al.,
2024), including the hardest one (WebQSP →
GraphQA-Pop).5 For enabling comparison with
earlier results, we use TIARA (Shu et al., 2022) as
the retriever for all models in this experiment.

This setting admits two sub-cases: (A) the mod-
els have knowledge that all questions are answer-
able, and (B) though all questions are answerable,
the models do not have this knowledge.

Setting (A) has been studied for KBQA (Patidar
et al., 2024), and FuSIC-KBQA is the established
SoTA model, outperforming a host of supervised
and LLM-based models adapted for the task. To
adapt for this setting, FUn-FuSIC requires three
simplifications. (i) PUn is replaced with prompt
for answerability, (ii) In FUn, V4b (empty answer)
is moved from the set of weak verifiers to that of
strong verifier, and (iii) scUn is replaced by stan-
dard self-consistency.

The first two rows in Tab. 4 record performance
for setting (A). FUn-FuSIC significantly outper-
forms FuSIC-KBQA on both datasets, creating a
new SoTA for this setting. This shows the useful-
ness of iterative repair with a suite of strong and
weak verifiers followed by self-consistency for few-
shot KBQA transfer, even without unanswerability.

In the more realistic setting (B), which has
not been studied before, the models make predic-
tions assuming unanswerability. Here, we evaluate
FuSIC-KBQA-U and FUn-FuSIC as in Sec. 5.2,
only there are no truly unanswerable questions.
The bottom two rows of Tab. 4 record the perfor-
mance of the two models in this setting. We see that
FUn-FuSIC outperforms FuSIC-KBQA by a very
large margin. This further establishes the useful-
ness of scUn when guarantees about answerability
are not available.

5.4 Error Analysis

For WebQSP → GraphQAbility, we analyzed ques-
tions for which logical forms generated by FUn-
FuSIC are incorrect (EM-s < 1). Results are in
Tab. 5. We found three main causes for generation
errors. (1) Some questions are inherently ambigu-
ous, admitting multiple valid logical forms l1 and
l2 in the original complete KB, though only one is
recognized as the gold (l∗ = l1). Deletion to in-

5https://github.com/dair-iitd/FuSIC-KBQA/

EM-s < 1 46.2
Retr. Err. 23.4
Gen. Err. 22.8

l∗ = NK, l̂ ̸= NK 8.4
l∗ ̸= NK, l̂ = NK 4.6
l∗ ̸= NK, l̂ ̸=NK, l∗ ̸= l̂ 9.8

Table 5: FUn error analysis on WebQSP → GraphQA-
bility. l∗ & l̂ denote gold & generated logical forms.
Retrieval error means retrieval r is missing ≥ 1 KB
elements (class, relation, entity) necessary for l∗. Gen-
eration error implies l̂ ̸= l∗ despite correct retrieval.

troduce unanswerability eliminates l1, so that that
l∗ = NK, and the prediction l̂ = l2 is unfairly penal-
ized. (2) Here, l∗ = l1 and the prediction l̂ = l2,
such that l1 ̸= l2 but are semantically equivalent.
l1 and l2 are incorrectly judged non-equivalent by
EM-s. (3) Here, FUn is unable to generate l∗ or any
semantic equivalent of it within its iteration limit.

6 Conclusions

For real-world robust and low-resource KBQA, we
have proposed the novel task of few-shot transfer
learning with unanswerability. We have introduced
a new notion (FUn) of iterative feedback guided
repair for answerable as well as unanswerable ques-
tions. FUn (i) uses feedback from a diverse suite
a strong and weak verifiers – including a novel
back-translation based verifier – to create a set
of candidate logical forms, and (ii) assesses this
candidate set to either to detect unanswerability
(and its category) or identify the best logical form
using self consistency adapted for unanswerabil-
ity (scUn). We propose FUn-FuSIC that replaces
the existing the iterative strategy, that assumes an-
swerability of questions, with FUn in the SoTA
few-shot answerable-only KBQA transfer model
(FuSIC-KBQA). Using two newly created datasets
for this novel task, we show that FUn-FuSIC signif-
icantly outperforms adaptations of FuSIC-KBQA
and other SoTA models for this setting, and also
for answerable few-shot transfer KBQA.

Our error analysis suggests that performing well
across categories of unanswerability for few-shot
transfer is still a challenge for KBQA and should
be a focus of further research. We have made our
datasets and other resources public 6.

