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Abstract

Code-switching, using multiple languages in a
single utterance, is a common means of com-
munication. In the language documentation
process, speakers may code-switch between
the target language and a language of broader
communication; however, how to handle this
mixed speech data is not always clearly ad-
dressed for speech research and specifically for
a corpus phonetics pipeline. This paper investi-
gates best practices for conducting phone-level
forced alignment of code-switched field data
using the Urum speech dataset from DoReCo.
This dataset comprises 117 minutes of narra-
tive utterances, of which 42% contain code-
switched Urum–Russian speech. We demon-
strate that the inclusion of Russian speech and
Russian pretrained acoustic models can aid
the alignment of Urum phones. Beyond us-
ing boundary alignment precision and accuracy
metrics, we also discovered that the method of
acoustic modeling impacted a downstream cor-
pus phonetics investigation of code-switched
Urum–Russian.

1 Introduction

Code-switching is a phenomenon where multilin-
gual speakers communicate in more than one lan-
guage, often within a single utterance.1 Speakers
of languages that are not widely spoken may also
speak a language of broader communication, or
lingua franca, in order to communicate with peo-
ple in the same region or in contact settings. In
the language documentation and analysis pipeline,
recordings of the target language can be found to
be mixed with a language of broader communica-
tion. Yet this other language is often overlooked
or explicitly ignored if the goal of the fieldwork is
to document the language of interest. On the other

1While code-switching can refer to mixing languages or
dialects within a whole conversation, we use it to mean switch-
ing languages within a single utterance. This finer-grained
mixing is also called code-mixing in the literature.
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Figure 1: Across the 30 speakers in the DoReCo Urum
field repository (Skopeteas et al., 2022), almost all pro-
duced code-switched utterances (orange, middle) in ad-
dition to monolingual Urum (blue, left) and monolingual
Russian utterances (green, right).

hand, it may be useful to include the mixture of
languages in the analyzed data for methodological
or scientific purposes. The extra data could add
robustness to the performance of models, or the
code-switched speech could better reflect actual
usage of the target language.

Regardless of the analytical use, inclusion of the
code-switched language data may benefit processes
within the corpus phonetics pipeline. A critical part
of this pipeline is phonetic forced alignment, in
which a time-aligned phone sequence is identified
from the input speech and corresponding transcript,
typically using acoustic models of the language-
specific phones. Generally, automatic alignment
quality correlates with the amount of training data
used for the acoustic model (Chodroff et al., 2024).
In the case of code-switched speech, there is a
question, however, of whether to use only the tar-
get language data—or to use all of the linguistic
data—for training the acoustic models. Including
code-switched speech during training would result
in more data per speaker, which could help build
more robust phone-specific acoustic models (as hy-
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pothesized by Chodroff et al., 2024).
Very limited research has included code-

switched speech in forced alignment studies, and
our work is the first to examine this type of speech
in a field data setting. We ask the following re-
search questions (RQs):

1. Does the inclusion of Russian code-switched
data in acoustic model training help the align-
ment of target Urum data?

2. Does the method of acoustic modeling impact
a downstream corpus phonetics investigation
of code-switched Urum–Russian?

In this paper, we summarize prior work and intro-
duce the Urum language (Section 2), then discuss
the methodology of data preparation, acoustic mod-
eling and forced alignment, evaluation and analysis
(Section 3). We used the Montreal Forced Aligner
(McAuliffe et al., 2017) to train acoustic models
from scratch as well as adapt pretrained Russian
and English models to our data. With respect to
RQ1, we found that the inclusion of code-switched
speech and Russian pretrained models improved
alignments of Urum (Section 4). To answer RQ2,
we tested the impact of acoustic modeling strate-
gies in a bilingual phonetics investigation (Sec-
tion 5): Are vowels in Urum words pronounced
differently in monolingual Urum utterances than
in code-switched utterances? After discussion, we
conclude with methodological recommendations
and areas for future work (Section 6). All code for
replicating this work is publicly available.2

2 Background

2.1 Phonetic forced alignment
For phonetics research, it can be extremely useful
to know the temporal locations of phones within a
speech recording. While this can be achieved man-
ually, an automated process can greatly facilitate
this, speeding up annotation and enabling analy-
sis of substantially larger speech corpora (Labov
et al., 2013). Popular forced alignment tools in-
clude the Montreal Forced Aligner (MFA, used
in this work; McAuliffe et al., 2017), EasyAlign
(Goldman, 2011), and WebMAUS (Kisler et al.,
2017). Research has explored a range of strategies
to force align low-resource data, including cross-
language alignment and manipulation of phone cat-
egories (e.g., Ahn et al., 2024; Coto-Solano et al.,

2https://github.com/emilyahn/align_cs

2018; DiCanio et al., 2013). However, forced align-
ment work on low-resource languages that are code-
switched has been limited.

