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Abstract

Interlinear gloss generation aims to predict lin-
guistic annotations (gloss) for a sentence in a
language that is usually under ongoing docu-
mentation. Such output is a first draft for the
linguist to work with and should reduce the
manual workload. This article studies a simple
glossing pipeline based on a Conditional Ran-
dom Field and applies it to a small fieldwork
corpus in Mukrı̄ Kurdish, a variety of Central
Kurdish. We mainly focus on making the tool
as accessible as possible for field linguists, so
it can run on standard computers without the
need for GPUs. Our pipeline predicts common
grammatical patterns robustly and, more gener-
ally, frequent combinations of morphemes and
glosses. Although more advanced neural mod-
els do reach better results, our feature-based
system still manages to be competitive and to
provide interpretability. To foster further col-
laboration between field linguistics and NLP,
we also provide some recommendations regard-
ing documentation endeavours and release our
pipeline code alongside.

1 Introduction

Language documentation aims to create and
archive corpora alongside resources on a language
usually classified as endangered. To do so, linguists
carry out fieldwork and then process the collected
data. Each annotation (e.g., transcribing the record-
ings, analysing the transcription) is mostly done
manually; it is hence costly in terms of time and
requires advanced linguistic knowledge. This is
the ‘transcription bottleneck’ (Brinckmann, 2008),
which underlines the gap between the amount of
unannotated recordings and the fully annotated sen-
tences. In this article, we focus on one of the central
linguistic annotations, interlinear glosses, and aim
to predict them automatically, to create a draft for
the linguists to post-edit. It has been previously
shown that such automation can actually help lin-

guists both in terms of time and annotation quality
(Baldridge and Palmer, 2009; Palmer et al., 2009).

1 Source de tirsı̄ kābrāy
2 Segmented de tirs=ı̄ kābrā–ı̄
3 Gloss in fear=EZ fellow–OBL

4 Translation out of the fear of the man

Figure 1: Sentence annotated in the IGT format.

Figure 1 shows an example of an annotated sen-
tence in the Interlinear Glossed Text format (IGT).
The source sentence (1) is segmented into mor-
phemes (2), the smallest meaningful units in the
language. Each morpheme has a corresponding
linguistic annotation, the gloss (3). We observe
mainly two categories: grammatical glosses in-
dicate the role of the morpheme (e.g., ‘OBL’ for
oblique), while lexical glosses express its meaning
(e.g., ‘tirs’ for fear in English). Finally, the sen-
tence is translated (4) in a meta-language used for
the documentation (e.g., in English here).

Several languages and corpora have already been
studied by the Natural Language Processing (NLP)
community for the gloss generation task, for in-
stance, during the SIGMORPHON Shared Task on
interlinear glossing (Ginn et al., 2023). We focus,
however, on the usability of an automatic glossing
model in a real-life setting of an annotation work-
flow. This means that we take into account actual
technical constraints that hinder the use of the most
up-to-date NLP models.

To do so, we base our work on a corpus from
one of the authors’ fieldwork data (Asadpour, 2021)
to enable linguistic analysis of the glossing. The
studied language is Mukrı̄ Kurdish, a variety of
Central Kurdish, whose morphological complexity
can be challenging. As a Kurdish language, it has
a rich agglutinative system characterised by ezafe
(linking) constructions, polypersonal agreement,
and a variety of affixed, cliticised, and reduplicated
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morphemes.
We present a simple pipeline using a feature-

based model to label each source morpheme in
Mukrı̄ Kurdish with a gloss. Our work mostly fo-
cused on how to make such an NLP model more ac-
cessible for field linguists and closer to their work-
flow. Our model is indeed achieving performance
around a few accuracy points behind state-of-the-
art models, while it only requires stable Python de-
pendencies with minimal computational resources
(CPU of a standard computer). The pipeline can
also output annotations in a format compatible with
commonly used linguistic fieldwork tools.

Our contributions are as follows: (i) we release a
feature-based minimal system for automatic gloss-
ing1, (ii) we apply it to a manually annotated text
from a real fieldwork corpus of one of the authors,
and (iii) analyse the linguistic relevance of the pre-
dictions and learnt patterns.

Section 2 describes Mukrı̄ Kurdish and the
glossed corpus we studied. We explain our CRF
pipeline methodology in Section 3. We present
its performance and analyse the linguistic patterns
learnt by the model in Section 4. We also point out
a few recommendations for both field linguists and
NLP practitioners in Section 5.

