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Preface

Field Matters is a workshop focused on the various applications of NLP methods to field linguistics and
the analysis of field data. The primary pursuit of linguistic fieldwork is to document and describe lan-
guages. The former typically involves building a corpus and other resources for the language community,
the latter ideally aims to produce a reference grammar. Advances in technology have enabled vast quan-
tities of media to be recorded. These recordings (sound and/or video) require annotation and analysis for
further linguistic research or resource development. This is often done manually. This processing bot-
tleneck can be significantly sped up with computational methods. NLP research focuses on developing
methodology for different tasks that show significant performance in high-resource languages, allowing
the automation of various routine tasks. The processing burdens faced by field linguists present a natural
opportunity to marry NLP practices with the workflow of a field linguist. Similarly, the future develop-
ment of NLP methods could gain from the linguistic diversity and unique tasks encountered during the
description/documentation efforts.
With these in mind, Field Matters aims to provide a platform to deepen the dialogue between Computa-
tional and Field Linguists. Our workshop is hosted by the 63rd Annual Meeting of the Association for
Computational Linguistics in Vienna, Austria.
Field Matters 2025 continued to provide field linguists expert reviews, a distinct feature of the review
process introduced one year ago. Each paper was assigned a field linguist alongside minimally two
computational linguists. Analyzing the difference in reviews of field linguists and NLP researchers, we
have seen that reviewers provide different perspectives and give more diverse and fruitful feedback: while
field linguists pay attention to how practical this application could be or how well it fits in the idea of the
workshop, NLP specialists comment on how relevant and accurate chosen methods are.
This year, Field Matters shared a venue with SigTyp, a workshop dedicated to linguistic typology and
multilingual NLP. Although the ultimate goals of Field Matters and SigTyp differ, the co-location provi-
ded a valuable opportunity for both communities to learn from one another. Careful consideration sug-
gested we share our space while keeping the publication processes separate. This gave us twice as many
keynotes and a tightly packed schedule of oral presentations. We anticipate twice as fruitful discussions
in the hallways, though the dual load brings an intense workload for both organizers and participants of
the one-day event, reflecting the growing audience of both workshops.
After the hard process of reviewing all submissions, the program committee chose nine papers for a poster
or oral presentation at the workshop. Accepted papers illustrate the main idea of our workshop: how
field linguistics may benefit from using contemporary methods of computational analysis and how the
NLP community may evolve its methods with the help of under-resourced languages. More specifically,
chosen papers cover the following topics:

• The creation of datasets and tools for field linguistics

• ASR and speech processing to address the transcription bottleneck

• Machine translation for very low resource languages

We are incredibly grateful to the Field Matters program committee, who worked on peer review to give
meaningful comments for each submission and made this workshop possible. We want to thank the
invited speakers, Alexis Michaud, researcher at LACITO-CNRS in Paris, France, and Eduardo Sanchez,
research scientist at Meta. We would also like to acknowledge all the authors who submitted their papers
to our workshop, and we hope to continue to serve as a link between NLP specialists and field linguists.
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Keynote Talks

Alexis Michaud, LACITO CNRS
“Archives, Algorithms, and Alliances: Grounding NLP in the Realities of Language Documentation”

This talk offers a linguist’s perspective on the evolving place of NLP in language documentation, focu-
sing on the interplay between archives (as both legacy and infrastructure), algorithms (with ASR on the
Na language as an example), and alliances (the human networks that sustain such work). Drawing on ex-
perience within “Computational Language Documentation” projects led by computer scientists, I reflect
on shared goals, realistic expectations, and the practical conditions required to keep interdisciplinary
teams motivated over time.

Eduardo Sanchez, Meta
“A few good texts: how small sets of high quality linguistic data power massive multilinguality in lan-
guage models”

While scale remains a key driver of performance in multilingual language models, it’s not always an
option, especially for low-resource languages where data is scarce or noisy. We’ll explore how small,
high-quality datasets can play a surprisingly powerful role in enabling multilinguality, especially where
coverage gaps exist. Beyond parallel corpora, we’ll show how strategic use of linguistic resources can
complement large-scale training, improve generalization, and unlock better performance for underserved
languages. A few good texts, chosen well, may be worth billions of tokens, and for many languages, they
may be the key to ensuring visibility, usability, and survival in the digital age.
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Ekaterina Voloshina, Göteborg University and Chalmers University of Technology
Ekaterina Vylomova, The University of Melbourne

Reviewers

Angelina Aspra Aquino, Alexandre Arkhipov

James Bednall, Anton Buzanov

Michael Daniel

Harald Hammarström, William N. Havard

Elena Klyachko, Ezequiel Koile

Jordan Lachler, Eric Le Ferrand, Kate L Lindsey

Tessa Masis, Field Matters, Saliha Muradoglu

Shu Okabe

Anna Postnikova, Michael Proctor

Emmanuel Schang, Oleg Serikov, Tatiana Shavrina

Nick Thieberger

Alexey Vinyar, Ekaterina Voloshina, Ekaterina Vylomova

v



Table of Contents

Automatic Phone Alignment of Code-switched Urum–Russian Field Data
Emily Ahn, Eleanor Chodroff and Gina-Anne Levow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

What Causes Knowledge Loss in Multilingual Language Models?
Maria Khelli, Samuel Cahyawijaya, Ayu Purwarianti and Genta Indra Winata . . . . . . . . . . . . . . . 15

Breaking the Transcription Bottleneck: Fine-tuning ASR Models for Extremely Low-Resource Fieldwork
Languages

Siyu Liang and Gina-Anne Levow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

KazBench-KK: A Cultural-Knowledge Benchmark for Kazakh
Sanzhar Umbet, Sanzhar Murzakhmetov, Beksultan Sagyndyk, Kirill Yakunin, Timur Akishev

and Pavel Zubitski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Searchable Language Documentation Corpora: DoReCo meets TEITOK
Maarten Janssen and Frank Seifart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Practical Tool to Help Automate Interlinear Glossing: a Study on Mukrı̄ Kurdish
Hiwa Asadpour, Shu Okabe and Alexander Fraser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Field to Model: Pairing Community Data Collection with Scalable NLP through the LiFE Suite
Karthick Narayanan R, Siddharth Singh, Saurabh Singh, Aryan Mathur, Ritesh Kumar, Shyam Ra-

tan, Bornini Lahiri, Benu Pareek, Neerav Mathur, Amalesh Gope, Meiraba Takhellambam and Yogesh
Dawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Low-resource Buryat-Russian neural machine translation
Dari Baturova, Sarana Abidueva, Dmitrii Lichko and Ivan Bondarenko . . . . . . . . . . . . . . . . . . . . . 85

vi



Proceedings of the Fourth Workshop on NLP Applications to Field Linguistics (FieldMatters), pages 1–14
August 1, 2025 ©2025 Association for Computational Linguistics

Automatic Phone Alignment of Code-switched Urum–Russian Field Data

Emily P. Ahn
University of Washington

eahn@uw.edu

Eleanor Chodroff
University of Zurich

eleanor.chodroff@uzh.ch

Gina-Anne Levow
University of Washington

levow@uw.edu

Abstract

Code-switching, using multiple languages in a
single utterance, is a common means of com-
munication. In the language documentation
process, speakers may code-switch between
the target language and a language of broader
communication; however, how to handle this
mixed speech data is not always clearly ad-
dressed for speech research and specifically for
a corpus phonetics pipeline. This paper investi-
gates best practices for conducting phone-level
forced alignment of code-switched field data
using the Urum speech dataset from DoReCo.
This dataset comprises 117 minutes of narra-
tive utterances, of which 42% contain code-
switched Urum–Russian speech. We demon-
strate that the inclusion of Russian speech and
Russian pretrained acoustic models can aid
the alignment of Urum phones. Beyond us-
ing boundary alignment precision and accuracy
metrics, we also discovered that the method of
acoustic modeling impacted a downstream cor-
pus phonetics investigation of code-switched
Urum–Russian.

1 Introduction

Code-switching is a phenomenon where multilin-
gual speakers communicate in more than one lan-
guage, often within a single utterance.1 Speakers
of languages that are not widely spoken may also
speak a language of broader communication, or
lingua franca, in order to communicate with peo-
ple in the same region or in contact settings. In
the language documentation and analysis pipeline,
recordings of the target language can be found to
be mixed with a language of broader communica-
tion. Yet this other language is often overlooked
or explicitly ignored if the goal of the fieldwork is
to document the language of interest. On the other

1While code-switching can refer to mixing languages or
dialects within a whole conversation, we use it to mean switch-
ing languages within a single utterance. This finer-grained
mixing is also called code-mixing in the literature.
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Figure 1: Across the 30 speakers in the DoReCo Urum
field repository (Skopeteas et al., 2022), almost all pro-
duced code-switched utterances (orange, middle) in ad-
dition to monolingual Urum (blue, left) and monolingual
Russian utterances (green, right).

hand, it may be useful to include the mixture of
languages in the analyzed data for methodological
or scientific purposes. The extra data could add
robustness to the performance of models, or the
code-switched speech could better reflect actual
usage of the target language.

Regardless of the analytical use, inclusion of the
code-switched language data may benefit processes
within the corpus phonetics pipeline. A critical part
of this pipeline is phonetic forced alignment, in
which a time-aligned phone sequence is identified
from the input speech and corresponding transcript,
typically using acoustic models of the language-
specific phones. Generally, automatic alignment
quality correlates with the amount of training data
used for the acoustic model (Chodroff et al., 2024).
In the case of code-switched speech, there is a
question, however, of whether to use only the tar-
get language data—or to use all of the linguistic
data—for training the acoustic models. Including
code-switched speech during training would result
in more data per speaker, which could help build
more robust phone-specific acoustic models (as hy-
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pothesized by Chodroff et al., 2024).
Very limited research has included code-

switched speech in forced alignment studies, and
our work is the first to examine this type of speech
in a field data setting. We ask the following re-
search questions (RQs):

1. Does the inclusion of Russian code-switched
data in acoustic model training help the align-
ment of target Urum data?

2. Does the method of acoustic modeling impact
a downstream corpus phonetics investigation
of code-switched Urum–Russian?

In this paper, we summarize prior work and intro-
duce the Urum language (Section 2), then discuss
the methodology of data preparation, acoustic mod-
eling and forced alignment, evaluation and analysis
(Section 3). We used the Montreal Forced Aligner
(McAuliffe et al., 2017) to train acoustic models
from scratch as well as adapt pretrained Russian
and English models to our data. With respect to
RQ1, we found that the inclusion of code-switched
speech and Russian pretrained models improved
alignments of Urum (Section 4). To answer RQ2,
we tested the impact of acoustic modeling strate-
gies in a bilingual phonetics investigation (Sec-
tion 5): Are vowels in Urum words pronounced
differently in monolingual Urum utterances than
in code-switched utterances? After discussion, we
conclude with methodological recommendations
and areas for future work (Section 6). All code for
replicating this work is publicly available.2

2 Background

2.1 Phonetic forced alignment
For phonetics research, it can be extremely useful
to know the temporal locations of phones within a
speech recording. While this can be achieved man-
ually, an automated process can greatly facilitate
this, speeding up annotation and enabling analy-
sis of substantially larger speech corpora (Labov
et al., 2013). Popular forced alignment tools in-
clude the Montreal Forced Aligner (MFA, used
in this work; McAuliffe et al., 2017), EasyAlign
(Goldman, 2011), and WebMAUS (Kisler et al.,
2017). Research has explored a range of strategies
to force align low-resource data, including cross-
language alignment and manipulation of phone cat-
egories (e.g., Ahn et al., 2024; Coto-Solano et al.,

2https://github.com/emilyahn/align_cs

2018; DiCanio et al., 2013). However, forced align-
ment work on low-resource languages that are code-
switched has been limited.

2.2 Research on the nature of code-switching
Much of the linguistic literature on code-switching
has focused on the syntactic and sociopragmatic
aspects of engaging multiple languages at once
(Bullock and Toribio, 2009; Muysken, 2000). With
respect to the phonetics of code-switching, re-
search has focused on how acoustic properties shift
when speakers activate multiple languages in their
mind. For example, stop consonant voice onset
time and speech rate changed noticeably near lan-
guage switch boundaries between Spanish and En-
glish (Fricke et al., 2016). Relevant to our case
study, Seo and Olson (2024) recorded read sen-
tences from Korean–English bilinguals to investi-
gate vowel quality across different syntactic struc-
tures. They found that English vowels in code-
switched Korean–English utterances were more
Korean-like in intra-sentential rather than in inter-
sentential code-switched structures. We similarly
investigated vowel quality in Urum–Russian code-
switched utterances for this paper.

It has been observed that a language of broader
communication, usually a high-resource language,
is often used during the elicitation of a low-
resource, target field language. In an overview
of methods to bridge language documentation
and speech processing technologies, Levow et al.
(2017) proposed a language identification task be-
tween a high-resource language and a low-resource
target language when both are present in field
recordings. San et al. (2022) addressed the mix-
ing of high- and low-resource languages by apply-
ing state-of-the-art language technologies to de-
tect and transcribe English portions of speech in
a dataset documented for the field language Mu-
ruwari. In this case, English was largely used in
meta-linguistic commentary and questions, such
as, “What is the word for tree?” This approach
helped the annotation process, where authorized
people could scan the meta-linguistic content and
triage the recordings for later annotators who had
more limited access to the corpora. These studies
demonstrate that (1) language mixing is prevalent,
and (2) applying technology to the higher-resource
language can benefit the documentation process.

Developing technologies for code-switching is
still a challenging area of research in the Natural
Language Processing (NLP) and speech commu-

2
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nities. Winata et al. (2023) found over 400 public
research papers on code-switching from the ACL
anthology and ISCA proceedings over the past few
decades. These works focused on tasks ranging
from language identification to sentiment analysis
to automatic speech recognition (ASR). Among
these papers, English mixed with a non-English
variety such as Hindi, Chinese, and Spanish, was
overrepresented. The authors highlighted a need
for work to be done on more diverse non-English
language pairs, for which this paper fills a gap.

Forced alignment with code-switched data
Two studies incorporated a language of broader
communication when training forced alignment
systems on field data, though the impacts of mixed
language speech input were not explicitly studied.
Ahn et al. (2024) included Portuguese speech when
developing acoustic models for Panãra, an Ama-
zonian language of Brazil. Chodroff et al. (2024)
retained the Russian speech content in the acous-
tic modeling of Evenki, a Tungusic language, and
Urum, a Turkic language, which is also used in this
work (Kazakevich and Klyachko, 2022; Skopeteas
et al., 2022).

More relevant to the present study is work by
Pandey et al. (2020) who compared methods of
training and aligning code-switched Hindi–English
read speech. Three acoustic models were trained
with MFA: Hindi-only, English-only, and Hindi–
English mixed, and they discovered that the com-
bined model best aligned English-only speech. It
was unclear, however, if the high performance from
the Hindi–English mixed acoustic models was due
to that model simply having more tokens in its train-
ing data than the other models. Our work extends
these findings to a low-resource field data scenario
with spontaneous speech, and we carefully con-
trolled the variable of training data quantity. We
investigated whether including code-switched data
could improve the alignment performance of a tar-
get low-resource language.

2.3 Urum language

Urum (ISO: uum) is a Turkic language spoken by
ethnic Greeks in the Lesser Caucasus of Georgia
and in Ukraine. Also known as Caucasian Urum, it
is a variety of Anatolian Turkish that is classified as
endangered (Campbell et al., 2022). The language
variety documented by Skopeteas et al. (2022) and
analyzed in this paper has been strongly influenced
by Russian since the group’s arrival in Georgia in

the early 19th century. Notably, most Urum speak-
ers are bilingual in Russian and code-switch often
between the two languages (Skopeteas, 2014). Un-
like the examples of code-switching being used in
purely meta-linguistic commentary, Russian por-
tions of speech in this dataset were part of the narra-
tive content by the speakers. The following shows
an example of an Urum–Russian utterance with
transliterated Russian displayed in brackets:

äp halhımız egıler kissäya [muzıka] ed-
erıh [maladež] [tantsuet] oinamah et-
mäh

“All the people get together at the church,
we organise [music], and the [youth] is
[dancing].” (Skopeteas et al., 2022)

3 Methodology

3.1 Data source
We utilized the Urum dataset from the DoReCo
corpus, which is a field data repository that con-
tains manual word-level and automatic phone-
level alignments of speech (Paschen et al., 2020).
Traditional and personal Urum narratives were
recorded across 30 speakers (16 female, 14 male)
and spanned 117 minutes3 of speech (Skopeteas
et al., 2022). Figure 1 presents the distribution
of Urum-only, Russian-only, and code-switched
utterances among speakers. All but one speaker
code-switched. Table 1 reveals that while 42% of
the utterances were code-switched, they represent
53% of the repository in minutes.4 Code-switched
utterances averaged 6.5 seconds, which was on
average longer than non-codeswitched utterances
(Urum-only: 4.5 seconds; Russian-only: 2 seconds).
Among the code-switched utterances, Urum word
tokens were more frequent than Russian word to-
kens, as shown in Figure 2.

3.2 Data preparation
Data from the field repository included long-form
audio recordings (wav format, sampling rate of 44.1
kHz) and time-aligned transcriptions of the utter-
ances, words, and phones. The audio files were first
segmented into utterances using Praat (Boersma
and Weenink, 2022), with the corresponding utter-
ance transcripts as Praat TextGrids. Four utterances
were removed due to encoding issues.

3Time was calculated by summing utterance durations, not
file or word durations.

4If all utterances with “foreign material” were excluded,
as was the protocol in Zhu et al. (2024) over the full DoReCo
corpus, we would miss out on half the data.
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Utt Count Time (min) Avg (sec)

All 1373 117.6 5.1
Urum 752 (55%) 53.5 (45%) 4.3
CS 581 (42%) 62.9 (53%) 6.5
Russ 40 (3%) 1.3 (1%) 2.0

Table 1: Distribution of utterances across language us-
age by count and time. Notably, code-switched (CS)
utterances had longer durations.

Urum

Russian

Figure 2: Proportion of Urum (blue, shaded) to Russian
(white) word tokens in all 581 code-switched utterances,
sorted highest to lowest. The majority of these utter-
ances had more Urum than Russian tokens.

Urum phone sequences were derived automati-
cally by the repository contributors, so our lexicons
(two-column text files with words and their cor-
responding phone sequences) were gathered from
these existing phone sequences. Most of the Rus-
sian words had been transliterated into Latin script
at the word-level, so we used a simple mapping
script to build the lexicon. The Urum phone set
from DoReCo included nine vowels and 30 con-
sonants while the transliterated Russian phone set
included six vowels and 19 consonants. Only four
Russian phones did not exist in the Urum set, as
seen in Table 2, and we used the PanPhon tool
(Mortensen et al., 2016) to map them to their near-
est neighboring Urum phones in the lexicons: 1→
W, tC→ tS, ù→ S, ü→ Z. Partially-tagged words
such as filled pauses and prolongations were as-
signed phone sequences in the lexicon and were
marked as Urum words.5

5The repository contributors used tags to transcribe content
such as filled pauses, prolongations, and false starts. When a
tagged word was partially transcribed (such as in this example
of a false start, “<fs>ba”), we manually assigned it a phone
sequence (“[b a]”) and classified it as an Urum word.

Urum-only Both Russian-only

y, æ, œ, W a, e, i, o, u 1
é, c, d:, t: b, p, d, t, g, k

s:, S, Z, G, dZ, tS v, f, z, s, x tC, ù, ü
l, l:, R, m: j, r, ì, m, n

Table 2: The phone sets present in the DoReCo tran-
scriptions across Urum and Russian with the middle
column representing their overlap.

3.3 Acoustic modeling

We used the Montreal Forced Aligner (MFA ver-
sion 2.2.17; McAuliffe et al., 2017) to train acous-
tic models and conduct forced alignment on our
data in its default unsupervised manner. Acoustic
models learn the probability distributions for all
given phone states and their transitions. We split
the DoReCo files into mutually exclusive train and
test partitions following the same split as Chodroff
et al. (2024): 1,097 utterances (100 minutes) in
the train set and 273 utterances (16 minutes) in the
test set. For this study, we created further subsets
of the training data to answer our first research
question. First, we summed the minutes of utter-
ances of each language type and found 47 minutes
of monolingual Urum utterances and 52 minutes
of code-switched utterances. To keep the quantity
of Urum-only and code-switched training data the
same, we reduced the number of code-switched
utterances to 47 minutes, which would equal the
Urum-only speech. Our first results compared the
alignment performance of a model trained on 47
minutes of purely Urum speech to a model trained
on 47 minutes of Urum–Russian speech.6 Our third
training data partition combined both sets to in-
clude 94 minutes of Urum-only and code-switched
speech. All Russian-only utterances were excluded
from training and evaluation.

Since it has been shown to be advantageous
to use larger, pretrained models for aligning low-
resource languages (e.g., Ahn et al., 2024), we
chose two relevant MFA models to continue the
experiments. The Russian MFA v3.1.0 model was
trained on over 400 hours of data from over 3,000
speakers; this model was selected since Russian
was frequently spoken in our dataset (McAuliffe
and Sonderegger, 2024). The Global English MFA

6While the minutes across the two partitions were the same,
the number of utterances was 618 for Urum and 414 for code-
switched. However, the number of phones in each partition
was roughly 27,000.
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v2.2.1 model was trained on over 3,700 hours of
data from over 79,000 speakers across the world
(McAuliffe and Sonderegger, 2023). This model
has previously proven to be effective in aligning the
Urum dataset in Chodroff et al. (2024). For cross-
language modeling and alignment, we developed
the lexicons by applying the PanPhon tool for de-
termining the nearest neighboring phones in cases
where the target phone did not exist in the model
(Mortensen et al., 2016). Appendix A displays
these phone mappings. Each pretrained model was
adapted to the same three training data partitions as
described in the train-from-scratch settings above.

3.4 Forced alignment evaluation

Our “gold standard” phone alignments for evalu-
ation of the system outputs were obtained from
the manually annotated phone boundaries of Urum
words in the test partition from Chodroff et al.
(2024). For precision, we calculated the percent
for which the model onset boundary was within 20
ms (the selected threshold) of the manually aligned
onset boundary (McAuliffe et al., 2017; MacKen-
zie and Turton, 2020). For accuracy, we utilized
a measure that calculated the proportion of model-
aligned intervals whose midpoints lay within the
respective gold intervals (a similar measure is used
in Knowles et al., 2018; Mahr et al., 2021). All eval-
uation was conducted on the test partition which
consisted of 132 Urum utterances and 119 code-
switched utterances. The evaluation was conducted
only on phones from Urum words and ignored all
phones from Russian words.

3.5 Analysis

We conducted mixed-effects regressions in R us-
ing the lme4 package to analyze the variables that
contributed to both the precision and the accuracy
metrics (Bates et al., 2015). We ran two models:
the first was a linear model with the dependent vari-
able as log seconds of onset boundary differences,
with 0 seconds mapped to 0.001 prior to the log
transformation. The second model was a logistic
regression with the binary dependent variable be-
ing accuracy. Main effects were the language of
the test utterance (Urum or CS), the natural class of
the current phone, the natural class of the previous
phone, the interaction of these two natural classes,
the proportion of contaminated (tagged) tokens,7

7Contamination in an utterance was calculated as the num-
ber of tagged tokens, such as false starts or prolongations,
divided by the total number of tokens.

the utterance duration (in hectoseconds, seconds
/ 100, for model convergence), the interactions of
model configuration with utterance language, and
whether or not the speaker of the test utterance was
present in the training set. Random effects were
the speaker ID and the file ID of the utterances.
The current phone class was sum-coded with the
held-out level of stop; the previous phone class was
sum-coded with the held-out level of silence. The
eight classes analyzed were vowels, approximants,
taps/trills, nasals, fricatives, affricates, and stops.
Models were treatment-coded, each compared to
the train-from-scratch Urum-only (47m) model.

4 Results

4.1 Alignment precision and accuracy

The following results answer our first research ques-
tion: Does including Russian code-switched data in
acoustic model training help the alignment of target
Urum data? The different acoustic model config-
urations were trained or adapted on subsets of the
DoReCo dataset, and they were all tested on the
held-out test utterances that included both Urum-
only and CS utterances. In the scenario where
we trained MFA models from scratch (i.e., no pre-
trained model was used—note the None column in
Table 3), we have two findings. When we kept the
training data quantity equal at 47 minutes for both
Urum-only speech and code-switched speech, the
Urum-only model (47m) outperformed the purely
code-switched one (47m). This was expected given
that we evaluated only on phones from Urum words.
However, combining these two training sets in the
Urum + CS (94m) model substantially improved
upon either smaller model. This also conforms to
expectations given that the combined training set
included more Urum tokens and also more data
overall.

For the experiments using pretrained models
adapted on the various Urum/CS partitions, the
Russian MFA model adapted on Urum + CS (94m)
produced the best results. Even though the Global
English MFA model was trained on nearly 4,000
hours of diverse speech, its alignments did not out-
perform the smaller Russian MFA model. This is
perhaps due to the language similarity of Russian to
Urum, or the history of Urum being influenced by
Russian contact. All models trained or adapted on
the different DoReCo subsets patterned the same
where the ranking of best to worst subset was Urum
+ CS (94m) > Urum (47m) > CS (47m), with the
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Train/Adapt Pretrained model
Partition None Eng Russ

Precision % ↑
Urum (47m) 63.2 70.4 71.2
CS (47m) 58.2 70.0 70.4
Urum + CS (94m) 70.9 70.6 71.3

Accuracy % ↑
Urum (47m) 80.6 83.7 84.9
CS (47m) 77.2 83.1 84.4
Urum + CS (94m) 85.1 83.6 85.1

Table 3: Results revealed that the Russian MFA model
adapted on all 94 minutes of Urum and code-switched
(CS) data performed the best, with maximal training-
from-scratch (i.e., Urum + CS (94m)) on par in terms
of accuracy. Highest scores are bolded and shaded.

slight exception of accuracy from the Global En-
glish MFA with Urum (47m) > Urum + CS (94m).

4.2 Regression analysis
The mixed-effects regression analysis revealed sev-
eral factors that influenced alignment performance.
We report all significant findings of p < 0.05, and
full output tables are provided in Appendix B. Ex-
cept for the train-from-scratch CS (47m) model
which performed significantly worse, all other mod-
els performed significantly better than the Urum
(47m) model. Longer utterance durations and
higher contamination amounts were correlated with
worse performance. The speaker appearing in the
training data had no significant effect. The lan-
guage of the test utterance also had no effect, with
a slight exception of the CS (47m) model perform-
ing slightly worse on Urum-only test utterances.

In terms of precision, boundaries around
taps/trills were displaced more significantly,
while boundaries around fricatives showed higher
precision. Boundaries preceding vowels also
performed better. Significantly better precision
was found for vowel–tap/trill, fricative–vowel,
affricate–vowel, affricate–nasal, stop–vowel,
and stop–tap/trill sequences. Significantly
worse precision was found for vowel–vowel,
vowel–approximant, tap/trill–vowel, nasal–nasal,
and fricative–approximant sequences.

As for accuracy, which used a logistic mixed-
effects regression model, significantly better per-
formance was found for phone intervals preceded
by nasals, fricatives, affricates, and stops, as well as
for targeted phone intervals that were fricatives and

affricates. Significantly worse accuracy was found
for phone intervals preceded by vowels, approx-
imants, and taps/trills, as well as targeted phone
intervals of these three classes. These results are
largely comparable to the mixed-effects regression
results from Chodroff et al. (2024).

5 Case Study

Following Babinski et al. (2019), we asked a gen-
eral phonetics question and observed whether there
were significant differences between the outputs
of the different model configurations above. In
other words, to what degree are we comfortable
substituting an automatic alignment for manual
alignment, in our quest to answer a question about
code-switching phonetics? We investigated the fol-
lowing: Are vowels in Urum words pronounced
differently in monolingual Urum utterances com-
pared to in CS utterances? First, we answered this
with the manually-annotated “gold” test data.

5.1 Methodology
The Pillai–Bartlett trace, or Pillai score, is a use-
ful metric to measure overlap in vowel category
qualities. It takes output from a MANOVA test,
which is used for measuring overlap between two
distributions across two dependent variables—in
our case, the first two formant values. Among four
commonly used metrics for vowel overlap, Kel-
ley and Tucker (2020) showed that Pillai scores
are among the most reliable. Stanley and Sneller
(2023) additionally provided a formula to derive
a threshold for determining overlap vs separation
based on the exact sample size of the tokens. We
followed these recommendations and calculated
Pillai scores for formant values extracted from the
gold test set. Formants were first extracted with
the Linear Predictive Coding (LPC) tool in Praat
(Boersma and Weenink, 2022), searching for five
formants under 5000 Hz for reported male speak-
ers and 5500 Hz for reported female speakers. The
formant value analyzed per vowel was an average
of the values extracted from the interval midpoint
and ten milliseconds before and after the midpoint.

5.2 Results from manual alignments
The gold test data revealed several instances of
within-speaker differences in pronouncing certain
Urum vowels. Table 4 shows four instances of
a particular vowel being marked as significantly
non-overlapping across two conditions. For exam-
ple, the cell for male speaker A03 /a/ marked with
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VOWELS
Spkr a e i o u y œ æ W

Male A01
A03 n=189 n=57

Female

A02
A07 n=13
B08
B11
B16 n=20

Table 4: Our case study revealed that from the gold data, /a/ for 3 speakers and /o/ for 1 speaker (marked with
shaded cells and token counts) in Urum words were pronounced significantly differently in monolingual Urum
vs code-switched utterances. For these four instances, Pillai scores indicated that the vowel formants for the two
groups in question (Urum vs CS) were significantly non-overlapping.

Spkr a e i o u y œ æ W

A01 X
A03 X X X

A02
A07 X
B08 X
B11
B16

Table 5: The best-performing acoustic model (Russian
MFA adapted on Urum + CS 94m) yielded 3 true posi-
tives (shaded X), 3 false positives (unshaded X), and 1
false negative (shaded empty cell).

n = 189 indicates that A03 uttered 189 /a/ vowels,
and his F1×F2 values for /a/ in Urum words from
monolingual Urum utterances were significantly
different than values for /a/ in Urum words from
code-switched utterances. The same can be said
for speaker A03’s /o/ (n = 57), speaker A07’s /a/
(n = 13), and speaker B16’s /a/ (n = 20).

5.3 Results from automatic alignments

Second, we calculated Pillai scores from the out-
put of the best-performing and worst-performing
models and compared these to the gold scores (Ta-
bles 5 and 6). From the best-performing model,
the Russian MFA model adapted on the Urum +
CS (94m) data, it found six instances of significant
non-overlap. Three out of the four gold instances
were correctly identified (i.e., three true positives
and one false negative), while producing three spu-
rious significant findings (i.e., three false positives).
From the worst-performing model, trained on the

Spkr a e i o u y œ æ W

A01 X
A03 X X X X

A02
A07 X
B08
B11
B16

Table 6: The worst-performing acoustic model (trained
on the CS 47m partition) yielded 2 true positives (shaded
X), 4 false positives (unshaded X), and 2 false negatives
(shaded empty cells).

CS (47m) partition, it produced less congruent find-
ings: only two out of the four gold instances were
correctly identified (i.e., two true positives and two
false negatives), with four spurious significant find-
ings (i.e., four false positives). We used the phonR
package in R (McCloy, 2012) to plot vowel el-
lipses for /i, a, o/ for male speaker A03, over the
two language conditions, and across the three types
of output (Figure 3). The gold plot reflects our
findings that /a/ and /o/ were significantly different
between Urum and CS environments while /i/ was
not. The ellipses from the best and worst models
show divergence from the gold ellipses. Both mod-
els found spurious differences for /i/, and although
/a/ visually appears significantly different for the
worst model, /a/ was a false negative.

Essentially, the automatic alignments did not
yield the same findings as those from the gold align-
ments in our vowel overlap analysis. Output from
the best- and worst-performing models tended to

7



F2

F
1

2500 2000 1500 1000 500

800

700

600

500

400

300

200

100

0

i

a

oi

a

o

cs
urum

Gold
F2

F
1

2500 2000 1500 1000 500

800

700

600

500

400

300

200

100

0

i

a

oi

a

o

cs
urum

Best model (Russ MFA all)
F2

F
1

2500 2000 1500 1000 500

800

700

600

500

400

300

200

100

0

i

a

oi
a

o

cs
urum

Worst model (CS 47m)

Figure 3: These plots reflect the first two formants (in Hz) for three of the nine Urum vowels, /a, i, o/, for male
speaker A03. From left-to-right are formants extracted from the gold alignments, the best model (Russian MFA
adapted on Urum + CS 94m) output, and the worst model (CS 47m) output. Vowel labels are positioned at means,
and ellipses cover one standard deviation away from the mean.

hallucinate more vowel disparities than the gold
output suggested, though the best model’s vowel
disparity predictions more closely aligned to the
gold findings than the worst model’s. While the
best model’s alignments were 11 percentage points
higher than the worst model’s alignments for pre-
cision (and seven percentage points higher for ac-
curacy), these differences can be hard to interpret.
This case study allowed us to reveal the nuances of
alignment performance, as the downstream output
yielded different conclusions.

6 Conclusion

This work tested methodologies of incorporating
code-switched data in acoustic model training and
alignment in a low-resource, field data scenario.
We tested the inclusion of Urum–Russian code-
switched utterances in training acoustic models to
align Urum phones and found that it was helpful to
keep the code-switching to produce a larger train
set.8 The maximally trained-from-scratch model
performed roughly on-par with a pretrained Rus-
sian model adapted to the same field data. If one
is fortunate enough to have 90-some minutes of
transcribed data, it should be sufficient to train
models (see also the recommendations in Chodroff
et al., 2024). Otherwise, utilizing a large, pre-
trained model performed reasonably, particularly
when adapted on target data.

