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Abstract
Cross-lingual transfer in natural language pro-
cessing (NLP) models enhances multilingual
performance by leveraging shared linguistic
knowledge. However, traditional methods that
process all data simultaneously often fail to
mimic real-world scenarios, leading to chal-
lenges like catastrophic forgetting, where fine-
tuning on new tasks degrades performance on
previously learned ones. Our study explores
this issue in multilingual contexts, focusing
on linguistic differences affecting representa-
tional learning rather than just model parame-
ters. We experiment with 52 languages using
LoRA adapters of varying ranks to evaluate
non-shared, partially shared, and fully shared
parameters. Our aim is to see if parameter shar-
ing through adapters can mitigate forgetting
while preserving prior knowledge. We find
that languages using non-Latin scripts are more
susceptible to catastrophic forgetting, whereas
those written in Latin script facilitate more ef-
fective cross-lingual transfer.

1 Introduction

Cross-lingual transfer in natural language process-
ing (NLP) models has demonstrated enhanced per-
formance in multilingual contexts compared to
monolingual settings, largely due to the advantages
of leveraging cross-lingual knowledge (Hu et al.,
2020; FitzGerald et al., 2023; Winata et al., 2023b,
2024). Typically, training occurs only once simul-
taneously, where all available data is processed in
a single training run. However, in real-world ap-
plications, data is often received sequentially over
time, highlighting the importance of continuous
model updates to maintain performance (Rolnick
et al., 2019). Unlike humans, who can retain prior
knowledge while acquiring new skills, neural net-
work models often struggle to preserve previously
learned information when fine-tuned on new tasks,
which is known as catastrophic forgetting, a decline
in performance on earlier tasks after the model is

Figure 1: Pipeline for various approaches in lifelong
learning. In our lifelong learning framework, we em-
ploy a LoRA-based approach where the parameters of
the base model, denoted as θ, remain fixed, and for
VANILLA, the model parameters are updated at all
times. We explore the phenomenon of multilingual
knowledge loss by comparing the effects of training
with both shared and non-shared parameters.

exposed to new data (Winata et al., 2023a). To mit-
igate this issue, several studies have investigated
continual learning strategies and the implementa-
tion of adapters (Badola et al., 2023) as viable solu-
tions. This limitation poses a significant challenge
for multilingual NLP, as models must adapt to new
languages while retaining previously acquired lin-
guistic knowledge. Without an effective learning
strategy, models risk performance degradation, ren-
dering them less suitable for long-term deployment.

Lifelong learning is essential for integrating new
annotated data across languages without requiring
full retraining of systems. As language changes and
new data becomes available, models must adapt in-
crementally to minimize computational costs. This
approach helps maintain efficiency and scalability,
while addressing the challenge of catastrophic for-
getting, which has been explored in various studies
(Liu et al., 2021; Winata et al., 2023a; Badola et al.,
2023; M’hamdi et al., 2023). However, there is a
lack of systematic analysis on this issue in multi-
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lingual contexts. This study aims to fill that gap
by investigating factors contributing to catastrophic
forgetting beyond model parameters, including how
linguistic differences can affect representational
learning and lead to knowledge erosion when learn-
ing multiple languages sequentially.

In this study, we investigate the effects of non-
shared, partially shared, and fully shared param-
eters in a multilingual context, examining 52 lan-
guages through the use of LoRA adapters with
varying ranks and different sharing model param-
eter settings as shown in Figure 1. Our primary
focus is to assess the impact of parameter sharing
on model performance, while also conducting a
comprehensive analysis of the role that different
languages play in catastrophic forgetting. Addi-
tionally, we explore sequential learning to identify
when performance drops occur and whether these
declines are influenced by the introduction of newly
learned languages or the cumulative number of pre-
viously learned languages. Our contributions can
be summarized as follows:

• We examine the factors contributing to knowl-
edge loss in multilingual language models, fo-
cusing on aspects such as language diversity,
parameter sharing strategies, and base model
selection within a lifelong learning framework
for massively multilingual learning.

• We assess cross-lingual transferability and in-
troduce multi-hop metrics to better understand
the impact of language skills on model perfor-
mance.