2 Language and fieldwork corpus

2.1 The language: Mukrı̄ Kurdish

Mukrı̄ Kurdish (also spelt Mukrı̄yānı̄) is primarily
spoken in the northwestern region of Iran, specif-
ically in middle and southern parts of West Azer-
baijan and northern parts of Kurdistan provinces.
The geographical area traditionally associated
with Mukrı̄ Kurdish is centred around the city
of Mahābād (historically known as Sāblāx or
Sāwjbłāx) and extends to surrounding cities, towns
and villages, including Bokān, Pı̄rānšār, Sardašt,
Šino and Naxada (Asadpour, 2021). This region,
historically known as Mukrı̄yān, forms part of the
larger Iranian Kurdistan area that borders Iraqi Kur-
distan to the west.

Mukrı̄ Kurdish belongs to the Central Kurdish
(Sorānı̄) dialect group within the Indo-European
language family. It is closely related to other Cen-
tral Kurdish varieties spoken in both Iran and Iraq.
However, it maintains distinctive features that set it
apart from standard Sorānı̄ as spoken in Silēmānı̄ya

1The pipeline is released alongside a demonstration at:
https://github.com/shuokabe/crf_glossing.

or Hawlēr (Erbil) in Iraqi Kurdistan (Haig and Ma-
tras, 2002; Asadpour, 2021, 2022).

Among Central Kurdish varieties, Mukrı̄ Kur-
dish has several distinctive characteristics. On the
phonological aspect, certain vowel and consonant
realisations differentiate it from standard Sorānı̄ va-
rieties, including retention of some archaic phono-
logical features. On the lexical side, its unique
vocabulary is influenced by its geographic position
between different Kurdish dialect areas and contact
with Jewish and Christian Neo-Aramaic, Armenian,
and Azerbaijani Turkish communities (Asadpour,
2021).

Moreover, Mukrı̄ Kurdish has a rich morpholog-
ical structure with prefixes, suffixes, and enclitics.
Correct morphological labelling requires an aware-
ness of the surrounding context, such as in the
example below:

Source ne– bird –ı̄ =ewe
Gloss NEG.PST– take.PST –2SG =ASP

Translation you did not take

with a negation prefix ne–, a past verb stem bird,
a person suffix –ı̄, and the aspectual enclitic =ewe.
Verbal morphology, in particular, requires both left
and right contexts for correct segmentation and
interpretation. We note here that certain morpho-
logical markers are consistent and predictable both
in form and position. For instance, verbs begin
with mood/aspect prefixes (e.g., negation in the ex-
ample), end with person suffixes (e.g., –ı̄ for 2SG),
and aspectual enclitics may also appear in the final
position (e.g., =ewe).

2.2 Corpus preparation
We use the corpus collected through fieldwork by
one of the authors (2004–in progress) in the Mukrı̄
variety of Central Kurdish (Sorānı̄). The corpus
includes narrative, conversational and procedural
texts, ensuring diversity in genre and register. An-
notation was done manually following the IGT for-
mat and Leipzig Glossing Rules (Lehmann, 2004;
Bickel et al., 2008). Besides, the segmentation
annotation tier marks morpheme boundaries with
hyphens, while clitics are separated by equal signs
(cf. tier 2 in Figure 1).

We split the corpus into training and test datasets
(80:20) for our experiments. We also convert the
sentences into the format used for the SIGMOR-
PHON Shared Task (Ginn et al., 2023), with one
sentence annotation tier per line. This notably
ensures compatibility with tools devised for the
Shared Task.

66

https://github.com/shuokabe/crf_glossing


Table 1 displays the size of the fieldwork corpus
of Mukrı̄ Kurdish in terms of number of sentences
(Nsent), number of words and morphemes for both
tokens (Ntoken) and types (Ntype).

word morpheme

Nsent Ntoken Ntype Ntoken Ntype

train 211 1,233 570 2,126 354
test 52 272 184 500 153

Table 1: Fieldwork corpus statistics for Mukrı̄ Kurdish.

3 Gloss generation system

3.1 Gloss generation pipeline
We tackle the gloss generation task as a morpheme
labelling task. We assume that the sentence has
been previously segmented into morphemes. In-
terlinear glosses can hence be viewed as labels
assigned to each morpheme.

Source de tirs=ı̄ kābrā–ı̄
Step I IND stem=EZ stem–OBL

Step II IND UNK=EZ fellow–OBL

True gloss in fear=EZ fellow–OBL

Figure 2: Example output at each step from the model.

Our model can be decomposed into two steps, as
presented in Figure 2. First, grammatical labels are
predicted for each morpheme (step I), with lexical
morphemes initially labelled as ‘stem’ placehold-
ers. Then, these placeholder labels are replaced
with actual lexical glosses using a simple dictio-
nary built from frequent associations in the training
data (step II).2 When available, actual bilingual dic-
tionaries or known morpheme-to-gloss mappings
can be integrated to augment the lexical coverage
in this step. For unknown lexical morphemes, the
second step outputs the ‘UNK’ tag. Figure 3 sum-
marises the pipeline.