In order to functionally assess the quality of the

8Our findings echo similar cross-language modeling ex-
periments from other domains such as speech recognition and
text-based NLP research, where the inclusion of data from
a higher-resource language improved model performance on
low-resource language data (e.g., Downey et al., 2024; Farooq
and Hain, 2023; Fujinuma et al., 2022).

systems, we tested our best and worst systems’
alignment outputs against the gold alignments to
answer a bilingual phonetics question (RQ2). Cal-
culating Pillai scores across formant values for indi-
vidual speakers, we discovered that several speak-
ers pronounced certain Urum vowels significantly
differently in monolingual Urum utterances than
in code-switched utterances. While not matching
the gold alignment results exactly, the best acoustic
model yielded more similar results to the gold than
the worst acoustic model. We recommend man-
ual adjustment of phone boundaries when conduct-
ing phonetic analyses, particularly those involving
smaller datasets and temporally sensitive phonetic
measurements (e.g., analysis of duration or cases
where the boundary determines the measurement
location such as onset f0).

As future work, it would be beneficial to con-
duct a survey study with qualitative and quantita-
tive statistics on the prevalence of code-switching
across field data repositories. How are multiple lan-
guages used by the elicitors and by the community
members of the language being documented?

Further research could also aim to extend
the study of phonetics and phonology for code-
switched language more broadly. Our case study
only scratched the surface to discover the nature
of shifting Urum vowel qualities depending on the
languages present in an utterance. It would be inter-
esting to discover if the significantly different Urum
vowel formants were becoming more Russian-like
when surrounded by Russian context, similar to
findings on Korean–English by Seo and Olson
(2024). Cross-linguistic interference or transfer
could be in effect and is worth investigating.
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Limitations

When conducting our regression analyses or case
study, we did not take into account code-switching
properties at the syntactic or prosodic level. It
would be interesting to factor into account whether
the code-switched utterance was inter-sentential or
intra-sentential (i.e., mixing languages at phrase
boundaries or within phrases). When calculat-
ing boundary differences, examining how close
an Urum word was to a Russian word could have
provided useful information. Prosodic factors such
as speech rate and pitch would also add insight as,
anecdotally, prosody was at times visibly differ-
ent near the language switch points. Additionally,
code-switched words can be confused with loan-
words that have a legitimate place in a language’s
lexicon. All of the Russian words in this reposi-
tory were explicitly tagged as Russian by the field
linguists, but there may be disagreement to the clas-
sification of language at the token-level.

The Urum dataset from the DoReCo repository
used in this work was particularly well-annotated
for both Urum and Russian. However, the quality
and quantity of transcriptions here may not be com-
parable to that in other field data repositories, and
replication of our findings on other datasets may
be challenging.

Ethics Statement

The dataset in this study has been made publicly
available for download and research use. Speech
data that is public carries inherent potential harms
for misuse in downstream tasks.

Particularly for our methodological approach of
including code-switched speech or the language
of broader communication in the analysis of field
data, we advise some caution. The speech from
the non-target language may have been meant to be
ignored and not recorded. If sections of the speech
data were not explicitly transcribed, they may not
have been intended to be used for analysis.
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In Proceedings of the Australasian Language Tech-
nology Association Workshop 2018, pages 26–33,
Dunedin, New Zealand.

Christian DiCanio, Hosung Nam, Douglas H. Whalen,
H. Timothy Bunnell, Jonathan D. Amith, and
Rey Castillo García. 2013. Using Automatic Align-
ment to Analyze Endangered Language Data: Testing
the Viability of Untrained Alignment. The Journal
of the Acoustical Society of America, 134(3):2235–
2246.

C. M. Downey, Terra Blevins, Dhwani Serai, Dwija
Parikh, and Shane Steinert-Threlkeld. 2024. Targeted
Multilingual Adaptation for Low-resource Language
Families. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 15647–
15663, Miami, Florida, USA. Association for Com-
putational Linguistics.

Muhammad Umar Farooq and Thomas Hain. 2023.
Learning Cross-lingual Mappings for Data Augmen-
tation to Improve Low-resource Speech Recognition.
In Interspeech 2023, pages 5072–5076.

Melinda Fricke, Judith F. Kroll, and Paola E. Dussias.
2016. Phonetic Variation in Bilingual Speech: A
Lens for Studying the Production–comprehension
Link. Journal of Memory and Language, 89:110–
137. Speaking and Listening: Relationships Between
Language Production and Comprehension.

Yoshinari Fujinuma, Jordan Boyd-Graber, and Katha-
rina Kann. 2022. Match the Script, Adapt if Multilin-
gual: Analyzing the Effect of Multilingual Pretrain-
ing on Cross-lingual Transferability. In Proceedings

9

https://doi.org/10.21437/Interspeech.2024-2286
https://doi.org/10.21437/Interspeech.2024-2286
https://doi.org/10.21437/Interspeech.2024-2286
https://doi.org/10.3765/plsa.v4i1.4468
https://doi.org/10.3765/plsa.v4i1.4468
https://doi.org/10.3765/plsa.v4i1.4468
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
http://www.praat.org/
http://www.praat.org/
https://aclanthology.org/U18-1003
https://aclanthology.org/U18-1003
https://doi.org/10.1121/1.4816491
https://doi.org/10.1121/1.4816491
https://doi.org/10.1121/1.4816491
https://doi.org/10.18653/v1/2024.findings-emnlp.918
https://doi.org/10.18653/v1/2024.findings-emnlp.918
https://doi.org/10.18653/v1/2024.findings-emnlp.918
https://doi.org/10.21437/Interspeech.2023-1613
https://doi.org/10.21437/Interspeech.2023-1613
https://doi.org/10.1016/j.jml.2015.10.001
https://doi.org/10.1016/j.jml.2015.10.001
https://doi.org/10.1016/j.jml.2015.10.001
https://doi.org/10.18653/v1/2022.acl-long.106
https://doi.org/10.18653/v1/2022.acl-long.106
https://doi.org/10.18653/v1/2022.acl-long.106


of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1500–1512, Dublin, Ireland. Association for
Computational Linguistics.

Jean-Philippe Goldman. 2011. EasyAlign: an Auto-
matic Phonetic Alignment Tool under Praat. In Inter-
speech 2011, pages 3233–3236.

Olga Kazakevich and Elena Klyachko. 2022. Evenki
DoReCo Dataset. In Frank Seifart, Ludger Paschen,
and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin and Lyon. Accessed on
17 Nov 2022.

Matthew C. Kelley and Benjamin V. Tucker. 2020.
A Comparison of Four Vowel Overlap Measures.
The Journal of the Acoustical Society of America,
147(1):137–145.

Thomas Kisler, Uwe Reichel, and Florian Schiel. 2017.
Multilingual Processing of Speech via Web Services.
Computer Speech & Language, 45:326–347.

Thea Knowles, Meghan Clayards, and Morgan Son-
deregger. 2018. Examining Factors Influencing the
Viability of Automatic Acoustic Analysis of Child
Speech. Journal of Speech, Language, and Hearing
Research, 61(10):2487–2501.

William Labov, Ingrid Rosenfelder, and Josef Frue-
hwald. 2013. One Hundred Years of Sound Change
in Philadelphia: Linear Incrementation, Reversal, and
Reanalysis. Language, 89(1):30–65.

Gina-Anne Levow, Emily M. Bender, Patrick Littell,
Kristen Howell, Shobhana Chelliah, Joshua Crowgey,
Dan Garrette, Jeff Good, Sharon Hargus, David In-
man, Michael Maxwell, Michael Tjalve, and Fei Xia.
2017. STREAMLInED Challenges: Aligning Re-
search Interests with Shared Tasks. In Proceedings of
the 2nd Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages
39–47.

Laurel MacKenzie and Danielle Turton. 2020. Assess-
ing the Accuracy of Existing Forced Alignment Soft-
ware on Varieties of British English. Linguistics
Vanguard, 6(s1):20180061.

Tristan J. Mahr, Visar Berisha, Kan Kawabata, Julie
Liss, and Katherine C. Hustad. 2021. Performance of
Forced-Alignment Algorithms on Children’s Speech.
Journal of Speech, Language, and Hearing Research,
64(6S):2213–2222.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi. In Interspeech 2017, pages
498–502.

Michael McAuliffe and Morgan Sonderegger. 2023.
English MFA acoustic model v2.2.1. Technical
report, https://mfa-models.readthedocs.io/
en/latest/acoustic/English/English%20MFA%
20acoustic%20model%20v2_2_1.html.

Michael McAuliffe and Morgan Sonderegger. 2024.
Russian MFA acoustic model v3.1.0. Technical
report, https://mfa-models.readthedocs.io/
en/latest/acoustic/Russian/Russian%20MFA%
20acoustic%20model%20v3_1_0.html.

Daniel R McCloy. 2012. Vowel Normalization and
Plotting with the phonR Package. Technical Reports
of the UW Linguistic Phonetics Laboratory, 1:1–8.

David R. Mortensen, Patrick Littell, Akash Bharad-
waj, Kartik Goyal, Chris Dyer, and Lori Levin. 2016.
PanPhon: A Resource for Mapping IPA Segments
to Articulatory Feature Vectors. In Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3475–3484.

Pieter Muysken. 2000. Bilingual Speech: A Typology of
Code-mixing. Cambridge University Press.

Ayushi Pandey, Pamir Gogoi, and Kevin Tang. 2020.
Understanding Forced Alignment Errors in Hindi-
English Code-Mixed Speech–a Feature Analysis. In
Proceedings of the First Workshop on Speech Tech-
nologies for Code-Switching in Multilingual Commu-
nities, pages 13–17.

Ludger Paschen, François Delafontaine, Christoph
Draxler, Susanne Fuchs, Matthew Stave, and Frank
Seifart. 2020. Building a Time-aligned Cross-
linguistic Reference Corpus from Language Docu-
mentation Data (DoReCo). In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 2657–2666, Marseille, France. European
Language Resources Association.

Nay San, Martijn Bartelds, Tolúlopé Ògúnrèmí, Ali-
son Mount, Ruben Thompson, Michael Higgins, Roy
Barker, Jane Simpson, and Dan Jurafsky. 2022. Au-
tomated Speech Tools for Helping Communities Pro-
cess Restricted-access Corpora for Language Revival
Efforts. In Proceedings of the Fifth Workshop on
the Use of Computational Methods in the Study of
Endangered Languages, pages 41–51.

Yuhyeon Seo and Daniel J. Olson. 2024. Phonetic Shifts
in Bilingual Vowels: Evidence from Intersentential
and Intrasentential Code-switching. International
Journal of Bilingualism, 0(0):1–16.

Stavros Skopeteas. 2014. Caucasian Urums and Urum
Language. Journal of Endangered Turkish Lan-
guages, 3(1):333–364.

Stavros Skopeteas, Violeta Moisidi, Nutsa Tsetereli, Jo-
hanna Lorenz, and Stefanie Schröter. 2022. Urum
DoReCo Dataset. In Frank Seifart, Ludger Paschen,

10

https://doi.org/10.21437/Interspeech.2011-815
https://doi.org/10.21437/Interspeech.2011-815
https://doi.org/10.34847/nkl.5e0d27cu
https://doi.org/10.34847/nkl.5e0d27cu
https://doi.org/10.1121/10.0000494
https://doi.org/10.1016/j.csl.2017.01.005
https://doi.org/10.1044/2018_JSLHR-S-17-0275
https://doi.org/10.1044/2018_JSLHR-S-17-0275
https://doi.org/10.1044/2018_JSLHR-S-17-0275
https://doi.org/10.1353/lan.2013.0015
https://doi.org/10.1353/lan.2013.0015
https://doi.org/10.1353/lan.2013.0015
https://doi.org/10.1515/lingvan-2018-0061
https://doi.org/10.1515/lingvan-2018-0061
https://doi.org/10.1515/lingvan-2018-0061
https://doi.org/10.1044/2020_JSLHR-20-00268
https://doi.org/10.1044/2020_JSLHR-20-00268
https://doi.org/10.21437/Interspeech.2017-1386
https://doi.org/10.21437/Interspeech.2017-1386
https://mfa-models.readthedocs.io/en/latest/acoustic/English/English%20MFA%20acoustic%20model%20v2_2_1.html
https://mfa-models.readthedocs.io/en/latest/acoustic/English/English%20MFA%20acoustic%20model%20v2_2_1.html
https://mfa-models.readthedocs.io/en/latest/acoustic/English/English%20MFA%20acoustic%20model%20v2_2_1.html
https://mfa-models.readthedocs.io/en/latest/acoustic/Russian/Russian%20MFA%20acoustic%20model%20v3_1_0.html
https://mfa-models.readthedocs.io/en/latest/acoustic/Russian/Russian%20MFA%20acoustic%20model%20v3_1_0.html
https://mfa-models.readthedocs.io/en/latest/acoustic/Russian/Russian%20MFA%20acoustic%20model%20v3_1_0.html
https://aclanthology.org/C16-1328/
https://aclanthology.org/C16-1328/
https://aclanthology.org/2020.lrec-1.324
https://aclanthology.org/2020.lrec-1.324
https://aclanthology.org/2020.lrec-1.324
https://doi.org/10.18653/v1/2022.computel-1.6
https://doi.org/10.18653/v1/2022.computel-1.6
https://doi.org/10.18653/v1/2022.computel-1.6
https://doi.org/10.18653/v1/2022.computel-1.6
https://doi.org/10.1177/13670069241251988
https://doi.org/10.1177/13670069241251988
https://doi.org/10.1177/13670069241251988
https://doi.org/10.34847/nkl.ac166n10
https://doi.org/10.34847/nkl.ac166n10


and Matthew Stave, editors, Language Documen-
tation Reference Corpus (DoReCo) 1.2. Leibniz-
Zentrum Allgemeine Sprachwissenschaft & labora-
toire Dynamique Du Langage (UMR5596, CNRS &
Université Lyon 2), Berlin and Lyon. Accessed on
17 Nov 2022.

Joseph A. Stanley and Betsy Sneller. 2023. Sample Size
Matters in Calculating Pillai Scores. The Journal of
the Acoustical Society of America, 153(1):54–67.

Genta Winata, Alham Fikri Aji, Zheng Xin Yong, and
Thamar Solorio. 2023. The Decades Progress on
Code-Switching Research in NLP: A Systematic Sur-
vey on Trends and Challenges. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 2936–2978, Toronto, Canada. Association for
Computational Linguistics.

Jian Zhu, Changbing Yang, Farhan Samir, and Jahu-
rul Islam. 2024. The Taste of IPA: Towards Open-
Vocabulary Keyword Spotting and Forced Alignment
in Any Language. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
750–772. Association for Computational Linguistics.

A Cross-language Phone Mappings
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Tables 8 and 9 display the output from the mixed-
effects regression models.
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Russ (CS) to Eng MFA Urum to Eng MFA Urum to Russ MFA

tC→ tS d: → d R→ r
1→ W l: → l œ→ E
ù→ S m: → m W→ 1
ü→ Z r→ R S→ ù

s: → s Z→ ü
t: → t d→ d”
x→ ç d: → d”:
y→ 0 dZ→ dü:
œ→ E l→ ì
G→ ç l: → ì:
W→ @ n→ n”

s→ s”
s: → s”:
t→ t”
t: → t”:
tS→ tù
y→ 0
z→ z”

Table 7: Urum and Russian (code-switched) phones from DoReCo that did not exist in the pretrained English or
Russian MFA model lexicons were mapped to their nearest neighboring phones, calculated with the PanPhon tool
(Mortensen et al., 2016).
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Predictors Estimate Std. Error t-value Pr(>|t|)

Intercept -4.39 0.18 -24.37 <0.001
CS (47m) 0.11 0.03 3.35 <0.001
Urum + CS (94m) -0.28 0.03 -8.56 <0.001
English + Urum (47m) -0.22 0.03 -6.83 <0.001
English + CS (47m) -0.20 0.03 -6.02 <0.001
English + Urum/CS (94m) -0.22 0.03 -6.67 <0.001
Russian + Urum (47m) -0.20 0.03 -6.17 <0.001
Russian + CS (47m) -0.18 0.03 -5.42 <0.001
Russian + Urum/CS (94m) -0.21 0.03 -6.46 <0.001
Utterance duration 4.03 0.25 16.39 <0.001
Contamimation amount 0.63 0.05 13.14 <0.001
Speaker seen in training 0.20 0.20 0.98 0.360
Utt is Urum-only 0.01 0.03 0.18 0.859
Prec vowel -0.11 0.08 -1.39 0.166
Prec approx 0.31 0.55 0.57 0.567
Prec tap/trill 0.30 0.04 7.00 <0.001
Prec nasal -0.17 0.11 -1.56 0.118
Prec fric -0.22 0.10 -2.28 <0.05
Prec affr 0.63 0.39 1.63 0.103
Prec stop -0.12 0.10 -1.19 0.236
Vowel -0.39 0.08 -4.79 <0.001
Approximant -0.03 0.09 -0.37 0.712
Tap/trill 0.75 0.38 1.97 <0.05
Nasal -0.18 0.09 -1.95 0.052
Fricative -0.20 0.08 -2.56 <0.05
Affricate -0.01 0.12 -0.10 0.921
CS (47m) x Utt is Urum-only 0.09 0.05 2.06 <0.05
Urum + CS (94m) x Utt is Urum-only 0.04 0.05 0.86 0.390
English + Urum (47m) x Utt is Urum-only 0.01 0.05 0.22 0.828
English + CS (47m) x Utt is Urum-only 0.00 0.05 -0.03 0.974
English + Urum/CS (94m) x Utt is Urum-only -0.01 0.05 -0.15 0.880
Russian + Urum (47m) x Utt is Urum-only -0.02 0.05 -0.45 0.651
Russian + CS (47m) x Utt is Urum-only -0.02 0.05 -0.42 0.674
Russian + Urum/CS (94m) x Utt is Urum-only -0.01 0.05 -0.23 0.822
Prec vowel x vowel 0.79 0.08 9.31 <0.001
Prec vowel x approx 0.39 0.09 4.35 <0.001
Prec vowel x tap/trill -0.83 0.38 -2.17 <0.05
Prec vowel x nasal -0.18 0.09 -1.89 0.059
Prec vowel x fric -0.10 0.08 -1.24 0.215
Prec vowel x affr 0.24 0.13 1.84 0.066
Prec approx x vowel 0.14 0.55 0.25 0.802
Prec approx x approx -0.86 0.56 -1.54 0.125
Prec approx x tap/trill 0.68 3.26 0.21 0.836
Prec approx x nasal 0.45 0.56 0.81 0.419
Prec approx x fric -0.16 0.64 -0.25 0.800
Prec approx x affr -0.14 0.56 -0.25 0.801
Prec tap/trill x vowel 0.15 0.05 3.06 <0.01
Prec tap/trill x approx 0.05 0.07 0.66 0.510
Prec tap/trill x nasal -0.17 0.11 -1.61 0.108
Prec tap/trill x fric 0.06 0.14 0.40 0.693
Prec tap/trill x affr -0.13 0.13 -1.05 0.296
Prec nasal x vowel 0.21 0.11 1.94 0.052
Prec nasal x approx 0.09 0.16 0.57 0.572
Prec nasal x tap/trill -0.24 0.54 -0.45 0.651
Prec nasal x nasal 0.52 0.13 4.03 <0.001
Prec nasal x fric -0.24 0.13 -1.94 0.053
Prec nasal x affr -0.14 0.19 -0.76 0.445
Prec fric x vowel -0.25 0.10 -2.58 <0.01
Prec fric x approx 0.25 0.11 2.21 <0.05
Prec fric x tap/trill -0.54 0.47 -1.16 0.245
Prec fric x nasal -0.05 0.15 -0.34 0.736
Prec fric x fric 0.16 0.12 1.36 0.173
Prec fric x affr 0.20 0.20 0.99 0.321
Prec affr x vowel -1.05 0.39 -2.68 <0.01
Prec affr x approx -0.49 0.43 -1.13 0.257
Prec affr x tap/trill 3.15 2.14 1.48 0.140
Prec affr x nasal -1.04 0.48 -2.20 <0.05
Prec affr x fric -0.01 0.94 -0.01 0.993
Prec stop x vowel -0.32 0.10 -3.11 <0.01
Prec stop x approx -0.01 0.12 -0.08 0.933
Prec stop x tap/trill -0.80 0.38 -2.12 <0.05
Prec stop x nasal 0.22 0.14 1.60 0.109

Table 8: Linear mixed-effects regression results for phone onset boundary difference (in log seconds, with 0
seconds mapped to 0.001 prior to the log transformation). Models were treatment-coded, each compared to the
train-from-scratch Urum-only (47m) model. The current phone class was sum-coded with the held-out level of
stop; the previous phone class was sum-coded with the held-out level of silence. Utterance duration was entered as
hectoseconds (seconds / 100).

13



Predictors Estimate Std. Error z-value Pr(>|z|)

Intercept 2.07 0.27 7.68 <0.001
CS (47m) -0.22 0.04 -5.05 <0.001
Urum + CS (94m) 0.34 0.05 7.10 <0.001
English + Urum (47m) 0.23 0.05 4.94 <0.001
English + CS (47m) 0.18 0.05 3.93 <0.001
English + Urum/CS (94m) 0.22 0.05 4.67 <0.001
Russian + Urum (47m) 0.33 0.05 6.87 <0.001
Russian + CS (47m) 0.29 0.05 6.08 <0.001
Russian + Urum/CS (94m) 0.35 0.05 7.17 <0.001
Utterance duration -2.13 0.47 -4.56 <0.001
Contamimation amount -0.94 0.10 -9.46 <0.001
Speaker seen in training -0.08 0.34 -0.24 0.814
Utt is Urum-only 0.06 0.03 1.94 0.053
Prec vowel -0.31 0.03 -10.18 <0.001
Prec approx -0.16 0.04 -3.94 <0.001
Prec tap/trill -0.26 0.04 -6.28 <0.001
Prec nasal 0.10 0.04 2.26 <0.05
Prec fric 0.24 0.04 6.12 <0.001
Prec affr 0.33 0.10 3.34 <0.001
Prec stop 0.15 0.03 4.64 <0.001
Vowel -0.23 0.04 -5.90 <0.001
Approximant -0.96 0.04 -23.66 <0.001
Tap/trill -1.11 0.04 -27.73 <0.001
Nasal 0.03 0.04 0.60 0.547
Fricative 0.45 0.05 9.97 <0.001
Affricate 1.62 0.17 9.72 <0.001

Table 9: Logistic mixed-effects regression results for accuracy. Accuracy is 1 if the midpoint of the system interval
lies within the corresponding gold interval. Models were treatment-coded, each compared to the train-from-scratch
Urum-only (47m) model. The current phone class was sum-coded with the held-out level of stop; the previous
phone class was sum-coded with the held-out level of silence. Utterance duration was entered as hectoseconds
(seconds / 100).
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Abstract
Cross-lingual transfer in natural language pro-
cessing (NLP) models enhances multilingual
performance by leveraging shared linguistic
knowledge. However, traditional methods that
process all data simultaneously often fail to
mimic real-world scenarios, leading to chal-
lenges like catastrophic forgetting, where fine-
tuning on new tasks degrades performance on
previously learned ones. Our study explores
this issue in multilingual contexts, focusing
on linguistic differences affecting representa-
tional learning rather than just model parame-
ters. We experiment with 52 languages using
LoRA adapters of varying ranks to evaluate
non-shared, partially shared, and fully shared
parameters. Our aim is to see if parameter shar-
ing through adapters can mitigate forgetting
while preserving prior knowledge. We find
that languages using non-Latin scripts are more
susceptible to catastrophic forgetting, whereas
those written in Latin script facilitate more ef-
fective cross-lingual transfer.

1 Introduction

Cross-lingual transfer in natural language process-
ing (NLP) models has demonstrated enhanced per-
formance in multilingual contexts compared to
monolingual settings, largely due to the advantages
of leveraging cross-lingual knowledge (Hu et al.,
2020; FitzGerald et al., 2023; Winata et al., 2023b,
2024). Typically, training occurs only once simul-
taneously, where all available data is processed in
a single training run. However, in real-world ap-
plications, data is often received sequentially over
time, highlighting the importance of continuous
model updates to maintain performance (Rolnick
et al., 2019). Unlike humans, who can retain prior
knowledge while acquiring new skills, neural net-
work models often struggle to preserve previously
learned information when fine-tuned on new tasks,
which is known as catastrophic forgetting, a decline
in performance on earlier tasks after the model is

Figure 1: Pipeline for various approaches in lifelong
learning. In our lifelong learning framework, we em-
ploy a LoRA-based approach where the parameters of
the base model, denoted as θ, remain fixed, and for
VANILLA, the model parameters are updated at all
times. We explore the phenomenon of multilingual
knowledge loss by comparing the effects of training
with both shared and non-shared parameters.

exposed to new data (Winata et al., 2023a). To mit-
igate this issue, several studies have investigated
continual learning strategies and the implementa-
tion of adapters (Badola et al., 2023) as viable solu-
tions. This limitation poses a significant challenge
for multilingual NLP, as models must adapt to new
languages while retaining previously acquired lin-
guistic knowledge. Without an effective learning
strategy, models risk performance degradation, ren-
dering them less suitable for long-term deployment.

Lifelong learning is essential for integrating new
annotated data across languages without requiring
full retraining of systems. As language changes and
new data becomes available, models must adapt in-
crementally to minimize computational costs. This
approach helps maintain efficiency and scalability,
while addressing the challenge of catastrophic for-
getting, which has been explored in various studies
(Liu et al., 2021; Winata et al., 2023a; Badola et al.,
2023; M’hamdi et al., 2023). However, there is a
lack of systematic analysis on this issue in multi-
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lingual contexts. This study aims to fill that gap
by investigating factors contributing to catastrophic
forgetting beyond model parameters, including how
linguistic differences can affect representational
learning and lead to knowledge erosion when learn-
ing multiple languages sequentially.

In this study, we investigate the effects of non-
shared, partially shared, and fully shared param-
eters in a multilingual context, examining 52 lan-
guages through the use of LoRA adapters with
varying ranks and different sharing model param-
eter settings as shown in Figure 1. Our primary
focus is to assess the impact of parameter sharing
on model performance, while also conducting a
comprehensive analysis of the role that different
languages play in catastrophic forgetting. Addi-
tionally, we explore sequential learning to identify
when performance drops occur and whether these
declines are influenced by the introduction of newly
learned languages or the cumulative number of pre-
viously learned languages. Our contributions can
be summarized as follows:

• We examine the factors contributing to knowl-
edge loss in multilingual language models, fo-
cusing on aspects such as language diversity,
parameter sharing strategies, and base model
selection within a lifelong learning framework
for massively multilingual learning.

• We assess cross-lingual transferability and in-
troduce multi-hop metrics to better understand
the impact of language skills on model perfor-
mance.

• We analyze model parameter adaptation to in-
vestigate trends in the model’s ability to learn
languages in a lifelong learning context.

2 Methodology

2.1 Task Setup

A sequence of T tasks is structured as an ordered
set of datasets D = {D1, D2, . . . , Dt, . . . , DT },
where each dataset Dt corresponds to a specific
task t, representing a distinct language. The model,
parameterized by θt, undergoes iterative updates,
with parameters at step t + 1 being derived from
those at step t through the function f(θt, Dt).
These updates are performed using gradient-based
optimization to maximize the log-likelihood over
dataset Dt. In this paper, task T is interchangeable
with language L.

2.2 Training Methods
We use XLM-RBASE (Conneau et al., 2020) as our
base model and compare key methods with E5 in-
struct (Wang et al., 2024) for evaluating the con-
sistency of the findings. A classification layer is
added on top of the encoder model, tailored se-
quence label of the slot filling. For adapter-based
approaches, only the parameters within the adapter
modules are updated during training.

MULTI. A single model (or LoRA adapter) is
trained on all languages simultaneously, optimizing
over the entire dataset D:

θMULTI = argmax
θ

T∑

t=1

log p(Dt | θ). (1)

MONO. Each language/task has its own indepen-
dently trained model θt:

θt = argmax
θ

log p(Dt | θ), (2)

∀t ∈ {1, . . . , T}. (3)

VANILLA. A single model is trained incremen-
tally, updating parameters sequentially:

θt+1 ← f(θt, Dt),∀t ∈ {1, . . . , T − 1}. (4)

SHARED LoRA. A single LoRA adapter ϕ is
trained while keeping the base model θ0 frozen:

ϕs ← f(ϕ′
t, Dt), θ = θ0,∀t ∈ {1, . . . , T − 1}.

(5)

NON-SHARED LoRA. Each language has its own
separate LoRA adapter ϕt, while keeping the base
model θ0 frozen:

ϕt = argmax
ϕ

log p(Dt | θ0, ϕ), ∀t ∈ {1, . . . , T}.
(6)

The specific ordering of languages used in the
VANILLA is specified in Appendix Table 3.

2.3 Model Parameters Adaptation
We utilize low-rank adapters LoRA (Hu et al.,
2021) for training parameters to analyze the ef-
fectiveness to have sharing parameters. It is a
parameter-efficient fine-tuning method for large
pre-trained models leveraging the intrinsic low-
dimensionality of parameter updates, reducing the
need for full model adaptation. Instead of modify-
ing dense layers directly, it freezes the pre-trained
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weights and introduces trainable low-rank matrices,
significantly minimizing the number of learnable
parameters and enhancing fine-tuning efficiency.

Formally, given a pre-trained weight matrix
W0 ∈ Rd×k, LoRA constrains the update ∆W
to a low-rank decomposition:

∆W = BA, (7)

where B ∈ Rd×r and A ∈ Rr×k, with rank
r ≪ min(d, k). This decomposition ensures that
only A and B are updated while W0 remains fixed.
Consequently, the forward pass is expressed as:

h = W0x+∆Wx = W0x+BAx, (8)

where x is the input vector, and h is the output. The
low-rank update ∆Wx is scaled by a constant fac-
tor α

r , analogous to a learning rate, to regulate the
magnitude of the update. LoRA offers key advan-
tages: it enhances memory and computational effi-
ciency by limiting trainable parameters, reducing
resource requirements, and enabling modular fine-
tuning. Its linear structure ensures no additional
inference latency and allows seamless integration.
By leveraging low-rank adaptation, LoRA enables
scalable and efficient model adaptation without
compromising previously learned tasks.

3 Experimental Setup

3.1 Datasets
We utilize the MASSIVE, multilingual slot filling
dataset (FitzGerald et al., 2023), which encom-
passes 52 languages and provides structured in-
formation, including scenarios, intents, utterances,
and annotated utterances. Each language is uni-
formly represented, with 11.5K training samples,
2.03K validation samples, and 2.97K test samples.

3.2 Hyper-parameters
The training setup employed different configura-
tions depending on whether LoRA was used. For
models trained with LoRA, a learning rate of
5 × 10−6 was applied, whereas models without
LoRA used a higher learning rate of 5× 10−5. The
number of training epochs is 100 for models with
LoRA, and 50 for those without. Early stopping
was implemented in both settings, with a patience
of 15 epochs for LoRA and 5 epochs for non-LoRA
models, based on the F1-score on validation data.
The LoRA configuration included a dropout rate of
0.1, and the scaling factor α was set equal to the
rank (32, 64, 256 respectively).

3.3 Evaluation Metrics

We evaluate the performance of the model using av-
erage F1 score for the learned tasks and visualized
its progression over number of learned languages,
as illustrated in Figure 2. Besides that, there are
additional metrics, particularly for sequential meth-
ods such as VANILLA and SHARED LoRA.

3.3.1 Performance Shift
This metrics is used to measure the average perfor-
mance shift, which quantifies the change in a previ-
ously learned language performance after training
in a new language. Formally, we define the average
performance change as follows:

Pavg =
1

N

N∑

n=1

(Pt − Pt+1), (9)

where Pt and Pt+1 represent the average F1 score
over all previously encountered tasks at time steps
t and t+ 1, respectively. To account for variability
in task sequences, the performance changes are
averaged over five times (N = 5).

3.4 Cross-lingual Transfer

We assess cross-lingual transfer effectiveness us-
ing Cross-lingual Forward Transfer (CFT) and
Cross-lingual Backward Transfer (CBT) metrics
from Winata et al. (2023a) and we introduce a
new metric, Multi-Hop Forward Transfer (MFT),
and Multi-Hop Backward Transfer (MBT) to mea-
sure the multi-hop transfer for each language. Let
R ∈ RT×T be a matrix where Ri,j represents the
test score performance on task tj after training on
the last sample from task ti. The two types of
metrics are defined as follows.

Cross-lingual Forward Transfer (CFT). The
metric evaluates the model’s ability to generalize to
unseen languages by assessing test performance on
tasks not encountered during training. It is defined
as:

CFT =
1

T − 1

T−1∑

i=1

X̄i, (10)

where

X̄i =
1

T − i

T∑

j=i+1

Ri,j . (11)

Here, X̄i represents the average performance
across future tasks (tj > ti).
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Cross-lingual Backward Transfer (CBT). The
metric measures the impact of learning a new task
ti on the performance of previously learned tasks.
It is formally defined as:

CBT =
1

T − 1

T−1∑

i=1

(RT−1,i −Ri,i) . (12)

This metric quantifies the extent of catastrophic
forgetting, where adding a new task may negatively
impact the performance of past tasks.

Multi-Hop Forward Transfer (MFT). The met-
ric measures the knowledge transfer effect between
tasks separated by multiple learning steps. For a
hop distance h, MFT is defined as:

MFTh =
1

|L|
∑

l∈L
(Pi+h − Pi−1), (13)

where Pi represents the average performance on
tasks seen up to step i. This metric quantifies how
learning a language affects performance on another
language that will be encountered h steps later in
the training sequence.