• We analyze model parameter adaptation to in-
vestigate trends in the model’s ability to learn
languages in a lifelong learning context.

2 Methodology

2.1 Task Setup

A sequence of T tasks is structured as an ordered
set of datasets D = {D1, D2, . . . , Dt, . . . , DT },
where each dataset Dt corresponds to a specific
task t, representing a distinct language. The model,
parameterized by θt, undergoes iterative updates,
with parameters at step t + 1 being derived from
those at step t through the function f(θt, Dt).
These updates are performed using gradient-based
optimization to maximize the log-likelihood over
dataset Dt. In this paper, task T is interchangeable
with language L.

2.2 Training Methods
We use XLM-RBASE (Conneau et al., 2020) as our
base model and compare key methods with E5 in-
struct (Wang et al., 2024) for evaluating the con-
sistency of the findings. A classification layer is
added on top of the encoder model, tailored se-
quence label of the slot filling. For adapter-based
approaches, only the parameters within the adapter
modules are updated during training.

MULTI. A single model (or LoRA adapter) is
trained on all languages simultaneously, optimizing
over the entire dataset D:

θMULTI = argmax
θ

T∑

t=1

log p(Dt | θ). (1)

MONO. Each language/task has its own indepen-
dently trained model θt:

θt = argmax
θ

log p(Dt | θ), (2)

∀t ∈ {1, . . . , T}. (3)

VANILLA. A single model is trained incremen-
tally, updating parameters sequentially:

θt+1 ← f(θt, Dt),∀t ∈ {1, . . . , T − 1}. (4)

SHARED LoRA. A single LoRA adapter ϕ is
trained while keeping the base model θ0 frozen:

ϕs ← f(ϕ′
t, Dt), θ = θ0,∀t ∈ {1, . . . , T − 1}.

(5)

NON-SHARED LoRA. Each language has its own
separate LoRA adapter ϕt, while keeping the base
model θ0 frozen:

ϕt = argmax
ϕ

log p(Dt | θ0, ϕ), ∀t ∈ {1, . . . , T}.
(6)

The specific ordering of languages used in the
VANILLA is specified in Appendix Table 3.

2.3 Model Parameters Adaptation
We utilize low-rank adapters LoRA (Hu et al.,
2021) for training parameters to analyze the ef-
fectiveness to have sharing parameters. It is a
parameter-efficient fine-tuning method for large
pre-trained models leveraging the intrinsic low-
dimensionality of parameter updates, reducing the
need for full model adaptation. Instead of modify-
ing dense layers directly, it freezes the pre-trained
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weights and introduces trainable low-rank matrices,
significantly minimizing the number of learnable
parameters and enhancing fine-tuning efficiency.

Formally, given a pre-trained weight matrix
W0 ∈ Rd×k, LoRA constrains the update ∆W
to a low-rank decomposition:

∆W = BA, (7)

where B ∈ Rd×r and A ∈ Rr×k, with rank
r ≪ min(d, k). This decomposition ensures that
only A and B are updated while W0 remains fixed.
Consequently, the forward pass is expressed as:

h = W0x+∆Wx = W0x+BAx, (8)

where x is the input vector, and h is the output. The
low-rank update ∆Wx is scaled by a constant fac-
tor α

r , analogous to a learning rate, to regulate the
magnitude of the update. LoRA offers key advan-
tages: it enhances memory and computational effi-
ciency by limiting trainable parameters, reducing
resource requirements, and enabling modular fine-
tuning. Its linear structure ensures no additional
inference latency and allows seamless integration.
By leveraging low-rank adaptation, LoRA enables
scalable and efficient model adaptation without
compromising previously learned tasks.

3 Experimental Setup

3.1 Datasets
We utilize the MASSIVE, multilingual slot filling
dataset (FitzGerald et al., 2023), which encom-
passes 52 languages and provides structured in-
formation, including scenarios, intents, utterances,
and annotated utterances. Each language is uni-
formly represented, with 11.5K training samples,
2.03K validation samples, and 2.97K test samples.