2.2 Research on the nature of code-switching
Much of the linguistic literature on code-switching
has focused on the syntactic and sociopragmatic
aspects of engaging multiple languages at once
(Bullock and Toribio, 2009; Muysken, 2000). With
respect to the phonetics of code-switching, re-
search has focused on how acoustic properties shift
when speakers activate multiple languages in their
mind. For example, stop consonant voice onset
time and speech rate changed noticeably near lan-
guage switch boundaries between Spanish and En-
glish (Fricke et al., 2016). Relevant to our case
study, Seo and Olson (2024) recorded read sen-
tences from Korean–English bilinguals to investi-
gate vowel quality across different syntactic struc-
tures. They found that English vowels in code-
switched Korean–English utterances were more
Korean-like in intra-sentential rather than in inter-
sentential code-switched structures. We similarly
investigated vowel quality in Urum–Russian code-
switched utterances for this paper.

It has been observed that a language of broader
communication, usually a high-resource language,
is often used during the elicitation of a low-
resource, target field language. In an overview
of methods to bridge language documentation
and speech processing technologies, Levow et al.
(2017) proposed a language identification task be-
tween a high-resource language and a low-resource
target language when both are present in field
recordings. San et al. (2022) addressed the mix-
ing of high- and low-resource languages by apply-
ing state-of-the-art language technologies to de-
tect and transcribe English portions of speech in
a dataset documented for the field language Mu-
ruwari. In this case, English was largely used in
meta-linguistic commentary and questions, such
as, “What is the word for tree?” This approach
helped the annotation process, where authorized
people could scan the meta-linguistic content and
triage the recordings for later annotators who had
more limited access to the corpora. These studies
demonstrate that (1) language mixing is prevalent,
and (2) applying technology to the higher-resource
language can benefit the documentation process.

Developing technologies for code-switching is
still a challenging area of research in the Natural
Language Processing (NLP) and speech commu-
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nities. Winata et al. (2023) found over 400 public
research papers on code-switching from the ACL
anthology and ISCA proceedings over the past few
decades. These works focused on tasks ranging
from language identification to sentiment analysis
to automatic speech recognition (ASR). Among
these papers, English mixed with a non-English
variety such as Hindi, Chinese, and Spanish, was
overrepresented. The authors highlighted a need
for work to be done on more diverse non-English
language pairs, for which this paper fills a gap.

Forced alignment with code-switched data
Two studies incorporated a language of broader
communication when training forced alignment
systems on field data, though the impacts of mixed
language speech input were not explicitly studied.
Ahn et al. (2024) included Portuguese speech when
developing acoustic models for Panãra, an Ama-
zonian language of Brazil. Chodroff et al. (2024)
retained the Russian speech content in the acous-
tic modeling of Evenki, a Tungusic language, and
Urum, a Turkic language, which is also used in this
work (Kazakevich and Klyachko, 2022; Skopeteas
et al., 2022).

More relevant to the present study is work by
Pandey et al. (2020) who compared methods of
training and aligning code-switched Hindi–English
read speech. Three acoustic models were trained
with MFA: Hindi-only, English-only, and Hindi–
English mixed, and they discovered that the com-
bined model best aligned English-only speech. It
was unclear, however, if the high performance from
the Hindi–English mixed acoustic models was due
to that model simply having more tokens in its train-
ing data than the other models. Our work extends
these findings to a low-resource field data scenario
with spontaneous speech, and we carefully con-
trolled the variable of training data quantity. We
investigated whether including code-switched data
could improve the alignment performance of a tar-
get low-resource language.

2.3 Urum language

Urum (ISO: uum) is a Turkic language spoken by
ethnic Greeks in the Lesser Caucasus of Georgia
and in Ukraine. Also known as Caucasian Urum, it
is a variety of Anatolian Turkish that is classified as
endangered (Campbell et al., 2022). The language
variety documented by Skopeteas et al. (2022) and
analyzed in this paper has been strongly influenced
by Russian since the group’s arrival in Georgia in

the early 19th century. Notably, most Urum speak-
ers are bilingual in Russian and code-switch often
between the two languages (Skopeteas, 2014). Un-
like the examples of code-switching being used in
purely meta-linguistic commentary, Russian por-
tions of speech in this dataset were part of the narra-
tive content by the speakers. The following shows
an example of an Urum–Russian utterance with
transliterated Russian displayed in brackets:

äp halhımız egıler kissäya [muzıka] ed-
erıh [maladež] [tantsuet] oinamah et-
mäh