Multi-Hop Backward Transfer (MBT). The
metric similarly evaluates the effect of learning a
new task on the performance of tasks encountered
several steps earlier. For a hop distance h, MBT is
defined as:

MBTh =
1

|L|
∑

l∈L
(Pi − Pi−h−1). (14)

This metric measures how training on a language
affects the performance on languages that were
learned h steps before in the training sequence.
The term multi-hop refers to our evaluation across
multiple hops, as illustrated in Figure 5. A hop
distance of zero corresponds to the performance
change metric.

4 Results

Figure 3 illustrates the impact of training different
languages sequentially on model performance to-
wards learned language, measured by the average
F1 change across 5 different orders.

Performance vs. Model Parameters. Table 1
presents a comparison of training methods in terms
of average F1 score and trainable parameters. The
MULTI method achieves the best overall perfor-
mance (75.03%) with a much less parameter foot-
print (278.04M) compared to MONO’s, offering an

Method Params (M) F1 (%) Language Vitality
Low Mid High

MULTI 278.04 75.03 75.42 75.84 72.63
r = 32 5.36 74.19 74.27 75.17 71.83
r = 64 10.72 73.79 74.00 74.56 71.73
r = 256 42.86 74.11 74.16 74.83 72.41

MONO 14,458.27 72.98 73.66 74.11 69.43
VANILLA 278.04 66.16 65.70 67.65 63.46

SHARED LoRA
r = 32 5.36 60.24 59.35 62.34 56.75
r = 64 10.72 61.26 60.55 63.37 57.48
r = 256 42.86 60.16 59.06 62.15 57.22

NON-SHARED LoRA
r = 32 278.04 72.14 72.42 73.39 68.89
r = 64 557.19 72.38 72.55 73.48 69.65
r = 256 2,228.75 73.16 73.82 74.26 69.73

Table 1: Comparison of methods based on trainable
parameters (in million parameters) and averaged F1 (%).
Lower trainable parameters is better, higher average
performance is better.

Figure 2: Performance results after training each lan-
guage over the time.

excellent balance between effectiveness and effi-
ciency. On the opposite end, MONO, which trains an
entirely separate model per language, consumes an
enormous parameter budget (14,458.27M) while
yielding only moderate performance (72.98%),
highlighting the inefficiency of isolated training.

Among parameter-efficient alternatives, LoRA-
based approaches exhibit varying trade-offs.
NON-SHARED LoRA performs competitively (up to
73.16% at rank 256), benefiting from task-specific
specialization, albeit with moderate parameter cost
(2,228.75M). In contrast, SHARED LoRA’s best re-
sult dramatically reduces the number of trainable
parameters (e.g., 10.72M at rank 256) but suf-
fers heavily in performance, dropping to as low
as 61.26%.
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Figure 3: Performance change after training a certain language on x-axis in sequential training (VANILLA). Chinese
(zh-CN) exhibits the most significant performance decline, while German (de-DE) serves as the most effective
donor language, enhancing overall performance.

Figure 4: Comparison results between XLM-R and E5 models.

Crucially, increasing the LoRA rank—while ex-
panding the model’s capacity—does not substan-
tially improve performance. For instance, MULTI
with rank 32 (74.19%) performs nearly as well
as at rank 256 (74.11%), and similar diminish-
ing returns are observed across both SHARED and
NON-SHARED LoRA. This trend extends to trans-
fer metrics: Table 2 shows that higher rank un-
der SHARED LoRA does not significantly improve
forward transfer—CFT remains within the narrow
band of 0.51–0.53. These results highlight a key
trade-off: higher trainable parameters generally
improve performance, but the efficiency of pa-
rameter usage varies across methods. The MULTI
method provides the best balance between parame-
ter efficiency and performance, while LoRA-based
approaches demonstrate potential for parameter-

efficient training at the cost of reduced perfor-
mance. However, it should be noted that the MULTI
method might not be trainable in parallel like the
NON-SHARED LoRA method. Hence, in some sce-
narios, the NON-SHARED LoRA method should be
considered.

Trends Between Models. Figure 2 illustrates
how different training strategies affect performance
over time. A key trend is that MULTI method (dotted
lines), trained jointly on all languages, exhibit con-
sistent performance, maintaining F1-scores above
73% throughout training. In contrast, sequential
learning models show clear signs of degradation
as training progresses. The VANILLA model suf-
fers from moderate catastrophic forgetting, with
F1-score reductions of 10–15 points. SHARED LoRA
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fares worse, degrading by as much as 15–30 points
across tasks. Meanwhile, NON-SHARED LoRA of-
fers more stable performance across steps, rang-
ing between 70–73% and demonstrating greater
resilience to forgetting.

These observations are further supported by Ta-
ble 2, which reports backward and forward transfer
scores. The VANILLA model achieves a CBT of
−0.08 and CFT of 0.55, suggesting that while
it suffers from forgetting, it still generalizes rea-
sonably well to future tasks. SHARED LoRA, how-
ever, shows consistently more negative CBT scores
(−0.13 to −0.14), confirming its vulnerability to
catastrophic forgetting. This performance is also
reflected in CFT, where the scores are also lower
than VANILLA method. Together, these findings
underscore the importance of balancing task gener-
alization and knowledge retention, particularly in
continual cross-lingual setups.

Method CBT CFT

VANILLA -0.08 0.55
SHARED LoRA

r = 32 -0.13 0.52
r = 64 -0.12 0.53
r = 256 -0.14 0.51

Table 2: CBT and CFT metrics for VANILLA and
SHARED LoRA models — higher values indicate bet-
ter performance.

Comparison XLM-R and E5 Models. Figure 4
presents a comparison of XLM-R and E5 models
across different training methods. Despite varia-
tions in methodology, the general pattern of results
remains consistent across models. Overall, XLM-R
performs better than E5, except in VANILLA method
where E5 tends to outperform XLM-RBASE, though
performance degradation due to forgetting is still
evident. The results suggest that while different
methods and model architectures influence the
degree of forgetting, the overall trend of perfor-
mance degradation remains a common characteris-
tic across all settings.

5 Analysis on Languages

To frame our analysis, we interpret MFT as mea-
suring a language’s ability to donate knowledge
to subsequent languages, while MBT reflects how
well a language receives and retains knowledge af-
ter subsequent training steps. This donor-receiver

perspective allows us to reason about asymmetries
in cross-lingual transfer.

5.1 Languages Affect Forgetting

The results reveal that certain languages signif-
icantly impact the model’s capacity to retain
prior knowledge. Training on Chinese (zh-CN),
Japanese (ja-JP), and Traditional Chinese
(zh-TW) consistently leads to the most pronounced
cases of catastrophic forgetting. This is evidenced
by their strongly negative MBT values in Figure 5
and severe performance degradation in Figure 3,
particularly when these languages are introduced
later in the training sequence. As receivers, these
languages appear highly vulnerable to interference
from prior tasks. More detailed explanation can
be seen in Appendix A. In contrast, languages
such as Norwegian (nb-NO), Catalan (ca-ES),
Portuguese (pt-PT), and Greek (el-GR) show
some of the highest MBT scores across hop dis-
tances. These languages maintain stability when
trained after others and also preserve prior task
performance, indicating they are robust receivers.
Interestingly, they may also act as indirect donors
by not interfering with earlier knowledge.

However, not all performance trends align per-
fectly with MBT. For example, German (de-DE)
appears beneficial in performance drop metrics
(Figure 3), yet does not rank highly in MBT. This
suggests that its apparent advantage may be due to
its position in the training sequence—e.g., being
trained before high-forgetting languages—rather
than any inherent ability to preserve earlier knowl-
edge. This underscores an important point: in-
terpreting language influence solely through per-
formance drop can be misleading. MBT offers a
more principled, sequence-agnostic perspective on
which languages genuinely aid in preserving prior
knowledge and resisting catastrophic forgetting.

5.2 Latin vs. Non-Latin Scripts

Script similarity plays a significant role in cross-
lingual knowledge transfer. In both MFT and MBT
heatmaps, we observe that languages using Latin
scripts—such as es-ES, fr-FR, and de-DE—tend
to be strong donors and stable receivers. They ben-
efit more from training on other languages and also
suffer less from catastrophic forgetting. This likely
reflects greater subword token overlap and lexical
similarity, which help preserve learned representa-
tions under shared tokenization.

20



Figure 5: Heatmap of Multi-hop Backward Transfer (MBT), illustrates how training on later languages affects
earlier ones over increasing hop distances (y-axis: 0–9). Cooler colors indicate positive backward transfer, while
warmer colors reflect degradation in performance. Orders of the language is sorted descending (read from top-left to
bottom-right) based on its average over all hops.

Figure 6: Heatmap of Multi-hop Forward Transfer (MFT), represents each language’s ability to donate knowledge to
subsequent tasks over increasing hop distances (y-axis: 0–9). Cooler colors indicate stronger positive transfer, while
warmer colors reflect limited or negative influence on future learning. Orders of the language is sorted descending
(read from top-left to bottom-right) based on its average over all hops.

In contrast, non-Latin script languages, espe-
cially those using logographic (e.g., zh-CN) or
abugida scripts (e.g., th-TH, hi-IN), tend to be
weak donors and vulnerable receivers. These lan-
guages show low MFT—suggesting limited for-
ward transfer to other tasks—and highly nega-
tive MBT, indicating susceptibility to forgetting.
The subword tokenizer, likely optimized for Latin-
based alphabets, aggravates this imbalance. This
highlights a fundamental challenge for multilingual
continual learning: shared vocabulary spaces can
lead to representational dominance of Latin-script
languages, marginalizing others.

5.3 Language Family

While language family information is not explic-
itly modeled, typologically or lexically similar lan-
guages often demonstrate mutual reinforcement
in transfer. Under the donor-receiver lens, we
observe that Romance languages such as es-ES,
pt-PT, and fr-FR frequently act as strong donors
(high MFT) and reliable receivers (stable MBT),
especially when positioned near each other in the
training sequence. Similarly, Germanic languages
like nl-NL, sv-SE, and de-DE show stable transfer
interactions.

However, these patterns are not universal. The
apparent family-related benefits may arise from
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shared scripts and vocabulary rather than deep
structural similarity. For instance, several Indo-
European languages from different branches per-
form well together, likely due to orthographic
overlap. Conversely, languages from distant fam-
ilies—such as Sino-Tibetan (zh-CN), Austroasi-
atic (km-KH), or Afro-Asiatic (ar-SA)—often act
as poor receivers (low MBT) and limited donors
(low MFT), especially when sequenced after typo-
logically dissimilar languages. Future work could
explicitly incorporate phylogenetic distances to bet-
ter disentangle the impact of language family on
multilingual continual learning.

5.4 Language Vitality

Language vitality—encompassing speaker popula-
tion, data availability, and digital presence—also
plays a nuanced role in continual learning dynam-
ics. As receivers, high-vitality languages such as
zh-CN, ja-JP, and hi-IN (Joshi et al., 2020) show
some of the most negative MBT scores, indicat-
ing that they are especially vulnerable to forgetting.
Surprisingly, they also make relatively poor donors,
as reflected in lower MFT scores compared to more
typologically compatible mid-vitality languages.

This counterintuitive trend is clarified in Table 1,
where mid-vitality languages (Joshi et al., 2020)
consistently achieve the highest F1 scores across
model variants. These languages appear to strike
a balance: they share enough structure with other
languages to act as effective donors, while remain-
ing resilient as receivers under sequential training.
In contrast, high-vitality languages—despite abun-
dant resources—struggle under parameter-efficient
continual learning setups. Their unique token distri-
butions and structural divergence make them harder
to adapt to and easier to overwrite. These findings
suggest that vitality-aware scheduling or modular-
ization may be critical for improving cross-lingual
robustness in continual learning scenarios.

6 Related Work

Catastrophic forgetting is a significant challenge
in neural networks, where models lose previously
acquired knowledge when fine-tuned on new tasks
(McCloskey and Cohen, 1989). This issue is par-
ticularly pronounced in multilingual contexts, as
models must adapt to new languages without de-
grading performance on previously learned ones
(Winata et al., 2023a). To mitigate this, various
strategies have been proposed, including memory

replay (Rolnick et al., 2019), regularization tech-
niques (Kirkpatrick et al., 2017), and architectural
innovations like progressive networks (Rusu et al.,
2016).

Lifelong learning also known as continual learn-
ing, is an emerging approach that enables mod-
els—particularly LLMs and their agents—to con-
tinuously acquire new knowledge while retaining
prior capabilities. This knowledge can be inte-
grated into LLMs either by updating model pa-
rameters through training or adapters, or by lever-
aging external sources like Wikipedia or tools
without modifying the model itself or knowledge
base (Zheng et al., 2024). Recent work extends life-
long learning to agent-based settings, decomposing
it into perception, memory, and action modules
that together support continuous adaptation (Zheng
et al., 2025).

For internal knowledge updates, adapters have
proven to be a lightweight and effective solution,
introducing small, task-specific modules that can
be fine-tuned independently, reducing interference
across tasks (Houlsby et al., 2019; Winata et al.,
2021; Hu et al., 2021). The MAD-X framework
(Pfeiffer et al., 2020b) enhances cross-lingual trans-
fer by separating language and task adaptation,
while language-specific adapters balance special-
ization and sharing (Badola et al., 2023). Addition-
ally, methods like AdapterFusion (Pfeiffer et al.,
2020a) combines task-specific adapters through a
learned composition layer, promoting parameter
sharing and effective transfer learning while mini-
mizing forgetting.

7 Conclusion

Our paper highlights the critical challenges of catas-
trophic forgetting in cross-lingual transfer for mul-
tilingual NLP models with 52 languages. We pro-
vide insights into how various parameter-sharing
strategies can influence knowledge retention and
overall model performance. Our findings indicate
that partial parameter sharing can effectively miti-
gate forgetting while maintaining performance, pre-
senting a promising approach for developing more
robust multilingual NLP systems. Additionally,
we identify that certain languages during training
can negatively impact performance, contributing
to catastrophic forgetting. Overall, this research
enhances the ongoing efforts to improve the adapt-
ability and efficiency of NLP models in real-world
NLP applications.
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Limitations

In this paper, we concentrate our investigation on
XLM-R model and use E5, rather than exhaustively
evaluating every possible model due to resource
constraints. This focused approach allows us to
provide a more in-depth analysis of these models
and their performance in cross-lingual contexts.

Ethical Considerations

In our evaluation of language models for multi-
lingual tasks, we place strong emphasis on trans-
parency and fairness. We carefully design and doc-
ument our data collection and evaluation method-
ologies to ensure they are consistent, unbiased, and
reproducible. By applying uniform assessment cri-
teria across models, we aim to enable meaningful
and equitable comparisons.
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A Detailed Results

A.1 Language Order
Table 3 presents the language orders used in the se-
quential training experiments. These orders are
used to train models in a step-by-step fashion,
where each iteration introduces a new language.
The results from these training sequences are sub-
sequently used to compute aggregate metrics, as
shown in Figure 2 and Figure 4.

The first order is derived based on the amount of
language resources available in the XLM-R model
(Conneau et al., 2020). This order reflects the
relative training data size used during XLM-R’s
pretraining, with high-resource languages appear-
ing earlier in the sequence. The remaining or-
ders (2 through 5) are randomly shuffled variants

to introduce diversity and reduce potential order
bias. However, in the fifth order, languages that
are found to be particularly destructive—i.e., those
that tend to cause performance degradation on pre-
viously learned languages—are deliberately placed
toward the end of the sequence. This design allows
us to analyze how the position of destructive lan-
guages affects knowledge retention and transfer in
sequential multilingual training.

A.2 Heatmap on VANILLA method for first
language order

The heatmap on Figure 7 provides a detailed visual-
ization of the model’s performance across training
iterations (represented by rows) and evaluated lan-
guages (represented by columns). In each iteration,
the model is trained on a new language. For in-
stance, as shown in the figure, the first iteration
trains on en-US, the second on ru-RU, the third on
id-ID, and so forth. After training on a language,
the model’s performance on that language typically
improves. This trend is reflected in the heatmap:
the lower-left triangle (below the diagonal), corre-
sponding to previously learned languages, tends
to display cooler colors, indicating better perfor-
mance; in contrast, the upper-right triangle (un-
learned languages) often exhibits warmer colors,
reflecting performance degradation.

This visualization clearly highlights cross-
lingual interactions—specifically, how training on
a new language can either benefit or harm perfor-
mance on other languages. For example, in row
18, where the model is trained on zh-CN, the cor-
responding row becomes noticeably warmer com-
pared to previous iterations, suggesting a general
decline in performance across many languages.
However, for linguistically related languages such
as ja-JP, where many Kanji characters overlap
with Chinese characters (hence vocabulary over-
lap), performance actually improves. This sug-
gests that while zh-CN introduces interference for
many languages, it serves as a helpful donor for
ja-JP—likely due to shared orthographic features,
such as the incorporation of Chinese characters in
the Japanese writing system.
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Order Languages in ISO 639-1

1 en-US, ru-RU, id-ID, vi-VN, fa-IR, th-TH, ja-JP, de-DE, ro-RO, hu-HU, fr-FR, fi-FI, ko-KR, es-ES, pt-PT, nb-NO, el-GR,
zh-CN, da-DK, pl-PL, he-IL, it-IT, nl-NL, ar-SA, tr-TR, hi-IN, zh-TW, ta-IN, sv-SE, sl-SL, ca-ES, ka-GE, lv-LV, ms-MY, bn-BD,
ml-IN, az-AZ, ur-PK, hy-AM, sq-AL, te-IN, kn-IN, is-IS, tl-PH, mn-MN, my-MM, sw-KE, km-KH, af-ZA, am-ET, cy-GB, jv-ID

2 tr-TR, ro-RO, ur-PK, es-ES, hi-IN, pl-PL, hy-AM, sv-SE, sl-SL, ta-IN, te-IN, ml-IN, id-ID, ka-GE, el-GR, ko-KR, de-DE,
fa-IR, ms-MY, ca-ES, az-AZ, nl-NL, pt-PT, fr-FR, hu-HU, sw-KE, mn-MN, he-IL, zh-CN, fi-FI, ru-RU, is-IS, cy-GB, ja-JP, sq-AL,
vi-VN, th-TH, jv-ID, it-IT, my-MM, kn-IN, lv-LV, am-ET, nb-NO, ar-SA, en-US, af-ZA, zh-TW, bn-BD, da-DK, km-KH, tl-PH

3 sv-SE, nl-NL, fi-FI, kn-IN, hu-HU, ms-MY, es-ES, my-MM, is-IS, ko-KR, af-ZA, vi-VN, bn-BD, tr-TR, tl-PH, lv-LV, ru-RU, fr-FR,
en-US, ro-RO, am-ET, he-IL, hi-IN, ja-JP, te-IN, id-ID, ta-IN, it-IT, jv-ID, nb-NO, ka-GE, sq-AL, ca-ES, az-AZ, zh-TW, fa-IR,
mn-MN, zh-CN, de-DE, da-DK, ml-IN, sw-KE, sl-SL, km-KH, ar-SA, pt-PT, cy-GB, ur-PK, hy-AM, el-GR, pl-PL, th-TH

4 nb-NO, ta-IN, th-TH, fi-FI, ru-RU, af-ZA, vi-VN, ko-KR, ro-RO, km-KH, is-IS, ms-MY, sl-SL, en-US, hi-IN, he-IL, bn-BD,
pt-PT, fa-IR, sv-SE, am-ET, kn-IN, az-AZ, tl-PH, ar-SA, nl-NL, cy-GB, hy-AM, it-IT, de-DE, da-DK, te-IN, hu-HU, lv-LV,
zh-CN, mn-MN, es-ES, ca-ES, pl-PL, fr-FR, ja-JP, ka-GE, sw-KE, id-ID, zh-TW, jv-ID, sq-AL, el-GR, tr-TR, my-MM, ml-IN, ur-PK

5 mn-MN, ml-IN, is-IS, fa-IR, az-AZ, pl-PL, de-DE, ko-KR, ar-SA, sw-KE, jv-ID, sq-AL, tl-PH, ru-RU, lv-LV, fr-FR, ro-RO,
ka-GE, cy-GB, tr-TR, he-IL, sl-SL, af-ZA, nl-NL, my-MM, hu-HU, hi-IN, vi-VN, it-IT, pt-PT, da-DK, ca-ES, am-ET, el-GR, ta-IN,
id-ID, te-IN, sv-SE, bn-BD, ur-PK, en-US, kn-IN, ms-MY, nb-NO, es-ES, fi-FI, zh-TW, zh-CN, ja-JP, th-TH, km-KH, hy-AM

Table 3: Language orders in the sequential training experiments.

Figure 7: Heatmap on VANILLA method for first language order.
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Abstract

The development of Automatic Speech Recog-
nition (ASR) has yielded impressive results,
but its use in linguistic fieldwork remains
limited. Recordings collected in fieldwork
contexts present unique challenges, includ-
ing spontaneous speech, environmental noise,
and severely constrained datasets from under-
documented languages. In this paper, we bench-
mark the performance of two fine-tuned multi-
lingual ASR models, MMS and XLS-R, on five
typologically diverse low-resource languages
with control of training data duration. Our
findings show that MMS is best suited when
extremely small amounts of training data are
available, whereas XLS-R shows parity per-
formance once training data exceed one hour.
We provide linguistically grounded analysis
for further provide insights towards practical
guidelines for field linguists, highlighting re-
producible ASR adaptation approaches to mit-
igate the transcription bottleneck in language
documentation.

1 Introduction

Automatic Speech Recognition (ASR) has achieved
significant breakthroughs in recent years, with
deep learning-based models reported to reach near-
human word error rates for high-resource lan-
guages (Radford et al., 2023; Baevski et al., 2020).
However, these advancements have largely been
driven by massive transcribed datasets (e.g. Chang
et al. (2022); Panayotov et al. (2015); Godfrey et al.
(1992)), leaving a substantial performance gap
for low-resource languages, particularly those en-
countered in linguistic fieldwork (Guillaume et al.,
2022a). Fieldwork speech data presents distinct
challenges, including spontaneous speech, varied
recording setups, and typologically diverse linguis-
tic features, all of which could degrade the per-
formance of ASR models trained on standardized
speech corpora.

Linguistic fieldwork plays a critical role in pre-
serving endangered languages and documenting
linguistic diversity. These recordings capture not
only the linguistic structures of a language, but
also oral traditions, discourse patterns, and soci-
olinguistic variations (Himmelmann, 1998; Austin
and Sallabank, 2011). However, while some well-
researched low-resource languages have substan-
tial datasets (Guillaume et al., 2022b; Przezdziak,
2024), there is usually limited data to bootstrap an
ASR model for most field linguists. Evaluations
of the ASR approaches usually tend to focus on
one language (Jones et al., 2024; Rijal et al., 2024;
Guillaume et al., 2022b; Mainzinger and Levow,
2024) or are inconsistent regarding data size, genre,
etc. in the sample (Jimerson et al., 2023). Evalu-
ations of models for low-resource languages also
tend to favor clean, good quality, read speech (Rijal
et al., 2024; Mainzinger and Levow, 2024; Jimer-
son et al., 2023), compared with the noisier and
more spontaneous speech of fieldwork recordings.

1.1 The transcription bottleneck
Linguistic fieldwork plays a crucial role in doc-
umenting endangered and under-researched lan-
guages, yet the process of manually transcribing
recordings remains a significant barrier: transcrib-
ing a single hour of audio in a newly documented
language can require up to 50 hours of work (Shi
et al., 2021). Moreover, many of the fieldwork lan-
guages also lack standardized orthographies, requir-
ing a handful of trained linguists to make discern-
ing decisions during transcription. As a result, the
volume of untranscribed linguistic data continues
to grow, creating a severe bottleneck in language
documentation, analysis, and distribution (Anasta-
sopoulos and Chiang, 2018; Bird, 2020; Thieberger,
2012).

The dependence on large transcribed datasets
for training ASR models exacerbates this issue,
as most endangered and low-resource languages
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lack sufficient annotated speech data to support
model development (Levow et al., 2021). Without
adequate transcriptions, traditional supervised ASR
methods remain ineffective, requiring alternative
approaches that can leverage limited data more
efficiently (Dunbar et al., 2019; Baevski et al., 2020,
2021).

1.2 ASR for Low-resource Data
The application of ASR in linguistic fieldwork
closely parallels the development of low-resource
ASR research. Since the 2010s, much of this work
has focused on languages from the IARPA Babel
project, which served as a cornerstone for ASR
development in low-resource settings (Miao et al.,
2013; Cui et al., 2014; Grézl et al., 2014). Research
leveraging Babel datasets introduced key tech-
niques such as transfer learning, multilingual adap-
tation, and data augmentation, which have since be-
come fundamental to ASR advancements in under-
documented languages (Zhang et al., 2014; Khare
et al., 2021; Vanderreydt et al., 2022; Guillaume
et al., 2022a).

The widespread adoption of the Kaldi toolkit
(Povey et al., 2011) further propelled ASR re-
search in these domains, enabling the develop-
ment of reproducible pipelines and fostering the
open distribution of Kaldi-compatible datasets (Ya-
dava and Jayanna, 2017; Milde and Köhn, 2018;
Adams et al., 2021; Zhang et al., 2022). Concur-
rently, researchers have explored approaches such
as transfer learning and fine-tuning from multilin-
gual pre-trained models (Guillaume et al., 2022a;
Sikasote and Anastasopoulos, 2021) or adapting
English-centric models to new linguistic domains
(Kim et al., 2021; Thai et al., 2020). Addition-
ally, self-supervised and semi-supervised learning
approaches have gained traction as viable solu-
tions for overcoming transcription scarcity, further
bridging the gap between ASR and field linguistics
(Babu et al., 2021; Baevski et al., 2021).

1.3 Fine-tuning Pre-trained ASR Models
Fine-tuning pre-trained ASR models has emerged
as a key approach for improving recognition ac-
curacy in low-resource settings, particularly for
linguistic fieldwork recordings (Guillaume et al.,
2022a; Pillai et al., 2024; Nowakowski et al., 2023).
Self-supervised learning models, such as wav2vec
2.0 (Baevski et al., 2020), HuBERT (Hsu et al.,
2021), MMS (Massive Multilingual Speech) Model
(Pratap et al., 2024), and XLS-R (Babu et al., 2021),

have demonstrated the ability to learn generalized
speech representations from large-scale multilin-
gual datasets, significantly reducing the need for
extensive transcriptions in under-documented lan-
guages. Studies on specific low-resource languages,
such as Bribri (Coto-Solano, 2021), Japhug (Guil-
laume et al., 2022b), Mvskoke (Mainzinger and
Levow, 2024), and the Čakavian dialect of Croat-
ian (Jones et al., 2024), underscore the benefits of
adapting large multilingual models and report con-
siderable reductions in error rates even with very
limited data.

Nevertheless, recent work suggests that no single
architecture or end-to-end approach consistently
outperforms others under extremely low-resource
conditions (Jimerson et al., 2023). Some stud-
ies advocate experimenting with multiple toolk-
its and hyperparameter configurations to identify
solutions best suited to the language at hand. In-
deed, while fully fine-tuning massive models can
be effective, it often requires large amounts of com-
putational resources, can risk overfitting with very
small datasets, and demands updating millions of
parameters.

Instead of modifying all model parameters,
adapters introduce small trainable layers while
keeping the base pre-trained model frozen, thereby
reducing memory requirements and improving effi-
ciency (Houlsby et al., 2019). This makes them par-
ticularly useful for linguistic fieldwork applications,
where data is scarce and computational resources
are limited. The MMS model developed by Meta
(Pratap et al., 2024) integrates adapter layers specif-
ically designed for ASR, enabling efficient adapta-
tion to new languages with minimal training data.
Studies in low-resource settings (Bai et al., 2024;
Mainzinger and Levow, 2024) have shown that
adapter-based fine-tuning can achieve performance
comparable to full fine-tuning while requiring sig-
nificantly fewer trainable parameters. By avoiding
overfitting on small datasets and focusing on the
most relevant parameters for language adaptation,
adapter-based methods offer an attractive balance
between accuracy and efficiency, an approach in-
creasingly vital to sustaining language documen-
tation efforts in the face of extremely sparse re-
sources.

In contrast to earlier studies that often focus on
a single language or on clean, scripted corpora,
our work systematically evaluates both MMS and
XLS-R in truly low-resource fieldwork conditions
spanning multiple typologically diverse languages.
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By examining noise-heavy, spontaneous record-
ings rather than controlled speech, we test model
adaptability in settings that more accurately re-
flect real-world linguistic documentation. Further,
our fine-grained error analysis explores how each
model handles the nuanced phonological features
that typify endangered and under-documented lan-
guages—details that have often been overlooked in
prior research. Together, these innovations provide
a clearer roadmap for linguists seeking practical
ASR solutions under extreme data scarcity and di-
verse orthographic conventions.

2 Data

We test the performance of fine-tuned ASR mod-
els on five typologically varied low-resource lan-
guages: Cicipu (ISO639-3: awc, McGill (2012)),
Mocho’ (ISO639-3: mhc, Pérez González (2018)),
Toratán (ISO639-3: rth, (Jukes, 2010)), Ulwa
(ISO639-3: yla, (Barlow, 2018a)), and Upper Napo
Kichwa (ISO639-3: quw, (Grzech, 2020)). These
languages span multiple language families and
exhibit distinct phonetic, phonological, and mor-
phological features. The data is drawn from the
Endangered Languages Archive (ELAR)1, where
gold-standard transcriptions can be derived from
the recordings and the corresponding time aligned
transcriptions in the ELAN (Brugman and Russel,
2004) format. The dataset encompasses a variety
of genres, such as greetings, narratives, ritual dis-
course, interviews, elicitation sessions, folktales,
and cultural practices, the details of which are given
in Table 5 of Appendix B. Table 1 provides an
overview of key linguistic features, including vowel
and consonant inventories as well as tonal systems.

2.1 Data details

Given that the recordings were made in naturalistic
fieldwork environments, they exhibit acoustic id-
iosyncrasies that could pose significant challenges
for ASR. There’s background noise from outdoor
settings, such as wind, animals, and community
sounds, in many of the recordings. We also observe
code-switching, usually in the regional dominant
languages. For example, Toratán speakers are also
speakers of Manado Malay (with various degrees
of fluency), and loans from Malay are generally not
adapted to Toratán phonology (Himmelmann and
Wolff, 1999). We also observe significant Spanish

1https://www.elararchive.org/

code-mixing in Mocho’, as well as some English
content in Cicipu.

The dataset sizes vary, with archived speech
ranging from approximately 2 to 22 hours per lan-
guage. However, not all archived data have been
transcribed. This variation reflects real-world con-
straints in linguistic fieldwork, where some lan-
guages have more extensive documentation than
others.

2.2 Dataset Pre-processing

All recordings were resampled to 16 kHz (the train-
ing sampling rate for both MMS and XLS-R), con-
verted to mono-channel WAV format, and aligned
with their corresponding transcriptions. During
transcription pre-processing, we referenced the
phonological description of each language to en-
sure that punctuation marks or special characters
used to denote phonological features were retained
(see Table 5 of Appendix B). Audio segments ex-
plicitly transcribed as non-linguistic sounds, such
as laughter, were excluded from the dataset. We
also removed utterances that contain only filler
words, such as ’mhm’, ’aaa’, etc. A breakdown of
the audio lengths before and after pre-processing
is given in Table 6 of Appendix B

We created four total train+dev duration configu-
rations for each language—10, 30, 60, and 120 min-
utes—before splitting the data into training (90%)
and development (10%) sets. In addition, we set
aside a fixed 10-minute test set for final evaluation.
To maintain consistency and facilitate interpreta-
tion, larger dataset splits were structured as super-
sets of smaller ones. We did not designate a held-
out speaker, as field linguists typically work with
a limited number of consultants and would priori-
tize consistent model performance across familiar
speakers (Liu et al., 2023). Details of the cleaned
dataset are shown in Table 2. The last column of the
table lists the number of unique characters used in
the language. Due to different transcription conven-
tions, features such as nasalization, vowel length
and voicing could be indicated with diacritics or
extra letters. Therefore, although transcriptions are
meant to be phonemic, the number of unique char-
acters might not match the number of contrastive
vowels and consonants. In the case of Cicipu, its
unusually large inventory of 93 characters is due to
the number of all possible combinations of nasality,
tone, and vowel quality marking.
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Language Family Region #V #C #T Features
Cicipu Niger-Congo Nigeria 28 27 4 Ṽ, V:, C:
Mocho’ Mayan Mexico 10 27 2 V:
Toratán Austronesian Indonesia 5 21 0
Ulwa Keram Papua New Guinea 8 13 0 [-voice, +son]
Upper Napo Kichwa Quechuan Ecuador 8 20 0 V:

Table 1: Linguistic data used for the study, showing language family, region spoken, phoneme inventory size, tones,
and phonological features such as nasality, vowel length, consonant gemination, etc.

Language #Spk Avg. Leng. #Char
Cicipu 33 2.1 93
Mocho’ 6 2.0 29
Toratán 13 2.35 27
Ulwa 6 3.65 25
U.N. Kichwa 16 3.79 33

Table 2: Dataset statistics for different languages,
including the number of speakers, average utterance
length in seconds, and character inventory.

3 Methodology

This study investigates the effectiveness of fine-
tuning multilingual ASR models to address the
unique challenges posed by low-resource linguistic
fieldwork recordings. By evaluating the perfor-
mance of two state-of-the-art models, we aim to
determine how fine-tuning can enhance recognition
accuracy on typologically diverse, low-resource
languages. In addition, we discuss the impact of
key factors, including training data size, model
choice, and pre-trained model features, to provide
practical insights for ASR adaptation in fieldwork
contexts.