3.2 Hyper-parameters
The training setup employed different configura-
tions depending on whether LoRA was used. For
models trained with LoRA, a learning rate of
5 × 10−6 was applied, whereas models without
LoRA used a higher learning rate of 5× 10−5. The
number of training epochs is 100 for models with
LoRA, and 50 for those without. Early stopping
was implemented in both settings, with a patience
of 15 epochs for LoRA and 5 epochs for non-LoRA
models, based on the F1-score on validation data.
The LoRA configuration included a dropout rate of
0.1, and the scaling factor α was set equal to the
rank (32, 64, 256 respectively).

3.3 Evaluation Metrics

We evaluate the performance of the model using av-
erage F1 score for the learned tasks and visualized
its progression over number of learned languages,
as illustrated in Figure 2. Besides that, there are
additional metrics, particularly for sequential meth-
ods such as VANILLA and SHARED LoRA.

3.3.1 Performance Shift
This metrics is used to measure the average perfor-
mance shift, which quantifies the change in a previ-
ously learned language performance after training
in a new language. Formally, we define the average
performance change as follows:

Pavg =
1

N

N∑

n=1

(Pt − Pt+1), (9)

where Pt and Pt+1 represent the average F1 score
over all previously encountered tasks at time steps
t and t+ 1, respectively. To account for variability
in task sequences, the performance changes are
averaged over five times (N = 5).

3.4 Cross-lingual Transfer

We assess cross-lingual transfer effectiveness us-
ing Cross-lingual Forward Transfer (CFT) and
Cross-lingual Backward Transfer (CBT) metrics
from Winata et al. (2023a) and we introduce a
new metric, Multi-Hop Forward Transfer (MFT),
and Multi-Hop Backward Transfer (MBT) to mea-
sure the multi-hop transfer for each language. Let
R ∈ RT×T be a matrix where Ri,j represents the
test score performance on task tj after training on
the last sample from task ti. The two types of
metrics are defined as follows.

Cross-lingual Forward Transfer (CFT). The
metric evaluates the model’s ability to generalize to
unseen languages by assessing test performance on
tasks not encountered during training. It is defined
as:

CFT =
1

T − 1

T−1∑

i=1

X̄i, (10)

where

X̄i =
1

T − i

T∑

j=i+1

Ri,j . (11)

Here, X̄i represents the average performance
across future tasks (tj > ti).
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Cross-lingual Backward Transfer (CBT). The
metric measures the impact of learning a new task
ti on the performance of previously learned tasks.
It is formally defined as:

CBT =
1

T − 1

T−1∑

i=1

(RT−1,i −Ri,i) . (12)

This metric quantifies the extent of catastrophic
forgetting, where adding a new task may negatively
impact the performance of past tasks.

Multi-Hop Forward Transfer (MFT). The met-
ric measures the knowledge transfer effect between
tasks separated by multiple learning steps. For a
hop distance h, MFT is defined as:

MFTh =
1

|L|
∑

l∈L
(Pi+h − Pi−1), (13)

where Pi represents the average performance on
tasks seen up to step i. This metric quantifies how
learning a language affects performance on another
language that will be encountered h steps later in
the training sequence.

Multi-Hop Backward Transfer (MBT). The
metric similarly evaluates the effect of learning a
new task on the performance of tasks encountered
several steps earlier. For a hop distance h, MBT is
defined as:

MBTh =
1

|L|
∑

l∈L
(Pi − Pi−h−1). (14)

This metric measures how training on a language
affects the performance on languages that were
learned h steps before in the training sequence.
The term multi-hop refers to our evaluation across
multiple hops, as illustrated in Figure 5. A hop
distance of zero corresponds to the performance
change metric.

4 Results

Figure 3 illustrates the impact of training different
languages sequentially on model performance to-
wards learned language, measured by the average
F1 change across 5 different orders.