6https://github.com/dair-iitd/FUn-FuSIC

24586

https://github.com/dair-iitd/FuSIC-KBQA/
https://github.com/dair-iitd/FUn-FuSIC

Limitations

Since LLM inference involves randomness, experi-
ments should ideally be repeated for multiple runs
and results should report averages and error bars.
Unfortunately, we were not able to do this due to
the prohibitive cost of GPT-4, and our results are
based on single runs.

While GPT-4 is currently the best performing
LLM, it is proprietary as well as expensive. Ideally,
evaluation should include open-source freely acces-
sible LLMs as well. We expect performance of all
LLM-based approaches to drop when GPT-4 is re-
placed by a less powerful, open LLM. Nonetheless,
earlier research has shown that models with Mistral
instead of GPT-4 still outperform fully supervised
models for answerable few-shot transfer (Patidar
et al., 2024). Whether this trend holds for the unan-
swerable setting is an open question. That said, fol-
lowing current trends, we expect the ability of open
LLMs to steadily improve in the coming years.

Risks

At the highest level, our work reduces risk com-
pared to existing KBQA systems, which when in-
adequately adapted in a low-resource setting, in-
correctly answer unanswerable questions, without
acknowledging lack of knowledge. However, can
incorrectly inferring unanswerability, citing lack of
knowledge when knowledge is in fact available, be
a new type of risk? While we cannot imagine such
a risk at the present time, this may require more
careful consideration. In any case, KBQA models
for unanswerability should strive to minimize this
type of error, along with the other types.

Acknowledgments

Mausam is supported by a contract with TCS,
grants from IBM, Verisk, Huawei, Wipro, and the
Jai Gupta chair fellowship by IIT Delhi. Indrajit
would like to thank KnowDis AI for supporting his
participation in the conference. Riya would like
to thank Graviton Research Capital for supporting
her participation in the conference. The authors
would like to thank the IIT-D HPC facility for its
computational resources. We also thank Microsoft
Accelerate Foundation Models Research (AFMR)
program that provided us access to OpenAI models.
We are also thankful to Mayur Patidar for helpful
discussions.

References
Shulin Cao, Jiaxin Shi, Zijun Yao, Xin Lv, Jifan Yu, Lei

Hou, Juanzi Li, Zhiyuan Liu, and Jinghui Xiao. 2022.
Program transfer for answering complex questions
over knowledge bases. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin, Jian-
Guang Lou, and Feng Jiang. 2021. ReTraCk: A flexi-
ble and efficient framework for knowledge base ques-
tion answering. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing: System Demon-
strations.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. 2023a. Uni-
versal self-consistency for large language model gen-
eration. CoRR, abs/2311.17311.

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. In The 61st Annual Meeting Of The
Association For Computational Linguistics.

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot
Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin
Jia, and Andrew Mccallum. 2022. Knowledge base
question answering by case-based reasoning over
subgraphs. In Proceedings of the 39th International
Conference on Machine Learning.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya God-
bole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros
Polymenakos, and Andrew McCallum. 2021. Case-
based reasoning for natural language queries over
knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou.
2023. C3: Zero-shot text-to-sql with chatgpt.

Prayushi Faldu, Indrajit Bhattacharya, and Mausam.
2024. RETINAQA : A knowledge base question an-
swering model robust to both answerable and unan-
swerable questions. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Bangkok, Thai-
land. Association for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, and Aurelien
Rodriguez. 2024. The llama 3 herd of models.

24587

https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
https://doi.org/10.48550/ARXIV.2311.17311
http://arxiv.org/abs/2307.07306
http://arxiv.org/abs/2407.21783

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4928–4949, Toronto, Canada. Association for
Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond i.i.d.:
Three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, WWW ’21.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6966–6980, Toronto, Canada. Association for
Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Iterative
refinement with self-feedback.

Sayantan Mitra, Roshni Ramnani, and Shubhashis Sen-
gupta. 2022. Constraint-based multi-hop question
answering with knowledge graph. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: Industry Track.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning
for knowledge-based question answering. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
38(17):18833–18841.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Mayur Patidar, Prayushi Faldu, Avinash Singh,
Lovekesh Vig, Indrajit Bhattacharya, and Mausam
. 2023. Do I have the knowledge to answer? inves-
tigating answerability of knowledge base questions.
In Proceedings of the 61st Annual Meeting of the

Association for Computational Linguistics (Volume 1:
Long Papers), pages 10341–10357, Toronto, Canada.
Association for Computational Linguistics.