3.1 Models

Our goal is to fine-tune state-of-the-art multilin-
gual ASR models that have been pre-trained on
large-scale speech corpora. Specifically, we eval-
uate models from Meta’s Massively Multilingual
Speech (MMS) project (Pratap et al., 2024) along-
side XLS-R (Babu et al., 2021), a widely used
multilingual ASR model.

MMS is based on the wav2vec 2.0 frame-
work (Baevski et al., 2020), which employs self-
supervised learning to extract generalized speech
representations from vast amounts of unlabeled
audio. The model has been trained on 1,406 lan-
guages, making it one of the most comprehen-
sive ASR models for multilingual speech recog-
nition. Specifically, we choose MMS-1B-l1107, a

1-billion parameter model fine-tuned specifically
for ASR with an additional 2-million parameter
adapter, which supports ASR in 1107 languages out
of the box (Houlsby et al., 2019). The adapter facil-
itates efficient language-specific fine-tuning while
preserving the generalized multilingual knowledge
encoded in the base model.

XLS-R (Babu et al., 2021) is a multilingual
ASR model pre-trained on 128 languages using
the wav2vec 2.0 framework. It has been exten-
sively used for low-resource ASR and cross-lingual
transfer learning, making it a strong baseline for
evaluating ASR performance in linguistic fieldwork
settings. Unlike MMS, which is trained on over
1,000 languages, XLS-R has been optimized for a
balanced selection of 128 languages, with a strong
focus on phonetic diversity. This makes it particu-
larly useful for comparison against MMS models
to assess the effectiveness of scaling multilingual
pre-training to extremely low-resource languages.
The XLS-R-300m with 300 million parameters is
chosen for the study.

None of the languages used in the study, with the
exception of Upper Napo Kichwa, is represented in
the training data of the two models. A discussion
of the possible effects is included in Section 4.2.

3.2 Implementation

Following the fine-tuning procedure outlined by
von Platen2 and using the Hugging Face Transform-
ers library (Wolf et al., 2020), we implement model-
specific strategies. For MMS-1B-l1107, only the
adapter layers are fine-tuned, with the base model
frozen. For XLS-R, the entire model is fine-tuned.
To assess the effect of data size, models are trained
on subsets of 10, 30, 60, and 120 minutes of tran-
scribed fieldwork data per language. Early stop-
ping, based on the development set Character Error
Rate (CER), mitigates overfitting. Hyperparameter
details, including batch size, learning rate, opti-

2https://huggingface.co/blog/mms_adapters
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Figure 1: CER comparison for MMS-1b1107 and XLS-
R-300m models across five languages. The MMS model
performs markedly better under extremely low-resource
settings (less than 1 hour), but XLS-R performs simi-
larly well with 2 hours of data. Points are connected
to aid trend reading and do not imply performance at
intermediate durations.

Figure 2: WER comparison for MMS-1b1107 and XLS-
R-300m models across five languages.

mization strategy, and training details are provided
in Appendix A.

4 Results

Overall, the performance of the MMS and XLS-
R models in automatic speech recognition (ASR)
tasks on low-resource language data is comparable,
though nuanced differences emerge depending on
the availability of training data. In general, the
MMS model outperforms XLS-R under extremely
low-resource conditions (i.e., less than one hour of
transcribed data). However, XLS-R demonstrates a
marked improvement as the size of the training data
scales beyond this threshold, ultimately becoming
on par with MMS. Figure 1 and Figure 2 illustrate
these trends in Character Error Rate (CER) and
Word Error Rate (WER) metrics across the five
languages in this study.

In our analysis, CER serves as the primary eval-
uation metric. Unlike WER, which operates at
the word level and often presupposes well-defined
word boundaries and stable orthographic forms,
CER better reflects the needs of field linguists, who
often lack enough data to be able to use language
models. In fieldwork contexts, the primary goal
of transcription is to capture phonetic accuracy,
particularly in languages without standardized or-
thographies. During model training, the best model
metric is set to CER to ensure that model perfor-
mance aligns with the core task of producing re-
liable phoneme-level transcriptions from sponta-
neous and noisy speech data.

4.1 Data size effect

The relationship between training data size and
model performance is critical in understanding
model suitability for field linguistics applications.
For both MMS and XLS-R, performance improve-
ments start to plateau when training data exceeds
approximately one hour. This finding suggests
steady although diminishing returns beyond this
point, aligning with previous observations in low-
resource ASR research (Guillaume et al., 2022a).

In scenarios where less than one hour of data
is available, MMS consistently achieves lower er-
ror rates, likely due to its extensive multilingual
pre-training on over 1,000 languages. For field
linguists dealing with extremely limited resources,
we thus recommend fine-tuning MMS to achieve
acceptable ASR performance. However, when ap-
proximately one hour of data or more is obtainable,
XLS-R becomes a more effective option due to its
improving performance with increasing data vol-
umes. This suggests that one hour of transcribed
data serves as a practical threshold for develop-
ing a robust fine-tuned ASR system in fieldwork
contexts.

It is worth noting that Cicipu exhibits particu-
larly high error rates under extreme data scarcity,
including a character error rate approaching 1.0
at 10 minutes of data for both models and at 30
minutes for XLS-R. Cicipu’s unusually large ortho-
graphic inventory (93 unique characters reflecting
combinations of nasality, tone, and vowel quality)
requires more training examples to accurately learn
the mapping from acoustics to graphemes. Conse-
quently, with only a few minutes of labeled data,
neither model can fully learn Cicipu’s complex
phonological and orthographical features.
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4.2 MMS vs. XLS-R

The MMS model excels in settings with minimal
data due to its multilingual pretraining on a vast
corpus that includes low-resource languages. More-
over, unlike XLS-R—whose core version is primar-
ily self-supervised and not initially fine-tuned for
ASR—MMS has already undergone a large-scale
ASR fine-tuning step. This means that MMS starts
off with more task-specific parameters, making it
more effective than XLS-R in extremely low-data
regimes. However, MMS’s reliance on primar-
ily read speech data (e.g. Bible translations) may
limit its adaptability to spontaneous speech environ-
ments, which are common in linguistic fieldwork
recordings.

In contrast, XLS-R benefits from a more diverse
training corpus that encompasses conversational
and spontaneous speech, allowing it to general-
ize better once sufficient data becomes available.
Indeed, Mainzinger and Levow (2024) reported
superior performance of MMS over XLS-R when
fine-tuning Mvskoke—likely due to both the ad-
vantage of MMS’s ASR fine-tuning and the fact
that much of the Mvskoke training material was
similarly read or scripted speech.

Since several related dialects of Kichwa (Eber-
hard et al., 2024, 2025) were included in the
MMS pre-training dataset, we investigated whether
the performance gap between MMS and XLS-R
would be larger for Kichwa than for the other lan-
guages in our study. Specifically, we fit a linear
mixed-effects model (with random intercepts for
each language) to our character error rate (CER)
data, using model (MMS vs. XLS-R), time, and
an indicator similar (1 = Kichwa, 0 = other lan-
guages) as fixed effects. If Kichwa had benefitted
disproportionately from MMS’s pre-training, we
would have observed a significant positive interac-
tion in the model. However, the interaction term
(model × similar) was small and not statistically
significant (β = 0.021, p = 0.896), indicating that
while MMS outperforms XLS-R overall, the ad-
ditional advantage for Upper Napo Kichwa is not
discernibly greater than for the other languages.

Further research is needed to evaluate whether
the performance trend continues with larger
datasets, particularly for languages with similar
phonological and morphological complexity as
those in this study. Additionally, the effectiveness
of adapter-based fine-tuning for MMS suggests that
optimizing model architecture for scalable adapta-

Lang Model Tone Nas. V-Len C-Len

Cicipu MMS 0.199 0.337 0.239 0.174
XLS-R 0.215 0.337 0.248 0.183

Mocho’ MMS — — 0.154 —
XLS-R — — 0.160 —

Table 3: Phonological error rates (0–1 scale) for Cicipu
and Mocho’. Cicipu shows higher confusion in tone,
nasality, and consonant length, while Mocho’ displays
more issues with vowel length. Both models (MMS vs.
XLS-R) yield broadly similar error patterns.

tion could yield further improvements.

4.3 Error analysis

We performed a phonologically informed error
analysis on two of the languages in our dataset, Ci-
cipu and Mocho’, both of which exhibit segmental
contrasts that could be challenging for ASR mod-
els. Cicipu’s orthography explicitly marks tone
and nasality with diacritics and differentiates both
vowel and consonant length with doubled letters
(e.g., ’aa’ for long vowels, ’tt’ for geminate con-
sonants), making it well suited for evaluating the
system’s performance on these phonological cate-
gories. Mocho’ similarly features a vowel length
distinction encoded with doubled vowel letters.
Other languages in our dataset, such as Ulwa and
Upper Napo Kichwa, contain too few instances
of long vowels or voiceless sonorants for a robust
category-based analysis.

4.3.1 Error rates
To quantify performance on these features, we
leverage character-level alignments (details in Ap-
pendix C) and calculate phonological segment
error rates (Table 3). For each category C ∈
{Tone,Nasality,V_length,C_length}, we sum all
substitutions, deletions, and insertions that affect
that category and normalize by the total number of
reference tokens LC exhibiting C.

As shown in Table 3, both MMS and XLS-R
struggle with Cicipu’s tone, nasality, and consonant
length, each exhibiting error rates in the range of
30–38%. By contrast, vowel-length confusion is
comparatively low (7–9%). For Mocho’, the long–
short vowel distinction remains problematic, with
error rates around 35–38%. These findings suggest
that neither model has a strong advantage for these
particular phonological categories; even after fine-
tuning, nuanced contrasts such as nasality and tone
remain challenging.
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Lang Category S% D% I%

Cicipu Tone 47.62 32.11 20.27
Nasality 0.00 70.00 30.00
V-Len 55.58 27.86 16.56
C-Len 44.18 33.90 21.92

Mocho’ V-Len 58.29 26.86 14.86

Table 4: Percentage of substitutions (S%), deletions
(D%), and insertions (I%) in XLS-R 120 min output, for
each phonological category in Cicipu and Mocho’.

4.3.2 Error distribution
For further investigation, we performed a more
detailed error analysis on the output from the 120-
minute model of XLS-R for Cicipu and Mocho’.
Table 4 breaks down each category by the percent-
age of substitutions (S), deletions (D), and inser-
tions (I).

In Cicipu, nearly half of the tone errors (∼ 48%)
are substitutions, indicating confusion over which
tone mark to apply, while around a third are dele-
tions and the remainder insertions. Nasality er-
rors, by contrast, skew heavily toward deletions
(∼ 70%), suggesting the model often fails to de-
tect nasal vowel features. Substitutions are rare for
nasality, indicating that the system either omits it
entirely or adds it spuriously rather than confus-
ing it with another tone diacritic. Vowel-length
errors (∼ 44% for deletions and insertions) and
consonant-length errors (∼ 55% for deletions and
insertions) reflect a high level of segment-level con-
fusion, whereas confusion with a different vowel
(∼ 56% substitutions) or consonant (∼ 44% substi-
tutions) is also frequent. For Mocho’, vowel-length
confusion is likewise dominated by substitutions
(∼ 58%), a pattern similar to Cicipu which reveals
that XLS-R often misidentifies one segment in the
long vowel. The distributions point out that while
the model does capture some acoustic correlates of
nasality, tone, and length, it nevertheless struggles
to map them consistently to diacritics and extended
graphemes in low-resource scenarios.

Overall, these patterns highlight the persistent
challenge of representing languages with complex
orthographies and rich phonological inventories.
Even after multilingual pre-training and fine-tuning,
contrasts such as tone or nasality may be over-
looked when the amount of transcribed data is
minimal. Addressing these gaps may require lin-
guistically informed data augmentation, special-
ized adapter modules, or loss functions that ex-
plicitly emphasize distinct phonological categories.

In extremely low-resource settings, such targeted
methods could provide the additional examples and
acoustic cues needed for more accurate transcrip-
tion of endangered languages.

5 Conclusion

Our experiments show that fine-tuned multilin-
gual ASR models can substantially reduce the tran-
scription burden for endangered and low-resource
languages. Across five typologically diverse lan-
guages, MMS proved more effective with ex-
tremely limited labeled data, whereas XLS-R
caught up once approximately one hour of tran-
scribed material was available. By using Charac-
ter Error Rate (CER) rather than Word Error Rate
(WER), we focus on phoneme-level accuracy—a
more direct measure for languages without stan-
dardized orthographies. Despite improvements in
overall accuracy, both models struggled with chal-
lenging phonological categories in Cicipu, such as
tone and consonant length, and exhibited a high rate
of vowel-length confusion in Mocho’. These find-
ings confirm that current multilingual ASR systems
are indeed helpful for language documentation but
still require targeted adaptations to handle nuanced
phonological contrasts in under-resourced settings.

6 Future Work

Although our study confirms that fine-tuning multi-
lingual ASR models can substantially reduce tran-
scription overhead for low-resource languages, sev-
eral research directions remain promising for fur-
ther performance gains. One compelling approach
is continued pre-training (CoPT) on unlabeled in-
language audio. DeHaven and Billa (2022) show
that CoPT on a wav2vec 2.0–based multilingual
model can match or outperform pseudo-labeling
techniques while being more computationally effi-
cient. Similarly, Nowakowski et al. (2023) demon-
strate that CoPT on about 234 hours of Sakhalin
Ainu audio yields a considerable reduction in er-
ror, beyond what standard multilingual fine-tuning
achieves. CoPT has also proven effective in do-
main adaptation, especially for noisy data or new
speaker types (Attia et al., 2024). While the scarcity
of fieldwork data could limit the scale of CoPT,
even incremental benefits may substantially ease
the manual transcription effort.

A second avenue is leveraging diverse augmen-
tation methods to enlarge the effective training
set. Self-training (pseudo-labeling) uses an initial
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ASR model to generate transcripts for unlabeled
audio, which can then be added to the training
pool. This method has consistently boosted low-
resource ASR performance (Bartelds et al., 2023),
particularly when coupled with filtering or itera-
tive refinement. TTS-based augmentation offers
another option: if a target-language text-to-speech
system is available, synthesizing speech from text
yields additional “perfectly labeled” data, poten-
tially improving recognition robustness (ibid). Fi-
nally, common audio perturbations, speed/pitch
changes, SpecAugment, and noise injection, re-
main valuable for avoiding overfitting and prepar-
ing the model for real-world variability.

A final challenge involves better capturing diffi-
cult phonological categories, such as tone, nasality,
and consonant length. Adapters in MMS could be
extended or reconfigured to emphasize language-
specific features, while training regimes could in-
corporate acoustic or phonological priors explic-
itly. Future work might integrate fine-grained lin-
guistic annotations (if available) or employ special-
ized masking strategies during CoPT to boost the
model’s sensitivity to subtle contrasts. Combining
these techniques into user-friendly toolkits will be
essential for widespread adoption by field linguists,
who often have limited computational resources
yet require high-accuracy, phoneme-level transcrip-
tions for documenting and revitalizing endangered
languages.

7 Limitations

Despite promising results, several specific limita-
tions affect the generalizability and applicability of
our approach. The most critical limitation is related
to the data size and representativeness of the lin-
guistic diversity considered. Our study focused on
a small number of typologically diverse languages,
each with relatively limited datasets ranging from
just a few minutes to two hours. As such, the mod-
els’ performances may not generalize to other en-
dangered or low-resource languages with distinct
phonological or orthographic features.

Additionally, due to constraints inherent in lin-
guistic fieldwork, the training and test datasets of-
ten contained data from the same speakers, poten-
tially inflating model accuracy estimates. Future
research should validate these findings with gen-
uinely held-out speakers to better gauge model ro-
bustness to speaker variability.

Moreover, the orthographic inconsistencies and

the absence of standardized orthographies in our
datasets likely influenced model performance, es-
pecially for phonologically complex categories like
tone, vowel length, and nasality. This issue high-
lights a broader limitation: ASR models trained
under these conditions may struggle to generalize
to spontaneous and noisy field recordings, espe-
cially when orthographic conventions vary within
and across datasets.

Finally, computational resource limitations
(training on a single NVIDIA T4 GPU with con-
strained runtimes) restrict our ability to fine-tune
larger models or extensively optimize hyperparam-
eters, which may have further improved perfor-
mance. Addressing these limitations would require
additional computational resources and potentially
more extensive data augmentation strategies tai-
lored explicitly to low-resource linguistic contexts.

Acknowledgments

We are grateful to the depositors and leaders
of the Endangered Languages Archive (ELAR,
http://elararchive.org) for sharing their invaluable
resources which made this project possible.

References
Oliver Adams, Benjamin Galliot, Guillaume Wis-

niewski, Nicholas Lambourne, Ben Foley, Rahasya
Sanders-Dwyer, Janet Wiles, Alexis Michaud, Séver-
ine Guillaume, Laurent Besacier, Christopher Cox,
Katya Aplonova, Guillaume Jacques, and Nathan
Hill. 2021. User-friendly Automatic Transcription
of Low-resource Languages: Plugging ESPnet into
Elpis. In Proceedings of the 4th Workshop on the
Use of Computational Methods in the Study of Endan-
gered Languages Volume 1 (Papers), pages 51–62,
Online. Association for Computational Linguistics.

Antonis Anastasopoulos and David Chiang. 2018.
Leveraging translations for speech transcrip-
tion in low-resource settings. arXiv preprint.
ArXiv:1803.08991 [cs].

Ahmed Adel Attia, Dorottya Demszky, Tolulope Ogun-
remi, Jing Liu, and Carol Espy-Wilson. 2024.
Continued Pretraining for Domain Adaptation of
Wav2vec2.0 in Automatic Speech Recognition for
Elementary Math Classroom Settings. arXiv preprint.
ArXiv:2405.13018 [cs] version: 1.

Peter K. Austin and Julia Sallabank. 2011. The
Cambridge Handbook of Endangered Languages.
Cambridge University Press. Google-Books-ID:
0XZRauYgO6AC.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika

33

h
https://aclanthology.org/2021.computel-1.7/
https://aclanthology.org/2021.computel-1.7/
https://aclanthology.org/2021.computel-1.7/
https://doi.org/10.48550/arXiv.1803.08991
https://doi.org/10.48550/arXiv.1803.08991
https://doi.org/10.48550/arXiv.2405.13018
https://doi.org/10.48550/arXiv.2405.13018
https://doi.org/10.48550/arXiv.2405.13018


Singh, Patrick von Platen, Yatharth Saraf, Juan Pino,
Alexei Baevski, Alexis Conneau, and Michael Auli.
2021. XLS-R: Self-supervised Cross-lingual Speech
Representation Learning at Scale. arXiv preprint.
ArXiv:2111.09296 [cs].

Alexei Baevski, Wei-Ning Hsu, Alexis CONNEAU, and
Michael Auli. 2021. Unsupervised Speech Recogni-
tion. In Advances in Neural Information Processing
Systems, volume 34, pages 27826–27839. Curran As-
sociates, Inc.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representa-
tions. In Advances in Neural Information Processing
Systems, volume 33, pages 12449–12460. Curran As-
sociates, Inc.

Junwen Bai, Bo Li, Qiujia Li, Tara N. Sainath, and
Trevor Strohman. 2024. Efficient Adapter Finetuning
for Tail Languages in Streaming Multilingual ASR.
In ICASSP 2024 - 2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 10841–10845. ISSN: 2379-190X.

Russell Barlow. 2018a. Documentation of Ulwa, an
endangered language of Papua New Guinea.

Russell Barlow. 2018b. A Grammar of Ulwa.

Martijn Bartelds, Nay San, Bradley McDonnell, Dan Ju-
rafsky, and Martijn Wieling. 2023. Making More
of Little Data: Improving Low-Resource Auto-
matic Speech Recognition Using Data Augmentation.
arXiv preprint. ArXiv:2305.10951 [cs].

Steven Bird. 2020. Sparse Transcription. Computa-
tional Linguistics, 46(4):713–744.

Hennie Brugman and Albert Russel. 2004. Annotating
Multi-media / Multi-modal resources with ELAN.

Xuankai Chang, Takashi Maekaku, Yuya Fujita, and
Shinji Watanabe. 2022. End-to-End Integration of
Speech Recognition, Speech Enhancement, and Self-
Supervised Learning Representation. arXiv preprint.
ArXiv:2204.00540 [cs].

Rolando Coto-Solano. 2021. Explicit Tone Transcrip-
tion Improves ASR Performance in Extremely Low-
Resource Languages: A Case Study in Bribri. In
Proceedings of the First Workshop on Natural Lan-
guage Processing for Indigenous Languages of the
Americas, pages 173–184, Online. Association for
Computational Linguistics.

Xiaodong Cui, Brian Kingsbury, Jia Cui, Bhuvana Ram-
abhadran, Andrew Rosenberg, Mohammad Sadegh
Rasooli, Owen Rambow, Nizar Habash, and Vaib-
hava Goel. 2014. Improving deep neural network
acoustic modeling for audio corpus indexing under
the IARPA babel program. In Interspeech 2014,
pages 2103–2107. ISCA.

Mitchell DeHaven and Jayadev Billa. 2022. Im-
proving Low-Resource Speech Recognition with
Pretrained Speech Models: Continued Pretrain-
ing vs. Semi-Supervised Training. arXiv preprint.
ArXiv:2207.00659 [cs].

Ewan Dunbar, Robin Algayres, Julien Karadayi, Math-
ieu Bernard, Juan Benjumea, Xuan-Nga Cao, Lucie
Miskic, Charlotte Dugrain, Lucas Ondel, Alan W.
Black, Laurent Besacier, Sakriani Sakti, and Em-
manuel Dupoux. 2019. The Zero Resource Speech
Challenge 2019: TTS without T. arXiv preprint.
ArXiv:1904.11469 [cs].

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2024. Napo Quichua. Edition: 27 Publisher:
SIL International.

David M. Eberhard, Gary F. Simons, and Charles D.
Fennig. 2025. Tena Lowland Quichua. Edition: 26
Publisher: SIL International.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.
SWITCHBOARD: telephone speech corpus for re-
search and development. In [Proceedings] ICASSP-
92: 1992 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, volume 1, pages
517–520 vol.1. ISSN: 1520-6149.

Karolina Grzech. 2020. Upper Napo Kichwa: a docu-
mentation of linguistic and cultural practices.

Frantisek Grézl, Martin Karafiát, and Karel Veselý.
2014. Adaptation of multilingual stacked bottle-neck
neural network structure for new language. In 2014
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7654–7658.
ISSN: 2379-190X.

Séverine Guillaume, Guillaume Wisniewski, Benjamin
Galliot, Minh-Châu Nguyen, Maxime Fily, Guil-
laume Jacques, and Alexis Michaud. 2022a. Plug-
ging a neural phoneme recognizer into a simple lan-
guage model: a workflow for low-resource settings.
pages 4905–4909. International Speech Communica-
tion Association.

Séverine Guillaume, Guillaume Wisniewski, Cécile
Macaire, Guillaume Jacques, Alexis Michaud, Ben-
jamin Galliot, Maximin Coavoux, Solange Rossato,
Minh-Châu Nguyen, and Maxime Fily. 2022b. Fine-
tuning pre-trained models for Automatic Speech
Recognition, experiments on a fieldwork corpus of
Japhug (Trans-Himalayan family). In Proceedings
of the Fifth Workshop on the Use of Computational
Methods in the Study of Endangered Languages,
pages 170–178, Dublin, Ireland. Association for
Computational Linguistics.

Nikolaus P. Himmelmann. 1998. Documentary and
descriptive linguistics. 36(1):161–196. Publisher:
De Gruyter Mouton Section: Linguistics.

Nikolaus P Himmelmann and John U Wolff. 1999.
Toratán (Ratahan), volume 130. Lincom Europa.

34

https://doi.org/10.48550/arXiv.2111.09296
https://doi.org/10.48550/arXiv.2111.09296
https://proceedings.neurips.cc/paper/2021/hash/ea159dc9788ffac311592613b7f71fbb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ea159dc9788ffac311592613b7f71fbb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://doi.org/10.1109/ICASSP48485.2024.10447399
https://doi.org/10.1109/ICASSP48485.2024.10447399
http://hdl.handle.net/2196/00-0000-0000-000F-CB61-A
http://hdl.handle.net/2196/00-0000-0000-000F-CB61-A
http://hdl.handle.net/10125/62506
https://doi.org/10.48550/arXiv.2305.10951
https://doi.org/10.48550/arXiv.2305.10951
https://doi.org/10.48550/arXiv.2305.10951
https://doi.org/10.1162/coli_a_00387
https://doi.org/10.48550/arXiv.2204.00540
https://doi.org/10.48550/arXiv.2204.00540
https://doi.org/10.48550/arXiv.2204.00540
https://doi.org/10.18653/v1/2021.americasnlp-1.20
https://doi.org/10.18653/v1/2021.americasnlp-1.20
https://doi.org/10.18653/v1/2021.americasnlp-1.20
https://doi.org/10.21437/Interspeech.2014-477
https://doi.org/10.21437/Interspeech.2014-477
https://doi.org/10.21437/Interspeech.2014-477
https://doi.org/10.48550/arXiv.2207.00659
https://doi.org/10.48550/arXiv.2207.00659
https://doi.org/10.48550/arXiv.2207.00659
https://doi.org/10.48550/arXiv.2207.00659
https://doi.org/10.48550/arXiv.1904.11469
https://doi.org/10.48550/arXiv.1904.11469
https://www.ethnologue.com/language/qvo
https://www.ethnologue.com/language/quw
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
http://hdl.handle.net/2196/00-0000-0000-000C-F5FB-A
http://hdl.handle.net/2196/00-0000-0000-000C-F5FB-A
https://doi.org/10.1109/ICASSP.2014.6855089
https://doi.org/10.1109/ICASSP.2014.6855089
https://doi.org/10.21437/Interspeech.2022-11314
https://doi.org/10.21437/Interspeech.2022-11314
https://doi.org/10.21437/Interspeech.2022-11314
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.18653/v1/2022.computel-1.21
https://doi.org/10.1515/ling.1998.36.1.161
https://doi.org/10.1515/ling.1998.36.1.161


Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-Efficient Transfer Learning for NLP. In
Proceedings of the 36th International Conference on
Machine Learning, pages 2790–2799. PMLR. ISSN:
2640-3498.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. HuBERT: Self-Supervised
Speech Representation Learning by Masked Predic-
tion of Hidden Units. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:3451–
3460. Conference Name: IEEE/ACM Transactions
on Audio, Speech, and Language Processing.

Robert Jimerson, Zoey Liu, and Emily Prud’hommeaux.
2023. An (unhelpful) guide to selecting the best
ASR architecture for your under-resourced language.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1008–1016, Toronto, Canada.
Association for Computational Linguistics.

Austin Jones, Shulin Zhang, John Hale, Margaret Ren-
wick, Zvjezdana Vrzic, and Keith Langston. 2024.
Comparing Kaldi-Based Pipeline Elpis and Whisper
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A Training Details

The models were trained on an NVIDIA T4 GPU,
with training times ranging from approximately 1
to 60 minutes per model. The hyper-parameters
were defined as follows:

• Learning rate: MMS: 1e-3; XLS-R: 3e-4

• Maximum epochs: 30

• Best model metric: Character Error Rate
(CER)

• Early stopping: 3 epochs

• Early stopping threshold: 0.003

B Dataset Details

Table 5 provides detailed information on the genres
and types of content present in the datasets used in
this study, along with key linguistic references and
citations to the original documentation archives.
Table 6 summarizes the total archived hours of au-
dio recordings for each language and the amount of
data remaining after the cleaning and preprocessing
steps described earlier in the manuscript.
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Language Genres of content Phonological Descrip-
tion

Documentation

Cicipu Greetings, conversations,
hortative discourse, nar-
ratives, procedural dis-
course, ritual discourse,
elicitation activities

McGill (2014) McGill (2012)

Mocho’ Biographical and non-
biographical narratives
(historical events, myths,
local beliefs, traditional
building, witchcraft),
prayer, conversation,
elicitation sessions, text
translation

Palosaari (2011) Pérez González (2018)

Toratán Conversational data, elici-
tation sessions, narratives
(personal history, folk
tales)

Himmelmann and Wolff
(1999)

Jukes (2010)

Ulwa Conversational data, tra-
ditional stories, personal
stories, traditional singing
and dancing video

Barlow (2018b) Barlow (2018a)

Upper Napo Kichwa Grammatical elicitation,
life interviews

Wroblewski (2012),
O’Rourke and Swanson
(2013)

Grzech (2020)

Table 5: Details of depository content for languages used in this paper, related linguistic work referenced, and
original documentation citations.

Language Total Hours Cleaned Hours
Cicipu 5.66 3.09
Mocho’ 7.26 4.21
Toratán 22.84 11.15
Ulwa 3.25 2.83
Upper Napo Kichwa 13.19 6.97

Table 6: Total archived and cleaned hours of audio for
all languages used in the study.

C Error Rates

We consider four phonological categories:

C ∈ {Tone, Nasality, V_length, C_length}.

Over the entire dataset, we record:

• SC : the total substitution errors for category
C,

• DC : the total deletion errors for category C,

• IC : the total insertion errors for category C,

• LC : the total reference tokens exhibiting
category C (e.g. tone_labels for tone,
total_vowels for vowel length, etc.).

We then define the total errors and error rate for
each category C as follows:

EC = SC + DC + IC and ErrorRateC =
EC

LC
.

For example, if C = tone then LC =
tone_labels (the number of reference tokens with
at least one tone diacritic). Similarly, if C =
vowel_length then LC = total_vowels (the total
vowel tokens in the reference).
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Abstract

We introduce KazBench-KK, a comprehen-
sive 7,111-question multiple-choice bench-
mark designed to assess large language mod-
els’ understanding of culturally grounded
Kazakh knowledge. By combining expert-
curated topics with LLM-assisted web min-
ing, we create a diverse dataset spanning 17
culturally salient domains, including pastoral
traditions, social hierarchies, and contempo-
rary politics. Beyond evaluation, KazBench-
KK serves as a practical tool for field lin-
guists, enabling rapid lexical elicitation, gloss-
ing, and topic prioritization. Our benchmark-
ing of various open-source LLMs reveals that
reinforcement-tuned models outperform oth-
ers, but smaller, domain-focused fine-tunes
can rival larger models in specific cultural con-
texts.

1 Introduction

Kazakh reflects a web of pastoral traditions, kin-
ship rules, and post-Soviet social change content
that is almost invisible in the English-dominated
web. Kazakh is a language that is primarily used
and spoken in Kazakhstan and some neighboring
regions, but mainstream language models rarely
handle it well.
In the NLP landscape, Kazakh is considered

a low-resource language due to the scarcity of
openly available datasets. This consequently leads
to poor performance of LLMs comprehending
Kazakh speech and texts, and significantly makes
them lack the culturally-specific knowledge of
Kazakh traditions, customs and cultural context
that are essential for creating inclusive and locally
relevant AI systems. While recent efforts have pro-
duced datasets for tasks like named entity recogni-
tion, sentiment analysis and translation, these are
often limited in scope and do not reflect the deep
cultural grounding necessary to evaluate how well
language models truly understand Kazakh society.

In this paper, we present a semi-automated
pipeline designed to generate a benchmark focused
on culturally significant knowledge in the Kazakh
language. Our approach combines manual topic
curation with LLM-assisted keyword generation,
automated web retrieval and preprocessing, and
context-driven QA generation, followed by both
automatic filtering and human validation.
Beyond evaluation, our benchmark opens up

practical use cases for linguists working with un-
derrepresented languages. A culturally aware
LLM can offer significant advantages to field lin-
guists by connecting language and culture in effi-
cient and innovative ways. Field linguists, who
have traditionally relied on the manual collection
of linguistic data, can now use LLMs to obtain
quick summaries of culture-specific linguistic phe-
nomena and determine which topics are worth fur-
ther investigation.
Furthermore, both traditional data preparation

tasks, including glossing, elicitation prompt con-
struction, and other background research in gen-
eral and situational decision-making procedures
during fieldwork can benefit from these improve-
ments. It is also possible to compare manually col-
lected field data with AI-generated data.
A culturally aware LLM offers field linguists an

efficient bridge between language and culture. In-
stead of relying solely on labor-intensive manual
collection, they can query KazBench-KK-tuned
models for rapid overviews of culture-specific phe-
nomena, pinpoint promising domains for deeper
elicitation, and automatically generate glosses or
prompts. Moreover, the benchmark’s hierarchi-
cal taxonomy reveals how Kazakh speakers organ-
ise concepts, turning traditional fieldwork into a
more quantified and streamlined endeavour. The
accompanying league table allows practitioners
to quickly see which publicly available models
consistently demonstrate culturally accurate and
context-aware responses.
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Our contributions are as follows:

• Introduction of Cultural Benchmark: We
introduce KazBench-KK, a 7111-question
multiple-choice benchmark specifically de-
signed to evaluate large language models’
understanding of culturally grounded knowl-
edge in the Kazakh language. This bench-
mark fills a critical gap in resources for evalu-
ating how well AI models understand the nu-
ances of Kazakh culture.

• Culturally Salient Domain Coverage: The
benchmark covers 17 culturally significant
domains, including pastoral traditions, so-
cial hierarchies, and contemporary poli-
tics. These domains were carefully selected,
combining expert-curated topics with LLM-
assisted web mining, ensuring a comprehen-
sive and relevant assessment of cultural un-
derstanding.

• Semi-Automated Pipeline for Data Gener-
ation: We present a novel, semi-automated
pipeline for the efficient generation of high-
quality, culturally relevant data. This pipeline
combines the strengths of both human exper-
tise and machine automation, addressing the
challenges of data scarcity for low-resource
languages.