Performance vs. Model Parameters. Table 1
presents a comparison of training methods in terms
of average F1 score and trainable parameters. The
MULTI method achieves the best overall perfor-
mance (75.03%) with a much less parameter foot-
print (278.04M) compared to MONO’s, offering an

Method Params (M) F1 (%) Language Vitality
Low Mid High

MULTI 278.04 75.03 75.42 75.84 72.63
r = 32 5.36 74.19 74.27 75.17 71.83
r = 64 10.72 73.79 74.00 74.56 71.73
r = 256 42.86 74.11 74.16 74.83 72.41

MONO 14,458.27 72.98 73.66 74.11 69.43
VANILLA 278.04 66.16 65.70 67.65 63.46

SHARED LoRA
r = 32 5.36 60.24 59.35 62.34 56.75
r = 64 10.72 61.26 60.55 63.37 57.48
r = 256 42.86 60.16 59.06 62.15 57.22

NON-SHARED LoRA
r = 32 278.04 72.14 72.42 73.39 68.89
r = 64 557.19 72.38 72.55 73.48 69.65
r = 256 2,228.75 73.16 73.82 74.26 69.73

Table 1: Comparison of methods based on trainable
parameters (in million parameters) and averaged F1 (%).
Lower trainable parameters is better, higher average
performance is better.

Figure 2: Performance results after training each lan-
guage over the time.

excellent balance between effectiveness and effi-
ciency. On the opposite end, MONO, which trains an
entirely separate model per language, consumes an
enormous parameter budget (14,458.27M) while
yielding only moderate performance (72.98%),
highlighting the inefficiency of isolated training.

Among parameter-efficient alternatives, LoRA-
based approaches exhibit varying trade-offs.
NON-SHARED LoRA performs competitively (up to
73.16% at rank 256), benefiting from task-specific
specialization, albeit with moderate parameter cost
(2,228.75M). In contrast, SHARED LoRA’s best re-
sult dramatically reduces the number of trainable
parameters (e.g., 10.72M at rank 256) but suf-
fers heavily in performance, dropping to as low
as 61.26%.
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Figure 3: Performance change after training a certain language on x-axis in sequential training (VANILLA). Chinese
(zh-CN) exhibits the most significant performance decline, while German (de-DE) serves as the most effective
donor language, enhancing overall performance.

Figure 4: Comparison results between XLM-R and E5 models.

Crucially, increasing the LoRA rank—while ex-
panding the model’s capacity—does not substan-
tially improve performance. For instance, MULTI
with rank 32 (74.19%) performs nearly as well
as at rank 256 (74.11%), and similar diminish-
ing returns are observed across both SHARED and
NON-SHARED LoRA. This trend extends to trans-
fer metrics: Table 2 shows that higher rank un-
der SHARED LoRA does not significantly improve
forward transfer—CFT remains within the narrow
band of 0.51–0.53. These results highlight a key
trade-off: higher trainable parameters generally
improve performance, but the efficiency of pa-
rameter usage varies across methods. The MULTI
method provides the best balance between parame-
ter efficiency and performance, while LoRA-based
approaches demonstrate potential for parameter-

efficient training at the cost of reduced perfor-
mance. However, it should be noted that the MULTI
method might not be trainable in parallel like the
NON-SHARED LoRA method. Hence, in some sce-
narios, the NON-SHARED LoRA method should be
considered.

Trends Between Models. Figure 2 illustrates
how different training strategies affect performance
over time. A key trend is that MULTI method (dotted
lines), trained jointly on all languages, exhibit con-
sistent performance, maintaining F1-scores above
73% throughout training. In contrast, sequential
learning models show clear signs of degradation
as training progresses. The VANILLA model suf-
fers from moderate catastrophic forgetting, with
F1-score reductions of 10–15 points. SHARED LoRA
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fares worse, degrading by as much as 15–30 points
across tasks. Meanwhile, NON-SHARED LoRA of-
fers more stable performance across steps, rang-
ing between 70–73% and demonstrating greater
resilience to forgetting.

These observations are further supported by Ta-
ble 2, which reports backward and forward transfer
scores. The VANILLA model achieves a CBT of
−0.08 and CFT of 0.55, suggesting that while
it suffers from forgetting, it still generalizes rea-
sonably well to future tasks. SHARED LoRA, how-
ever, shows consistently more negative CBT scores
(−0.13 to −0.14), confirming its vulnerability to
catastrophic forgetting. This performance is also
reflected in CFT, where the scores are also lower
than VANILLA method. Together, these findings
underscore the importance of balancing task gener-
alization and knowledge retention, particularly in
continual cross-lingual setups.