As previously considered by (McMillan-Major,
2020; Barriga Martínez et al., 2021), our system is
based on a Conditional Random Field (CRF) (Laf-
ferty et al., 2001), which relies on local properties
(or features) to predict a label. We use the default
parameters in our experiments.

We use generic features to keep it adaptable to
other languages, such as the current morpheme, its

2The dictionary contains one-to-one associations only, i.e.,
one source lemma can only have one possible lexical label.

Train corpus

Train CRF model for
grammatical labels

Create a dictionary for
lexical labels

Test sentence: 
de tirs=ī kābrā–ī

Step I:
IND stem=EZ  stem–OBL

Step II:
IND UNK=EZ fellow–OBL

Figure 3: Glossing pipeline flowchart

immediate predecessors and successors, morpheme
length, and boundary markers indicating whether
the morpheme is separated by a hyphen (–) or an
equal sign (=). An example list of features is pre-
sented in Appendix A.

3.2 Between simplicity and complexity

Technical requirements The main strength of
our system is its simplicity, making it possible to
run efficiently on CPUs rather than requiring GPUs.
For instance, most participating submissions to the
SIGMORPHON Shared Task (Ginn et al., 2023)
used neural systems based on transformers (e.g.,
ByT5 (Xue et al., 2022)) or needed PyTorch to run
(e.g., (Girrbach, 2023)’s winning system). In con-
trast, our approach pushes towards usability in real
language documentation settings, where access to
GPUs may be limited. This also means the model
can run on common laptops within minutes, mak-
ing it suitable for further integration into annotation
workflows.

On the technical side, our CRF uses the sklearn-
crfsuite library (Okazaki, 2007) in Python3, which
is widely used and stable. Besides this toolkit, our
pipeline does not need any external packages.

Quality of the predictions However, this sim-
plicity comes at a price. Compared to more ad-
vanced neural models, our pipeline shows lower
overall performance, as shown in Section 4.1. It
seems more adapted when the corpus is rather
small, notably at the beginning of the annotation
phase.

Furthermore, due to the pipeline approach, er-
rors at step I impact the second step. In Figure 2,
we see that the first morpheme is wrongly predicted
with a grammatical tag (IND), although it should
have been a ‘stem’ label for lexical glosses. Be-
sides, even though our experiments show that lex-
ical glosses can be relatively easily labelled with
dictionaries in many cases due to the annotation

3https://sklearn-crfsuite.readthedocs.io/.
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regularity in documentation corpora, this reliance
means that unknown morphemes cannot be handled
at all, as for the second morpheme (‘tirs’) which
was never seen in the training corpus.

Interpretability and flexibility Another charac-
teristic of our pipeline is that it allows for better
interpretability, as developed in Section 4.4, given
its feature-based nature. This can be helpful in un-
derstanding the patterns in the predictions and be-
haviour of the model, ensuring better transparency
for the linguists compared to more black-box neu-
ral models. This follows previous analyses as in
(Barriga Martínez et al., 2021; Okabe and Yvon,
2023a,b).

Besides, our current pipeline remains generic
and only requires an annotated training dataset.
When language-specific phenomena are known,
the CRF can integrate them as additional features;
when more annotations are made, the dictionary
can be easily expanded for new words, and the
CRF will be more robust.

In a nutshell, we chose to focus on a system with
reduced technical complexity, trading performance
for better accessibility, because we have real-life
settings in mind. We recall that the purpose of
automatic glossing is to reduce the proportion of
manual workload by providing a first draft to start
with for the linguist.

3.3 Workflow integration
More broadly than the glossing task, we strove to
reduce the gap in the standard annotation work-
flow. For smoother integration, we created scripts
to convert the predicted sentence annotations to-
wards formats widely used in linguistic tools such
as FieldWorks Language Explorer (FLEx) (Rogers,
2010), Toolbox4, and ELAN (Wittenburg et al.,
2006). This is to further reduce the friction of us-
ing yet another tool.