“All the people get together at the church,
we organise [music], and the [youth] is
[dancing].” (Skopeteas et al., 2022)

3 Methodology

3.1 Data source
We utilized the Urum dataset from the DoReCo
corpus, which is a field data repository that con-
tains manual word-level and automatic phone-
level alignments of speech (Paschen et al., 2020).
Traditional and personal Urum narratives were
recorded across 30 speakers (16 female, 14 male)
and spanned 117 minutes3 of speech (Skopeteas
et al., 2022). Figure 1 presents the distribution
of Urum-only, Russian-only, and code-switched
utterances among speakers. All but one speaker
code-switched. Table 1 reveals that while 42% of
the utterances were code-switched, they represent
53% of the repository in minutes.4 Code-switched
utterances averaged 6.5 seconds, which was on
average longer than non-codeswitched utterances
(Urum-only: 4.5 seconds; Russian-only: 2 seconds).
Among the code-switched utterances, Urum word
tokens were more frequent than Russian word to-
kens, as shown in Figure 2.

3.2 Data preparation
Data from the field repository included long-form
audio recordings (wav format, sampling rate of 44.1
kHz) and time-aligned transcriptions of the utter-
ances, words, and phones. The audio files were first
segmented into utterances using Praat (Boersma
and Weenink, 2022), with the corresponding utter-
ance transcripts as Praat TextGrids. Four utterances
were removed due to encoding issues.

3Time was calculated by summing utterance durations, not
file or word durations.

4If all utterances with “foreign material” were excluded,
as was the protocol in Zhu et al. (2024) over the full DoReCo
corpus, we would miss out on half the data.
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Utt Count Time (min) Avg (sec)

All 1373 117.6 5.1
Urum 752 (55%) 53.5 (45%) 4.3
CS 581 (42%) 62.9 (53%) 6.5
Russ 40 (3%) 1.3 (1%) 2.0

Table 1: Distribution of utterances across language us-
age by count and time. Notably, code-switched (CS)
utterances had longer durations.

Urum

Russian

Figure 2: Proportion of Urum (blue, shaded) to Russian
(white) word tokens in all 581 code-switched utterances,
sorted highest to lowest. The majority of these utter-
ances had more Urum than Russian tokens.

Urum phone sequences were derived automati-
cally by the repository contributors, so our lexicons
(two-column text files with words and their cor-
responding phone sequences) were gathered from
these existing phone sequences. Most of the Rus-
sian words had been transliterated into Latin script
at the word-level, so we used a simple mapping
script to build the lexicon. The Urum phone set
from DoReCo included nine vowels and 30 con-
sonants while the transliterated Russian phone set
included six vowels and 19 consonants. Only four
Russian phones did not exist in the Urum set, as
seen in Table 2, and we used the PanPhon tool
(Mortensen et al., 2016) to map them to their near-
est neighboring Urum phones in the lexicons: 1 →
W, tC → tS, ù → S, ü → Z. Partially-tagged words
such as filled pauses and prolongations were as-
signed phone sequences in the lexicon and were
marked as Urum words.5

5The repository contributors used tags to transcribe content
such as filled pauses, prolongations, and false starts. When a
tagged word was partially transcribed (such as in this example
of a false start, “<fs>ba”), we manually assigned it a phone
sequence (“[b a]”) and classified it as an Urum word.

Urum-only Both Russian-only

y, æ, œ, W a, e, i, o, u 1
é, c, d:, t: b, p, d, t, g, k

s:, S, Z, G, dZ, tS v, f, z, s, x tC, ù, ü
l, l:, R, m: j, r, ì, m, n

Table 2: The phone sets present in the DoReCo tran-
scriptions across Urum and Russian with the middle
column representing their overlap.

3.3 Acoustic modeling

We used the Montreal Forced Aligner (MFA ver-
sion 2.2.17; McAuliffe et al., 2017) to train acous-
tic models and conduct forced alignment on our
data in its default unsupervised manner. Acoustic
models learn the probability distributions for all
given phone states and their transitions. We split
the DoReCo files into mutually exclusive train and
test partitions following the same split as Chodroff
et al. (2024): 1,097 utterances (100 minutes) in
the train set and 273 utterances (16 minutes) in the
test set. For this study, we created further subsets
of the training data to answer our first research
question. First, we summed the minutes of utter-
ances of each language type and found 47 minutes
of monolingual Urum utterances and 52 minutes
of code-switched utterances. To keep the quantity
of Urum-only and code-switched training data the
same, we reduced the number of code-switched
utterances to 47 minutes, which would equal the
Urum-only speech. Our first results compared the
alignment performance of a model trained on 47
minutes of purely Urum speech to a model trained
on 47 minutes of Urum–Russian speech.6 Our third
training data partition combined both sets to in-
clude 94 minutes of Urum-only and code-switched
speech. All Russian-only utterances were excluded
from training and evaluation.