Method CBT CFT

VANILLA -0.08 0.55
SHARED LoRA

r = 32 -0.13 0.52
r = 64 -0.12 0.53
r = 256 -0.14 0.51

Table 2: CBT and CFT metrics for VANILLA and
SHARED LoRA models — higher values indicate bet-
ter performance.

Comparison XLM-R and E5 Models. Figure 4
presents a comparison of XLM-R and E5 models
across different training methods. Despite varia-
tions in methodology, the general pattern of results
remains consistent across models. Overall, XLM-R
performs better than E5, except in VANILLA method
where E5 tends to outperform XLM-RBASE, though
performance degradation due to forgetting is still
evident. The results suggest that while different
methods and model architectures influence the
degree of forgetting, the overall trend of perfor-
mance degradation remains a common characteris-
tic across all settings.

5 Analysis on Languages

To frame our analysis, we interpret MFT as mea-
suring a language’s ability to donate knowledge
to subsequent languages, while MBT reflects how
well a language receives and retains knowledge af-
ter subsequent training steps. This donor-receiver

perspective allows us to reason about asymmetries
in cross-lingual transfer.

5.1 Languages Affect Forgetting

The results reveal that certain languages signif-
icantly impact the model’s capacity to retain
prior knowledge. Training on Chinese (zh-CN),
Japanese (ja-JP), and Traditional Chinese
(zh-TW) consistently leads to the most pronounced
cases of catastrophic forgetting. This is evidenced
by their strongly negative MBT values in Figure 5
and severe performance degradation in Figure 3,
particularly when these languages are introduced
later in the training sequence. As receivers, these
languages appear highly vulnerable to interference
from prior tasks. More detailed explanation can
be seen in Appendix A. In contrast, languages
such as Norwegian (nb-NO), Catalan (ca-ES),
Portuguese (pt-PT), and Greek (el-GR) show
some of the highest MBT scores across hop dis-
tances. These languages maintain stability when
trained after others and also preserve prior task
performance, indicating they are robust receivers.
Interestingly, they may also act as indirect donors
by not interfering with earlier knowledge.

However, not all performance trends align per-
fectly with MBT. For example, German (de-DE)
appears beneficial in performance drop metrics
(Figure 3), yet does not rank highly in MBT. This
suggests that its apparent advantage may be due to
its position in the training sequence—e.g., being
trained before high-forgetting languages—rather
than any inherent ability to preserve earlier knowl-
edge. This underscores an important point: in-
terpreting language influence solely through per-
formance drop can be misleading. MBT offers a
more principled, sequence-agnostic perspective on
which languages genuinely aid in preserving prior
knowledge and resisting catastrophic forgetting.

5.2 Latin vs. Non-Latin Scripts

Script similarity plays a significant role in cross-
lingual knowledge transfer. In both MFT and MBT
heatmaps, we observe that languages using Latin
scripts—such as es-ES, fr-FR, and de-DE—tend
to be strong donors and stable receivers. They ben-
efit more from training on other languages and also
suffer less from catastrophic forgetting. This likely
reflects greater subword token overlap and lexical
similarity, which help preserve learned representa-
tions under shared tokenization.
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Figure 5: Heatmap of Multi-hop Backward Transfer (MBT), illustrates how training on later languages affects
earlier ones over increasing hop distances (y-axis: 0–9). Cooler colors indicate positive backward transfer, while
warmer colors reflect degradation in performance. Orders of the language is sorted descending (read from top-left to
bottom-right) based on its average over all hops.

Figure 6: Heatmap of Multi-hop Forward Transfer (MFT), represents each language’s ability to donate knowledge to
subsequent tasks over increasing hop distances (y-axis: 0–9). Cooler colors indicate stronger positive transfer, while
warmer colors reflect limited or negative influence on future learning. Orders of the language is sorted descending
(read from top-left to bottom-right) based on its average over all hops.