Below is how our feature-based pipeline can be
put into practice in an existing framework for lan-
guage documentation. Once the time-aligned audio
recording is transcribed, with a consistent orthog-
raphy, the sentences are segmented into words, but
also into morphemes. The next step is to annotate a
small batch of sentences with glosses; usually, the
natural order of sentences is followed (e.g., each
sentence of a recorded story), ensuring lexical con-
sistency. Then comes the automatic glossing tool.
Starting with as many training (i.e., fully annotated)

4https://software.sil.org/toolbox/.

sentences as possible, the model is applied to the
rest of the corpus. The idea here is, naturally, to
continue the annotation of sentences (possibly from
the draft) and to compare the glosses. If specific
linguistic phenomena are wrongly predicted sys-
tematically, dedicated features can be integrated
into the CRF, or more sentences could be given.
The latter solution also applies to lexical glosses
since our approach depends on the coverage of the
dictionary. Finally, the predictions are converted
back to the format of the chosen annotation tool.

We note here that our approach does not solve
the ‘NLP gap’ problem yet, as stated in (Gessler,
2022), since it runs separately and not concurrently
from existing linguistic tools. It is, however, a step
towards an actual integration in annotation soft-
ware, where we reduced the technical constraints
pertaining to the latest glossing models.

4 Experimental results

4.1 Comparison with the SIGMORPHON
shared task on interlinear glossing

First, we compare our model with the most recent
automatic glossing models to assess its quality in
general. The SIGMORPHON Shared Task on in-
terlinear glossing (Ginn et al., 2023) offered two
tracks: the closed one only contained the source
sentence with no segmentation information, while
the open one notably had the morphological seg-
mentation of the source sentence. The latter setting
is closer to ours, where we have actual morpholog-
ical boundaries of the source sentence.

The seven languages that were studied are di-
verse both geographically and linguistically (six
language families). The released corpora are also
of varying size, reflecting different stages of docu-
mentation (from 31 training sentences up to several
thousand). We focus on six languages to test our
model against the other submissions; we do not
cover Arapaho, which had the largest corpus by
far (40k sentences; 4 times the size of the second
largest corpus).

We compare our model (CRF+dict) with a sim-
ple baseline, dict, which assigns the most frequent
label seen in the training dataset. This replicates
a dictionary-based functionality which is imple-
mented in certain annotation tools (e.g., ELAN
(Wittenburg et al., 2006) or FLEx (Rogers, 2010)).

Moreover, we present the results of the baseline
model from the Shared Task (BASE_ST), based on
a transformer architecture (Ginn, 2023), and the
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best performance reached during the Shared Task
(mostly from (Girrbach, 2023); BEST_ST), usually
a neural model. Additionally, we report the scores
obtained by the state-of-the-art GlossLM model
(Ginn et al., 2024), when it was fine-tuned on the
corresponding language datasets (GlossLMFT).

We evaluate the models according to the two
main metrics used in the Shared Task: the accura-
cies computed at the word or morpheme levels.

ddo git lez ntu nyb usp

dict 65.3 28.1 81.2 81.5 64.4 72.8
CRF+dict 82.2 29.2 85.0 87.6 74.8 75.6
BASE_ST 75.7 16.4 34.5 41.1 84.3 76.6
BEST_ST 85.8 31.5 85.4 89.3 88.0 78.5
GlossLMFT 89.3 34.9 71.3 81.5 87.7 84.5
∆BEST -7.1 -5.7 -0.4 -1.7 -13.2 -8.9

dict 79.1 51.2 85.8 87.1 72.9 79.5
CRF+dict 89.2 51.8 88.6 91.7 82.0 82.0
BASE_ST 85.3 25.3 51.8 49.0 88.7 82.5
BEST_ST 92.0 52.4 87.6 92.8 91.4 84.5
GlossLMFT 92.8 28.9 74.7 86.0 90.7 86.4
∆BEST -3.6 -0.6 +1.0 -1.1 -9.4 -4.4

Table 2: Accuracy at the word (top rows) and morpheme
(bottom) levels on the test set of the Shared Task. Best
scores are in bold. ∆BEST indicates the difference
between our system and the best performance otherwise.

Table 2 presents the scores for both evaluation
levels on the six corpora. First, we see that the
glossing task can already be well achieved by a
dictionary-based approach, as seen in the high ac-
curacy reached by the dict baseline (except for
Gitksan, git). This is due to the regularity in the
annotations found in the dataset, especially for lex-
ical morphemes and glosses. These units tend to
be consistently annotated in the same way, which
is one key assumption for our system.

Still, grammatical morphemes contain more vari-
ability with different glosses that could be at-
tributed to the same unit; this is, hence, better cap-
tured by CRFs. We see a noticeable improvement
of more than 16 points for Tsez (ddo), which is a
morphologically rich language.