Mayur Patidar, Riya Sawhney, Avinash Kumar Singh,
Biswajit Chatterjee, Mausam, and Indrajit Bhat-
tacharya. 2024. Few-shot transfer learning for knowl-
edge base question answering: Fusing supervised
models with in-context learning. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Bangkok, Thailand. Association for Computational
Linguistics.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction.

Srinivas Ravishankar, Dung Thai, Ibrahim Abdelaziz,
Nandana Mihindukulasooriya, Tahira Naseem, Pavan
Kapanipathi, Gaetano Rossiello, and Achille Fok-
oue. 2022. A two-stage approach towards general-
ization in knowledge base question answering. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yiheng Shu and Zhiwei Yu. 2024. Distribution shifts are
bottlenecks: Extensive evaluation for grounding lan-
guage models to knowledge bases. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 71–88, St. Julian’s, Malta.
Association for Computational Linguistics.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido
Dagan, and Shauli Ravfogel. 2023. The curious case
of hallucinatory (un)answerability: Finding truths in
the hidden states of over-confident large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3607–3625.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Gür, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
QA evaluation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language

24588

https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://doi.org/10.1609/aaai.v38i17.29848
https://doi.org/10.1609/aaai.v38i17.29848
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.576
https://doi.org/10.18653/v1/2023.acl-long.576
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2024.eacl-srw.7
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://aclanthology.org/2023.emnlp-main.220
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054

Processing, pages 562–572, Austin, Texas. Associa-
tion for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yu Wang, Vijay Srinivasan, and Hongxia Jin. 2022. A
new concept of knowledge based question answering
(KBQA) system for multi-hop reasoning. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: Genera-
tion augmented iterative ranking for knowledge base
question answering. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers).

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

A Appendix

A.1 KBQA Elaboration
Here we elaborate on different aspects of the
KBQA problem.

A.1.1 Challenges in Few Shot Transfer
Learning for KBQA

The source and target tasks may differ significantly.
First, the data and schema of the knowledge bases
Gt and Gs and the domains they cover may be

different. Secondly, the distributions of questions
and logical forms defined over the KBs may be
different in Dt and Ds.

A.1.2 Different Types of Unanswerability
Unanswerable questions in KBQA can be cate-
gorized into (a) Schema Level Unanswerability :
the question does not have a corresponding logi-
cal form that is valid for the KB , (b) Data level
unanswerability: it has a valid logical form l for
the KB, but which on executing returns an empty
answer. Schema level unanswerable questions can
further be categorized into (1) Missing Class: The
class/type required to construct the logical form is
not defined for the KB, (2) Missing Relation: The
relation required to construct the logical form is
not defined for the KB, (3) Missing Topic Entity:
The topic entity specified in the question is miss-
ing from the KB. Data level unanswerable ques-
tions can be categorized into (1) Missing entity:
all classes and relations required to construct the
logical form are present in the KB , but there exists
no path from the topic entity node to the answer
node in the KB due to missing intermediary entities
(2) Missing Fact: all classes, relations and entities
required to answer the question are present in the
KB. However, the (subject, relation, object) path is
not connected in the KB.

A.2 Algorithm for Self Consistency with
Unanswerability

The high level algorithm for self consistency with
Unanswerability (scUn) is described in Algo. 3.

Algorithm 3 ScUn(q, L,L)
1: (c, l, A) = assessConf(q, L,L)
2: if (c), return(l, A)
3: else , return(NK, NA)

The high level algorithm for assessing con-
fidence in the set of candidate logical forms
(assessConf) is described in Algo. 4. We use ab-
breviations NE and E to indicate non-empty and
empty respectively. popAnsNE is abbreviation of
"(most) popular answer non-empty".

A.3 Details of FUn Verifiers
Here we discuss the verifiers V2, V3 and V4 in
more detail.