Since it has been shown to be advantageous
to use larger, pretrained models for aligning low-
resource languages (e.g., Ahn et al., 2024), we
chose two relevant MFA models to continue the
experiments. The Russian MFA v3.1.0 model was
trained on over 400 hours of data from over 3,000
speakers; this model was selected since Russian
was frequently spoken in our dataset (McAuliffe
and Sonderegger, 2024). The Global English MFA

6While the minutes across the two partitions were the same,
the number of utterances was 618 for Urum and 414 for code-
switched. However, the number of phones in each partition
was roughly 27,000.
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v2.2.1 model was trained on over 3,700 hours of
data from over 79,000 speakers across the world
(McAuliffe and Sonderegger, 2023). This model
has previously proven to be effective in aligning the
Urum dataset in Chodroff et al. (2024). For cross-
language modeling and alignment, we developed
the lexicons by applying the PanPhon tool for de-
termining the nearest neighboring phones in cases
where the target phone did not exist in the model
(Mortensen et al., 2016). Appendix A displays
these phone mappings. Each pretrained model was
adapted to the same three training data partitions as
described in the train-from-scratch settings above.

3.4 Forced alignment evaluation

Our “gold standard” phone alignments for evalu-
ation of the system outputs were obtained from
the manually annotated phone boundaries of Urum
words in the test partition from Chodroff et al.
(2024). For precision, we calculated the percent
for which the model onset boundary was within 20
ms (the selected threshold) of the manually aligned
onset boundary (McAuliffe et al., 2017; MacKen-
zie and Turton, 2020). For accuracy, we utilized
a measure that calculated the proportion of model-
aligned intervals whose midpoints lay within the
respective gold intervals (a similar measure is used
in Knowles et al., 2018; Mahr et al., 2021). All eval-
uation was conducted on the test partition which
consisted of 132 Urum utterances and 119 code-
switched utterances. The evaluation was conducted
only on phones from Urum words and ignored all
phones from Russian words.

3.5 Analysis

We conducted mixed-effects regressions in R us-
ing the lme4 package to analyze the variables that
contributed to both the precision and the accuracy
metrics (Bates et al., 2015). We ran two models:
the first was a linear model with the dependent vari-
able as log seconds of onset boundary differences,
with 0 seconds mapped to 0.001 prior to the log
transformation. The second model was a logistic
regression with the binary dependent variable be-
ing accuracy. Main effects were the language of
the test utterance (Urum or CS), the natural class of
the current phone, the natural class of the previous
phone, the interaction of these two natural classes,
the proportion of contaminated (tagged) tokens,7

7Contamination in an utterance was calculated as the num-
ber of tagged tokens, such as false starts or prolongations,
divided by the total number of tokens.

the utterance duration (in hectoseconds, seconds
/ 100, for model convergence), the interactions of
model configuration with utterance language, and
whether or not the speaker of the test utterance was
present in the training set. Random effects were
the speaker ID and the file ID of the utterances.
The current phone class was sum-coded with the
held-out level of stop; the previous phone class was
sum-coded with the held-out level of silence. The
eight classes analyzed were vowels, approximants,
taps/trills, nasals, fricatives, affricates, and stops.
Models were treatment-coded, each compared to
the train-from-scratch Urum-only (47m) model.

4 Results

4.1 Alignment precision and accuracy

The following results answer our first research ques-
tion: Does including Russian code-switched data in
acoustic model training help the alignment of target
Urum data? The different acoustic model config-
urations were trained or adapted on subsets of the
DoReCo dataset, and they were all tested on the
held-out test utterances that included both Urum-
only and CS utterances. In the scenario where
we trained MFA models from scratch (i.e., no pre-
trained model was used—note the None column in
Table 3), we have two findings. When we kept the
training data quantity equal at 47 minutes for both
Urum-only speech and code-switched speech, the
Urum-only model (47m) outperformed the purely
code-switched one (47m). This was expected given
that we evaluated only on phones from Urum words.
However, combining these two training sets in the
Urum + CS (94m) model substantially improved
upon either smaller model. This also conforms to
expectations given that the combined training set
included more Urum tokens and also more data
overall.