• Benchmarking of Open-Source LLMs:
The paper includes a thorough benchmarking
of several open-source large language mod-
els. This provides a valuable resource for
linguists and practitioners seeking to choose
the most appropriate models for tasks that
involve the Kazakh language and its cultural
context.

2 Related Work

Prior work on evaluating cultural knowledge falls
into three strands: general English benchmarks,
multilingual suits, and recent Kazakh-specific sets.
They effortlessly handle multiple languages, gen-
erate text with human-like fluency, and are useful
in many contexts. However, despite their global
reach, these models remain heavily “westernized”,
and predominantly understand and reflect Western
cultural norms and traditions (Naous et al., 2024;
Wang et al., 2024; Cao et al., 2023). This western-
centric bias inevitably creates a gap when it comes

to accurately interpreting and engaging with non-
Western, particularly Central Asian, cultures.
Multiple studies have analyzed the performance

of language models to generate culturally relevant
responses in diverse cultural settings. However,
most of these evaluations are centered around high-
resource languages, or rely mainly on translation-
based approaches that fail to capture deep cultural
context. To situate our work, we first review ex-
isting English language benchmarks, then discuss
recent efforts to extend such benchmarks to mul-
tilingual or indigenous settings. Finally, we high-
light the current limitations of Kazakh language re-
sources and demonstrate how our work addresses
this critical gap.

2.1 General-purpose English Benchmarks
Currently, there are multiple benchmarks in En-
glish that try to assess models’ different aspects of
knowledge. For example, the general language un-
derstanding evaluation (GLUE; Wang et al., 2018)
and SuperGlue (Wang et al., 2019) benchmarks
are aimed to evaluate language models on multi-
ple tasks, including: sentiment analysis, lexical
entailment, coordination scope and many more.
Moreover, HellaSwag (Zellers et al., 2019) and
CosmoQA (Huang et al., 2019) benchmarks are
also commonly used to evaluate commonsense
reasoning. Nevertheless, as the development of
language models progress, it became more com-
mon for them to perform on these benchmarks
on the human-like level. Therefore, to make bet-
ter assessments of more advanced language mod-
els new challenging benchmarks were developed.
They include: MMLU (Hendrycks et al., 2021b,a),
AGIEval (Zhong et al., 2023) and BIG-bench (Sri-
vastava et al., 2022), each introducing more com-
plex questions on different topics.

2.2 Multilingual & Cross-cultural
Benchmarks

The evaluation of LLMs across different languages
has led to the creation of several multilingual
benchmarks. Notable examples include XGLUE
(Liang et al., 2020), XTREME (Hu et al., 2020),
and MEGA (Ahuja et al., 2023), which are de-
signed to test language models’ performance on a
range of tasks in multiple languages, from high-
resource to low-resource ones. Additionally, ef-
forts have been made to build datasets tailored
to specific language families (Huang et al., 2023;
Doddapaneni et al., 2023; Adebara et al., 2023).
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These benchmarks mainly assess syntactic and se-
mantic capabilities such as translation, question an-
swering, and classification.
Beyond general linguistic evaluation, more re-

cent research has focused on cultural benchmarks
that aim to measure LLMs’ understanding of so-
ciocultural knowledge. These include datasets like
GeoLAMA (Yin et al., 2022), which evaluates
geo-diverse commonsense reasoning, and Cultur-
alAtlas (Fung et al., 2024), which compiles so-
cial norms from over 193 countries. Other works,
such as CREHate (Lee et al., 2024) and StereoKG
(Deshpande et al., 2022), examine cultural stereo-
types and bias across regions using social media
and crowd-sourced data. However, none of these
suits addresses the cultural fabric of Kazakh life.

2.3 Kazakh-specific Benchmarks
Despite recent advancements in multilingual NLP,
Kazakh remains significantly underrepresented in
benchmark development. While foundational
datasets have been introduced for core NLP tasks,
such as KazNERD for named entity recognition
(Yeshpanov et al., 2022), KazSAnDRA for senti-
ment analysis (Yeshpanov and Varol, 2024), and
KazParC for machine translation (Yeshpanov et al.,
2024) - most of these are narrow in scope and task-
specific. They offer valuable building blocks, but
do not capture the broader reasoning capabilities or
cultural depth needed to evaluate how well LLMs
understand Kazakh society.
To help address this, a few benchmark-style

datasets have recently emerged. One example is
the Kazakh Unified National Testing MC dataset,
which contains nearly 15,000 multiple-choice
questions pulled from Kazakhstan’s national stan-
dardized exams (Sagyndyk et al., 2024b). These
questions span subjects such as Kazakh literature,
history, geography, and biology, providing a real-
istic and academically grounded way to test the
grasp of a model of school-level Kazakh knowl-
edge.
Another effort is the Kazakh Constitution MC

dataset, which includes more than 400 multiple-
choice questions based on Kazakhstan’s constitu-
tion (Sagyndyk et al., 2024a). This benchmark
is more civic in nature, offering a way to evalu-
ate how well a model understands the legal and
governmental concepts that are specific to Kaza-
khstan.
There is also a Kazakh-translated version of

the popularMMLU benchmark, containing around

15,900 multiple-choice questions across a wide
range of topics (Sagyndyk et al., 2024c). While
helpful for assessing general reasoning in a
low-resource setting, this benchmark is entirely
translation-based and may not fully preserve
Kazakh-specific cultural or contextual nuances.
From a field-linguist perspective, an LLM that

handles such culturally grounded content could ac-
celerate tasks like domain word-list expansion or
contextual translation checks. However, no public
benchmarks let practitioners compare models on
these abilities.
All of these benchmarks represent important

steps forward. But they still focus mostly on aca-
demic or formal domains, and none are designed
to test a model’s ability to reason about everyday
Kazakh customs, values or culturally embedded
practices. In other words, we still do not know how
well LLMs can engage with the lived experience of
Kazakh speakers.

3 Methods

The creation of culturally aware NLP models re-
quires considerable effort, particularly for low-
resource languages, where even regular data is
limited. Data acquisition methods generally fall
into three categories, manual, automatic, and semi-
automatic (Liu et al., 2025). Manual data acquisi-
tion involves hiring native speakers or professional
translators to annotate or culturally adapt textual
resources. Additionally, crowdsourcing platforms,
university mailing lists, and Slack or Discord chan-
nels of relevant organizations regularly serve as
sources for gathering culturally rich textual data
through user interaction, conversations, and public
messaging (Liu et al., 2021).
Another promising method for data collection

leverages LLMs to extract cultural knowledge. For
instance, Nguyen et al. (2023) proposes a work-
flow that identifies culturally significant informa-
tion in texts by using named entity recognition, cul-
turally trained classification models, and informa-
tion retrieval and ranking algorithms to create cul-
turally aware datasets. However, as highlighted
by Putri et al. (2024), fully automating dataset cre-
ation using LLMs remains challenging, as the gen-
erated texts typically lack deep cultural understand-
ing and may exhibit fluency errors. A potential
solution to balance automation and quality is to
adapt a semi-automatic approach, merging manual
annotations with automated processes. Studies by
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Liu et al. (2024) and Bhutani et al. (2024) demon-
strated the effectiveness of using prompting tech-
niques for initial data generation, followed by hu-
man evaluation to verify and refine cultural rele-
vance.
To address the scarcity of culturally grounded

Kazakh benchmarks, we developed a semi-
automated data generation pipeline that uses LLMs
and web-scale retrieval to synthesize high-quality
data. The core goal of the system is to generate
multiple choice questions centered on culturally
and contextually significant topics in Kazakhstan,
which are currently absent from existing bench-
marks.

3.1 Linguistic & cultural categories

Our selection of categories and concepts was
guided by the goal of capturing Kazakh culture
in various forms of its representation. We primar-
ily focused on those aspects of culture that can be
expressed, preserved, or transmitted through lan-
guage and text, whether spoken or written. The
inherently textual categories that we added to
the dataset are related to (1) creativity (literature,
song lyrics, and films) and (2) formulaic language
(proverbs, sayings, prayers, and spiritual expres-
sions). Other categories selected for the dataset
were not inherently textual in nature, but have been
recorded and can be described using text: (3) tra-
ditions and customs, as they form the core of any
culture, (4) social relations and hierarchies, as they
reflect the organization of the society, (5) daily life
(names of traditional foods and clothing and termi-
nology used to refer to traditional household ob-
jects, architecture, and agriculture), and (6) arts
and crafts (tools, materials, and techniques).

3.2 Semi-Supervised Benchmark-generation
pipeline

Our data generation pipeline consists of several
key stages

Topic initialization. Initially, we manually cu-
rated a comprehensive list of general topics, orga-
nizing them into clearly defined knowledge cate-
gories relevant to Kazakh society, such as: Media,
Politics, Traditions, and so on. Within each gen-
eral category, we further identified distinct subcat-
egories to cover diverse perspectives and deepen
contextual relevance. For instance, under ‘Cur-
rent social life’, we explored subcategories like the
scandalous ‘Bishimbayev case’, ecological issues

Criteria Description

Traditions Family events; holidays, rituals and cer-
emonies

History Crucial historical events; historical fig-
ures

Social relation-
ships

Family members; relatives; polite terms
for strangers; endearments for loved
ones

Politics and so-
cial strata

Historical terms (e.g., khans, bis);
zhuzes and rus

Proverbs, spiri-
tuality

Sayings, spiritual terms (e.g., bata); su-
perstitions, mythology

Humor Jokes, aitys, humorous figures (e.g., Al-
dar Kose); wordplay

Cuisine Recipes; names for food and beverages

Sports and
games

Names and rules of traditional games
and sports

Films Classic and contemporary Kazakh cin-
ema; landmark films, directors, actors,
and culturally significant storylines

Literature Poetry and fiction with cultural rele-
vance

Song lyrics Traditional songs, kuys

Instruments Names of instruments and parts

Arts and crafts Crafts, decorative and performing arts

Clothing Names of traditional garments

Named entities Names of people/places and their mean-
ings (onomastics)

Agriculture Terms related to farming and herding

Architecture Yurt structure and home elements

Table 1: Cultural Knowledge Categories

in Almaty or negligence in the Thermal Plant in
Ekibastuz.

LLM-based keyword generation. For each
category–subcategory pair, our linguists and soci-
ologists first compiled a concise seed list of cul-
turally salient terms. We then used GPT-4o to ex-
pand these expert-provided seeds, instructing the
models to propose roughly ten additional, cultur-
ally anchored keywords (i.e., sub-subcategories)
that captured dialectal variation, idiomatic usage,
and other nuanced linguistic forms. This human-
in-the-loop procedure ensured that domain knowl-
edge grounded the process while the LLM broad-
ened the lexical scope. The resulting keyword
sets were subsequently transformed into natural-
language search queries, reflecting how a native
speaker might phrase them in a typical Google
search.
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Algorithm 1: KazBench-KK data-
generation pipeline
Input: Manually curated category list C

with seed keywords
Output: Multiple-choice question set Q

1 foreach (c, sub) ∈ C do
/* Step 1: keyword expansion

*/
2 Seeds← linguist/sociologist seed list ;
3 Expanded←

LLM_Expand(Seeds, n=10) ;
4 Queries←

MakeQueries(Seeds ∪ Expanded) ;
/* Step 2: content retrieval

*/
5 Docs←WebSearch(Queries) ;

/* Step 3: preprocessing */
6 Clean← ParseAndClean(Docs) ;
7 Corpus← Deduplicate(Clean) ;

/* Step 4: MCQ generation */
8 foreach d ∈ Corpus do
9 mcq← LLM_MCQ(d) ;
10 if IsCultureSpecific(mcq) then
11 Q ← Q∪ {mcq} ;

12 return Q

Content retrieval. With the search queries gen-
erated, we then performed automatedweb retrieval.
We integrated external API services to execute ex-
tensive searches on websites and platforms such
as Wikipedia, local Kazakh news outlets, and blog
posts.

Webparsing and Preprocessing. The retrieved
website URLs underwent an automated custom
parsing and clearing process. We utilized the open-
sourced HTML parsing scripts to scrape textual
data from the websites, and implemented prepro-
cessing techniques to remove HTML tags, naviga-
tion elements, and redundant information. Addi-
tionally, we employed a deduplication approach to
ensure data quality and consistency.

LLM-based question generation. After prepro-
cessing, the cleaned text corpuswas fed into a large
language model to generate structured multiple-
choice questions (MCQ). For each content chunk,
the LLM was prompted to produce context-based
MCQs along with four answer options, with three
being distractors and one correct answer, grounded

in the specific cultural or historical context. We
adopted a four-option format to align with com-
mon standardized practices in Kazakhstan and
global MCQ benchmarks, ensuring compatibility
with existing evaluation tools. To support better
dataset usability and analysis, each question was
also tagged with a binary annotation indicating
whether it required context-specific knowledge,
and whether a generated question was Kazakh-
culture-specific. This allowed us to later filter and
categorize the dataset based on its cultural rele-
vance and reasoning complexity.

3.3 Data Filtering

We developed a set of criteria to ensure the high
quality of our data. These criteria applied to both
the questions and the answer options, focusing on
their overall structure, logic, coherence, grammati-
cal correctness, and the relevance of the options to
the questions. We aimed to avoid absurd or overly
obvious items and ensure that the answer options,
including distractors, were appropriate and justifi-
able. Additionally, we wanted our data to be bal-
anced in terms of general quality, difficulty, and
diversity. Finally, we evaluated the overall rel-
evance of the question–answer pairs to the cate-
gories and subcategories constituting the notion of
culture. Applying these criteria helped us refine
the dataset and eliminate any major illogical, inco-
herent, absurd, or otherwise irrelevant items.

3.3.1 Automated pre-filtering

To reduce annotator load, we translated the above
rules into a binary “keep vs. discard’’ classifier im-
plemented as a gemini-2.0-flash-lite agent
in LangChain. The model embeds each MCQ
with its answer set, applies chain-of-thought self-
critique, and filters out items whose risk score ex-
ceeds 0.5 prior to human review. Table 2 presents
the classifier’s performance on a held-out set of 97
examples; the macro F1-score is 0.87.

Class Precision Recall F1 Support

Discard (noise) 0.84 0.88 0.86 42
Retain (good) 0.91 0.87 0.89 55

Accuracy 0.88 97
Macro avg 0.87 0.88 0.87 97
Weighted avg 0.88 0.88 0.88 97

Table 2: Metrics for the binary filter
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3.3.2 Human curation
To complement the automatic filter, we collabo-
rated with four native-speaker linguists who manu-
ally reviewed and refined the remaining items. Fol-
lowing the same rubric used by the automated fil-
tering agent, the annotators could also correct the
wording, swap distractors, or flag entire MCQs for
removal; no overlapping assignments or majority
voting was required.

Annotator profile. All four annotators are
Kazakh women of Asian ethnicity. Three are aged
18–24, and one falls within the 35–44 age range.
Two hold undergraduate degrees in Language stud-
ies, while the other two have completed master’s
programs. As a qualification check, each anno-
tator answered ten control questions from Kaza-
khstan’s national standardized exams (Sagyndyk
et al., 2024b) for Kazakh language and all scored
a perfect 10/10.

ID Gender Age Education Ethnicity / Nationality

A1 Woman 18–24 B.A. Linguistics Asian / Kazakh
A2 Woman 18–24 B.A. Linguistics Asian / Kazakh
A3 Woman 18–24 M.A. Asian / Kazakh
A4 Woman 35–44 M.A. Asian / Kazakh

Table 3: Demographic profile of human annotators.

4 Dataset Description

4.1 Overview and format

Statistic A B C D question

Tokens (total) 22 425 25 056 24 045 22 193 63 059
Tokens (avg.) 3.154 3.524 3.381 3.121 8.868
Unique tokens 8 997 10 565 10 048 9 297 15 282
Sentences (avg.) 1.009 1.011 1.010 1.009 1.013
Kk-char ratio 0.0907 0.0906 0.0895 0.0874 0.1020

Table 4: Descriptive statistics for answer options (A–D)
and question stems (Q).

KazBench–KK consists of 7,111 multiple-
choice questions (MCQs).1 Each JSON record
contains a single-sentence stem in Cyrillic Kazakh,
four answer options (A–D), a field indicating
the correct answer, and three metadata fields
(category, subcategory, keyword).

4.2 Quantitative characteristics
Category distribution. Figure 2 shows that cul-
tural topics are highly uneven on the web and the
dataset mirrors this reality: History is the largest

1Available at HF.

class with 1 103 items, followed byOnomatopoeia
(621) and Agriculture (579). The smallest bar be-
longs to Swearing category with slightly over 50
questions. Despite the long tail, every category
contains dozens of samples, enabling per-domain
evaluation.

Figure 1: Diacritics distribution

Sub-category coverage. The finer-grained view
(Fig. 3) contains 70-plus sub-categories. Counts
range from roughly 450 questions at the top to
around 30 at the bottom, implying that no single
niche dominates the benchmark.

Question length. Box plots in Fig. 4 reveal a
tight span: the median stem length is 7 tokens
across all domains, with the middle 50 % of exam-
ples falling between 6 and 9 tokens. Only a handful
of outliers exceed 14 tokens.

Lexical diversity. Token-type ratios by column
are plotted in Fig. 6. Stems have the lowest variety,
reflecting repeated use of interrogatives (қандай,
қай). Answer options are markedly richer (TTR
≈ 0.60–0.70), and some specialised domains (e.g.
Swearing expressions) push the ratio beyond 0.95.

Orthographic coverage. Eight Kazakh-specific
Cyrillic letters (ә, қ, ң, ғ, ө, ү, ұ, і) appear in the cor-
pus. The radar chart (Fig. 1) shows that ”қ” alone
accounts for about 40 % of the diacritic tokens,
with ”ң” and ”ғ” the next most common. Conse-
quently, automatic evaluation cannot succeed by
handling only Russian spellings.

Answer-key balance. The answer keys were
originally placed so that each position (A-D) had
the correct option exactly one quarter of the time,
eliminating positional bias at generation time. Af-
ter human curation, where annotators occasionally
rewrote, swapped, or pruned options, the distribu-
tion drifted, and Fig. 7 now shows a modest skew
across positions. We report this shift to inform re-
viewers about the residual position bias introduced
during manual cleanup.
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4.3 Linguistic profile
Frequent vocabulary. The histogram in Fig. 5
confirms that stems are dominated by function
words and wh-terms, whereas answers introduce
content words such as қазақ ‘Kazakh’, дәстүрлі
‘traditional’ and named entities. This design forces
models to rely on content-specific cues rather than
stereotyped question templates.

Category–specific variation. The heat-map of
type–token ratios highlights clear lexical contrasts:
creative domains such as Cinema display the high-
est diversity within columns, while everyday areas
(Agriculture, Traditions) use a narrower but still
non-trivial vocabulary. Such variation allows er-
ror analysis that linksmodel failures to specific cul-
tural sublexica.

Summary. Taken together, the figures demon-
strate that KazBench–KK offers (i) broad topical
coverage, (ii) compact but information rich stems,
(iii) balanced answer positions, and (iv) authentic
Kazakh orthography. These properties make the
dataset a realistic stress test for language models
that claim cultural knowledge of Kazakhstan.

5 Results

We selected a diverse panel of 21 checkpoints that
(i) span the major open-source families (Llama-
3, Gemma-3, Qwen 2.5, Mistral, Nemotron,
DeepSeek) and (ii) cover the full spectrum of tun-
ing regimes (base SFT, community SFT-tune, and
RL/Instruct). We excluded any model that par-
ticipated in our data-generation pipeline—those
very large, API-only LLMs that seeded the MCQs-
because evaluating them on a benchmark they
helped create would inflate scores and mask true
generalisation. This “no-leak” policy avoids cir-
cularity and lets us gauge how well independent
models, with parameter counts from 8B to 70B,
handle culture-specific content. Within that cohort,
reinforcement-/instruction-tunedmodels dominate
On logit-level multiple-choice scoring,

reinforcement-/instruction-tuned models domi-
nate: Gemma-3-27B-it (0.72), both Llama-3-70B
Instruct variants (0̃.71), and Nvidia’s Nemotron-
Super-49B RL model (0.69) form a clear first tier.
Model scale still matters - Nemotron-Nano-8B RL
plunges to 0.35 - but domain-focused fine-tunes
can partly offset size: the 8B Sherkala chat
model (0.69) and KazLLM-70B (0.69) rival much
larger base checkpoints. Pure SFT baselines

such as Gemma-3-12B-pt (0.62) and Qwen-32B
(0.62) trail their RL counterparts by 6–10 points,
confirming the benefit of preference optimization
even when no text generation is required. Overall,
reinforcement alignment combined with sufficient
parameters remains the most reliable recipe for
KazBench-KK accuracy, though well-targeted
community SFTs can yield competitive gains.
At the category level, Cinema and Ono-

matopoeia are consistently the hardest sections,
dipping below 0.60 for nearly every model, in-
cluding top-tier Gemma-3-27B-it (0.69 and 0.67,
respectively) and falling into the mid-0.40s for
smaller checkpoints. Conversely, politically
grounded knowledge is easy: all first-tier mod-
els top 0.79 on Politics & Social Stratification,
with Gemma-3-27B-it at 0.79 and Llama-3-70B
Instruct at 0.81. Nvidia’s Nemotron-Super-49B
shows a distinctive strength in Musical Instru-
ments (0.69) and Architecture (0.72), whereas the
Sherkala 8B chat model punches above its weight
in Humor (0.71) and Cuisine (0.67)-categories
where many SFT baselines lag. KazLLM-70B
peaks at Swearing & Offensive Expressions (0.70),
reflecting its culture-specific tuning. The overall
spread suggests that cultural trivia tied to media,
sound symbolism, and pop-culture films remains
challenging, while hierarchical or historically cod-
ified knowledge (political titles, social classes, for-
mal rituals) is much easier for models to retrieve.

Model name Type Accuracy

google/gemma-3-27b-it rl 0.7216
meta-llama/Llama-3.3-70B-Instruct rl 0.7090
meta-llama/Llama-3.1-70B-Instruct rl 0.7030
nvidia/Llama-3_3-Nemotron-Super-49B-v1 rl 0.6936
inceptionai/Llama-3.1-Sherkala-8B-Chat sft-tune 0.6909
issai/LLama-3.1-KazLLM-1.0-70B sft-tune 0.6892
google/gemma-3-12b-it rl 0.6794
mistralai/Mistral-Small-24B-Instruct-2501 rl 0.6761
Qwen/Qwen2.5-32B-Instruct rl 0.6334
google/gemma-3-12b-pt sft 0.6241
Qwen/QwQ-32B sft 0.6165
deepseek-ai/DeepSeek-R1-Distill-Llama-70B sft 0.6019
Qwen/Qwen2.5-14B-Instruct rl 0.6002
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B sft 0.5996
google/gemma-3-4b-pt sft 0.5854
google/gemma-3-4b-it rl 0.5828
meta-llama/Llama-3.1-8B-Instruct rl 0.5750
issai/LLama-3.1-KazLLM-1.0-8B sft-tune 0.5656
nvidia/Llama-3.1-Nemotron-Nano-8B-v1 rl 0.3542
TilQazyna/llama-kaz-instruct-8B-1 rl 0.2768

Table 5: Overall accuracy of evaluated models. Model
types: rl = reinforcement-tuned, sft = base supervised
fine-tune, sft-tune = post supervised fine-tune.

Why an Offline-Only Evaluation All check-
points were executed locally-without any hosted-
API calls-for four technical reasons.
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(1) Apples-to-apples comparability: restrict-
ing the pool to models that ship raw weights
prevents API-only systems from benefiting from
undisclosed tool use or server-side retrieval, so ev-
ery score reflects the base language model alone.
(2) Decoding transparency: local inference

lets us pin the exact tokenizer build, sampling algo-
rithm, and context window; commercial endpoints
may apply proprietary post-processing that we can-
not inspect or replicate.
(3) Logit access for analysis: computing per-

option log-likelihoods, error heat-maps, or cali-
bration curves requires raw logits-information that
most APIs do not expose.
These constraints keep the leaderboard a clean

test of model weights, tokenization, and decoding
policy-nothing else.

6 Conclusions

This study introduces KazBench-KK, a 7,111-item
benchmark that assesses how well contemporary
language models grasp cultural knowledge en-
coded in Kazakh. Built through a semi-automatic
pipeline that blends expert guidance, web mining,
and careful human curation, the dataset covers sev-
enteen domains ranging from clan hierarchy to
popular cinema.
The evaluation paints a mixed picture. Large,

reinforcement-aligned models, like Gemma-3-
27B-it and the Llama-3-70B Instruct pair-handle
codified facts such as historical events with con-
fidence, but their accuracy drops on items tied to
film references or sound-symbolic words. Smaller
community fine-tunes, notably Sherkala-8B and
KazLLM-70B, narrow the gap in conversational
categories like humour, swearing, and cuisine,
showing that targeted data can offset limited pa-
rameter count in specific niches.
Practically, the league table offers a guide:

Choose a heavyweight model when the task de-
mands institutional knowledge, and reach for a
lean, locally tuned model when nuance in every-
day language matters more. For researchers, the
consistent underperformance on Cinema and Ono-
matopoeia highlights clear gaps where additional
data collection is likely to yield rapid gains.
Finally, the methodology itself is portable. Be-

cause each stage of the pipeline-seed selection,
keyword expansion, retrieval, and filtering-relies
on general tools, other language communities can
replicate the process to create their own culturally

specific benchmarks.

7 Future Work

Future research could expand KazBench-KK by
integrating open-ended questions and dialect-
specific knowledge from underrepresented rural re-
gions. Moreover, the semi-automated benchmark-
ing pipeline introduced here can be extended be-
yond textual data, facilitating culturally grounded
benchmarks in multimodal domains such as im-
ages, audio, and video. Applying this method-
ology across diverse modalities would support a
more comprehensive understanding and represen-
tation of Kazakh culture and other low-resource
cultural contexts.

8 Limitations

Our benchmark cannot claim exhaustive cover-
age of Kazakh culture. Web-derived material is
skewed toward urban, Russian-influenced outlets,
so the lexicon of rural dialects and oral genres
(e.g., regional aitys) remains underrepresented. Al-
though the generation pipeline balanced answer
keys at creation time, manual curation introduced
a mild positional skew (Fig. 7). The questions
are single-sentence MCQs; they do not test open-
ended generation, discourse planning, or code-
switching.

9 Ethics

Data provenance. All text was scraped from
publicly accessible websites; we removed pages
that contained personal names, contact details, or
paywalled material. The released dataset stores
only short question stems and answer options, min-
imising potential copyright concerns.

Annotator welfare. Four native-speaker lin-
guists contributed on a voluntary basis; they re-
ceived no monetary compensation, but gave their
informed consent, could skip any item, and were
free to withdraw at any time.

Bias and cultural sensitivity. Web sources may
reflect gender, regional, or political biases; the
benchmark therefore inherits those biases. Some
items reference sensitive topics (e.g. clan affilia-
tion, swearing); we flagged such questions with
metadata so that downstream users can filter them
if desired.
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Appendix

A Question Category Distribution

Figure 2: Distribution of questions across major cultural categories in KazBench-KK.
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B Sub-Category Distribution

Figure 3: Granular breakdown of question counts per sub-category, demonstrating the breadth of domain-specific
coverage.
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C Question Length Analysis

Figure 4: Box plot of question stem lengths (in tokens), showing central tendency and variability across domains.
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D Top Token Frequency in Questions

Figure 5: Most frequent tokens in question stems, highlighting common wh-terms and grammatical structures.

53



E Lexical Diversity by Category

Figure 6: Type-token ratio (TTR) heatmap across categories, illustrating domain-specific variation in lexical rich-
ness.
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F Answer Key Distribution

Figure 7: Distribution of correct answer positions (A–D), exposes bias in the dataset after human evaluation and
fixes.
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G Per-Category Model Accuracy
Model Arch Arts Hist Cinema Cuisine Lit Swear Instr Onom Polit Proverb Agric Social Sport Song Trad Cloth Humor Avg

google/gemma-3-27b-it 0.759 0.708 0.706 0.688 0.748 0.669 0.649 0.671 0.667 0.788 0.725 0.765 0.746 0.651 0.737 0.779 0.714 0.740 0.722
meta-llama/Llama-3.3-70B-Instruct 0.747 0.714 0.709 0.625 0.696 0.655 0.684 0.675 0.657 0.817 0.703 0.741 0.741 0.675 0.708 0.729 0.723 0.663 0.709
meta-llama/Llama-3.1-70B-Instruct 0.719 0.703 0.697 0.625 0.724 0.653 0.667 0.650 0.652 0.810 0.707 0.737 0.744 0.679 0.685 0.713 0.737 0.673 0.703
nvidia/Llama-3_3-Nemotron-Super-49B-v1 0.723 0.686 0.691 0.598 0.671 0.641 0.649 0.689 0.633 0.792 0.677 0.741 0.741 0.656 0.683 0.715 0.710 0.694 0.694
inceptionai/Llama-3.1-Sherkala-8B-Chat 0.699 0.662 0.692 0.625 0.668 0.681 0.632 0.678 0.641 0.777 0.689 0.727 0.712 0.675 0.685 0.702 0.665 0.714 0.691
issai/LLama-3.1-KazLLM-1.0-70B 0.727 0.668 0.703 0.571 0.675 0.657 0.702 0.636 0.622 0.773 0.693 0.725 0.714 0.665 0.687 0.708 0.696 0.684 0.689
google/gemma-3-12b-it 0.731 0.673 0.669 0.661 0.664 0.647 0.544 0.657 0.630 0.737 0.709 0.694 0.680 0.623 0.693 0.713 0.719 0.679 0.679
mistralai/Mistral-Small-24B-Instruct-2501 0.687 0.681 0.685 0.589 0.671 0.625 0.684 0.661 0.634 0.724 0.659 0.712 0.697 0.618 0.668 0.715 0.692 0.704 0.676
Qwen/Qwen2.5-32B-Instruct 0.699 0.614 0.604 0.598 0.570 0.649 0.509 0.618 0.612 0.717 0.619 0.642 0.638 0.608 0.643 0.658 0.643 0.694 0.633
google/gemma-3-12b-pt 0.671 0.611 0.589 0.518 0.629 0.561 0.649 0.594 0.531 0.695 0.665 0.665 0.675 0.561 0.637 0.692 0.688 0.643 0.624
Qwen/QwQ-32B 0.651 0.605 0.601 0.589 0.573 0.637 0.526 0.590 0.597 0.658 0.615 0.639 0.645 0.599 0.599 0.622 0.589 0.699 0.617
deepseek-ai/DeepSeek-R1-Distill-Llama-70B 0.699 0.576 0.603 0.464 0.587 0.565 0.632 0.565 0.504 0.667 0.625 0.639 0.643 0.561 0.601 0.620 0.634 0.638 0.602
Qwen/Qwen2.5-14B-Instruct 0.631 0.627 0.573 0.536 0.601 0.605 0.456 0.601 0.572 0.658 0.561 0.613 0.638 0.599 0.585 0.649 0.580 0.622 0.600
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B 0.635 0.614 0.583 0.589 0.577 0.629 0.491 0.565 0.576 0.634 0.579 0.634 0.589 0.547 0.589 0.640 0.598 0.633 0.600
google/gemma-3-4b-pt 0.643 0.616 0.579 0.509 0.584 0.543 0.509 0.544 0.536 0.631 0.595 0.613 0.601 0.613 0.578 0.608 0.563 0.602 0.585
google/gemma-3-4b-it 0.618 0.578 0.575 0.438 0.580 0.557 0.544 0.640 0.548 0.636 0.581 0.615 0.589 0.552 0.572 0.576 0.643 0.566 0.583
meta-llama/Llama-3.1-8B-Instruct 0.647 0.614 0.573 0.482 0.535 0.545 0.614 0.530 0.507 0.600 0.589 0.606 0.618 0.561 0.570 0.576 0.580 0.622 0.575
issai/LLama-3.1-KazLLM-1.0-8B 0.598 0.568 0.576 0.455 0.549 0.511 0.649 0.516 0.462 0.638 0.569 0.611 0.628 0.524 0.557 0.597 0.585 0.602 0.566
nvidia/Llama-3.1-Nemotron-Nano-8B-v1 0.341 0.351 0.359 0.339 0.374 0.311 0.386 0.392 0.327 0.355 0.365 0.370 0.340 0.406 0.347 0.346 0.402 0.342 0.354
TilQazyna/llama-kaz-instruct-8B-1 0.233 0.235 0.282 0.295 0.318 0.281 0.193 0.325 0.264 0.291 0.327 0.287 0.249 0.288 0.261 0.264 0.237 0.265 0.277

Table 6: Per-category accuracy (and macro average) for each evaluated model. Column abbreviations:
Arch = Architecture/Housing, Arts = Arts/Crafts, Lit = Literature, Swear = Swearing expressions, Instr = Musical instruments,
Onom = Onomatopoeia, Polit = Politics/Social, Proverb = Proverbs & Mythology, Agric = Agriculture, Trad = Traditions,
Cloth = Traditional clothing.
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E Semi-Automated Data Generation Pipeline

Figure 8: Overview of the semi-automated pipeline used to generate culturally-grounded instructional Q&A bench-
mark.
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Abstract

In this paper, we describe a newly created
searchable interface for DoReCo, a database
that contains spoken corpora from a world-
wide sample of 53, mostly lesser described lan-
guages, with audio, transcription, translation,
and - for most languages - interlinear morpheme
glosses. Until now, DoReCo data were avail-
able for download via the DoReCo website and
via the Nakala repository in a number of dif-
ferent formats, but not directly accessible on-
line. We created a graphical interface to view,
listen to, and search these data online, provid-
ing direct and intuitive access for linguists and
laypeople, including members of speech com-
munities. The new interface uses the TEITOK
corpus infrastructure to provide a number of dif-
ferent visualizations of individual documents in
DoReCo and provides a search interface to per-
form detailed searches on individual languages.