(V2) Semantic Error (KB Inconsistency): A
syntactically correct logical form l may still be in-
consistent with the schema of G. This is a likely

24589

https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Algorithm 4 assessConf(q, L,L)
1: (c, Lp, Ap) = popAnsNE(L, t)
2: if (c) then
3: l = selectBestNE(q, Lp,L)
4: return(T, l, Ap)
5: end if
6: (c, Lp) = popAnsE(L, t)
7: if (c) then
8: l = selectBestE(q, Lp,L)
9: return(T, l, NA)

10: end if
11: return(F, NK, NA)

error even for SoTA LLMs since these are unfamil-
iar with the specific KB G. Semantic errors have
different categories, such as type-incompatibility,
schema hallucinations. (V2a) Incompatibility in
types: l contains a variable and a connecting rela-
tion whose types are incompatible in G. This is
the case for LF1 for all three KBs in the example.
(V2b) Schema hallucinations: l contains schema
elements (types, relations, entities) absent in G.
(V2c) Type casting errors: Literals in l are not cor-
rectly type cast for G, e.g. numeric literals as float
for Freebase. All of these are certain checks, and
are implemented using rules defined over l and
G. The feedback mentions the type of error and
the specifics, e.g., the hallucinated relation, or the
incompatible type-relation pair.

(V3) Question-Logical form Disagreement:
FUn performs equivalence check between l and
q using a novel multi-stage LLM pipeline. (i) The
variable names in l are first naturalized to ln consid-
ering q and preserving semantics, e.g. by replacing

’?x’ with ’?actor’. (ii) ln is back-translated into
a natural language question qb. (iii) qb is finally
checked for semantic equivalence with q. The first
two steps are performed using zero-shot prompt-
ing, while the last is performed using few-shots
constructed using the target few-shots Dt. The
feedback mentions lack of equivalence as the type
of error.

(V4) Answer Inconsistency: If the l is syntacti-
cally and semantically correct, it is executed over
G to obtain an answer a. a is then checked for
compatibility with q. This may fail for different
reasons. (V4a) a (which is a set in general) con-
tains an entity also in l and therefore mentioned
q, which is an aberration. (V4b) a is empty, as in

LF3 for KB2 in the example. All of these checks
are implemented using rules defined over l and G.
Note that while the first two are certain checks, the
last is not. An empty answer is valid for unanswer-
able questions, as for LF3 for KB2, but invalid for
answerable ones. As before, the feedback mentions
the type of error and the specifics.

A.4 Additional Dataset Statistics
Here we include additional statistics on the
two datasets WebQSP→GrailQAbility and
WebQSP→GraphQAbility. We quantify different
measures of hardness for the datasets. The results
are tabulated in Tab. 6. Tab. 7 shows percentage of
the two categories of unanswerable questions.

A.5 EM-s: Automated Approximate
Equivalence Check for SPARQL

As has been observed in (Patidar et al., 2023), an-
swer evaluation by itself is not a robust measure for
evaluation of KBQA models when the dataset con-
tains unanswerability. Traditional KBQA models
that generate s-expressions can be evaluated using
EM, which checks for logical form equivalence
between two logical forms, since it is possible to
compare equivalence between two s-expressions ef-
ficiently. However, FUn-FuSIC generates SPARQL
queries instead. Directly comparing program equiv-
alence between two SPARQL queries is an unde-
cidable problem 7. Patidar et al. (2024) suggest a
semi-automatic strategy for comparison of sparql
queries. We propose a completely automatic met-
ric for SPARQL equivalence check. Two SPARQL
queries are equivalent by the EM-s check if (a) the
relations occurring in the two queries are same. (b)
the entities occurring in the two queries are the
same (c) the answer set obtained by executing the
queries over the KB are the same. Note that the
EM-s check is necessary, but not sufficient for two
SPARQL queries to be equivalent.

Since these are a necessary but not sufficient
condition for logical form equivalence, we com-
pared EM-s with EM, where both are applicable
and found > 98% agreement.

A.6 Model Evaluation: Additional Details
In this section, we do a deeper evaluation of per-
formance of different models across different cate-
gories of unanswerability, as explained in (Patidar
et al., 2023). There are two broad categories of

7https://users.dcc.uchile.cl/~cgutierr/
papers/expPowSPARQL.pdf

24590

https://users.dcc.uchile.cl/~cgutierr/papers/expPowSPARQL.pdf
https://users.dcc.uchile.cl/~cgutierr/papers/expPowSPARQL.pdf

Knowledge Base Logical Forms NL Questions
Source→ Target Domain JS New Rel% Function JS #Relation Src-Tgt #Token

SrcAv/TgtAv Cosine Sim SrcAv/TgtAv
WebQSP→ GrailQAbility 0.67 93.8 0.61 1.69/1.45 0.34 6.60/11.27
WebQSP→ GraphQAbility 0.67 93.2 0.42 1.69/1.64 0.32 6.60/9.69

Table 6: Statistics for different source and target (test set) KBQA task pairs in terms of the knowledge base, logical
forms and natural language questions. ‘Domain(JS)’ is Jensen Shannon (JS) divergence between domain distribution
of questions, ‘New Rel%’ is percentage of questions in target with new (unseen) relations, ‘Function (JS)’ is
JS-divergence between distributions over functions in logical forms, ‘#Relations’ shows the source average and the
target average for number of relations per logical form, ‘Src-Tgt Cosine Sim’ is average minimum cosine distance
between source and target questions and ‘#Tokens’ shows the source average and target average of number of
tokens per question.