This approach is also consistently better than
the Shared Task baseline (except for Uspanteko,
usp). Moreover, despite its simplicity, it remains
competitive with the best systems submitted to the
shared task. Our model is only a few points be-
hind the best models of the Shared Task, except
in Nyangbo (nyb). Indeed, with an average accu-
racy of 72.4 for words and 80.9 for morphemes,
the model would have been ranked fourth among

eleven submissions. Compared to the current state-
of-the-art GlossLM model, our system performs
worse on their in-domain languages (i.e., which
have more training data and, hence, were used for
pre-training) but leads to notably better prediction
on the languages with fewer data, such as Lezgi
(lez) or Natugu (ntu).

More generally, we note that our CRF-based
approach works better when the training data is
smaller (git, lez, and ntu have below 800 training
sentences), while more complex models naturally
perform better with more sentences (Ginn et al.,
2024). Hence, our system could help the early
stages of documentation while alleviating some
technical constraints.

4.2 Results on Mukrı̄ Kurdish

Table 3 presents the accuracy scores on our Mukrı̄
Kurdish corpus, computed using the same method-
ology as in the previous section. Given its size,
we are in earlier documentation stages, where our
system works relatively better (cf. Section 4.1).

word morpheme

dict 38.2 53.3
CRF+dict 50.7 64.1

Table 3: Accuracy on Mukrı̄ Kurdish (top: word level,
bottom: morpheme level).

We see for Mukrı̄ Kurdish that the glossing per-
formance with our model is still imperfect, actually
in between the quality observed for Gitksan and
Lezgi in Table 2. However, we notice a signif-
icant improvement over a pure dictionary-based
approach, which is often used in linguistic annota-
tion workflows.

Moreover, we additionally compare the usual
precision, recall, and F-score separately for gram-
matical and lexical glosses. We notice that, as
expected, the use of a CRF model improves the
quality of grammatical label prediction (F-score
of 48.3 to 66.3) due to their ambiguity. Our two-
step pipeline also benefits the lexical tags thanks
to a better separation of grammatical and lexical
morphemes before replacement.

Among the 500 morphemes in the test set, 53 of
them were tagged as UNK. This means that either
the lexical morpheme was not seen in the training
(in most cases), or the morpheme was wrongfully
labelled with ‘stem’ instead of a grammatical tag.
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Process Type Error Rate (%)

Simple Affixation 9.60
Compounding 18.90
Cliticisation 14.20
Reduplication 37.10
Circumfixation 28.40
Infixation 33.80

Table 4: Error Rates by Morphological Process

Error rates (1 − accuracy) varied significantly
across different morphological processes, as shown
in Table 4. The lowest error rate was observed
for simple affixation (9.60%), suggesting that the
model effectively captures regular concatenative
morphology even when trained with fairly few ex-
amples. For non-concatenative phenomena, how-
ever, performance deteriorated sharply, with redu-
plication showing the highest error rate at 37.10%,
followed by infixation (33.80%) and circumfixation
(28.40%). These results confirm that sequential
models have particular difficulty with morpholog-
ical operations involving copying, template rela-
tions, or internal alternation structures. They are
harder to predict and thus require a more complex
approach than a simple CRF modelling.

These findings are consistent with theoreti-
cal discussions in morphological typology (Mc-
Carthy, 1981; McCarthy and Prince, 1999),
which distinguish between concatenative and non-
concatenative morphology. Reduplication, in par-
ticular, involves correspondence constraints be-
tween base and copy elements, which are difficult
to capture with the current surface-level statistical
model alone.

4.3 Qualitative analysis
We discuss the linguistic peculiarities of Mukrı̄
Kurdish and how they are reflected in the test data
and predictions. Table 5 displays how ambiguous
a given grammatical gloss is. We see that some
highly systematic morphemes, such as ne–, –eke,
and =ewe, appear consistently and should be easier
to learn. In contrast, forms like ı̄ have multiple
roles (ezafe, 3SG, possessive, oblique), making
them harder to disambiguate, and hence to predict.

As such, for canonical constructions, the
pipeline showed strong performance, correctly
identifying core and consistent morphemes such
as ezafe markers, possessive suffixes, and common
definite articles. For example, in the phrase ser=ı̄

yexdānē (‘the door of the wardrobe’), the system
accurately recognised ‘=ı̄’ as an ezafe or genitive
marker linking the possessed noun (ser, ‘door [lit.
head]’) to its possessor (yexdānē, ‘wardrobe’). This
is consistent with the typical agglutinative structure
found in many Iranian languages, where grammat-
ical relations are expressed by postposed affixes
(MacKenzie, 1961; Öpengin and Haig, 2014; Asad-
pour, 2022).