1 Introduction
Over the past 30 years, spoken corpus data have
been produced through linguistic fieldwork on hun-
dreds of languages around the world, often in at-
tempts to document languages that are threatened
of becoming extinct (Seifart et al., 2018). Typically,
these were archived as part of language documen-
tation collections in repositories such as TLA1 and
ELAR2. However, within these collections, the cor-
pus data are often not easily identifiable and sub-
ject to access restrictions. Recently, the DoReCo
database brought together selected high-quality cor-
pus data from such collections, harmonized their
annotations, and made them available for download
(Seifart et al., 2024).

But even in DoReCo, these data are served only
as raw source data, that is, as files from their respec-
tive tools. So in order to access them, users have to
download the data, install the corresponding tool,

1https://archive.mpi.nl/tla/
2https://www.elararchive.org/

and use the data locally using that tool, for instance,
ELAN3. This means that it is not trivial for casual
users to access such language documentation cor-
pora, even though they could be valuable resources
for simply getting an impression of the language
or for university teaching, as well as linguistic re-
search.
In this paper, we demonstrate how to make spo-

ken corpora stemming from fieldwork-based lan-
guage documentation directly accessible online, in-
cluding for online corpus searching, by converting
the source data to a corpus search tool with an on-
line interface, building on existing tools and for-
mats. In the example here, we convert DoReCo
to TEITOK, a web-based corpus management plat-
form that provides specific tools for spoken data and
interlinear glossed data (Janssen, 2016). We first
briefly describe DoReCo and TEITOK and then
describe how the DoReCo data were converted into
a TEITOK corpus. And finally we will demonstrate
how the TEITOK online interface of the DoReCo
data can be used to quickly and efficiently access
the fieldwork data. The use of TEITOK also en-
ables the corpus for use with NLP pipelines, either
using the data to train NLP models or to use NLP
models to further enrich the data.

2 DoReCo

DoReCo (Language Documentation Reference
Corpus) is a collection of spoken corpora on a di-
verse set of 53 languages from around the world,
with a focus on small and endangered languages. It
was conceived to make data that were painstakingly
collected in fieldwork in often remote areas avail-
able for cross-linguistic and cross-cultural research.
As such, it addresses the problem of overreliance
on what has been termed WEIRD (Western Edu-
cated Industrial Rich Democratic) populations and
their languages in cognitive science (Henrich et al.,

3https://www.mpi.nl/corpus/html/elan/
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2010; Blasi et al., 2022).
Most of the corpora in DoReCo stem from ef-

forts to document endangered languages in the
framework of documentary linguistics (Himmel-
mann, 1998). From such documentary collections,
DoReCo selected data that were suitable for cross-
linguistic corpus-based research (Schnell and Schi-
borr, 2022). The selection criteria included the
quality and consistency of annotation, the quality of
the accompanying audio-recordings and that these
materials could be made available using CC-BY
licenses. The majority of DoReCo data are spon-
taneously produced traditional or personal narra-
tives, in addition to some conversations and stim-
ulus retellings, but not isolated examples. Each
corpus had been transcribed, translated and, for
39 languages, also morphologically annotated by
experts on the language prior to their inclusion in
DoReCo. These experts are also the authors of the
individual corpora that are edited and made avail-
able through DoReCo.

Within DoReCo, these data have been processed
to add time alignment of transcription and audio
through a combination of automatic forced align-
ment and manual corrections (Paschen et al., 2020).
As a result, the start and end times for each phone,
morph, and word unit are now annotated - a de-
sign motivated by research questions on phonetic
lengthening (Blum et al., 2024). Other data process-
ing steps in DoReCo included the harmonization,
across the 53 corpora, of the tier structure and tier
names, the documentation of the phonetic value of
symbols used in the transcription, and the creation
of csv files for each language, one with one word per
line and another with one phone per line. DoReCo
was first published in 2022, and the latest major
update, containing 53 languages, was published in
2024. All DoReCo data are distributed under CC
BY(-NC)(-ND-/SA) licenses.

3 TEITOK

TEITOK is an online platform for creating, manag-
ing, visualizing, and searching annotated corpora.
All corpus documents in TEITOK are stored in a to-
kenized TEI/XML format4. It has a modular setup
with various search and visualization methods. The
default search is performed using Corpus Work-
Bench (CWB) (Evert and Hardie, 2011), which al-
lows rich queries that can combine various token
attributes, sequences of tokens, and can take meta-

4https://tei-c.org/

data into account. The default document visualiza-
tion shows linguistic information and is designed
to display lemmatization, POS tagging, and depen-
dency data. But there are also visualizationmodules
for facsimile-aligned manuscript-based corpora, for
time-aligned audio-based corpora (Janssen, 2021),
and for interlinear glossed text corpora.
TEITOK was initially developed for the di-

achronic corpus PostScriptum (Vaamonde et al.,
2014) and the learner corpus COPLE2 (Mendes
et al., 2016), and has since been used for a wide
variety of corpora including the multilingual Uni-
versal Dependencies corpus5, the parliamentary
corpus ParlaMint (Janssen and Kopp, 2024), di-
alectal corpora such as Madison6, and corpora on
less-resourced languages like CoDiaJE on Judeo-
Spanish (Quintana, 2020). A list of publicly accessi-
ble TEITOK projects can be found on the TEITOK
website7.

TEITOK actively supports corpus editing and
does not typically rely on corpora that have been
fully developed outside of the platform. It allows
users to run NLP pipelines by default using UD-
PIPE8 on their data from the interface, in order to
easily enrich a corpus with NLP data such as tag-
ging, lemmatization, and dependency parsing. For
fieldwork data, there typically are no NLP pipelines
available, but TEITOK also allows training a tagger
on the manually annotated data in the corpus, to
automatically pre-tag subsequent documents with
the recently trained tagger. And it provides an in-
tuitive interface to add and correct annotations, so
that errors in the automatic annotations can be cor-
rected. This mechanism has been used, for instance,
in the CoDiaJE corpus mentioned above to create a
POS tagger from scratch for a language for which
no NLP tools were available.
TEITOK is actively maintained and extended

with new functionalities, and has an active user
base. It is open source and can be easily installed
anywhere from the repository9, or run in a virtual
environment fromDockerHub10. TEITOK has been
generally well received both by corpus creators and
corpus users. The fact that it makes use of well
established formats and tools such as TEI/XML

5https://lindat.mff.cuni.cz/services/teitok/
ud214/index.php

6http://teitok.clul.ul.pt/madison/
7http://www.teitok.org/index.php?action=

projects
8https://lindat.mff.cuni.cz/services/udpipe/
9https://gitlab.com/maartenes/TEITOK/
10https://hub.docker.com/r/maartenpt/teitok
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and the CorpusWorkBenchmeans that many people
will be familiar with various aspects of the interface
even if they do not know the tool itself.

4 DoReCo in TEITOK

In order to create a searchable version of DoReCo
in TEITOK, all original DoReCo files were con-
verted to the TEITOK file format. The interface
follows the same design layout as the DoReCo web-
site, even though it is hosted on a different server,
highlighting that it provides a visualization of the
existing DoReCo version, not a re-edition.

Spoken corpora, including the DoReCo corpora,
often closely transcribe what is said by the speakers,
keeping track of pauses, corrections, false starts, etc.
Transcription of such phenomena is typically per-
formed in fieldwork-specific tools such as the Field
Linguist Toolbox11 or in speech-driven tools like
ELAN. Since such tools use plain text for the tran-
scription, all labels (or codes) for speech phenom-
ena like corrections or false starts are transcribed
by using special characters and labels inside the
transcription.
The encoding of these phenomena by means of

special characters is not ideal for a number of rea-
sons. The first is that the labels tend to vary from
corpus to corpus, so it is always necessary to pro-
vide a legend along with the corpus to explain the
labels. The second is that these manually added
labels are often not computer readable if they are
not applied 100% consistently. The third is that the
labels impede easy searching of the corpus: if we
use the symbol / for a pause, then searching for "the
man" will not yield results that have a pause in the
middle (the / man).
The TEITOK conversion converts all DoReCo

labels for disfluencies etc. into TEI/XML markup.
XML is a formal language that has to be used sys-
tematically and TEI provides a set of standardized,
well-described markers. This makes the resulting
TEI documents compatible with other spoken data.
The meaning of the markers used can be looked
up in the TEI documentation for those who are not
familiar with them. And they do not interfere with
searches because searches are done on sequences
of tokens ignoring markers. In the next section, we
show how the conversion was done, and then how
the converted corpus can be used for visualization
and searching.

11https://software.sil.org/toolbox/

4.1 Conversion

The conversion fromDoReCo to TEITOKwas done
completely automatically by a custom script that
combines the metadata from the DoReCo meta-
data table with the transcription data from the
ELAN (EAF) files. The script reads each line in
the metadata table and then for each line creates
a TEI/XML file in TEITOK style and saves it un-
der the identifying name of that line. The meta-
data are placed in their appropriate TEI fields in the
header (teiHeader), while the transcription is placed
in the body (text). As a corpus search environment,
TEITOK does not work with tiers, but rather with
running text. For spoken corpora with multiple
speakers, this typically implies an "interview style"
representation of the text, in which speech turns
are presented in chronological order, determined by
their start time, also in case of overlapping turns.

The technical implementation of the conversion
of the EAF files is as follows. Each annotation unit
on the DoReCo REF tier(s), which represents a
chunk of speech defined by the corpus creators as
sentences, intonation units, or larger units like para-
graphs, and which is associated with a translation
unit, is turned into an utterance (u). The utterances
are ordered chronologically by their start time to
generate the interview-style representation of the
text. The utterances get adorned with attributes
taken from all the tiers that correspond to the utter-
ance: the start and end time from the interval, the
speaker identifier (who) from the name of the tier
(ref@XX), the identifier (id) from the REF tier, the
text from the TX tier, and the translation from the
FT tier.
Inside the utterance, it creates tokens (tok) for

each annotation within the range of the utterance
from the WD tier, with the inner text corresponding
to the content of the WD tier and attributes from
all dependent tiers. Within each token, it creates
morphemes (m) from the MB tier with its respec-
tive attributes. When the start and end times are
available for tokens and morphemes, they are also
added to the respective nodes.
The CWB searches do not work with units

smaller than the token, which means that morphs
and phones (approximated by units transcribed with
X-SAMPA symbols) are not directly searchable.
Therefore, the content of the MB and PH tiers are
(also) kept as single string on the token, concatenat-
ing the content of the various elements. Morphemes
are separated by a dot, while the X-SAMPA charac-
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ters are separated by a space to increase readability.
The identification of morpheme breaks follows the
language-expert annotations in DoReCo.
The disfluency labels in the DoReCo transcrip-

tion are converted into their respective TEI codes, as
shown in Table 1. This way, the custom codes used
in DoReCo are converted to standardized markers
and separated from the text.
An example of a one-word sentence Эвӣлэн

from the file 2007_Ekonda_Udygir_Viktor_FSk3
in the corpus on the Siberian language Evenki
(Kazakevich and Klyachko, 2024) is given in Ta-
ble 2 (with some details left out for clarity).

The header of the TEI file tracks whether or not
the audio file for the transcription is available. Gen-
erally, DoReCo corpora consist of a core set of
annotations which have been time-aligned and for
which the audio is available, and a larger set for
which that is not the case. For eight DoReCo cor-
pora, however, the audio files are only available at
repositories outside DoReCo after registration, so
these were not made available in the TEITOK cor-
pus either. When the audio is not available, audio
related functions are disabled for that file.
The entire conversion is fully automatic and

would work not only for possible future versions or
extensions of DoReCo, but also for any ELAN data
following the DoReCo set-up.

4.2 Visualizations
There are three main ways to visualize the individ-
ual files in the DoReCo-TEITOK: a linguistic view,
a speech-oriented view, and an interlinear glossed
view. The linguistic view displays the full text of
the transcription with the audio file displayed on
top. Moving the mouse over one word will display
a pop-up that shows all the information available
for that word: the word itself, the morphological
breakdown with their glosses (where available), the
POS tag, and the X-SAMPA transcription.
The speech-oriented visualization displays the

waveform of the audio file on top and below that
the transcription of the utterances. Clicking on an
utterance will play that utterance. Playing the audio
will highlight which word in the transcription is
currently being pronounced, and the word will also
appear as a caption in the waveform image. While
the waveform scrolls horizontally, the transcription
scrolls vertically. Naturally, the speech-oriented vi-
sualization is available only for those transcriptions
that have audio files that accessible. And the word-
level visualization is only available for the files that

were time-aligned at the word level. An example of
a waveform visualization from the Evenki DoReCo
corpus (Kazakevich and Klyachko, 2024) is given
in Figure 1.

The default visualization of DoReCo-TEITOK is
set to the interlinear glossed text (IGT) visualiza-
tion. This is because for transcriptions that have
a morphological breakdown, neither the linguistic
nor the speech-oriented visualization will display
the morphemes. The IGT view displays each ut-
terance in sequence, with first the utterance, then
the words of the utterance with below each word
the token-level annotations such as POS, gloss, and
X-SAMPA. Below that, it displays the morphemes
of each word with the morpheme level annotations
such as form and gloss, and, finally, the utterance-
level annotations such as full text translation and
the option to listen to the utterance. An example
of an IGT visualization from the Evenki DoReCo
corpus is given in Figure 2.

Figure 1: Waveform view example (Evenki corpus
(Kazakevich and Klyachko, 2024))

4.3 Searches
From the collection of converted TEI/XML files,
an indexed corpus is created in Corpus Work-
Bench (Evert and Hardie, 2011), making the var-
ious kinds of metadata searchable, along with all
the attributes on the utterances and the tokens. The
corpus can be searched using the Corpus Query
Language (CQL). CQL is a well established and
powerful query language used by many tools in-
cluding for instance CQPWe(Hardie, 2012) and
SketchEngine(Kilgarriff et al., 2014), and should be
familiar to many potential users - but for people not
familiar with it, TEITOK provides a user friendly
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Filled pause <<fp>uhm> <vocal><desc>uhm</desc></vocal>
<<fp>> <pause type="filled"/>

Prolongation <<pr>looonger> <tok obs="prolongued">longer</tok>
Backchannel <<bc>mm> <vocal><desc>mm</desc></vocal>
False start <<fs>fal-> <del type="falsestart">fal-</del>
Ideophone <<id>tick> <tok obs="ideophone">tick</tok>
Onomatopeic <<on>moo> <vocal type="onomatopeic"><desc>moo</desc></vocal>
Foreign material <<fm>Weberei> <foreign><tok>Weberei</tok></foreign>
Unidentifiable <<ui>vubi> <unclear><tok>vubi</tok></unclear>

<<ui>> <gap reason="unidentifiable"/>
Singing <<sg>> <gap reason="singing"/>
Silent pause <p:> <pause type="silent"/>
Word-internal pause <<wip>> <pause type="word-internal"/>

Table 1: Disfluency code conversion

<u who="VNU" tier="ref" start="317.92" end="318.42" eid="0089_doreco_even1259_2007_Ekonda_Udygir_Viktor_FSk3" text="¯." gloss="He began to play." id="u-86">
<tok who="VNU" tier="wd" start="317.92" end="318.42" form="wı̄ln" pos="v" phon="@wi:l@n" morph="wı̄.-l.-.-n" id="w-358">

wı̄ln
<m who="VNU" tier="mb" start="317.92" end="318.15" form="wı̄" gloss="" id="m-358-1"/>
<m who="VNU" tier="mb" start="318.15" end="318.25" form="-l" gloss="INCH" id="m-358-2"/>
<m who="VNU" tier="mb" start="318.25" end="318.28" form="-" gloss="NFUT" id="m-358-3"/>
<m who="VNU" tier="mb" start="318.28" end="318.42" form="-n" gloss="3SG" id="m-358-4"/>

</tok>
</u>

Table 2: Example utterance in TEITOK/XML (Evenki corpus (Kazakevich and Klyachko, 2024))

Figure 2: Interlinear glossed text view example (Evenki
corpus (Kazakevich and Klyachko, 2024))

GUI to build search queries.
CQL can be used to search for words (or se-

quences of words) and to restrict that search to spe-
cific documents or utterances. These searches can
combine any of the attributes present in the corpus:
the form and X-SAMPA representation of the word,
the part-of-speech (POS) tag (when available) or

glosses. They can also be restricted to utterance by
speakers of a certain sex or age, and to documents of
a specific genre or to the core vs. extended (without
time-alignment and audio) corpus sections.
This makes it possible to quickly find examples

in the corpus, which facilitates its use, for instance,
in teaching in linguistics programs. The results
can also be used for statistical data by grouping
the results by one of the categories. This makes
it possible, for instance, to see the distribution of
words over the different POS tags, to see whether
certain types of words are more frequently used by
women, or in narrative texts. The search results
are rendered as utterances, and when a sound file
is available, it will have a play button next to the
result, making it possible to directly listen to the
utterances.

Since all text-based codes in the original DoReCo
data have been converted to TEI/XML codes accord-
ing to Table 1, all text is searchable and disfluencies,
gaps, and other markings do not hamper the search,
while the information they provide is still available.

5 Conclusion
In this paper, we have shown how we created
a searchable, directly accessible version of the
DoReCo corpus making use of the built-in capac-
ities of the TEITOK platform. This TEITOK ver-
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sion of DoReCo is much easier to use for casual
users and allows expressive searches and frequency
counts to quickly find examples or quickly extract
some general information on the language, for ex-
ample in teaching settings.
TEITOK visualization and search functions fo-

cus on textual information present in DoReCo. It
disregards the speech-related aspects of DoReCo,
especially the time-alignment of annotation with au-
dio at the phone-, morph- and word-level. For anal-
yses taking these into account, the original DoReCo
files in combination with speech-specific tools like
ELAN and Praat offer functions that a corpus tool
like TEITOK does not.
Currently, the DoReCo corpus in TEITOK only

represents the information already provided by
DoReCo. But having fieldwork corpora from
ELANmade available in TEITOK not only makes it
possible for casual users to search the corpus online,
but also makes it possible for the corpus creators to
enrich their corpus data with further annotations,
such as a lemmatization, POS tags, Named Entities,
or full dependency treebanks in the framework of
Universal Dependencies12. The platform has been
designed to help provide the necessary manual an-
notations, and furthermore provides an interface
to then use the manually annotated data to train
NLP tools like taggers, parsers, and named entity
recognition tools.

The current project applied TEITOK to DoReCo
data, but the visualization and search functions
shown here would work for many other language
documentation corpora. By providing fieldwork
corpus data on more languages in the same inter-
face and following the same principles, the cross-
linguistic coverage for comparative corpus research
could be enhanced even further. Therefore, it would
be beneficial to the community if more language
documentation corpora were made available in the
same fashion.
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Abstract

Interlinear gloss generation aims to predict lin-
guistic annotations (gloss) for a sentence in a
language that is usually under ongoing docu-
mentation. Such output is a first draft for the
linguist to work with and should reduce the
manual workload. This article studies a simple
glossing pipeline based on a Conditional Ran-
dom Field and applies it to a small fieldwork
corpus in Mukrı̄ Kurdish, a variety of Central
Kurdish. We mainly focus on making the tool
as accessible as possible for field linguists, so
it can run on standard computers without the
need for GPUs. Our pipeline predicts common
grammatical patterns robustly and, more gener-
ally, frequent combinations of morphemes and
glosses. Although more advanced neural mod-
els do reach better results, our feature-based
system still manages to be competitive and to
provide interpretability. To foster further col-
laboration between field linguistics and NLP,
we also provide some recommendations regard-
ing documentation endeavours and release our
pipeline code alongside.

1 Introduction

Language documentation aims to create and
archive corpora alongside resources on a language
usually classified as endangered. To do so, linguists
carry out fieldwork and then process the collected
data. Each annotation (e.g., transcribing the record-
ings, analysing the transcription) is mostly done
manually; it is hence costly in terms of time and
requires advanced linguistic knowledge. This is
the ‘transcription bottleneck’ (Brinckmann, 2008),
which underlines the gap between the amount of
unannotated recordings and the fully annotated sen-
tences. In this article, we focus on one of the central
linguistic annotations, interlinear glosses, and aim
to predict them automatically, to create a draft for
the linguists to post-edit. It has been previously
shown that such automation can actually help lin-

guists both in terms of time and annotation quality
(Baldridge and Palmer, 2009; Palmer et al., 2009).

1 Source de tirsı̄ kābrāy
2 Segmented de tirs=ı̄ kābrā–ı̄
3 Gloss in fear=EZ fellow–OBL

4 Translation out of the fear of the man

Figure 1: Sentence annotated in the IGT format.

Figure 1 shows an example of an annotated sen-
tence in the Interlinear Glossed Text format (IGT).
The source sentence (1) is segmented into mor-
phemes (2), the smallest meaningful units in the
language. Each morpheme has a corresponding
linguistic annotation, the gloss (3). We observe
mainly two categories: grammatical glosses in-
dicate the role of the morpheme (e.g., ‘OBL’ for
oblique), while lexical glosses express its meaning
(e.g., ‘tirs’ for fear in English). Finally, the sen-
tence is translated (4) in a meta-language used for
the documentation (e.g., in English here).

Several languages and corpora have already been
studied by the Natural Language Processing (NLP)
community for the gloss generation task, for in-
stance, during the SIGMORPHON Shared Task on
interlinear glossing (Ginn et al., 2023). We focus,
however, on the usability of an automatic glossing
model in a real-life setting of an annotation work-
flow. This means that we take into account actual
technical constraints that hinder the use of the most
up-to-date NLP models.

To do so, we base our work on a corpus from
one of the authors’ fieldwork data (Asadpour, 2021)
to enable linguistic analysis of the glossing. The
studied language is Mukrı̄ Kurdish, a variety of
Central Kurdish, whose morphological complexity
can be challenging. As a Kurdish language, it has
a rich agglutinative system characterised by ezafe
(linking) constructions, polypersonal agreement,
and a variety of affixed, cliticised, and reduplicated
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morphemes.
We present a simple pipeline using a feature-

based model to label each source morpheme in
Mukrı̄ Kurdish with a gloss. Our work mostly fo-
cused on how to make such an NLP model more ac-
cessible for field linguists and closer to their work-
flow. Our model is indeed achieving performance
around a few accuracy points behind state-of-the-
art models, while it only requires stable Python de-
pendencies with minimal computational resources
(CPU of a standard computer). The pipeline can
also output annotations in a format compatible with
commonly used linguistic fieldwork tools.

Our contributions are as follows: (i) we release a
feature-based minimal system for automatic gloss-
ing1, (ii) we apply it to a manually annotated text
from a real fieldwork corpus of one of the authors,
and (iii) analyse the linguistic relevance of the pre-
dictions and learnt patterns.

Section 2 describes Mukrı̄ Kurdish and the
glossed corpus we studied. We explain our CRF
pipeline methodology in Section 3. We present
its performance and analyse the linguistic patterns
learnt by the model in Section 4. We also point out
a few recommendations for both field linguists and
NLP practitioners in Section 5.

2 Language and fieldwork corpus

2.1 The language: Mukrı̄ Kurdish

Mukrı̄ Kurdish (also spelt Mukrı̄yānı̄) is primarily
spoken in the northwestern region of Iran, specif-
ically in middle and southern parts of West Azer-
baijan and northern parts of Kurdistan provinces.
The geographical area traditionally associated
with Mukrı̄ Kurdish is centred around the city
of Mahābād (historically known as Sāblāx or
Sāwjbłāx) and extends to surrounding cities, towns
and villages, including Bokān, Pı̄rānšār, Sardašt,
Šino and Naxada (Asadpour, 2021). This region,
historically known as Mukrı̄yān, forms part of the
larger Iranian Kurdistan area that borders Iraqi Kur-
distan to the west.

Mukrı̄ Kurdish belongs to the Central Kurdish
(Sorānı̄) dialect group within the Indo-European
language family. It is closely related to other Cen-
tral Kurdish varieties spoken in both Iran and Iraq.
However, it maintains distinctive features that set it
apart from standard Sorānı̄ as spoken in Silēmānı̄ya

1The pipeline is released alongside a demonstration at:
https://github.com/shuokabe/crf_glossing.

or Hawlēr (Erbil) in Iraqi Kurdistan (Haig and Ma-
tras, 2002; Asadpour, 2021, 2022).

Among Central Kurdish varieties, Mukrı̄ Kur-
dish has several distinctive characteristics. On the
phonological aspect, certain vowel and consonant
realisations differentiate it from standard Sorānı̄ va-
rieties, including retention of some archaic phono-
logical features. On the lexical side, its unique
vocabulary is influenced by its geographic position
between different Kurdish dialect areas and contact
with Jewish and Christian Neo-Aramaic, Armenian,
and Azerbaijani Turkish communities (Asadpour,
2021).

Moreover, Mukrı̄ Kurdish has a rich morpholog-
ical structure with prefixes, suffixes, and enclitics.
Correct morphological labelling requires an aware-
ness of the surrounding context, such as in the
example below:

Source ne– bird –ı̄ =ewe
Gloss NEG.PST– take.PST –2SG =ASP

Translation you did not take

with a negation prefix ne–, a past verb stem bird,
a person suffix –ı̄, and the aspectual enclitic =ewe.
Verbal morphology, in particular, requires both left
and right contexts for correct segmentation and
interpretation. We note here that certain morpho-
logical markers are consistent and predictable both
in form and position. For instance, verbs begin
with mood/aspect prefixes (e.g., negation in the ex-
ample), end with person suffixes (e.g., –ı̄ for 2SG),
and aspectual enclitics may also appear in the final
position (e.g., =ewe).

2.2 Corpus preparation
We use the corpus collected through fieldwork by
one of the authors (2004–in progress) in the Mukrı̄
variety of Central Kurdish (Sorānı̄). The corpus
includes narrative, conversational and procedural
texts, ensuring diversity in genre and register. An-
notation was done manually following the IGT for-
mat and Leipzig Glossing Rules (Lehmann, 2004;
Bickel et al., 2008). Besides, the segmentation
annotation tier marks morpheme boundaries with
hyphens, while clitics are separated by equal signs
(cf. tier 2 in Figure 1).

We split the corpus into training and test datasets
(80:20) for our experiments. We also convert the
sentences into the format used for the SIGMOR-
PHON Shared Task (Ginn et al., 2023), with one
sentence annotation tier per line. This notably
ensures compatibility with tools devised for the
Shared Task.
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Table 1 displays the size of the fieldwork corpus
of Mukrı̄ Kurdish in terms of number of sentences
(Nsent), number of words and morphemes for both
tokens (Ntoken) and types (Ntype).

word morpheme

Nsent Ntoken Ntype Ntoken Ntype

train 211 1,233 570 2,126 354
test 52 272 184 500 153

Table 1: Fieldwork corpus statistics for Mukrı̄ Kurdish.

3 Gloss generation system

3.1 Gloss generation pipeline
We tackle the gloss generation task as a morpheme
labelling task. We assume that the sentence has
been previously segmented into morphemes. In-
terlinear glosses can hence be viewed as labels
assigned to each morpheme.

Source de tirs=ı̄ kābrā–ı̄
Step I IND stem=EZ stem–OBL

Step II IND UNK=EZ fellow–OBL

True gloss in fear=EZ fellow–OBL

Figure 2: Example output at each step from the model.

Our model can be decomposed into two steps, as
presented in Figure 2. First, grammatical labels are
predicted for each morpheme (step I), with lexical
morphemes initially labelled as ‘stem’ placehold-
ers. Then, these placeholder labels are replaced
with actual lexical glosses using a simple dictio-
nary built from frequent associations in the training
data (step II).2 When available, actual bilingual dic-
tionaries or known morpheme-to-gloss mappings
can be integrated to augment the lexical coverage
in this step. For unknown lexical morphemes, the
second step outputs the ‘UNK’ tag. Figure 3 sum-
marises the pipeline.

As previously considered by (McMillan-Major,
2020; Barriga Martínez et al., 2021), our system is
based on a Conditional Random Field (CRF) (Laf-
ferty et al., 2001), which relies on local properties
(or features) to predict a label. We use the default
parameters in our experiments.

We use generic features to keep it adaptable to
other languages, such as the current morpheme, its

2The dictionary contains one-to-one associations only, i.e.,
one source lemma can only have one possible lexical label.

Train corpus

Train CRF model for
grammatical labels

Create a dictionary for
lexical labels

Test sentence: 
de tirs=ī kābrā–ī

Step I:
IND stem=EZ  stem–OBL

Step II:
IND UNK=EZ fellow–OBL

Figure 3: Glossing pipeline flowchart

immediate predecessors and successors, morpheme
length, and boundary markers indicating whether
the morpheme is separated by a hyphen (–) or an
equal sign (=). An example list of features is pre-
sented in Appendix A.

3.2 Between simplicity and complexity

Technical requirements The main strength of
our system is its simplicity, making it possible to
run efficiently on CPUs rather than requiring GPUs.
For instance, most participating submissions to the
SIGMORPHON Shared Task (Ginn et al., 2023)
used neural systems based on transformers (e.g.,
ByT5 (Xue et al., 2022)) or needed PyTorch to run
(e.g., (Girrbach, 2023)’s winning system). In con-
trast, our approach pushes towards usability in real
language documentation settings, where access to
GPUs may be limited. This also means the model
can run on common laptops within minutes, mak-
ing it suitable for further integration into annotation
workflows.

On the technical side, our CRF uses the sklearn-
crfsuite library (Okazaki, 2007) in Python3, which
is widely used and stable. Besides this toolkit, our
pipeline does not need any external packages.

Quality of the predictions However, this sim-
plicity comes at a price. Compared to more ad-
vanced neural models, our pipeline shows lower
overall performance, as shown in Section 4.1. It
seems more adapted when the corpus is rather
small, notably at the beginning of the annotation
phase.

Furthermore, due to the pipeline approach, er-
rors at step I impact the second step. In Figure 2,
we see that the first morpheme is wrongly predicted
with a grammatical tag (IND), although it should
have been a ‘stem’ label for lexical glosses. Be-
sides, even though our experiments show that lex-
ical glosses can be relatively easily labelled with
dictionaries in many cases due to the annotation

3https://sklearn-crfsuite.readthedocs.io/.
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regularity in documentation corpora, this reliance
means that unknown morphemes cannot be handled
at all, as for the second morpheme (‘tirs’) which
was never seen in the training corpus.

Interpretability and flexibility Another charac-
teristic of our pipeline is that it allows for better
interpretability, as developed in Section 4.4, given
its feature-based nature. This can be helpful in un-
derstanding the patterns in the predictions and be-
haviour of the model, ensuring better transparency
for the linguists compared to more black-box neu-
ral models. This follows previous analyses as in
(Barriga Martínez et al., 2021; Okabe and Yvon,
2023a,b).

Besides, our current pipeline remains generic
and only requires an annotated training dataset.
When language-specific phenomena are known,
the CRF can integrate them as additional features;
when more annotations are made, the dictionary
can be easily expanded for new words, and the
CRF will be more robust.

In a nutshell, we chose to focus on a system with
reduced technical complexity, trading performance
for better accessibility, because we have real-life
settings in mind. We recall that the purpose of
automatic glossing is to reduce the proportion of
manual workload by providing a first draft to start
with for the linguist.

3.3 Workflow integration
More broadly than the glossing task, we strove to
reduce the gap in the standard annotation work-
flow. For smoother integration, we created scripts
to convert the predicted sentence annotations to-
wards formats widely used in linguistic tools such
as FieldWorks Language Explorer (FLEx) (Rogers,
2010), Toolbox4, and ELAN (Wittenburg et al.,
2006). This is to further reduce the friction of us-
ing yet another tool.

Below is how our feature-based pipeline can be
put into practice in an existing framework for lan-
guage documentation. Once the time-aligned audio
recording is transcribed, with a consistent orthog-
raphy, the sentences are segmented into words, but
also into morphemes. The next step is to annotate a
small batch of sentences with glosses; usually, the
natural order of sentences is followed (e.g., each
sentence of a recorded story), ensuring lexical con-
sistency. Then comes the automatic glossing tool.
Starting with as many training (i.e., fully annotated)

4https://software.sil.org/toolbox/.

sentences as possible, the model is applied to the
rest of the corpus. The idea here is, naturally, to
continue the annotation of sentences (possibly from
the draft) and to compare the glosses. If specific
linguistic phenomena are wrongly predicted sys-
tematically, dedicated features can be integrated
into the CRF, or more sentences could be given.
The latter solution also applies to lexical glosses
since our approach depends on the coverage of the
dictionary. Finally, the predictions are converted
back to the format of the chosen annotation tool.

We note here that our approach does not solve
the ‘NLP gap’ problem yet, as stated in (Gessler,
2022), since it runs separately and not concurrently
from existing linguistic tools. It is, however, a step
towards an actual integration in annotation soft-
ware, where we reduced the technical constraints
pertaining to the latest glossing models.

4 Experimental results

4.1 Comparison with the SIGMORPHON
shared task on interlinear glossing

First, we compare our model with the most recent
automatic glossing models to assess its quality in
general. The SIGMORPHON Shared Task on in-
terlinear glossing (Ginn et al., 2023) offered two
tracks: the closed one only contained the source
sentence with no segmentation information, while
the open one notably had the morphological seg-
mentation of the source sentence. The latter setting
is closer to ours, where we have actual morpholog-
ical boundaries of the source sentence.

The seven languages that were studied are di-
verse both geographically and linguistically (six
language families). The released corpora are also
of varying size, reflecting different stages of docu-
mentation (from 31 training sentences up to several
thousand). We focus on six languages to test our
model against the other submissions; we do not
cover Arapaho, which had the largest corpus by
far (40k sentences; 4 times the size of the second
largest corpus).