In contrast, non-Latin script languages, espe-
cially those using logographic (e.g., zh-CN) or
abugida scripts (e.g., th-TH, hi-IN), tend to be
weak donors and vulnerable receivers. These lan-
guages show low MFT—suggesting limited for-
ward transfer to other tasks—and highly nega-
tive MBT, indicating susceptibility to forgetting.
The subword tokenizer, likely optimized for Latin-
based alphabets, aggravates this imbalance. This
highlights a fundamental challenge for multilingual
continual learning: shared vocabulary spaces can
lead to representational dominance of Latin-script
languages, marginalizing others.

5.3 Language Family

While language family information is not explic-
itly modeled, typologically or lexically similar lan-
guages often demonstrate mutual reinforcement
in transfer. Under the donor-receiver lens, we
observe that Romance languages such as es-ES,
pt-PT, and fr-FR frequently act as strong donors
(high MFT) and reliable receivers (stable MBT),
especially when positioned near each other in the
training sequence. Similarly, Germanic languages
like nl-NL, sv-SE, and de-DE show stable transfer
interactions.

However, these patterns are not universal. The
apparent family-related benefits may arise from
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shared scripts and vocabulary rather than deep
structural similarity. For instance, several Indo-
European languages from different branches per-
form well together, likely due to orthographic
overlap. Conversely, languages from distant fam-
ilies—such as Sino-Tibetan (zh-CN), Austroasi-
atic (km-KH), or Afro-Asiatic (ar-SA)—often act
as poor receivers (low MBT) and limited donors
(low MFT), especially when sequenced after typo-
logically dissimilar languages. Future work could
explicitly incorporate phylogenetic distances to bet-
ter disentangle the impact of language family on
multilingual continual learning.

5.4 Language Vitality

Language vitality—encompassing speaker popula-
tion, data availability, and digital presence—also
plays a nuanced role in continual learning dynam-
ics. As receivers, high-vitality languages such as
zh-CN, ja-JP, and hi-IN (Joshi et al., 2020) show
some of the most negative MBT scores, indicat-
ing that they are especially vulnerable to forgetting.
Surprisingly, they also make relatively poor donors,
as reflected in lower MFT scores compared to more
typologically compatible mid-vitality languages.

This counterintuitive trend is clarified in Table 1,
where mid-vitality languages (Joshi et al., 2020)
consistently achieve the highest F1 scores across
model variants. These languages appear to strike
a balance: they share enough structure with other
languages to act as effective donors, while remain-
ing resilient as receivers under sequential training.
In contrast, high-vitality languages—despite abun-
dant resources—struggle under parameter-efficient
continual learning setups. Their unique token distri-
butions and structural divergence make them harder
to adapt to and easier to overwrite. These findings
suggest that vitality-aware scheduling or modular-
ization may be critical for improving cross-lingual
robustness in continual learning scenarios.

6 Related Work

Catastrophic forgetting is a significant challenge
in neural networks, where models lose previously
acquired knowledge when fine-tuned on new tasks
(McCloskey and Cohen, 1989). This issue is par-
ticularly pronounced in multilingual contexts, as
models must adapt to new languages without de-
grading performance on previously learned ones
(Winata et al., 2023a). To mitigate this, various
strategies have been proposed, including memory

replay (Rolnick et al., 2019), regularization tech-
niques (Kirkpatrick et al., 2017), and architectural
innovations like progressive networks (Rusu et al.,
2016).

Lifelong learning also known as continual learn-
ing, is an emerging approach that enables mod-
els—particularly LLMs and their agents—to con-
tinuously acquire new knowledge while retaining
prior capabilities. This knowledge can be inte-
grated into LLMs either by updating model pa-
rameters through training or adapters, or by lever-
aging external sources like Wikipedia or tools
without modifying the model itself or knowledge
base (Zheng et al., 2024). Recent work extends life-
long learning to agent-based settings, decomposing
it into perception, memory, and action modules
that together support continuous adaptation (Zheng
et al., 2025).