For the experiments using pretrained models
adapted on the various Urum/CS partitions, the
Russian MFA model adapted on Urum + CS (94m)
produced the best results. Even though the Global
English MFA model was trained on nearly 4,000
hours of diverse speech, its alignments did not out-
perform the smaller Russian MFA model. This is
perhaps due to the language similarity of Russian to
Urum, or the history of Urum being influenced by
Russian contact. All models trained or adapted on
the different DoReCo subsets patterned the same
where the ranking of best to worst subset was Urum
+ CS (94m) > Urum (47m) > CS (47m), with the
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Train/Adapt Pretrained model
Partition None Eng Russ

Precision % ↑
Urum (47m) 63.2 70.4 71.2
CS (47m) 58.2 70.0 70.4
Urum + CS (94m) 70.9 70.6 71.3

Accuracy % ↑
Urum (47m) 80.6 83.7 84.9
CS (47m) 77.2 83.1 84.4
Urum + CS (94m) 85.1 83.6 85.1

Table 3: Results revealed that the Russian MFA model
adapted on all 94 minutes of Urum and code-switched
(CS) data performed the best, with maximal training-
from-scratch (i.e., Urum + CS (94m)) on par in terms
of accuracy. Highest scores are bolded and shaded.

slight exception of accuracy from the Global En-
glish MFA with Urum (47m) > Urum + CS (94m).

4.2 Regression analysis
The mixed-effects regression analysis revealed sev-
eral factors that influenced alignment performance.
We report all significant findings of p < 0.05, and
full output tables are provided in Appendix B. Ex-
cept for the train-from-scratch CS (47m) model
which performed significantly worse, all other mod-
els performed significantly better than the Urum
(47m) model. Longer utterance durations and
higher contamination amounts were correlated with
worse performance. The speaker appearing in the
training data had no significant effect. The lan-
guage of the test utterance also had no effect, with
a slight exception of the CS (47m) model perform-
ing slightly worse on Urum-only test utterances.

In terms of precision, boundaries around
taps/trills were displaced more significantly,
while boundaries around fricatives showed higher
precision. Boundaries preceding vowels also
performed better. Significantly better precision
was found for vowel–tap/trill, fricative–vowel,
affricate–vowel, affricate–nasal, stop–vowel,
and stop–tap/trill sequences. Significantly
worse precision was found for vowel–vowel,
vowel–approximant, tap/trill–vowel, nasal–nasal,
and fricative–approximant sequences.

As for accuracy, which used a logistic mixed-
effects regression model, significantly better per-
formance was found for phone intervals preceded
by nasals, fricatives, affricates, and stops, as well as
for targeted phone intervals that were fricatives and

affricates. Significantly worse accuracy was found
for phone intervals preceded by vowels, approx-
imants, and taps/trills, as well as targeted phone
intervals of these three classes. These results are
largely comparable to the mixed-effects regression
results from Chodroff et al. (2024).

5 Case Study

Following Babinski et al. (2019), we asked a gen-
eral phonetics question and observed whether there
were significant differences between the outputs
of the different model configurations above. In
other words, to what degree are we comfortable
substituting an automatic alignment for manual
alignment, in our quest to answer a question about
code-switching phonetics? We investigated the fol-
lowing: Are vowels in Urum words pronounced
differently in monolingual Urum utterances com-
pared to in CS utterances? First, we answered this
with the manually-annotated “gold” test data.

5.1 Methodology
The Pillai–Bartlett trace, or Pillai score, is a use-
ful metric to measure overlap in vowel category
qualities. It takes output from a MANOVA test,
which is used for measuring overlap between two
distributions across two dependent variables—in
our case, the first two formant values. Among four
commonly used metrics for vowel overlap, Kel-
ley and Tucker (2020) showed that Pillai scores
are among the most reliable. Stanley and Sneller
(2023) additionally provided a formula to derive
a threshold for determining overlap vs separation
based on the exact sample size of the tokens. We
followed these recommendations and calculated
Pillai scores for formant values extracted from the
gold test set. Formants were first extracted with
the Linear Predictive Coding (LPC) tool in Praat
(Boersma and Weenink, 2022), searching for five
formants under 5000 Hz for reported male speak-
ers and 5500 Hz for reported female speakers. The
formant value analyzed per vowel was an average
of the values extracted from the interval midpoint
and ten milliseconds before and after the midpoint.

5.2 Results from manual alignments
The gold test data revealed several instances of
within-speaker differences in pronouncing certain
Urum vowels. Table 4 shows four instances of
a particular vowel being marked as significantly
non-overlapping across two conditions. For exam-
ple, the cell for male speaker A03 /a/ marked with
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VOWELS
Spkr a e i o u y œ æ W

Male A01
A03 n=189 n=57

Female

A02
A07 n=13
B08
B11
B16 n=20

Table 4: Our case study revealed that from the gold data, /a/ for 3 speakers and /o/ for 1 speaker (marked with
shaded cells and token counts) in Urum words were pronounced significantly differently in monolingual Urum
vs code-switched utterances. For these four instances, Pillai scores indicated that the vowel formants for the two
groups in question (Urum vs CS) were significantly non-overlapping.