We compare our model (CRF+dict) with a sim-
ple baseline, dict, which assigns the most frequent
label seen in the training dataset. This replicates
a dictionary-based functionality which is imple-
mented in certain annotation tools (e.g., ELAN
(Wittenburg et al., 2006) or FLEx (Rogers, 2010)).

Moreover, we present the results of the baseline
model from the Shared Task (BASE_ST), based on
a transformer architecture (Ginn, 2023), and the
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best performance reached during the Shared Task
(mostly from (Girrbach, 2023); BEST_ST), usually
a neural model. Additionally, we report the scores
obtained by the state-of-the-art GlossLM model
(Ginn et al., 2024), when it was fine-tuned on the
corresponding language datasets (GlossLMFT).

We evaluate the models according to the two
main metrics used in the Shared Task: the accura-
cies computed at the word or morpheme levels.

ddo git lez ntu nyb usp

dict 65.3 28.1 81.2 81.5 64.4 72.8
CRF+dict 82.2 29.2 85.0 87.6 74.8 75.6
BASE_ST 75.7 16.4 34.5 41.1 84.3 76.6
BEST_ST 85.8 31.5 85.4 89.3 88.0 78.5
GlossLMFT 89.3 34.9 71.3 81.5 87.7 84.5
∆BEST -7.1 -5.7 -0.4 -1.7 -13.2 -8.9

dict 79.1 51.2 85.8 87.1 72.9 79.5
CRF+dict 89.2 51.8 88.6 91.7 82.0 82.0
BASE_ST 85.3 25.3 51.8 49.0 88.7 82.5
BEST_ST 92.0 52.4 87.6 92.8 91.4 84.5
GlossLMFT 92.8 28.9 74.7 86.0 90.7 86.4
∆BEST -3.6 -0.6 +1.0 -1.1 -9.4 -4.4

Table 2: Accuracy at the word (top rows) and morpheme
(bottom) levels on the test set of the Shared Task. Best
scores are in bold. ∆BEST indicates the difference
between our system and the best performance otherwise.

Table 2 presents the scores for both evaluation
levels on the six corpora. First, we see that the
glossing task can already be well achieved by a
dictionary-based approach, as seen in the high ac-
curacy reached by the dict baseline (except for
Gitksan, git). This is due to the regularity in the
annotations found in the dataset, especially for lex-
ical morphemes and glosses. These units tend to
be consistently annotated in the same way, which
is one key assumption for our system.

Still, grammatical morphemes contain more vari-
ability with different glosses that could be at-
tributed to the same unit; this is, hence, better cap-
tured by CRFs. We see a noticeable improvement
of more than 16 points for Tsez (ddo), which is a
morphologically rich language.

This approach is also consistently better than
the Shared Task baseline (except for Uspanteko,
usp). Moreover, despite its simplicity, it remains
competitive with the best systems submitted to the
shared task. Our model is only a few points be-
hind the best models of the Shared Task, except
in Nyangbo (nyb). Indeed, with an average accu-
racy of 72.4 for words and 80.9 for morphemes,
the model would have been ranked fourth among

eleven submissions. Compared to the current state-
of-the-art GlossLM model, our system performs
worse on their in-domain languages (i.e., which
have more training data and, hence, were used for
pre-training) but leads to notably better prediction
on the languages with fewer data, such as Lezgi
(lez) or Natugu (ntu).

More generally, we note that our CRF-based
approach works better when the training data is
smaller (git, lez, and ntu have below 800 training
sentences), while more complex models naturally
perform better with more sentences (Ginn et al.,
2024). Hence, our system could help the early
stages of documentation while alleviating some
technical constraints.

4.2 Results on Mukrı̄ Kurdish

Table 3 presents the accuracy scores on our Mukrı̄
Kurdish corpus, computed using the same method-
ology as in the previous section. Given its size,
we are in earlier documentation stages, where our
system works relatively better (cf. Section 4.1).

word morpheme

dict 38.2 53.3
CRF+dict 50.7 64.1

Table 3: Accuracy on Mukrı̄ Kurdish (top: word level,
bottom: morpheme level).

We see for Mukrı̄ Kurdish that the glossing per-
formance with our model is still imperfect, actually
in between the quality observed for Gitksan and
Lezgi in Table 2. However, we notice a signif-
icant improvement over a pure dictionary-based
approach, which is often used in linguistic annota-
tion workflows.

Moreover, we additionally compare the usual
precision, recall, and F-score separately for gram-
matical and lexical glosses. We notice that, as
expected, the use of a CRF model improves the
quality of grammatical label prediction (F-score
of 48.3 to 66.3) due to their ambiguity. Our two-
step pipeline also benefits the lexical tags thanks
to a better separation of grammatical and lexical
morphemes before replacement.

Among the 500 morphemes in the test set, 53 of
them were tagged as UNK. This means that either
the lexical morpheme was not seen in the training
(in most cases), or the morpheme was wrongfully
labelled with ‘stem’ instead of a grammatical tag.
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Process Type Error Rate (%)

Simple Affixation 9.60
Compounding 18.90
Cliticisation 14.20
Reduplication 37.10
Circumfixation 28.40
Infixation 33.80

Table 4: Error Rates by Morphological Process

Error rates (1 − accuracy) varied significantly
across different morphological processes, as shown
in Table 4. The lowest error rate was observed
for simple affixation (9.60%), suggesting that the
model effectively captures regular concatenative
morphology even when trained with fairly few ex-
amples. For non-concatenative phenomena, how-
ever, performance deteriorated sharply, with redu-
plication showing the highest error rate at 37.10%,
followed by infixation (33.80%) and circumfixation
(28.40%). These results confirm that sequential
models have particular difficulty with morpholog-
ical operations involving copying, template rela-
tions, or internal alternation structures. They are
harder to predict and thus require a more complex
approach than a simple CRF modelling.

These findings are consistent with theoreti-
cal discussions in morphological typology (Mc-
Carthy, 1981; McCarthy and Prince, 1999),
which distinguish between concatenative and non-
concatenative morphology. Reduplication, in par-
ticular, involves correspondence constraints be-
tween base and copy elements, which are difficult
to capture with the current surface-level statistical
model alone.

4.3 Qualitative analysis
We discuss the linguistic peculiarities of Mukrı̄
Kurdish and how they are reflected in the test data
and predictions. Table 5 displays how ambiguous
a given grammatical gloss is. We see that some
highly systematic morphemes, such as ne–, –eke,
and =ewe, appear consistently and should be easier
to learn. In contrast, forms like ı̄ have multiple
roles (ezafe, 3SG, possessive, oblique), making
them harder to disambiguate, and hence to predict.

As such, for canonical constructions, the
pipeline showed strong performance, correctly
identifying core and consistent morphemes such
as ezafe markers, possessive suffixes, and common
definite articles. For example, in the phrase ser=ı̄

yexdānē (‘the door of the wardrobe’), the system
accurately recognised ‘=ı̄’ as an ezafe or genitive
marker linking the possessed noun (ser, ‘door [lit.
head]’) to its possessor (yexdānē, ‘wardrobe’). This
is consistent with the typical agglutinative structure
found in many Iranian languages, where grammat-
ical relations are expressed by postposed affixes
(MacKenzie, 1961; Öpengin and Haig, 2014; Asad-
pour, 2022).

Error analysis We mainly noticed it struggles
with under-represented (or absent) phenomena in
the training corpus and ambiguous morphemes. For
instance, discourse particles and switch-reference
markers were poorly captured, especially in spoken
narrative texts where such pragmatic features are
prominent. The sentence in Figure 4 is a represen-
tative example.

S [...] degeł lē–de–de–ā w
P [...] with at–IND–IND–3SG PTCP

G [...] with PVB–IND–give.PRS–3SG and

Figure 4: Example of wrong analysis. S: segmented
source sentence, P: prediction from our system, G: gold
glossed sentence.

In this case, the particle ‘lēdedā’ (‘lē–de–de–ā’)
was wrongly analysed, and the conjunction ‘w’ was
treated as a clitic rather than a full discourse ele-
ment. As the gold standard shows, ‘lēdedā’ func-
tions as a verb root combined with aspect markers
around, while ‘w’ functions as a coordinating con-
junction. This illustrates one of the limitations of a
simple CRF-based model: longer dependencies are
not well-captured. Since our features mainly look
at the immediate neighbours of a morpheme, it still
struggles with polymorphemic words, as in here.

A frequent error we saw concerned the treat-
ment of agreement markers. For instance, the mor-
pheme ‘ı̄’ was often assigned OBL1 instead of 3SG,
which is likely due to overlapping surface forms.

Application to language documentation The
results on the test data suggest that, despite the
morphological complexity, many patterns in Mukrı̄
Kurdish are consistent enough to be handled by au-
tomatic systems. Common and systematic affixes
(especially for verbs and nouns) are good candi-
dates for automatic glossing. However, ambiguous
and pragmatic elements are likely to require man-
ual review and correction. A tool that pre-annotates
glosses based on these regularities can, however,
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Label Example Description Position Consistency

IND (de–) de–ke, de–łē, de–č–m Indicative prefix Verb-initial High
IRR (bi–) bi–hēn, bi–nūs, bi–ke Irrealis prefix Verb-initial High
NEG (ne–) ne–bird, ne–kew, ne–mā Negation prefix Verb-initial High
PVB heł–de–gir, lē–de–de, ber–de Preverbal particles Before verb Medium
ASP (=ewe) bird–ı̄=ewe, ke=ewe, dāte=ewe Aspectual enclitic Word-final High
DEF (–eke) kitēb–eke, čikołe–eke Definite marker Noun-final High
PL (–ān) kitēb–ān, žin–ān Plural marker After noun High
OBL (–ı̄) bird–ı̄, č–ı̄, goř–ı̄ Oblique case Noun-final Medium (ambig.)
EZ (=ı̄) čend=ı̄, birā=ı̄ Ezafe After noun Medium (ambig.)
PRSNT āhā, hā, hā Presentative Independent Low
DISC āhā, wiłāhı̄ Discourse markers Variable Low

Table 5: Consistency of 10 frequent grammatical labels in the test dataset.

notably reduce the burden on linguists by allowing
them to correct rather than annotate from scratch.

This is in line with one of the author’s feedback
as a fieldworker. Using the CRF-trained model sig-
nificantly reduced the time spent on routine gloss-
ing by pre-labelling frequent grammatical patterns
and high-frequency morphemes with reasonable
accuracy. This allowed him to focus more on irreg-
ular forms, novel constructions, and higher-level
linguistic analysis.

4.4 Interpretation of the model
Since our system relies on a CRF, we can inter-
pret the features and patterns that were learnt by
the model. For instance, the left part of Table 6
displays the 10 most weighted local properties.

Feature Transition

source feature gloss gloss1 → gloss2
morph: m 1SG EZ → REFL

morph: ew DEM IND → –
morph: emin 1SG INDF.PRO → INDF.PRO

morph: eto 2SG PVB → –
morph: de IND = → 3SG

morph: t 2SG VOC → RDP

morph: bi IRR IMP → DISC

morph: nā NEG – → OBL

morph: ēk INDF 3SG → NEG3
morph: n 3PL OBL1 → POST1

Table 6: Left: top 10 features; right: top 10 label transi-
tions learnt by the CRF.

We notice that key morphological patterns in
Mukrı̄ Kurdish were correctly identified. For in-
stance, both the independent pronoun ‘emin’ and
its bound form ‘m’ are associated with the first-

person singular gloss. Other frequent and crucial
grammatical morphemes are also learnt, such as the
negation marker ‘nā’ or the indefinite suffix ‘ēk’.
Most of them are consistent annotations with lit-
tle ambiguity and occur often. These associations
are closely aligned with typological descriptions of
Kurdish, where agglutination dominates, and each
morpheme encodes a single grammatical meaning.

This supports usage-based theories of morpho-
logical acquisition (Bybee, 2010), which posit that
speakers rely heavily on co-occurrence patterns to
disambiguate morphological function. Our results
also suggest that statistical models approximate na-
tive speakers’ intuitions about morpheme function.

Similarly, the model learns label transitions; the
most highly weighted ones are in the right part of
Table 6. Some of the transitions highlight crucial
morphosyntactic patterns. First, the transition from
‘EZ’ to ‘REFL’ captures a common construction
in Mukrı̄ Kurdish where reflexive pronouns often
follow an ezafe marker. The model has also cor-
rectly identified some pronominal clitics appearing
after a clitic boundary, as shown by the strong as-
sociation between the clitic marker ‘=’ and ‘3SG’
(third-person singular). The transition from ‘IND’
(indicative) to ‘–’ (morpheme boundary) reflects
the morphological structure of Mukrı̄ verbs, where
the indicative prefix is typically followed by other
verbal morphology (as in Figure 4). These patterns
demonstrate that the model has actually captured
central morphosyntactic regularities in Mukrı̄ Kur-
dish, such as clitic placement or verbal morphol-
ogy.

However, the model occasionally violated these
constraints when exposed to less frequent patterns.
This suggests that surface statistics, while informa-
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tive, may not be sufficient to fully capture more
complex morphosyntactic principles.

In short, while our pipeline performs reasonably
well on regular morphological patterns represented
in the training data, it struggles with rare construc-
tions, phonologically conditioned allomorphy, and
morphologically complex phenomena that require
more global structural awareness. This is because
the CRF relies on local statistical cues, which can-
not handle rare, unseen or structurally divergent
constructions. While the model does not explic-
itly learn abstract grammatical rules, it manages
to infer recurrent associations between morphemes
and their glosses based on distributional patterns
present in the training data, which makes it effec-
tive for canonical morphology.

5 Recommendations for stakeholders

This article is the result of a collaboration between
field linguistics and NLP; as such, we found a
few recommendations for all parties involved or
supporting language documentation, in line with
(Flavelle and Lachler, 2023).

For field linguists, maintaining consistent seg-
mentation and annotation conventions is essen-
tial for both humans and NLP models. On this
point, following widely used conventions such
as the Leipzig Glossing Rules (Lehmann, 2004;
Bickel et al., 2008) can also help cross-lingual mod-
els, which might have seen the same grammatical
glosses in other languages. In this regard, start-
ing with a small but high-quality dataset is enough
to start the first automatic gloss pipeline (e.g., the
Gitksan corpus in the SIGMORPHON Shared Task
had 31 sentences, and we have slightly more than
200 sentences).

For members of the language community, sim-
plified interfaces and localised training materials
can enable active participation in validation and
annotation. Workshops to build consensus on ter-
minology and validate results help to ensure cul-
tural appropriateness and community ownership of
digital resources.

For NLP researchers, the challenge is to improve
the robustness of the model and to deal with more
complex morphological phenomena while keep-
ing in mind a real-life deployment of the glossing
tool. Making the tools more user-friendly is also
appreciated; specialised error analysis tools and
visualisations would help to diagnose wrong pre-
dictions easily. Finally, a better evaluation protocol

should be used to account for the error gravity; in
the end, we aim at a system that helps rather than
confuses the annotators.

6 Related Work

Interlinear gloss generation, in collaboration be-
tween linguistics and NLP for language documenta-
tion, has initially been explored with feature-based
taggers. (Baldridge and Palmer, 2009) and (Palmer
et al., 2009) both discuss the relevance and effi-
ciency of active learning in such a context. They
notably found that the benefit of better sampling
techniques depends on the expertise of the annota-
tors. (Samardžić et al., 2015) also applied a two-
step pipeline with a tagger for grammatical glosses
and a lexicon for the lexical glosses. Their ex-
periments were, however, based on a much larger
corpus for a better-documented language.

Moeller and Hulden (2018) show that CRFs are
a reliable approach to predict grammatical glosses
compared to a neural model for a corpus with
3,000 annotated words. Using the same methodol-
ogy, Barriga Martínez et al. (2021) also find that
CRFs outperform RNNs and biLSTMs on their
corpus. Then, McMillan-Major (2020) proposes
a pipeline combining two CRFs, one to predict
from the source sentence and another one from the
translation, an underexploited resource so far. All
these methods are closely related to our methodol-
ogy because CRFs are reliable in capturing local
dependencies, especially in low-resource settings.
However, due to the number of potential labels, lex-
ical glosses cannot be predicted with CRFs alone.

This is one reason behind the consideration of
neural models for glossing. Zhao et al. (2020) ex-
tend the methodology of (McMillan-Major, 2020)
by considering both the source and translated sen-
tences as inputs to a multi-source neural model
(based on a transformer architecture; Vaswani et al.,
2017).

Finally, a major milestone on the topic is the
SIGMORPHON Shared Task on interlinear gloss-
ing (Ginn et al., 2023). Among the two possible
tracks, the open one provided the morpheme-level
segmentation of the source sentence. In this cate-
gory, which is an easier task due to the additional
information, the best performing model was (Gir-
rbach, 2023), which trained a hard attention model.
Two other submissions were also neural and based
on transformers (Cross et al., 2023; He et al., 2023).
Okabe and Yvon (2023b) have also compared their
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feature-based systems against a simple CRF-based
baseline; however, the former was not as accessi-
ble and convenient as our system, while the latter
model was not released. The state-of-the-art for the
task is currently achieved by the GlossLM model
(Ginn et al., 2024), which also relies on the trans-
former architecture.

7 Conclusion

We have deployed an automatic glossing pipeline
on a fieldwork corpus in Mukrı̄ Kurdish, a Central
Kurdish variety, to assess not only how it performs
but also how usable such NLP tools are in prac-
tice. We have seen that our CRF-based system im-
proved the prediction quality compared to the cur-
rently implemented full dictionary-based approach,
which further reduces manual workload. It notably
managed to learn the most frequent patterns while
struggling with rarer phenomena and annotation, as
expected. This is, however, not a major issue since
any model output remains an annotation draft: they
need to be corrected and controlled eventually. In
our case, the system lowered the manual annotation
effort noticeably, with a fairly robust reliability for
repetitive annotations.

Even though our feature-based pipeline may
not match the quality of state-of-the-art neural ap-
proaches (lagging by 3 points in accuracy on aver-
age in Table 2), it offers a more interpretable and
adaptable alternative that is well-suited to early-
stage documentation projects, such as for Mukrı̄
Kurdish. We believe these characteristics outweigh
the benefits of marginal gains obtained with more
advanced models.

Finally, we are releasing the glossing pipeline un-
der an open-source license to foster its use by both
field linguists and NLP practitioners. We strove to
provide a simple tool that can work with the usual
infrastructure at hand in language documentation.

We stress again that this work, at the intersec-
tion of computational and documentary linguistics,
aimed to bridge the gap between the vastly differ-
ent technical environments of both fields. We also
tried to lower the technical barrier by providing
scripts to convert the annotations towards popular
formats used in language documentation.

Our future work includes integrating the model
into an actual annotation software so that it can be
used even more easily. Moreover, we will also ex-
plore how performance can be improved by adapt-
ing known linguistic rules in the feature set, as

some linguists already use rule-based processing
to some extent.

Limitations

From the NLP perspective, the proposed model
is not particularly novel, as similar models rely-
ing on CRFs were considered as a baseline for
experiments. It does not reach a state-of-the-art
performance either, given its simplicity. The model
is, however, released not only to provide a fairly
competitive yet simple baseline for future works in
NLP but also to foster its use among field linguists.
We believe, indeed, that the current pipeline can be
integrated into actual annotation workflows, possi-
bly after further simplifying user interaction with
the model. Hence, our system choice is the result
of a compromise between prediction quality and
technical complexity.

From the linguistic side, some non-negligible
errors remain in Mukrı̄ Kurdish, which shows that
the model cannot handle complex morphological
patterns yet. For this article, we tried to release
a model which could also be applied to other lan-
guages directly, i.e., without language-specific fea-
tures. Thanks to the flexibility allowed by the fea-
tures, the system can be better tailored to any lan-
guage which will be studied.
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A CRF features

Table 7 presents the features for the following sen-
tence (‘out of the fear of the man’) at the fourth
position5 (first ‘ı̄’):

1 2 3 4 5 6 7
de tirs = ı̄ kābrā – ı̄.

In general, we check the same local properties
(source entity itself and its length) for the current
(0), previous (-1), and next (+1) positions. Depend-
ing on the presence of a morpheme boundary, we
also check the ‘actual’ previous morpheme (-2) to
account for morpheme dependencies inside poly-
morphemic words.

position feature example for ‘ı̄’

0 morpheme ı̄
0 length 1
0 morpheme boundary? False

-1 morpheme =
-1 length 1
-1 morpheme boundary? True

-2 morpheme tirs
-2 length 4

+1 morpheme kābrā
+1 length 5

Table 7: List of the computed features for a given entity.
Position indicates the relative position compared to the
entity (0: current position, -1: previous position, and +1:
next position).

5We count source entities: both actual morphemes and
morpheme boundaries.
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Abstract

We present LiFE Suite as a “Field-to-Model"
pipeline, designed to bridge community-
centred data collection with scalable language
model development. This paper describes the
various tools integrated into the LiFE Suite that
make this unified pipeline possible. Atekho,
a mobile-first data collection platform, is de-
signed to empower communities to assert their
rights over their data. MATra-Lab, a web-based
data processing and annotation tool, supports
the management of field data and the creation
of NLP-ready datasets with support from exist-
ing state-of-the-art NLP models. LiFE Model
Studio, built on top of HuggingFace AutoTrain,
offers a no-code solution for building scalable
language models using the field data. This end-
to-end integration ensures that every dataset
collected in the field retains its linguistic, cul-
tural, and metadata context, all the way through
to deployable AI models and archive-ready
datasets.

1 Introduction

Mobilising language documentation resources to
produce language technologies for low-resource
and Indigenous languages faces two significant
challenges:

1. the lack of accessible, community-friendly
data collection tools, and

2. fragmented workflows that separate field lin-
guistics from computational modelling.

Despite advancements in crowdsourcing, linguis-
tic data collection remains predominantly expert-
driven. The tools available to Indigenous language
speakers are often either complex proprietary sys-
tems, such as Karya1, or basic audio recorder apps
that lack essential features such as prompt integra-
tion, multilingual support, and metadata capture,

1https://www.karya.in

all of which are critical for systematic language
documentation. Similarly, the tools used by field
linguists and computational linguists rarely sup-
port direct interoperability. Field linguistics tools
seldom leverage the benefits of automation and
machine learning that NLP technologies can offer,
while NLP tools often struggle to process the rich,
multi-layered annotations typical of language doc-
umentation corpora. We introduce LiFE Suite, an
integrated pipeline that enables communities and
researchers to collect, process, and model language
data without requiring programming skills or spe-
cialised infrastructure. We describe how the suite
supports multimodal, multilingual, and metadata-
rich workflows that empower both field linguists
and NLP practitioners to build language technolo-
gies from real-world field linguistic data.

2 Review of Existing Tools

A variety of tools have been developed to support
field linguists, community language workers, and
NLP practitioners in data collection, management,
annotation, and lexicon creation. However, these
tools tend to be fragmented, often serving either
field linguistics or NLP, but rarely both. Below, we
review commonly used tools in these domains and
highlight the gaps that motivate the design of LiFE
Suite.

2.1 Field Linguistics Tools

Tools primarily used by field linguists or commu-
nity members for speech and multimodal data col-
lection, management, and lexicon creation include:

1. Toolbox (formerly Shoebox)2: One of the
earliest linguistic tools developed by SIL In-
ternational, designed for text data entry and
dictionary creation (Robinson et al., 2007).

2https://software.sil.org/shoebox,https:
//software.sil.org/toolbox
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2. FieldWorks Language Explorer (FLEx)3:
A widely used SIL tool for managing linguis-
tic and cultural data, including lexicon devel-
opment and interlinear glossing. LiFE Suite is
designed to interoperate with FLEx, support-
ing the import of LIFT XML data produced
by FLEx (Butler and Volkinburg, 2007).

3. LexiquePro4: Software for creating and
formatting lexicon databases, mainly fo-
cused on dictionary publication and sharing,
with limited editing capabilities (Guérin and
Lacrampe, 2007).

4. WeSay5: Designed to help non-linguists and
native speakers build dictionaries of their own
languages. It is based on SIL’s Semantic Do-
main and Rapid Word Elicitation methods,
promoting community-led lexicon develop-
ment (Perlin, 2012).

5. Woefzela6: A smartphone-based tool for of-
fline data collection, supporting multiple ses-
sions and metadata capture. It has been suc-
cessfully deployed in South Africa for quality-
controlled data collection (Vries et al., 2014).

6. SayMore7: A tool for organising multimedia
recordings and their metadata. It also supports
basic transcription and translation workflows
(Moeller, 2014).

7. Living Dictionaries8 help communities build
and manage their own word collections. Peo-
ple can add words, meanings, sounds, pictures,
and videos. They can search, filter, and orga-
nize entries by topics. The tool works offline
and allows data to be shared or imported us-
ing common file formats like CSV, PDF, and
JSON (Daigneault and Anderson, 2023).

8. Aikuma and LIG-Aikuma9 are mobile apps
designed to support speech data collection for
under-resourced and endangered languages.
Originally developed as Aikuma and later ex-
tended as LIG-Aikuma, these apps offer fea-
tures such as audio recording, respeaking for

3https://software.sil.org/fieldworks
4https://software.sil.org/lexiquepro
5https://software.sil.org/wesay/
6https://sites.google.com/site/woefzela/
7https://software.sil.org/saymore, https:

//github.com/sillsdev/saymore
8https://livingdictionaries.app
9https://lig-aikuma.imag.fr

clarity, oral translation, and elicitation using
prompts. LIG-Aikuma also supports meta-
data capture, geolocation tagging, and data
export compatible with ELAN. While LIG-
Aikuma remains available, its development
has slowed since 2018. A more recent adap-
tation, Williaikuma, offers updated features
for sentence-level elicitation and Praat integra-
tion, demonstrating continued interest in mo-
bile tools for linguistic fieldwork (Bird et al.,
2014; Gauthier et al., 2016).

While these tools have advanced the practice of
field linguistics, they suffer from several limita-
tions that hinder their broader adoption and inte-
gration into computational workflows. Most of
these tools are standalone desktop or mobile appli-
cations, often lacking compatibility with Linux op-
erating systems and restricting usage to Windows
or Mac environments. Users are typically required
to switch between multiple specialised tools for
different tasks, such as ELAN for video transcrip-
tion, Audacity or Praat for audio segmentation, and
FLEx for lexicon management, each with its own
steep learning curve. Additionally, data produced
by these tools is often stored in non-standard or
tool-specific formats, making interoperability with
NLP systems difficult without additional process-
ing or programming expertise. Finally, data shar-
ing in reusable, open formats remains cumbersome,
limiting long-term accessibility and cross-tool us-
ability.

2.2 NLP Annotation Tools
In contrast, NLP practitioners use a different set of
tools for data annotation and management, includ-
ing:

1. Label Studio10: An open-source, web-based
data labelling platform supporting audio, text,
image, video, and time-series annotation. It
allows export to multiple ML-ready formats,
making it popular for preparing training data
(Tkachenko et al., 2020-2022).

2. Shoonya11: An open-source platform focused
on enhancing digital content for India’s under-
represented languages, supporting large-scale
annotation for machine translation and other
language technologies.

10https://labelstud.io/; https://github.com/
heartexlabs/label-studio

11https://ai4bharat.iitm.ac.in/shoonya, https://
github.com/AI4Bharat/Shoonya
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3. BRAT12, doccano13, and INCEpTION14: Pop-
ular open-source tools for text annotation
at the token, span, and document levels.
These tools offer features for text classifi-
cation, sequence labelling, and sequence-to-
sequence applications (Stenetorp et al., 2012;
Nakayama et al., 2018; Klie et al., 2018).

However, these NLP tools generally do not sup-
port field data collection or integrate with linguistic
data management workflows. They are designed
for annotation and model preparation, often as-
suming pre-processed, clean data rather than raw,
community-collected, multimodal datasets.

2.3 The Need for an Integrated Pipeline

As highlighted, field linguistics tools and NLP
tools often operate in isolation, each addressing
specific stages of the data lifecycle but failing
to offer a cohesive, integrated experience. LiFE
Suite seeks to bridge this gap by providing a uni-
fied, no-code pipeline that supports the full work-
flow—from community-led data collection with
structured metadata, to linguistic data management
and annotation, and ultimately to NLP model train-
ing and deployment. Designed to serve both field
linguists and NLP practitioners (Figure 1), LiFE
Suite reduces the technical barriers that currently
separate these communities, enabling them to col-
laboratively develop language technologies for low-
resource and Indigenous languages.

3 LiFE

LiFE Suite 15 is an open-source, AI-powered plat-
form developed by UnReaL-TecE 16, a venture led
by linguists to enable seamless language data col-
lection, management, processing, and analysis. All
the components of the suite are developed as web
apps with HTML, CSS and JavaScript at the fron-
tend, Python and FastAPI (for serving different
APIs) at the backend, MongoDB as the backend

12http://brat.nlplab.org, https://github.com/
nlplab/brat

13https://doccano.herokuapp.com, https://github.
com/doccano/doccano

14https://inception-project.github.io, https://
github.com/inception-project/inception

15https://github.com/unrealtecellp/life
16UnReaL-TecE is an organisation that is founded to de-

velop and maintain this platform. Unlike a large number of
other platforms, which could not be maintained because of
various practical reasons, we expect this organisation to take
care of long-term maintenance of the app and ensure that it
remains available in the future.

database and IndexedDB as the frontend database.
The apps are served using Flask.

The suite integrates state-of-the-art technologies,
including Large Language Models (LLMs), Auto-
matic Speech Recognition (ASR), Optical Charac-
ter Recognition (OCR), Machine Translation (MT),
and advanced text processing models, providing an
efficient and scalable solution for linguistic data
workflows. LiFE Suite brings together three key
components to support this pipeline. Atekho, a
mobile-first progressive web application (PWA)
designed for community-centred, offline and on-
line multimodal data collection with integrated
metadata scaffolding; MATra-Lab, a web-based
platform for organizing, segmenting, transcribing,
translating, and annotating linguistic datasets; and
LiFE Model Studio, a no-code model-building en-
vironment built on top of HuggingFace AutoTrain,
enabling the training and deployment of speech and
multimodal models. Together, these components
form an end-to-end system that bridges community-
led data collection with scalable NLP model devel-
opment and long-term archival, making linguistic
technologies more accessible and sustainable for
low-resource and Indigenous languages.

3.1 Atekho

Named after the Great Andamanese word for “lan-
guage", Atekho (Figure 2) is a mobile-first, progres-
sive web application for data collection, designed
to empower communities and researchers to co-
create living linguistic and cultural archives. By
supporting multimodal data capture, including au-
dio, video, image, and text, Atekho enables the
documentation of linguistic, cultural, environmen-
tal, and oral traditions in both spontaneous and
staged settings.
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Figure 1: LiFE Pipeline

Figure 2: Atekho Interface

Atekho is built with accessibility and inclusion
at its core. Its voice and icon-based user inter-
face is designed for users with limited literacy
or technology experience, making it particularly

suited for community-centered projects in remote
or low-resource contexts. The application operates
in offline-first mode, ensuring functionality in rural
areas with limited or no internet connectivity. In
addition to capturing content, Atekho supports col-
laborative metadata scaffolding, allowing users to
tag recordings with speaker details, contextual in-
formation, and community-generated annotations.
Its workflows are customizable, enabling projects
to define their own data structures and inventory
formats. This flexibility makes Atekho adaptable to
a wide range of documentation initiatives, includ-
ing sociolinguistic surveys, oral literature preser-
vation, and environmental knowledge documen-
tation. As part of the LiFE Suite, Atekho seam-
lessly integrates with MATra-Lab, allowing col-
lected data and metadata to flow directly into more
advanced processing pipelines. Once synchronized
with MATra-Lab, recordings can be segmented,
transcribed, translated, glossed, and annotated us-
ing an AI-in-the-loop mechanism. This interoper-
ability positions Atekho not just as a data collec-
tion tool, but as the starting point of an end-to-end
“Field to Model" pipeline, bridging community-
driven documentation with scalable NLP model
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development.
By placing ownership and control in the hands

of the communities whose heritage it seeks to
preserve, Atekho supports the creation of living
archives that are ethically grounded, accessible,
and sustainable.

3.2 MATra-Lab: Web-Based Linguistic Data
Management and Processing

MATra-Lab (Figure 3) is a web-based platform de-
signed to support the management, processing, and
annotation of multilingual and multimodal datasets,
with a particular focus on the linguistic diversity
of Indian languages. It provides researchers across
subfields, such as field linguistics, sociolinguistics,
and computational linguistics, with an integrated
environment for processing audio, video, text, and
image data. By combining multimodal data pro-
cessing, AI-powered tools, collaborative manage-
ment, and an intuitive interface, MATra-Lab offers
an end-to-end environment to produce scalable, re-
producible, and NLP-ready linguistic resources.

Figure 3: Transcription in Matra Lab

3.2.1 Data Ingestion and Management
In addition to providing automated ingestion of
data collected using Atekho, MATra-Lab supports
the direct upload of field-collected datasets along
with rich metadata, including participant informa-
tion and item-level metadata. This metadata en-
ables users to sort, filter, and organise data for ef-
ficient navigation and management of large and
heterogeneous collections (Figure 4).

Figure 4: Browse and Filter in Matra Lab

3.2.2 Supported Workflows and Tasks
MATra-Lab supports multilayered annotation and
processing workflows that linguists and computa-
tional linguists may use. It allows users to apply
document-level (for all kinds of multimodal doc-
uments) and span-level (for audio, video and text
documents) labels for tasks such as morphological
analysis, syntactic tagging, discourse annotation,
and semantic labeling. It currently allows for the
following kinds of tasks -

1. Time-aligned audio and video transcription in
multiple scripts at any level from individual
phones to complete discourse. It also allows
for speaker diarisation, mapping audio files or
parts of audio files to prompts and anonymis-
ing parts of the audio.