Dataset Schema level Data level
UnAns UnAns

WebQSP→ GrailQAbility 34.0 66.0
WebQSP→ GraphQAbility 48.4 51.6

Table 7: Percentages of schema and data level unan-
swerability among unanswerable questions.

unanswerability — schema level unanswerability
(absence of knowledge in terms of KB ontology
or entities required to construct the logical form)
and data level unanswerability (absence of facts or
intermediate entities of the logical form path on the
KB).

We expect that (a) due to poor ability of super-
vised models to generalize in transfer learning set-
tings, RetinaQA will struggle to generate correct
logical forms for data level unanswerable questions,
and (b) due to the strong generalization ability of
FuSIC-KBQA, it should be able to perform well
for data level unanswerable questions. However,
since it is biased towards returning incorrect log-
ical forms instead of abstaining from returning a
logical form, it will perform poorly at identifying
schema level unanswerable questions. (c) FUn-
FuSIC should be able to maintain the performance
of FuSIC-KBQA on data level unanswerable ques-
tions to a large extent, while significantly improv-
ing the performance on schema level unanswerable
questions.

Performance on the WebQSP →GrailQAbility
and WebQSP →GraphQAbility datasets show that
the trends are indeed as expected.

A.7 FUn Cost Analysis for Proprietary LLMs

FuSIC-KBQA, as well as the adapted versions of
FuSIC-KBQA, such as FuSIC-KBQA-U and FUn-
FuSIC rerank the classes, relations and paths. The
total cost for reranking for one question is $0.16.
The cost for generation of logical form from a

prompt with 5 in-context examples is $0.16. Thus,
the approximate cost for inference of one question
by FuSIC-KBQA-U is $0.32.

The cost for generation of logical form from a
prompt with 0 in-context examples is $0.04. The
cost of checking whether two natural language
questions are equivalent or not, using few-shot ex-
emplars and chain of thought prompting is also
$0.04. The approximate cost of inference of one
question by FUn-FuSIC varies between $0.24 and
$0.48. The average cost over 50 randomly sampled
questions from the test set is around $0.34.

Hence, the two models are comparable in terms
of cost.

A.8 Model Adaptation Details

Here we discuss adaptation details for the models
that we have built upon (FuSIC-KBQA), used as
retrievers (RetinaQA) and for comparison.

A.8.1 FuSIC-KBQA Details
Our proposed approach FUn-FuSIC builds upon
the the base architecture of FuSIC-KBQA (Pati-
dar et al., 2024). FuSIC-KBQA has a three step
pipeline: (a) Supervised Retrieval: a supervised re-
triever, trained on the source domain and optionally
fine-tuned on the target domain is used to obtain
the top-100 classes, relations and paths that are rel-
evant to the question asked, (c) LLM Generation:
We provide the top-10 classes, top-10 relations and
top-5 paths along with few-shot exemplars to gen-
erate the SPARQL query.

Since no code is available for this model, we use
our own implementation based on the description
in the paper. For FuSIC-KBQA, and FUn-FuSIC
we use LLM temperature = 0.

A.8.2 Training Details for Supervised Models
We use Hugging Face (Wolf et al., 2020), PyTorch
(Paszke et al., 2019) for our experiments and use

24591

the Freebase setup specified on github 8 . We use
NVIDIA A100 GPU with 40 GB GPU memory
and 32 GB RAM. For training the discriminator
module of RetinaQA, we require 2 GPUs. (1) For
the answerable experiments, we use the supervised
models as specified in (Patidar et al., 2024). (2)
For the unanswerability experiments, we train all
models from scratch. (a) We use RnG-KBQA en-
tity linker 9 (BSD 3-Clause License) trained on
the answerable subset of GrailQAbility for all our
experiments. (b) We train the RnG-KBQA path
retriever on answerable subset of WebQSP10 (BSD
3-Clause License). The number of training epochs
is determined by the performance of the model
over the answerable questions in the dev set. (c)
We train the TIARA schema retriever on the an-
swerable subset of WebQSP 11 (MIT License) (d)
We train the sketch generator and discriminator of
RetinaQA on the answerable subset of WebQSP12.