Spkr a e i o u y œ æ W

A01 X
A03 X X X

A02
A07 X
B08 X
B11
B16

Table 5: The best-performing acoustic model (Russian
MFA adapted on Urum + CS 94m) yielded 3 true posi-
tives (shaded X), 3 false positives (unshaded X), and 1
false negative (shaded empty cell).

n = 189 indicates that A03 uttered 189 /a/ vowels,
and his F1×F2 values for /a/ in Urum words from
monolingual Urum utterances were significantly
different than values for /a/ in Urum words from
code-switched utterances. The same can be said
for speaker A03’s /o/ (n = 57), speaker A07’s /a/
(n = 13), and speaker B16’s /a/ (n = 20).

5.3 Results from automatic alignments

Second, we calculated Pillai scores from the out-
put of the best-performing and worst-performing
models and compared these to the gold scores (Ta-
bles 5 and 6). From the best-performing model,
the Russian MFA model adapted on the Urum +
CS (94m) data, it found six instances of significant
non-overlap. Three out of the four gold instances
were correctly identified (i.e., three true positives
and one false negative), while producing three spu-
rious significant findings (i.e., three false positives).
From the worst-performing model, trained on the

Spkr a e i o u y œ æ W

A01 X
A03 X X X X

A02
A07 X
B08
B11
B16

Table 6: The worst-performing acoustic model (trained
on the CS 47m partition) yielded 2 true positives (shaded
X), 4 false positives (unshaded X), and 2 false negatives
(shaded empty cells).

CS (47m) partition, it produced less congruent find-
ings: only two out of the four gold instances were
correctly identified (i.e., two true positives and two
false negatives), with four spurious significant find-
ings (i.e., four false positives). We used the phonR
package in R (McCloy, 2012) to plot vowel el-
lipses for /i, a, o/ for male speaker A03, over the
two language conditions, and across the three types
of output (Figure 3). The gold plot reflects our
findings that /a/ and /o/ were significantly different
between Urum and CS environments while /i/ was
not. The ellipses from the best and worst models
show divergence from the gold ellipses. Both mod-
els found spurious differences for /i/, and although
/a/ visually appears significantly different for the
worst model, /a/ was a false negative.

Essentially, the automatic alignments did not
yield the same findings as those from the gold align-
ments in our vowel overlap analysis. Output from
the best- and worst-performing models tended to
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Figure 3: These plots reflect the first two formants (in Hz) for three of the nine Urum vowels, /a, i, o/, for male
speaker A03. From left-to-right are formants extracted from the gold alignments, the best model (Russian MFA
adapted on Urum + CS 94m) output, and the worst model (CS 47m) output. Vowel labels are positioned at means,
and ellipses cover one standard deviation away from the mean.

hallucinate more vowel disparities than the gold
output suggested, though the best model’s vowel
disparity predictions more closely aligned to the
gold findings than the worst model’s. While the
best model’s alignments were 11 percentage points
higher than the worst model’s alignments for pre-
cision (and seven percentage points higher for ac-
curacy), these differences can be hard to interpret.
This case study allowed us to reveal the nuances of
alignment performance, as the downstream output
yielded different conclusions.

6 Conclusion

This work tested methodologies of incorporating
code-switched data in acoustic model training and
alignment in a low-resource, field data scenario.
We tested the inclusion of Urum–Russian code-
switched utterances in training acoustic models to
align Urum phones and found that it was helpful to
keep the code-switching to produce a larger train
set.8 The maximally trained-from-scratch model
performed roughly on-par with a pretrained Rus-
sian model adapted to the same field data. If one
is fortunate enough to have 90-some minutes of
transcribed data, it should be sufficient to train
models (see also the recommendations in Chodroff
et al., 2024). Otherwise, utilizing a large, pre-
trained model performed reasonably, particularly
when adapted on target data.

In order to functionally assess the quality of the

8Our findings echo similar cross-language modeling ex-
periments from other domains such as speech recognition and
text-based NLP research, where the inclusion of data from
a higher-resource language improved model performance on
low-resource language data (e.g., Downey et al., 2024; Farooq
and Hain, 2023; Fujinuma et al., 2022).

systems, we tested our best and worst systems’
alignment outputs against the gold alignments to
answer a bilingual phonetics question (RQ2). Cal-
culating Pillai scores across formant values for indi-
vidual speakers, we discovered that several speak-
ers pronounced certain Urum vowels significantly
differently in monolingual Urum utterances than
in code-switched utterances. While not matching
the gold alignment results exactly, the best acoustic
model yielded more similar results to the gold than
the worst acoustic model. We recommend man-
ual adjustment of phone boundaries when conduct-
ing phonetic analyses, particularly those involving
smaller datasets and temporally sensitive phonetic
measurements (e.g., analysis of duration or cases
where the boundary determines the measurement
location such as onset f0).