For internal knowledge updates, adapters have
proven to be a lightweight and effective solution,
introducing small, task-specific modules that can
be fine-tuned independently, reducing interference
across tasks (Houlsby et al., 2019; Winata et al.,
2021; Hu et al., 2021). The MAD-X framework
(Pfeiffer et al., 2020b) enhances cross-lingual trans-
fer by separating language and task adaptation,
while language-specific adapters balance special-
ization and sharing (Badola et al., 2023). Addition-
ally, methods like AdapterFusion (Pfeiffer et al.,
2020a) combines task-specific adapters through a
learned composition layer, promoting parameter
sharing and effective transfer learning while mini-
mizing forgetting.

7 Conclusion

Our paper highlights the critical challenges of catas-
trophic forgetting in cross-lingual transfer for mul-
tilingual NLP models with 52 languages. We pro-
vide insights into how various parameter-sharing
strategies can influence knowledge retention and
overall model performance. Our findings indicate
that partial parameter sharing can effectively miti-
gate forgetting while maintaining performance, pre-
senting a promising approach for developing more
robust multilingual NLP systems. Additionally,
we identify that certain languages during training
can negatively impact performance, contributing
to catastrophic forgetting. Overall, this research
enhances the ongoing efforts to improve the adapt-
ability and efficiency of NLP models in real-world
NLP applications.
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Limitations

In this paper, we concentrate our investigation on
XLM-R model and use E5, rather than exhaustively
evaluating every possible model due to resource
constraints. This focused approach allows us to
provide a more in-depth analysis of these models
and their performance in cross-lingual contexts.

Ethical Considerations

In our evaluation of language models for multi-
lingual tasks, we place strong emphasis on trans-
parency and fairness. We carefully design and doc-
ument our data collection and evaluation method-
ologies to ensure they are consistent, unbiased, and
reproducible. By applying uniform assessment cri-
teria across models, we aim to enable meaningful
and equitable comparisons.
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A Detailed Results

A.1 Language Order
Table 3 presents the language orders used in the se-
quential training experiments. These orders are
used to train models in a step-by-step fashion,
where each iteration introduces a new language.
The results from these training sequences are sub-
sequently used to compute aggregate metrics, as
shown in Figure 2 and Figure 4.

The first order is derived based on the amount of
language resources available in the XLM-R model
(Conneau et al., 2020). This order reflects the
relative training data size used during XLM-R’s
pretraining, with high-resource languages appear-
ing earlier in the sequence. The remaining or-
ders (2 through 5) are randomly shuffled variants

to introduce diversity and reduce potential order
bias. However, in the fifth order, languages that
are found to be particularly destructive—i.e., those
that tend to cause performance degradation on pre-
viously learned languages—are deliberately placed
toward the end of the sequence. This design allows
us to analyze how the position of destructive lan-
guages affects knowledge retention and transfer in
sequential multilingual training.

A.2 Heatmap on VANILLA method for first
language order

The heatmap on Figure 7 provides a detailed visual-
ization of the model’s performance across training
iterations (represented by rows) and evaluated lan-
guages (represented by columns). In each iteration,
the model is trained on a new language. For in-
stance, as shown in the figure, the first iteration
trains on en-US, the second on ru-RU, the third on
id-ID, and so forth. After training on a language,
the model’s performance on that language typically
improves. This trend is reflected in the heatmap:
the lower-left triangle (below the diagonal), corre-
sponding to previously learned languages, tends
to display cooler colors, indicating better perfor-
mance; in contrast, the upper-right triangle (un-
learned languages) often exhibits warmer colors,
reflecting performance degradation.