A.8.3 Inference Details for Supervised Models
We train all RetinaQA components on the source
WebQSP’s training set, using the corresponding
target domain’s dev set as a validation set for early
stopping. In the absence of unanswerable questions
for training, both models use a threshold fine-tuned
on a dev set to detect schema-level unanswerability.
We again use the target dev sets for this.

We use the dev set in RetinaQA, during discrim-
inator inference for different purposes. (A) De-
termining how to best utilize the candidate paths.
The possibilities are (i) not providing candidate
paths, (ii) providing candidate paths in GrailQA
format, and (iii) providing candidate paths in We-
bQSP format. We select the best alternative based
upon the performance of the model over the dev set.
For the WebQSP → GrailQAbility dataset, we ob-
serve (ii) works best, whereas for the WebQSP →
GraphQAbility dataset, we observe (i) works best.
(B) Determining the threshold value. RetinaQA
applies a threshold on the scores - for a question, if
the highest score candidate logical form has a score
less than the threshold, the question is labeled as
NK. We choose the optimal value of the threshold
to maximize the overall EM-s score over the dev

8https://github.com/dki-lab/Freebase-Setup
9https://github.com/salesforce/rng-kbqa/tree/

main/GrailQA/entity_linker
10https://github.com/salesforce/rng-kbqa/blob/

main/WebQSP/scripts/run_ranker.sh
11https://github.com/microsoft/KC/tree/main/

papers/TIARA/src
12https://github.com/dair-iitd/RetinaQA

set.

A.9 Pangu Adaptation Details

Similar to RetinaQA, we train all Pangu compo-
nents on WebQSP, using the corresponding target
domain’s dev set as a validation set for early stop-
ping. We use one GPU for training. Same as Reti-
naQA, we use the dev set to determine the threshold
for schema-level unanswerability. Pangu-T applies
a threshold on the scores - for a question, if the
highest score candidate logical form has a score
less than the threshold, the question is labeled as
NK. We choose the optimal value of the threshold
to maximize the overall EM-s score over the dev
set.

A.9.1 KB-Binder Adaptation Details

For KB-Binder, we make use of publicly available
code 13 (MIT License). We use self-consistency
and majority voting with 6 examples, as in the ex-
periments in the paper. In the retrieval(-R) setting,
KB-Binder samples demonstration examples by re-
trieving from the entire available training data. We
restrict its retrieval to our target training set Dt

with 25 examples. KB-Binder reports experiments
using code-davinci-002 as the LLM. For consis-
tency and fair comparison, we replace this with
gpt-4-0613 as in other LLM-equipped models.
KB-Binder generates logical forms in s-expression,
which we preserve.

WebQSP → WebQSP →
Model GrailQAbility GraphQAbility
V3(a) 92 96
V3(b) 94 90
V3(c) 92 94
V3(overall) 88 90
V4(b) 75 68

Table 8: Accuracy of weak verifier on the two datasets
by manual analysis of 100 instances from the test sets.

A.10 Accuracy of Weak Verifiers

Accuracy of the two weak verifiers are recorded in
detail in Tab. 8.

A.11 FUn-FuSIC Prompts

Here we provide details of various prompts used
by FUn-FuSIC.

13https://github.com/ltl3A87/KB-BINDER

24592

https://github.com/dki-lab/Freebase-Setup
https://github.com/salesforce/rng-kbqa/tree/main/GrailQA/entity_linker
https://github.com/salesforce/rng-kbqa/tree/main/GrailQA/entity_linker
https://github.com/salesforce/rng-kbqa/blob/main/WebQSP/scripts/run_ranker.sh
https://github.com/salesforce/rng-kbqa/blob/main/WebQSP/scripts/run_ranker.sh
https://github.com/microsoft/KC/tree/main/papers/TIARA/src
https://github.com/microsoft/KC/tree/main/papers/TIARA/src
https://github.com/dair-iitd/RetinaQA
https://github.com/ltl3A87/KB-BINDER

A.11.1 PUn prompt

The following prompt is for Prompting for Unan-
swerability (PUn).