As future work, it would be beneficial to con-
duct a survey study with qualitative and quantita-
tive statistics on the prevalence of code-switching
across field data repositories. How are multiple lan-
guages used by the elicitors and by the community
members of the language being documented?

Further research could also aim to extend
the study of phonetics and phonology for code-
switched language more broadly. Our case study
only scratched the surface to discover the nature
of shifting Urum vowel qualities depending on the
languages present in an utterance. It would be inter-
esting to discover if the significantly different Urum
vowel formants were becoming more Russian-like
when surrounded by Russian context, similar to
findings on Korean–English by Seo and Olson
(2024). Cross-linguistic interference or transfer
could be in effect and is worth investigating.
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Limitations

When conducting our regression analyses or case
study, we did not take into account code-switching
properties at the syntactic or prosodic level. It
would be interesting to factor into account whether
the code-switched utterance was inter-sentential or
intra-sentential (i.e., mixing languages at phrase
boundaries or within phrases). When calculat-
ing boundary differences, examining how close
an Urum word was to a Russian word could have
provided useful information. Prosodic factors such
as speech rate and pitch would also add insight as,
anecdotally, prosody was at times visibly differ-
ent near the language switch points. Additionally,
code-switched words can be confused with loan-
words that have a legitimate place in a language’s
lexicon. All of the Russian words in this reposi-
tory were explicitly tagged as Russian by the field
linguists, but there may be disagreement to the clas-
sification of language at the token-level.

The Urum dataset from the DoReCo repository
used in this work was particularly well-annotated
for both Urum and Russian. However, the quality
and quantity of transcriptions here may not be com-
parable to that in other field data repositories, and
replication of our findings on other datasets may
be challenging.

Ethics Statement

The dataset in this study has been made publicly
available for download and research use. Speech
data that is public carries inherent potential harms
for misuse in downstream tasks.

Particularly for our methodological approach of
including code-switched speech or the language
of broader communication in the analysis of field
data, we advise some caution. The speech from
the non-target language may have been meant to be
ignored and not recorded. If sections of the speech
data were not explicitly transcribed, they may not
have been intended to be used for analysis.
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Table 7 shows the mappings from Urum or Rus-
sian to either English or Russian pretrained MFA
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B Regression Results

Tables 8 and 9 display the output from the mixed-
effects regression models.
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Russ (CS) to Eng MFA Urum to Eng MFA Urum to Russ MFA

tC → tS d: → d R → r
1 → W l: → l œ→ E
ù → S m: → m W → 1
ü → Z r → R S → ù

s: → s Z → ü
t: → t d → d”
x → ç d: → d”:
y → 0 dZ → dü:
œ→ E l → ì
G → ç l: → ì:
W → @ n → n”

s → s”
s: → s”:
t → t”
t: → t”:
tS → tù
y → 0
z → z”

Table 7: Urum and Russian (code-switched) phones from DoReCo that did not exist in the pretrained English or
Russian MFA model lexicons were mapped to their nearest neighboring phones, calculated with the PanPhon tool
(Mortensen et al., 2016).
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Predictors Estimate Std. Error t-value Pr(>|t|)