Error analysis We mainly noticed it struggles
with under-represented (or absent) phenomena in
the training corpus and ambiguous morphemes. For
instance, discourse particles and switch-reference
markers were poorly captured, especially in spoken
narrative texts where such pragmatic features are
prominent. The sentence in Figure 4 is a represen-
tative example.

S [...] degeł lē–de–de–ā w
P [...] with at–IND–IND–3SG PTCP

G [...] with PVB–IND–give.PRS–3SG and

Figure 4: Example of wrong analysis. S: segmented
source sentence, P: prediction from our system, G: gold
glossed sentence.

In this case, the particle ‘lēdedā’ (‘lē–de–de–ā’)
was wrongly analysed, and the conjunction ‘w’ was
treated as a clitic rather than a full discourse ele-
ment. As the gold standard shows, ‘lēdedā’ func-
tions as a verb root combined with aspect markers
around, while ‘w’ functions as a coordinating con-
junction. This illustrates one of the limitations of a
simple CRF-based model: longer dependencies are
not well-captured. Since our features mainly look
at the immediate neighbours of a morpheme, it still
struggles with polymorphemic words, as in here.

A frequent error we saw concerned the treat-
ment of agreement markers. For instance, the mor-
pheme ‘ı̄’ was often assigned OBL1 instead of 3SG,
which is likely due to overlapping surface forms.

Application to language documentation The
results on the test data suggest that, despite the
morphological complexity, many patterns in Mukrı̄
Kurdish are consistent enough to be handled by au-
tomatic systems. Common and systematic affixes
(especially for verbs and nouns) are good candi-
dates for automatic glossing. However, ambiguous
and pragmatic elements are likely to require man-
ual review and correction. A tool that pre-annotates
glosses based on these regularities can, however,
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Label Example Description Position Consistency

IND (de–) de–ke, de–łē, de–č–m Indicative prefix Verb-initial High
IRR (bi–) bi–hēn, bi–nūs, bi–ke Irrealis prefix Verb-initial High
NEG (ne–) ne–bird, ne–kew, ne–mā Negation prefix Verb-initial High
PVB heł–de–gir, lē–de–de, ber–de Preverbal particles Before verb Medium
ASP (=ewe) bird–ı̄=ewe, ke=ewe, dāte=ewe Aspectual enclitic Word-final High
DEF (–eke) kitēb–eke, čikołe–eke Definite marker Noun-final High
PL (–ān) kitēb–ān, žin–ān Plural marker After noun High
OBL (–ı̄) bird–ı̄, č–ı̄, goř–ı̄ Oblique case Noun-final Medium (ambig.)
EZ (=ı̄) čend=ı̄, birā=ı̄ Ezafe After noun Medium (ambig.)
PRSNT āhā, hā, hā Presentative Independent Low
DISC āhā, wiłāhı̄ Discourse markers Variable Low

Table 5: Consistency of 10 frequent grammatical labels in the test dataset.

notably reduce the burden on linguists by allowing
them to correct rather than annotate from scratch.

This is in line with one of the author’s feedback
as a fieldworker. Using the CRF-trained model sig-
nificantly reduced the time spent on routine gloss-
ing by pre-labelling frequent grammatical patterns
and high-frequency morphemes with reasonable
accuracy. This allowed him to focus more on irreg-
ular forms, novel constructions, and higher-level
linguistic analysis.

4.4 Interpretation of the model
Since our system relies on a CRF, we can inter-
pret the features and patterns that were learnt by
the model. For instance, the left part of Table 6
displays the 10 most weighted local properties.

Feature Transition

source feature gloss gloss1 → gloss2
morph: m 1SG EZ → REFL

morph: ew DEM IND → –
morph: emin 1SG INDF.PRO → INDF.PRO

morph: eto 2SG PVB → –
morph: de IND = → 3SG

morph: t 2SG VOC → RDP

morph: bi IRR IMP → DISC

morph: nā NEG – → OBL

morph: ēk INDF 3SG → NEG3
morph: n 3PL OBL1 → POST1

Table 6: Left: top 10 features; right: top 10 label transi-
tions learnt by the CRF.

We notice that key morphological patterns in
Mukrı̄ Kurdish were correctly identified. For in-
stance, both the independent pronoun ‘emin’ and
its bound form ‘m’ are associated with the first-

person singular gloss. Other frequent and crucial
grammatical morphemes are also learnt, such as the
negation marker ‘nā’ or the indefinite suffix ‘ēk’.
Most of them are consistent annotations with lit-
tle ambiguity and occur often. These associations
are closely aligned with typological descriptions of
Kurdish, where agglutination dominates, and each
morpheme encodes a single grammatical meaning.