Header Prompt

Translate the following question
to sparql for Freebase based on
the candidate sparql, candidate
entities, candidate relations and
candidate entity types which are
separated by "|" respectively.
Please do not include any other
relations, entities and entity
types. Your final sparql can have
three scenarios: 1. When you
need to just pick from candidate
sparql. 2. When you need to
extend one of candidate sparql
using the candidate relations and
entity types. 3. When you will
generate a new sparql only using
the candidate entities, relations
and entity types. For entity
type check please use this relation
"type.object.type".D o not use
entity names in the query. Use
specified mids. If it is impossible
to construct a query using the
provided candidate relations or
types, return "NK". Make sure
that the original question can
be regenerated only using the
identified entity types, specific
entities and relations.

NK exemplar

Question: the tv episode
segments spam fall under what
subject? Candidate entities:
spam m.04vbm Candidate paths:
SELECT DISTINCT ?xWHERE ?x0
ns:tv.tv_segment_performance.segment
ns:m.04vbm .?x0
ns:tv.tv_segment_performance.segment
?x .?x ns:type.object.type
ns:tv.tv_episode_segment .
| ... Candidate entity
types: tv.tv_series_episode|
tv.tv_episode_segment |
... Candidate relations:
tv.tv_series_episode.segments
(type:tv.tv_series_episode R
type:tv.tv_episode_segment)|
tv.tv_subject.tv_programs
(type:tv.tv_subject R
type:tv.tv_program)|... sparql:NK

Question Prompt

Question: which school newspaper
deals with the same subject
as the onion? Candidate
entities: the onion m.0hpsvmv
Candidate paths: SELECT
DISTINCT ?xWHERE ns:m.0hpsvmv
ns:book.newspaper.circulation_areas
?x0 .?x0 ns:periodicals.newspapers
?x .?x ns:type.object.type
ns:book.newspaper . |...
Candidate entity types:
education.school_newspaper|
type:book.newspaper...
Candidate relations:
education.school_newspaper.school
(type:education.school_newspaper R
type:education.educational_institution)
| book.newspaper_issue.newspaper
(type:book.newspaper_issue R
type:book.newspaper)|... sparql:

A.11.2 FUN Prompts

The following is the prompt used by FUn for ac-
commodating feedback from verifier V1.

24593

Syntax error(V1) Feedback

Correct the syntax of the following
sparql query. Return ONLY the
corrected sparql query without any
explanation sparql: SELECT ?x AND
?y ... Virtuoso error: word AND
not defined

The following is the prompt used by FUn for
accommodating feedback from verifier V2.

KB Inconsistency(V2) Feedback

The generated sparql has a
semantic issue warning: The
types of relations don’t match
for variable ?x in the query.
The assigned relation types by
[’computer.computer_emulator.computer’,
’type.object.type
computer.computer_peripheral’]
are [’computer.computer’,
’computer.computer_peripheral’].
These types are mutually
incompatible... Please generate
again a different executable
sparql using the same context and
constraints. DO NOT APOLOGIZE -
just return the best you can try.

The following is the prompt used by FUn for
accommodating feedback from verifier V3.

Question Logical form disagreement(V3)
feedback

The question that you answer
is NOT same as what you’ve been
asked for! You have answered the
question "Which opera productions
has Gino Marinuzzi conducted?" but
you were asked to answer "what
is the name of the premiere
opera production conducted by gino
marinuzzi?". Please generate again
a different executable sparql using
the relations, classes and entities
provided earlier. DO NOT APOLOGIZE
- just return the best you can try.

The following three prompts are used by FUn
for accommodating feedback from verifier V4.

Answer Inconsistency(V4b) feedback

The generated sparql gives an empty
answer when executed on freebase KG,
Please generate again a different
executable sparql using the same
context and constraints.

Intermediate Node(V4a) feedback

The generated sparql returns
an intermediate type node when
executed on the freebase KG. Maybe
the answer node is an adjacent node
to what we currently query for.
Please generate again a different
executable sparql using the same
context and constraints.

Answer Inconsistency(V4a) feedback

The logical form upon execution
returns International System of
Units, which is not answering
the question. Please reconstruct
the query using same context and
constraints.

A.11.3 Prompt for Question Logical Form
Agreement Verifier (V3)

The few shots provided for verifying question logi-
cal form agreement are derived from Dt. We obtain
positive samples from the dataset Dt directly, using
the questions and gold logical forms. For obtaining
negative samples, we perform zero-shot FuSIC-
KBQA inference over Dt. Then we consider those
questions for which the predicted logical form is
different from the gold logical form.

First, we perform back-translation to obtain nat-
ural language question from the logical form using
the following prompt.