This visualization clearly highlights cross-
lingual interactions—specifically, how training on
a new language can either benefit or harm perfor-
mance on other languages. For example, in row
18, where the model is trained on zh-CN, the cor-
responding row becomes noticeably warmer com-
pared to previous iterations, suggesting a general
decline in performance across many languages.
However, for linguistically related languages such
as ja-JP, where many Kanji characters overlap
with Chinese characters (hence vocabulary over-
lap), performance actually improves. This sug-
gests that while zh-CN introduces interference for
many languages, it serves as a helpful donor for
ja-JP—likely due to shared orthographic features,
such as the incorporation of Chinese characters in
the Japanese writing system.
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Order Languages in ISO 639-1

1 en-US, ru-RU, id-ID, vi-VN, fa-IR, th-TH, ja-JP, de-DE, ro-RO, hu-HU, fr-FR, fi-FI, ko-KR, es-ES, pt-PT, nb-NO, el-GR,
zh-CN, da-DK, pl-PL, he-IL, it-IT, nl-NL, ar-SA, tr-TR, hi-IN, zh-TW, ta-IN, sv-SE, sl-SL, ca-ES, ka-GE, lv-LV, ms-MY, bn-BD,
ml-IN, az-AZ, ur-PK, hy-AM, sq-AL, te-IN, kn-IN, is-IS, tl-PH, mn-MN, my-MM, sw-KE, km-KH, af-ZA, am-ET, cy-GB, jv-ID

2 tr-TR, ro-RO, ur-PK, es-ES, hi-IN, pl-PL, hy-AM, sv-SE, sl-SL, ta-IN, te-IN, ml-IN, id-ID, ka-GE, el-GR, ko-KR, de-DE,
fa-IR, ms-MY, ca-ES, az-AZ, nl-NL, pt-PT, fr-FR, hu-HU, sw-KE, mn-MN, he-IL, zh-CN, fi-FI, ru-RU, is-IS, cy-GB, ja-JP, sq-AL,
vi-VN, th-TH, jv-ID, it-IT, my-MM, kn-IN, lv-LV, am-ET, nb-NO, ar-SA, en-US, af-ZA, zh-TW, bn-BD, da-DK, km-KH, tl-PH

3 sv-SE, nl-NL, fi-FI, kn-IN, hu-HU, ms-MY, es-ES, my-MM, is-IS, ko-KR, af-ZA, vi-VN, bn-BD, tr-TR, tl-PH, lv-LV, ru-RU, fr-FR,
en-US, ro-RO, am-ET, he-IL, hi-IN, ja-JP, te-IN, id-ID, ta-IN, it-IT, jv-ID, nb-NO, ka-GE, sq-AL, ca-ES, az-AZ, zh-TW, fa-IR,
mn-MN, zh-CN, de-DE, da-DK, ml-IN, sw-KE, sl-SL, km-KH, ar-SA, pt-PT, cy-GB, ur-PK, hy-AM, el-GR, pl-PL, th-TH

4 nb-NO, ta-IN, th-TH, fi-FI, ru-RU, af-ZA, vi-VN, ko-KR, ro-RO, km-KH, is-IS, ms-MY, sl-SL, en-US, hi-IN, he-IL, bn-BD,
pt-PT, fa-IR, sv-SE, am-ET, kn-IN, az-AZ, tl-PH, ar-SA, nl-NL, cy-GB, hy-AM, it-IT, de-DE, da-DK, te-IN, hu-HU, lv-LV,
zh-CN, mn-MN, es-ES, ca-ES, pl-PL, fr-FR, ja-JP, ka-GE, sw-KE, id-ID, zh-TW, jv-ID, sq-AL, el-GR, tr-TR, my-MM, ml-IN, ur-PK

5 mn-MN, ml-IN, is-IS, fa-IR, az-AZ, pl-PL, de-DE, ko-KR, ar-SA, sw-KE, jv-ID, sq-AL, tl-PH, ru-RU, lv-LV, fr-FR, ro-RO,
ka-GE, cy-GB, tr-TR, he-IL, sl-SL, af-ZA, nl-NL, my-MM, hu-HU, hi-IN, vi-VN, it-IT, pt-PT, da-DK, ca-ES, am-ET, el-GR, ta-IN,
id-ID, te-IN, sv-SE, bn-BD, ur-PK, en-US, kn-IN, ms-MY, nb-NO, es-ES, fi-FI, zh-TW, zh-CN, ja-JP, th-TH, km-KH, hy-AM

Table 3: Language orders in the sequential training experiments.

Figure 7: Heatmap on VANILLA method for first language order.
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