This supports usage-based theories of morpho-
logical acquisition (Bybee, 2010), which posit that
speakers rely heavily on co-occurrence patterns to
disambiguate morphological function. Our results
also suggest that statistical models approximate na-
tive speakers’ intuitions about morpheme function.

Similarly, the model learns label transitions; the
most highly weighted ones are in the right part of
Table 6. Some of the transitions highlight crucial
morphosyntactic patterns. First, the transition from
‘EZ’ to ‘REFL’ captures a common construction
in Mukrı̄ Kurdish where reflexive pronouns often
follow an ezafe marker. The model has also cor-
rectly identified some pronominal clitics appearing
after a clitic boundary, as shown by the strong as-
sociation between the clitic marker ‘=’ and ‘3SG’
(third-person singular). The transition from ‘IND’
(indicative) to ‘–’ (morpheme boundary) reflects
the morphological structure of Mukrı̄ verbs, where
the indicative prefix is typically followed by other
verbal morphology (as in Figure 4). These patterns
demonstrate that the model has actually captured
central morphosyntactic regularities in Mukrı̄ Kur-
dish, such as clitic placement or verbal morphol-
ogy.

However, the model occasionally violated these
constraints when exposed to less frequent patterns.
This suggests that surface statistics, while informa-
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tive, may not be sufficient to fully capture more
complex morphosyntactic principles.

In short, while our pipeline performs reasonably
well on regular morphological patterns represented
in the training data, it struggles with rare construc-
tions, phonologically conditioned allomorphy, and
morphologically complex phenomena that require
more global structural awareness. This is because
the CRF relies on local statistical cues, which can-
not handle rare, unseen or structurally divergent
constructions. While the model does not explic-
itly learn abstract grammatical rules, it manages
to infer recurrent associations between morphemes
and their glosses based on distributional patterns
present in the training data, which makes it effec-
tive for canonical morphology.

5 Recommendations for stakeholders

This article is the result of a collaboration between
field linguistics and NLP; as such, we found a
few recommendations for all parties involved or
supporting language documentation, in line with
(Flavelle and Lachler, 2023).

For field linguists, maintaining consistent seg-
mentation and annotation conventions is essen-
tial for both humans and NLP models. On this
point, following widely used conventions such
as the Leipzig Glossing Rules (Lehmann, 2004;
Bickel et al., 2008) can also help cross-lingual mod-
els, which might have seen the same grammatical
glosses in other languages. In this regard, start-
ing with a small but high-quality dataset is enough
to start the first automatic gloss pipeline (e.g., the
Gitksan corpus in the SIGMORPHON Shared Task
had 31 sentences, and we have slightly more than
200 sentences).

For members of the language community, sim-
plified interfaces and localised training materials
can enable active participation in validation and
annotation. Workshops to build consensus on ter-
minology and validate results help to ensure cul-
tural appropriateness and community ownership of
digital resources.

For NLP researchers, the challenge is to improve
the robustness of the model and to deal with more
complex morphological phenomena while keep-
ing in mind a real-life deployment of the glossing
tool. Making the tools more user-friendly is also
appreciated; specialised error analysis tools and
visualisations would help to diagnose wrong pre-
dictions easily. Finally, a better evaluation protocol

should be used to account for the error gravity; in
the end, we aim at a system that helps rather than
confuses the annotators.

6 Related Work

Interlinear gloss generation, in collaboration be-
tween linguistics and NLP for language documenta-
tion, has initially been explored with feature-based
taggers. (Baldridge and Palmer, 2009) and (Palmer
et al., 2009) both discuss the relevance and effi-
ciency of active learning in such a context. They
notably found that the benefit of better sampling
techniques depends on the expertise of the annota-
tors. (Samardžić et al., 2015) also applied a two-
step pipeline with a tagger for grammatical glosses
and a lexicon for the lexical glosses. Their ex-
periments were, however, based on a much larger
corpus for a better-documented language.

Moeller and Hulden (2018) show that CRFs are
a reliable approach to predict grammatical glosses
compared to a neural model for a corpus with
3,000 annotated words. Using the same methodol-
ogy, Barriga Martínez et al. (2021) also find that
CRFs outperform RNNs and biLSTMs on their
corpus. Then, McMillan-Major (2020) proposes
a pipeline combining two CRFs, one to predict
from the source sentence and another one from the
translation, an underexploited resource so far. All
these methods are closely related to our methodol-
ogy because CRFs are reliable in capturing local
dependencies, especially in low-resource settings.
However, due to the number of potential labels, lex-
ical glosses cannot be predicted with CRFs alone.