2. Translation of audio, video, text and images.

3. Annotation of audio and video chunks with
custom labels.

4. Annotation of text at both document and span
level with custom labels.

5. Interlinear glossing of audio, video and text
documents.

6. OCR and labelling of images.

3.2.3 Building Lexicons
In addition to providing data processing support,
MATra-Lab also includes a Lexicon Module for
building and managing multilingual glossaries and
dictionaries. It supports:
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1. Automated extraction of lexical items from
existing annotated data,

2. Manual entry of lexicon items,

3. Bulk uploads from external sources, and

4. Sentence-aligned translations to support
context-rich dictionary development.

Users can browse, edit, and export lexicons in
multiple formats, including JSON, RDF, CSV, Ex-
cel, and PDF, facilitating integration with other lin-
guistic tools or dissemination to wider audiences.
The module also supports collaborative dictionary
development with fine-grained access control, al-
lowing teams to manage user permissions for view-
ing, editing, and exporting lexicon data.

This added functionality extends the utility of
MATra-Lab beyond corpus management, allowing
dictionary making, terminology development, and
community-led lexical documentation within the
same unified workflow.

3.2.4 AI-in-the-loop
A core feature of MATra-Lab is its graphical user
interface (GUI), which allows users to apply pre-
trained models for a range of natural language pro-
cessing (NLP) tasks without requiring coding ex-
pertise. The tasks where AI models currently pro-
vide support are the following:

1. Transcription (both in IPA and native scripts
for supported languages), speaker diarisation,
translation, and glossing for audio data us-
ing Automatic Speech Recognition (ASR),
Machine Translation (MT) and other relevant
models,

2. Digitisation of scanned documents and images
using Optical Character Recognition (OCR)
tools,

3. Advanced text processing using Large Lan-
guage Models (LLMs) and multimodal mod-
els.

All of these automation facilities are made avail-
able by integrating models and APIs from different
sources.

1. HuggingFace Hub17: integration with pub-
licly available models on HuggingFace Hub
is available out-of-the-box.

17https://huggingface.co/docs/hub

2. Bhashini API: Bhashini APIs are provided
by the Ministry of Electronics and Informa-
tion Technology, Government of India. These
provide access to state-of-the-art open-source
models supporting different kinds of tasks in
Indian languages viz ASR, speaker diarisation,
transliteration, language identification, etc.

3. LiFE Model Studio: The models that are
trained by the users using the LiFE Model
Studio can be used in MATra Lab for automat-
ing the tasks.

4. Stanza18: Stanza models are integrated to pro-
vide automatic interlinear glossing and mor-
phosyntactic information including part-of-
speech categories, morphological features and
dependency relations for the supported lan-
guages (Qi et al., 2020).

5. Language agnostic models: Some models
for language-agnostic tasks such as voice
activity detection (viz Silero VAD (Team,
2024) and PyAnnote (Bredin, 2023; Plaquet
and Bredin, 2023)), speaker diarisation, (viz.
PyAnnote) and universal phoemiser (viz. Al-
losaurus (Li et al., 2020)) are also integrated
into the app.

6. In-house Models: Limited support for tasks
such as interlinear glossing, sentiment analy-
sis, aggression level, etc in some languages
are provided through our in-house rule-based
and machine learning-based models.

3.2.5 Data Export and Sharing
The platform allows users to download their dataset
in multiple structured and semi-structured formats
viz. JSON, CSV, XLSX, Markdown, TextGrid,
CHAT, etc, for further processing and use with
other apps and libraries.

The platform also offers collaborative workspace
functionality, enabling file-level sharing with fine-
grained access control. Users can define permis-
sions for:

1. Full access (edit and download),

2. Restricted access (online viewing and annota-
tion without download), or

3. Partial access (limited operational permis-
sions).

18https://stanfordnlp.github.io/stanza
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Figure 5: LiFE Model Studio

This collaborative architecture promotes team-
based data management while ensuring data secu-
rity and control.

3.3 LiFE Model Studio

LiFE Model Studio (Figure 5) is a no-code model
training interface built on HuggingFace AutoTrain.
It allows users to train new models or fine-tune
existing ones for a variety of NLP tasks, using the
datasets they have created and processed in MATra-
Lab. While model building is optional, users who
choose to extend their workflow within the LiFE
Suite can derive datasets directly from their MATra-
Lab projects and use them in LiFE Model Studio to
build task-specific models, such as speech recogni-
tion, machine translation, or multimodal processing
models.

Trained models are immediately available within
the platform for further use in data processing work-
flows, creating a feedback loop that improves an-
notation, transcription, and translation over time.
Additionally, these models can be exported to ex-
ternal repositories, such as GitHub or HuggingFace
Hub, for wider public access and reuse. We have
added the following functionalities to the existing
AutoTrain interface -

1. MATra Lab Integration: We have added sup-
port for directly importing specific kinds of
data from MATra Lab dataset into the inter-
face and use that for fine-tuning the required
models.

2. Audio-based Tasks: We have added sup-
port for audio-based tasks such as Automatic
Speech Recognition, speaker diarisation and
voice activity detection.

3. Additional Tasks: We are in the process of in-
tegrating support for additional libraries (such
as scikit-learn) and tasks to enable no-code
training for additional tasks (such as interlin-
ear glossing).

LiFE Model Studio thus completes the Field-to-
Model pipeline, providing users with a scalable,
no-code solution for bringing community-collected
data all the way to deployable language technolo-
gies.

4 Case Studies: Demonstrating the
Field-to-Model Pipeline

To demonstrate the effectiveness of the Life Field-
to-Model pipeline, we present two ongoing case
studies that apply the pipeline in real-world,
community-centred language technology projects.
These case studies illustrate how the pipeline en-
ables end-to-end data collection, management, pro-
cessing, and model development in two distinct
linguistic contexts.

4.1 SpeeD-TB
The first case study, Speed-TB (Kumar et al., 2023),
focuses on six Tibeto-Burman languages spoken
in Northeast India—Bodo, Meetei, Chokri, Kok-
borok, Nyishi, and Toto—and is funded by the
Bhashini initiative of the Government of India.
Using the Life Suite, data is collected through
structured questionnaires, stimulus-based narra-
tion, role-play, and spontaneous speech, with com-
munity members actively participating in data
contribution and validation. The collected data
is processed in MATra-Lab and used in LiFE
Model Studio to build baseline speech recognition
models. The project explores fine-tuning/training
models such as conformer-multilingual-asr by
AI4Bharat19, Whisper20(Radford et al., 2022),
wav2vec 2.0(Baevski et al., 2020), and NVIDIA
NeMo21(NVIDIA, 2025).

4.2 Irula Language
The second case study focuses on Irula, a Dravidian
language spoken in Tamil Nadu, India. In collabo-
ration with the Keystone Foundation, a community-
based organisation, the project builds on existing

19https://dibd-bhashini.gitbook.io/
bhashini-apis/available-models-for-usage

20Whisper: https://github.com/openai/whisper; Pa-
per: https://arxiv.org/abs/2212.04356

21NVIDIA NeMo: https://developer.nvidia.com/
nvidia-nemo
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resources from a community radio station to collect
and process Irula speech data. The team experi-
ments with fine-tuning the conformer-multilingual-
dravidian model by AI4Bharat and other multilin-
gual models to develop a dedicated Irula ASR sys-
tem.

5 Conclusion

In this paper, we have presented a new workflow for
building language technologies for underresourced
languages using primary data collected from the
field. This workflow is enabled through the LiFE
Suite, an open-source AI-powered platform. We
give details of the suite and how it enables the
operationalisation of the Field-to-Model workflow.
We also present two case studies where we use
the workflow and the suite for building language
technologies.

In both the case studies, the community remains
at the center—not only as data contributors but as
co-creators and validators of the resulting language
technologies. These case studies serve as proof-of-
concept implementations, demonstrating that the
Field-to-Model pipeline is viable, scalable, and
capable of supporting community-driven speech
technology development for underrepresented lan-
guages.

While these case studies demonstrate the prac-
tical value and scalability of the Field-to-Model
pipeline, our experience also highlights several
challenges and constraints that must be addressed
to make the workflow more inclusive and widely
adoptable.

Limitations

While the LiFE Suite offers a comprehensive, no-
code pipeline for community-centered language
documentation and NLP model development, sev-
eral limitations persist. Firstly, although Atekho is
designed for offline use, both MATra-Lab and LiFE
Model Studio require stable internet connectivity
and access to web-based interfaces, which may
pose challenges in remote or resource-constrained
environments. Secondly, MATra-Lab’s reliance
on pre-trained models from platforms like Hug-
gingFace means that its performance is contingent
on the availability and quality of existing mod-
els, which may not adequately represent all low-
resource or Indigenous languages. Regarding LiFE
Model Studio, while it provides an accessible in-
terface for model fine-tuning, it currently does not

support training models from scratch; users can
only fine-tune existing pre-trained models . Addi-
tionally, despite its no-code design, users may still
require a foundational understanding of NLP con-
cepts to effectively navigate model selection and
fine-tuning processes. Lastly, the computational
demands of model training and inference neces-
sitate access to GPUs, which may not be readily
available to all users, potentially limiting the suite’s
accessibility and scalability.
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Abstract

This paper presents a study on the development
of a neural machine translation (NMT) system
for the Russian-Buryat language pair, focusing
on addressing the challenges of low-resource
translation. We also present a parallel corpus,
constructed by processing existing texts and or-
ganizing the translation process, supplemented
by data augmentation techniques to enhance
model training.

We managed to achieve BLEU score of 20 and
35 for translation to Buryat and Russian re-
spectively. Native speakers have evaluated the
translations as acceptable.

Future directions include expanding and clean-
ing the dataset, improving model training
techniques, and exploring dialectal variations
within the Buryat language.

1 Introduction

The Buryat language is the national language of the
Buryat people and is spoken in Russia, Mongolia,
and China. It belongs to the Mongolic language
group. However, due to its geographic distribu-
tion, the Buryat language has evolved differently in
each country, influenced by the dominant languages
and cultural contexts of the respective regions. In
this article, we focus specifically on the variety of
Buryat spoken in Russia, which is identified by the
ISO code bxr.

Although Buryat is an official language of the
Republic of Buryatia in the Russian Federation,
the overwhelming majority of intellectual activity
there is carried out in Russian and the number of
young people speaking Buryat is rapidly declining.
UNESCO included the Buryat language in the "At-
las of the world’s languages in danger" (UNESCO,
2010).

As part and consequence of this problem, Buryat
is underrepresented in computational linguistics,
has limited available corpora and linguistic re-

sources. That creates the main challenge of con-
ducting a machine translation system for Buryat.

The Buryat language has undergone several tran-
sitions in its writing system throughout its history.
Since 1939, it has been written using the Cyrillic al-
phabet. Before then, from 1930 to 1939, it utilized
a Latin-based alphabet. Going further back, since
the 18th century, the traditional Mongolian script
served as the writing system for Buryat. This adds
another complexity to the construction of machine
translation, as some of the available literature was
in Latin.

Furthermore, the preservation and revitalization
of endangered languages through modern technolo-
gies have become critical goals in both linguistic
research and cultural heritage preservation. In this
context, creating robust machine translation sys-
tems not only aids communication but also con-
tributes to the documentation and promotion of
underrepresented languages.

2 Related Work

Low-resource machine translation has been an ac-
tive area of research in recent years, driven by the
need to support underrepresented languages.

Several large-scale initiatives have extended ma-
chine translation capabilities to hundreds of lan-
guages, including low-resource ones. Notable ex-
amples include the work of Bapna et al. (2022), the
No Language Left Behind (NLLB) project (NLLB
Team et al., 2022), and the efforts described in Fan
et al. (2021). These projects demonstrate the poten-
tial of multilingual models to address challenges in
low-resource settings.

Other studies focus on developing machine trans-
lation systems for individual low-resource lan-
guages by fine-tuning multilingual models. Exam-
ples include work on Erzya (Dale, 2022), Ngambay
(Sakayo et al., 2023), Zarma (Keita et al., 2024),
Karachay-Balkar (Berberov et al., 2024), and Aro-
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manian (Jerpelea et al., 2025). These efforts often
rely on community-driven datasets and highlight
the importance of adapting models to specific lin-
guistic and cultural contexts.

In June 2024, Google Translate1 added support
for the Buryat language. According to company
representatives, this was made possible by leverag-
ing their language model PaLM 2. However, the
dataset used for training has not been released as
open source.

Research on Buryat in the context of natural
language processing includes work by Konovalov
and Tumunbayarova (2018), who explored word
vector representations for Buryat using models
such as pointwise mutual information (Church and
Hanks, 1990), GloVe (Pennington et al., 2014),
and Word2Vec (Mikolov et al., 2013), trained on
data from the Buryat Wikipedia2. More recently,
Shliazhko et al. (2024) introduced a multilingual
variant of the GPT-3 large language model, trained
on 61 languages, including Buryat, using corpora
such as Wikipedia and the C4 dataset (Raffel et al.,
2020).

3 Parallel Corpus Construction

Our parallel corpus was constructed through three
main approaches: manual translation of Russian
texts by hired translators, collaboration with local
organizations in the Republic of Buryatia that have
bilingual textual resources and web-based data col-
lection.

The dataset is available as an open source3.

3.1 Manual translation of texts

In order to create a quality Russian–Buryat paral-
lel corpus from zero, we crafted a semi-automated
system for the selection and preparation of the Rus-
sian source texts. The Taiga Corpus news segment4

contains articles from various online media like
Lenta.ru, Interfax, Komsomolskaya Pravda, N+1,
Fontanka.ru and Arzamas. For our project, we uti-
lized the text corpus that was news genre to ensure
maximal variety, along with clearness of meaning,
and a stable correspondence between the source
and the target sentences.

1https://translate.google.com
2https://bxr.wikipedia.org/wiki/
3https://huggingface.co/datasets/

buryat-translation/buryat_russian_parallel_
corpus

4https://tatianashavrina.github.io/taiga_site/

To improve the ease of translation, we pro-
grammed fragments consisting of several sentences
(up to five) into coherent passages instead of treat-
ing every sentence as isolated. Long paragraphs
were split into smaller chunks, while ensuring they
were semantically cohesive.

Text that did not suit requirements was
discarded and the remaining content was
processed using text embedding model
aiforever/sbert_large_mt_nlu_ru5 for
the vectorized representations of the sentences.
We then K-means clustered the data for initial
selections to be more diverse and representative
based on semantic similarity. The final Russian
dataset contained 95,300 text fragments.

The fragments were sent to three professional
translators who translated the text into Buryat.
Currently, the corpus consists of 11,392 Rus-
sian–Buryat sentences that have been translated
manually, with work still progress.

3.2 Collaborations with local organizations

In order to extend the corpus, we cooperated with
some regional institutions that deal with Buryat
language materials. These were:

1. The State Translation Service of the Repub-
lic of Buryatia, which contributed bilingual
presidential decrees, government resolutions,
and other legal acts of subordinate level de-
cisions. They were at first in DOCX format
and were converted by the means of some au-
tomation into a format of a parallel table – a
step-by-step process.

2. The Buryat Research Center of the Siberian
Branch of the Russian Academy of Sciences
(BRC SB RAS) which enabled access to five
parallel literary texts, but these texts had fre-
quent mismatches at the level of sentence
alignment due to translation losses or free
rendering of the text. Reasonable estimates
claim that only the texts which were struc-
turally most homogeneous were chosen to be
included in the corpus, other texts were set
aside for possible later processing.

3.3 Web-based Data Collection

A significant portion of the Buryat-Russian parallel
data was collected from the web.

5https://huggingface.co/ai-forever/sbert_
large_mt_nlu_ru
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Figure 1: Example of the dictionary article

Several dictionaries are available for the Buryat
language. For our purposes, we selected the Buryat-
Russian dictionary by Shagdarov and Cheremisov
(Shagdarov and Cheremisov, 2010) due to its ex-
tensive scope and detailed coverage, which sur-
passes that of other dictionaries. This dictionary
contains 30,000 words, provides grammatical in-
formation and usage examples, characteristic of
Buryat culture. We encountered several challenges
during the data extraction process. First, the dic-
tionary was available only as a PDF scan, which
resulted in suboptimal optical character recogni-
tion (OCR) quality. We experimented with both
ABBYY FineReader OCR and Tesseract OCR, but
neither significantly improved the accuracy of the
text extraction. Second, the extensive and complex
nature of the information made it difficult to extract
parallel data. The dictionary entries included mul-
tiple meanings separated by commas, semicolons,
Arabic or Roman numerals, letters, and additional
details enclosed in brackets. Buryat words were
presented in bold, grammatical information in ital-
ics, and Russian translations in regular font. Exam-
ple of the dictionary article presented in Figure 1.
To parse this structured information, we relied on
regular expressions. Third, some pages suffered
from unrecognized fonts, which required alterna-
tive approaches. For these cases, we employed the
large language model Claude Sonnet 3.56. How-
ever, using a multimodal large language model to
process the entire book was not feasible due to the
high associated costs.

Religious literature is another common source
of parallel data. For Buryat, the only available re-
source was the Bible7. We aligned the text using
regular expressions based on the enumerated verses.
However, the translations were not always precise.
Certain content in the Buryat Bible was omitted,
and in some instances, multiple verses were com-
bined into a single sentence. These issues were
also addressed using regular expressions to ensure
proper alignment and extraction.

6https://www.anthropic.com/claude
7https://ibt.org.ru/buryatskiy/vsya-bibliya/

elektronnaya-kniga

We identified several bilingual books, which
were translations between Buryat and Russian. A
key challenge was aligning sentence pairs from
these texts, as differences in structure and transla-
tion styles introduced inconsistencies. To address
this, we fine-tuned the LaBSE encoder (Feng et al.,
2022) on a previously collected dataset using the
methodology described in (Dale, 2022), allowing
us to effectively extract parallel sentences.

We also explored the use of Wikipedia as a po-
tential source of parallel data. However, the cor-
responding articles in Buryat and Russian were
found to be significantly different. This discrep-
ancy likely stems from the fact that much of the
Buryat Wikipedia content was translated from Rus-
sian prior to 2015, while the Russian articles have
undergone substantial changes since then. As a
result, we were unable to extract high-quality sen-
tence pairs from Wikipedia and it was excluded
from the final dataset.

A buryat monolingual corpus8 was created by
collecting texts from books sourced from websites9

10 11 and Internet news articles in Buryat12. The
monocorpus is used to enhance tokenizer of transla-
tion models. To further expand the parallel corpus,
a subset of the news articles was translated into
Russian using the large language model Claude 3.5
Sonnet (20240620). At the time of creation, this
model provided best translation quality, enabling
us to significantly enrich the dataset and improve
the overall performance of the translation system.

Finally, to improve the quality of the dataset,
we filtered out poorly aligned sentences using a
heuristic based on sentence length and cleaned up
Russian borrowings by applying a heuristic based
on Levenshtein distance, both methods following
the approach outlined in Dale (2022). After this
cleaning process, we obtained a final dataset of 33
thousand words and 94 thousand sentences. The de-
tailed breakdown of amounts by source is provided
in Table 1.

8https://huggingface.co/datasets/
buryat-translation/buryat_monocorpus

9https://old.buryatika.ru/
10https://soyol.ru/culture/books/
11https://nomoihan.com/books/
12https://burunen.ru/bur/
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Source Amount
Dictionary phrases 45,169
Dictionary words 33,449
Book alignments by BRC SB RAS 12,893
News translated with Claude 11,380
The Bible 8,591
Organized manual translations 11,392
Book alignments by model 4,415
Tatoeba 808

Table 1: Data sources, total of 94 thousand sentences
and 33 thousand words

4 General concept of neural network

4.1 Creation of a Russian-Mongolian Parallel
Corpus

High-quality neural machine translation requires
large amounts of parallel data for training. How-
ever, the Buryat language is severely underrepre-
sented in digital resources and is considered a low
resource language. In such cases, transfer learning
techniques or model adaptation based on related
languages are often employed to improve transla-
tion performance.

The closest high-resource cognate language to
Buryat is Modern Mongolian. It is more widely rep-
resented in digital space and is commonly included
in multilingual models. Pretraining on Mongolian
can thus serve as a valuable step for enhancing
Russian–Buryat translation.

In order to test this theory, we tried to find Rus-
sian Mongolian parallel corpora that was publicly
accessible. The only relevant dataset was found in
the OPUS collection, which is one of the largest
repositories of multilingual corpora. The corpus
contains 387,310 sentence pairs. However, many
of these translations were found to be of insuffi-
cient quality or poorly aligned, making the dataset
unsuitable for direct use.

This led us to the conclusion that generating
Russian-Mongolian parallel data by translating
Russian texts into Mongolian using pretrained mul-
tilingual models was a better option. To determine
the most accurate model for this task, we evaluated
several candidates that support both Russian and
Mongolian:

1. facebook/nllb-200-distilled-600M
(NLLB Team et al., 2022)

2. facebook/nllb-200-1.3B (NLLB Team
et al., 2022)

3. google/madlad400-3b-mt (Kudugunta
et al., 2023)

The steps outlined below were taken to deter-
mine the best model to use for creating a Russian-
Mongolian parallel corpus:

1. Each candidate machine translation model
was used to translate a shared set of Russian
sentences into Mongolian.

2. The generated translations were compared to
the corresponding Mongolian references in
the OPUS corpus using the ChrF++ metric.

3. The model with the highest average ChrF++
score was selected as the most accurate for
Russian–Mongolian translation (see Table 2).
The same Russian source corpus used for
the Russian–Buryat data — the Taiga corpus
— served as the basis for the synthetic Rus-
sian–Mongolian dataset. In this case, text clus-
tering was not applied, as a large volume of
data was preferred for pretraining purposes.

The model facebook/nllb-200-1.3B was
found to perform best and was used to translate
a total of 90,548 Russian sentences from the Taiga
corpus.

4.2 Model Selection for Russian–Buryat
Machine Translation

Given the low-resource nature of the Buryat lan-
guage, selecting an appropriate neural architec-
ture is critical for achieving reasonable translation
quality. When selecting the model architecture,
we opted for encoder-decoder type, as the cross-
attention mechanism enables the model to better
capture dependencies within the input and incorpo-
rate contextual information during decoding — a
crucial aspect in machine translation. Experimental
results presented in Raffel et al. (2023) and Fu et al.
(2023) have shown that encoder-decoder models
consistently outperform decoder-only architectures
in translation tasks.

The first model selected for training on the
Russian–Buryat parallel corpus was Google’s
mt5-large. This model was chosen due to its
strong performance on machine translation tasks
and broad multilingual support, including related
languages such as Mongolian, making it a suitable
candidate for low-resource scenarios.

The second model,
nllb-200-distilled-600M by Meta (for-
merly Facebook), was specifically designed for
multilingual machine translation with a focus on
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Model Average ChrF++ Score
facebook/nllb-200-distilled-600M 26.4
facebook/nllb-200-1.3B 27.8
google/madlad400-3b-mt 10.8

Table 2: Comparison of machine translation models using the ChrF++ metric

low-resource languages. Its compact architecture
and high translation efficiency, as demonstrated
in the model comparison presented in Section 4.1,
make it particularly well suited to the task at hand.

4.3 Final Training Procedure

Before initiating the main training process, it was
necessary to update the tokenizer vocabulary by
incorporating new tokens specific to the Buryat lan-
guage, which is not included in the original models.
For well-represented languages in the training data,
it is typical for each word to correspond to 2–3
tokens on average. However, Buryat words are
segmented into a significantly larger number of to-
kens, indicating insufficient vocabulary coverage
(Figure 2).

To address this, we utilized a Buryat monolin-
gual corpus to extend the tokenizer. We used a
dedicated dataset, described in Section 3.3, and
supplemented it with Buryat sentences extracted
from the training data. A new SentencePiece tok-
enizer was trained on this combined corpus.

The missing tokens identified in the newly
trained tokenizer were then added to the original
vocabulary of the NLLB tokenizer. Corresponding
embedding vectors were initialized and appended
to the model’s embedding layer, ensuring that the
model could represent and learn these new units
during training.

The roles of language tags are crucial to the
NLLB tokenizer. These special tokens are added to
the beginning of source and target sentences to ex-
plicitly indicate the language. For Russian–Buryat
translation, we added the tag bxr_Cyrl to both the
tokenizer and the model configuration.

Following this preparation, we proceeded with
training the neural machine translation models.
Training was performed in both directions (Rus-
sian–Buryat and Buryat–Russian), with the direc-
tion chosen randomly for each batch. Details of
the training corpus, hyperparameter settings, and
results are provided in Section 5.

5 Experiments

We now turn to the experimental setup.
Multiple versions of the mt5-large and
nllb-200-distilled-600M models were trained.
Each version was trained on an incrementally
larger dataset, as the Russian–Buryat parallel
corpus was continuously updated with newly
translated sentence pairs.

For both models, the following hyperparameters
were used:

• Batch size: 16

• Maximum sequence length: 512

• Number of training steps: 60,000

To evaluate translation quality, we used the
BLEU and ChrF++ metrics, which are widely
adopted in machine translation research.

The mt5-large model was pre-trained on the
Russian–Mongolian parallel corpus described in
Section 4.1.

In contrast, no additional pretraining was applied
to the NLLB model, as it demonstrated strong per-
formance during the Russian–Mongolian model
comparison and achieved results comparable to the
facebook/nllb-200-1.3B model used to gener-
ate the synthetic corpus.

The training results of all model versions are
presented in Table 3.

The initial version of the model, referred to as
Fine-tuned NLLB-v0, was trained before the man-
ual translation process had begun. As a result,
this version did not include any of the high-quality
human-translated data. This limitation affected the
overall translation quality, but the model served
as a useful baseline for evaluating the impact of
incorporating manually translated content in later
versions.

Starting from the first version, manually trans-
lated data was incorporated into the training set.
Additionally, we refined the regular expressions
used for mining data from the dictionary and intro-
duced back-translated data generated by Claude.
As expected, translation quality improved with
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Figure 2: Example of Buryat token segmentation

ru-bxr bxr-ru
model BLEU ChrF++ BLEU ChrF++
Fine-tuned NLLB-v0 6.56 22.14 1.31 10.00
Fine-tuned NLLB-v1 18.74 46.17 32.20 53.37
Fine-tuned mT5-v1 12.49 39.39 14.47 37.28
Fine-tuned NLLB-v2 (last) 20.61 48.68 35.43 56.21
Google Translate 8.93 37.61 29.58 52.35
Claude 3.5 Sonnet 20240620 8.00 34.80 25.12 52.03

Table 3: Evaluation of our and Google Translate model on test-set

each iteration. At the first stage, based on the ob-
served performance, we decided to continue using
only the NLLB-based model for further develop-
ment. Once additional manually translated data
became available, we trained the second version of
the NLLB model, which, at the time of writing, rep-
resents the latest iteration. This version achieved
the best results for Russian–Buryat translation.

To assess the performance of our model
Fine-tuned NLLB-v2, we compared against pub-
licly available systems: Google Translate and
Claude 3.5 Sonnet. As shown in Table 3, our model
outperforms both baselines in both directions (Rus-
sian–Buryat and Buryat–Russian), achieving abl-
higher scores in both BLEU and ChrF++.

Translation performance varies across text types
and directions (Table 4). The NLLB-v2 model
achieved higher scores on manual translations,
likely because it is most familiar with this do-
main. In the case of Bible texts, Google Trans-
late performs best in the Buryat-to-Russian direc-
tion—possibly due to similar phrasing in its train-
ing corpus—while NLLB is stronger in the oppo-
site direction. Phrasebook examples result in the
lowest scores overall, which could be explained by
their short length, limited context, and the frequent

presence of set expressions, all of which make them
difficult to translate reliably. In literary and legal
texts, NLLB-v2 and Claude show similar perfor-
mance in the Buryat-to-Russian direction, though
reasons remain unclear. It is possible that Claude
was trained on similar data.

It is important to note, however, that both the
training and test sets used in our experiments were
derived from the same pool of source texts, al-
though split and processed independently. While
this setup allows or stable evaluation, it may in-
troduce a slight bias in favor of our model due to
potential domain similarity. Still, the consistent
advantage in scores suggests that our model per-
forms better for Russian–Buryat translation than
Google Translate and Claude, particularly in the
Russian-to-Buryat direction.

6 Online translator

To make our machine translation model accessi-
ble to the public, we released it online13. Figure 3
demonstrates the graphic user interface of the trans-
lator. To make the model suitable for usage in web,
we made quantization of the model with ctranslate
(Klein et al., 2020).

13https://www.burtranslate.ru/
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ru-bxr bxr-ru
Source Type Model BLEU ChrF++ BLEU ChrF++
Manual translations Fine-tuned NLLB-v2 21.88 52.15 38.10 60.20

Google Translate 8.56 39.18 23.69 52.31
Claude 3.5 Sonnet 20240620 9.43 38.40 33.42 59.43

The Bible Fine-tuned NLLB-v2 20.49 47.56 40.07 57.57
Google Translate 10.00 36.83 54.36 68.61
Claude 3.5 Sonnet 20240620 3.67 29.10 11.72 37.29

Phrasebooks Fine-tuned NLLB-v2 6.25 28.69 11.20 30.89
Google Translate 5.94 25.74 8.33 28.75
Claude 3.5 Sonnet 20240620 4.43 25.82 8.43 31.64

Literature and regulations Fine-tuned NLLB-v2 16.83 39.86 18.01 40.48
Google Translate 9.18 36.12 13.20 37.45
Claude 3.5 Sonnet 20240620 9.40 33.93 24.94 49.64

Table 4: Evaluation of our model and Google Translate on test-set by source types.

Figure 3: Graphic user interface of online translator

7 Human evaluation

We asked six native speakers of Buryat to partic-
ipate in the evaluation of translations. Given that
the average age of the participants was 57.8 years,
we opted for a simplified rating scale consisting of
two criteria: accuracy and fluency, both rated on
a 5-point scale (with 5 indicating a perfect transla-
tion):

• Accuracy: Assesses how faithfully the trans-
lation preserves the meaning of the original
sentence. Accuracy: Assesses how faithfully
the translation preserves the meaning of the
original sentence.

• Fluency: Evaluates the grammatical correct-
ness and naturalness of the translation in the
target language.

Each participant assessed 15 sentences in each
translation direction (bxr-ru and ru-bxr), resulting
in a total of 90 unique sentences evaluated manu-
ally. To ensure reliability, each sentence was re-
viewed by two different raters. The evaluated texts

were randomly selected from the test corpus. The
average scores are summarized in Table 5.

The manual evaluation suggests that the transla-
tions produced by the model are generally accept-
able, particularly in terms of accuracy. However,
lower fluency scores — especially in pessimistic
cases — indicate that the output sometimes lacks
grammatical correctness or natural phrasing. This
highlights the need for further improvement.

8 Conclusion

In this work, we introduce a Buryat-Russian ma-
chine translation model, along with a parallel cor-
pus of 127K sentence pairs and a monolingual
Buryat corpus of 214K sentences. All resources
are publicly released to support further research in
low-resource language technologies.

Our model shows slightly better performance
compared to Google Translate’s Buryat-Russian
system on our test dataset. Native speakers have
evaluated the translations as acceptable for practi-
cal use.

We hope that this work will contribute to the
development of computational linguistics for the
Buryat language and provide a foundation for fu-
ture research. By making these resources available,
we aim to support efforts toward the preservation
and promotion of Buryat in the digital domain.

Limitations

Machine translation systems for Buryat have great
potential to support language learning and increase
the availability of content in Buryat. However,
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Table 5: Average manual evaluation scores for bxr-ru and ru-bxr

Metric Group 1 Group 2 Group 3 Total Averages
ru-bxr

Average Accuracy 4.13 4.06 3.19 3.79
Average Fluency 4.00 3.97 2.43 3.47
Pessimistic Accuracy 3.80 3.40 2.60 3.27
Pessimistic Fluency 3.67 3.27 1.73 2.89

bxr-ru
Average Accuracy 3.34 3.63 3.06 3.34
Average Fluency 3.33 3.57 2.53 3.14
Pessimistic Accuracy 2.73 2.87 2.47 2.69
Pessimistic Fluency 2.73 2.87 1.40 2.33

these systems are not without significant limita-
tions that need to be addressed.

A major concern is the accuracy of translations.
Machine translation often makes mistakes, such
as generating non-existent words, providing incor-
rect definitions, or producing grammatical errors.
These inaccuracies can lead to misunderstandings
and may even influence the language negatively if
users unknowingly adopt incorrect forms. Addi-
tionally, the current model is still under develop-
ment and cannot yet be fully trusted. Users are
advised to double-check translations, especially in
critical contexts, as over-reliance on automated sys-
tems can result in errors being propagated.

Another challenge is the lack of representation
of Buryat dialects. Most models are trained on the
literary standard of the language, leaving out the
rich diversity of regional variations. This focus
on a single dialect makes it harder for speakers of
other dialects to benefit from the system and limits
learners’ exposure to the full range of linguistic
expression within the Buryat language.

Cultural and contextual nuances also present dif-
ficulties. Machine translation struggles with id-
iomatic expressions, metaphors, and culturally spe-
cific references, which can lead to mistranslations
or loss of meaning. For a language like Buryat,
which carries deep cultural significance, this limi-
tation can hinder effective communication.

Finally, the scarcity of high-quality training data
further restricts the system’s capabilities. Limited
and imbalanced datasets can introduce biases and
reduce performance, particularly in informal or
specialized contexts. Addressing these challenges
will require expanded and more diverse datasets, as
well as ongoing refinement of the model.

While machine translation systems offer valu-

able support for Buryat, careful attention must be
paid to these limitations to ensure their responsible
and effective use.
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