Naturalization of variable names(V3(i))

change the sparql query to
have variable names representative
of what objects they refer to.
transform the variable names in
this query. Do NOT change the prefix
headers and relation names

24594

Conversion of Logical Form into Natural
Language Question(V3(ii))

Convert this sparql query into a
natural language question. Make
the question as natural as possible.
SELECT DISTINCT ?unfinishedWork
WHERE { Le Moulin de Blute-Fin
ns:media.unfinished_work
?unfinishedWork . ?unfinishedWork
ns:type.object.type
ns:media.unfinished_work . }

We use few-shot LLM prompting to obtain the
explanation for question and logical form agree-
ment or disagreement.

Explanation Generation Prompt

Explain why the two questions are
different. Question we answer: who
all like to eat apple or mango?
Question originally asked: what
are the people who enjoy both
apple and mango? explanation: The
question we answer returns people.
The question originally asked also
returns people. The question we
answer finds those people who like
eating apple, those people who
like eating apple. The question
originally asked also finds those
people who like eating apple, those
people who like eating apple. The
question we answer uses logical
operator OR. However, the question
originally asked uses the logical
operator AND Hence, they are
different. [total 3 exemplars]
Question we answer: Which game
engines are successors to the
Unreal Engine? Question originally
asked: which video game engine’s
successor engine is unreal engine?
explanation:

These few-shots for obtaining the explanation
are dataset independent, and are manually written.
Some examples of few shots are below.

Question Logical Form Agreement
Check(V3(iii))

Question we answer: Who are
the cricket players who have
made exactly 31 stumps in one
day internationals? Question
originally asked: name the cricket
player who has 31 odi stumps.
explanation: The question we answer
returns cricket players. The
question originally asked also
returns cricket players. The
question we answer finds cricket
players who have made exactly 31
stumps in one day internationals.
The question originally asked
also finds cricket players who
have made 31 stumps in one day
internationals. Both questions
involve no mathematical or logical
operators. Hence, they are same.
Question we answer: Which game
engines are successors to the
Unreal Engine? Question originally
asked: which video game engine’s
successor engine is unreal engine?
explanation: The question we answer
returns game engines. The question
originally asked also returns game
engines. The question we answer
finds successors to the Unreal
Engine. The question originally
asked finds the predecessor of
the Unreal Engine. The reasoning
steps followed by the two questions
are different. Hence, they are
different. [total 6 exemplars]
Question we answer: Which cars
drive at a speed of 80? Question
originally asked: name the car
with driving speed at least 80?
explanation:

A.11.4 scUn Prompt for Logical Form
Selection

We store the back-translated natural language ques-
tions along with each predicted logical form. We
use the following prompt to select the closest back-
translated natural language question to the original
question.

24595

Best Logical Form Selection Prompt

orig_nl_qn = which surf films has
sarah finn served as the casting
director? 1. pred_nl: Which surfing
films has Sarah Finn directed
the casting for? 2. pred_nl:
Which surfing films has Sarah Finn
been the casting director for?
of the 2 predicted nl questions,
which is closest to the original
nl question. Even if none is
very close, return the one that
is semantically closest? Please
explain your answer as well

A.12 Example of FUn Iterations

The following shows 3 Fun iterations for an ex-
ample question from the test set of WebQSP →
GrailQAbility dataset.

Question: what is the musical genre of the
recording who m i (feat. 일리닛, new champ,
myk)?
Entities: who m i (feat. 일리닛, new champ, myk)
m.0123lk0s

Logical Form 1

?x {
:m.0123lk0s
:music.genre.recordings ?x
?x :type.object.type :music.genre}

Feedback 1

Type: Logical Form Semantic Error
Description: The types of relations don’t
match for entity in the query. The assigned
relation types by [’music.genre.recordings’]
are [’music.genre’]. These types are not
associated with this entity in the KB.

Logical Form 2

?y {
:m.0123lk0s
:music.recording.artist ?x
?x :music.artist.genre ?y
?y :type.object.type :music.genre}

Feedback 2

Type: Natural Language Semantic Error
Description: The question originally asked
genre of the song. However, the question we
answer returns genre associated with artist
of the song.

Logical Form 3

?x { ?x
:music.genre.recordings
:m.0123lk0s
?x :type.object.type :music.genre}

Feedback 3

Status: Passes All Checks
Details: lf3 satisfies syntax, logical form
semantic, natural language semantic and ex-
ecution checks.

24596