This is one reason behind the consideration of
neural models for glossing. Zhao et al. (2020) ex-
tend the methodology of (McMillan-Major, 2020)
by considering both the source and translated sen-
tences as inputs to a multi-source neural model
(based on a transformer architecture; Vaswani et al.,
2017).

Finally, a major milestone on the topic is the
SIGMORPHON Shared Task on interlinear gloss-
ing (Ginn et al., 2023). Among the two possible
tracks, the open one provided the morpheme-level
segmentation of the source sentence. In this cate-
gory, which is an easier task due to the additional
information, the best performing model was (Gir-
rbach, 2023), which trained a hard attention model.
Two other submissions were also neural and based
on transformers (Cross et al., 2023; He et al., 2023).
Okabe and Yvon (2023b) have also compared their
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feature-based systems against a simple CRF-based
baseline; however, the former was not as accessi-
ble and convenient as our system, while the latter
model was not released. The state-of-the-art for the
task is currently achieved by the GlossLM model
(Ginn et al., 2024), which also relies on the trans-
former architecture.

7 Conclusion

We have deployed an automatic glossing pipeline
on a fieldwork corpus in Mukrı̄ Kurdish, a Central
Kurdish variety, to assess not only how it performs
but also how usable such NLP tools are in prac-
tice. We have seen that our CRF-based system im-
proved the prediction quality compared to the cur-
rently implemented full dictionary-based approach,
which further reduces manual workload. It notably
managed to learn the most frequent patterns while
struggling with rarer phenomena and annotation, as
expected. This is, however, not a major issue since
any model output remains an annotation draft: they
need to be corrected and controlled eventually. In
our case, the system lowered the manual annotation
effort noticeably, with a fairly robust reliability for
repetitive annotations.

Even though our feature-based pipeline may
not match the quality of state-of-the-art neural ap-
proaches (lagging by 3 points in accuracy on aver-
age in Table 2), it offers a more interpretable and
adaptable alternative that is well-suited to early-
stage documentation projects, such as for Mukrı̄
Kurdish. We believe these characteristics outweigh
the benefits of marginal gains obtained with more
advanced models.

Finally, we are releasing the glossing pipeline un-
der an open-source license to foster its use by both
field linguists and NLP practitioners. We strove to
provide a simple tool that can work with the usual
infrastructure at hand in language documentation.

We stress again that this work, at the intersec-
tion of computational and documentary linguistics,
aimed to bridge the gap between the vastly differ-
ent technical environments of both fields. We also
tried to lower the technical barrier by providing
scripts to convert the annotations towards popular
formats used in language documentation.

Our future work includes integrating the model
into an actual annotation software so that it can be
used even more easily. Moreover, we will also ex-
plore how performance can be improved by adapt-
ing known linguistic rules in the feature set, as

some linguists already use rule-based processing
to some extent.

Limitations

From the NLP perspective, the proposed model
is not particularly novel, as similar models rely-
ing on CRFs were considered as a baseline for
experiments. It does not reach a state-of-the-art
performance either, given its simplicity. The model
is, however, released not only to provide a fairly
competitive yet simple baseline for future works in
NLP but also to foster its use among field linguists.
We believe, indeed, that the current pipeline can be
integrated into actual annotation workflows, possi-
bly after further simplifying user interaction with
the model. Hence, our system choice is the result
of a compromise between prediction quality and
technical complexity.

From the linguistic side, some non-negligible
errors remain in Mukrı̄ Kurdish, which shows that
the model cannot handle complex morphological
patterns yet. For this article, we tried to release
a model which could also be applied to other lan-
guages directly, i.e., without language-specific fea-
tures. Thanks to the flexibility allowed by the fea-
tures, the system can be better tailored to any lan-
guage which will be studied.
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A CRF features

Table 7 presents the features for the following sen-
tence (‘out of the fear of the man’) at the fourth
position5 (first ‘ı̄’):

1 2 3 4 5 6 7
de tirs = ı̄ kābrā – ı̄.

In general, we check the same local properties
(source entity itself and its length) for the current
(0), previous (-1), and next (+1) positions. Depend-
ing on the presence of a morpheme boundary, we
also check the ‘actual’ previous morpheme (-2) to
account for morpheme dependencies inside poly-
morphemic words.

position feature example for ‘ı̄’

0 morpheme ı̄
0 length 1
0 morpheme boundary? False

-1 morpheme =
-1 length 1
-1 morpheme boundary? True

-2 morpheme tirs
-2 length 4

+1 morpheme kābrā
+1 length 5

Table 7: List of the computed features for a given entity.
Position indicates the relative position compared to the
entity (0: current position, -1: previous position, and +1:
next position).

5We count source entities: both actual morphemes and
morpheme boundaries.
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