Intercept -4.39 0.18 -24.37 <0.001
CS (47m) 0.11 0.03 3.35 <0.001
Urum + CS (94m) -0.28 0.03 -8.56 <0.001
English + Urum (47m) -0.22 0.03 -6.83 <0.001
English + CS (47m) -0.20 0.03 -6.02 <0.001
English + Urum/CS (94m) -0.22 0.03 -6.67 <0.001
Russian + Urum (47m) -0.20 0.03 -6.17 <0.001
Russian + CS (47m) -0.18 0.03 -5.42 <0.001
Russian + Urum/CS (94m) -0.21 0.03 -6.46 <0.001
Utterance duration 4.03 0.25 16.39 <0.001
Contamimation amount 0.63 0.05 13.14 <0.001
Speaker seen in training 0.20 0.20 0.98 0.360
Utt is Urum-only 0.01 0.03 0.18 0.859
Prec vowel -0.11 0.08 -1.39 0.166
Prec approx 0.31 0.55 0.57 0.567
Prec tap/trill 0.30 0.04 7.00 <0.001
Prec nasal -0.17 0.11 -1.56 0.118
Prec fric -0.22 0.10 -2.28 <0.05
Prec affr 0.63 0.39 1.63 0.103
Prec stop -0.12 0.10 -1.19 0.236
Vowel -0.39 0.08 -4.79 <0.001
Approximant -0.03 0.09 -0.37 0.712
Tap/trill 0.75 0.38 1.97 <0.05
Nasal -0.18 0.09 -1.95 0.052
Fricative -0.20 0.08 -2.56 <0.05
Affricate -0.01 0.12 -0.10 0.921
CS (47m) x Utt is Urum-only 0.09 0.05 2.06 <0.05
Urum + CS (94m) x Utt is Urum-only 0.04 0.05 0.86 0.390
English + Urum (47m) x Utt is Urum-only 0.01 0.05 0.22 0.828
English + CS (47m) x Utt is Urum-only 0.00 0.05 -0.03 0.974
English + Urum/CS (94m) x Utt is Urum-only -0.01 0.05 -0.15 0.880
Russian + Urum (47m) x Utt is Urum-only -0.02 0.05 -0.45 0.651
Russian + CS (47m) x Utt is Urum-only -0.02 0.05 -0.42 0.674
Russian + Urum/CS (94m) x Utt is Urum-only -0.01 0.05 -0.23 0.822
Prec vowel x vowel 0.79 0.08 9.31 <0.001
Prec vowel x approx 0.39 0.09 4.35 <0.001
Prec vowel x tap/trill -0.83 0.38 -2.17 <0.05
Prec vowel x nasal -0.18 0.09 -1.89 0.059
Prec vowel x fric -0.10 0.08 -1.24 0.215
Prec vowel x affr 0.24 0.13 1.84 0.066
Prec approx x vowel 0.14 0.55 0.25 0.802
Prec approx x approx -0.86 0.56 -1.54 0.125
Prec approx x tap/trill 0.68 3.26 0.21 0.836
Prec approx x nasal 0.45 0.56 0.81 0.419
Prec approx x fric -0.16 0.64 -0.25 0.800
Prec approx x affr -0.14 0.56 -0.25 0.801
Prec tap/trill x vowel 0.15 0.05 3.06 <0.01
Prec tap/trill x approx 0.05 0.07 0.66 0.510
Prec tap/trill x nasal -0.17 0.11 -1.61 0.108
Prec tap/trill x fric 0.06 0.14 0.40 0.693
Prec tap/trill x affr -0.13 0.13 -1.05 0.296
Prec nasal x vowel 0.21 0.11 1.94 0.052
Prec nasal x approx 0.09 0.16 0.57 0.572
Prec nasal x tap/trill -0.24 0.54 -0.45 0.651
Prec nasal x nasal 0.52 0.13 4.03 <0.001
Prec nasal x fric -0.24 0.13 -1.94 0.053
Prec nasal x affr -0.14 0.19 -0.76 0.445
Prec fric x vowel -0.25 0.10 -2.58 <0.01
Prec fric x approx 0.25 0.11 2.21 <0.05
Prec fric x tap/trill -0.54 0.47 -1.16 0.245
Prec fric x nasal -0.05 0.15 -0.34 0.736
Prec fric x fric 0.16 0.12 1.36 0.173
Prec fric x affr 0.20 0.20 0.99 0.321
Prec affr x vowel -1.05 0.39 -2.68 <0.01
Prec affr x approx -0.49 0.43 -1.13 0.257
Prec affr x tap/trill 3.15 2.14 1.48 0.140
Prec affr x nasal -1.04 0.48 -2.20 <0.05
Prec affr x fric -0.01 0.94 -0.01 0.993
Prec stop x vowel -0.32 0.10 -3.11 <0.01
Prec stop x approx -0.01 0.12 -0.08 0.933
Prec stop x tap/trill -0.80 0.38 -2.12 <0.05
Prec stop x nasal 0.22 0.14 1.60 0.109

Table 8: Linear mixed-effects regression results for phone onset boundary difference (in log seconds, with 0
seconds mapped to 0.001 prior to the log transformation). Models were treatment-coded, each compared to the
train-from-scratch Urum-only (47m) model. The current phone class was sum-coded with the held-out level of
stop; the previous phone class was sum-coded with the held-out level of silence. Utterance duration was entered as
hectoseconds (seconds / 100).
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Predictors Estimate Std. Error z-value Pr(>|z|)

Intercept 2.07 0.27 7.68 <0.001
CS (47m) -0.22 0.04 -5.05 <0.001
Urum + CS (94m) 0.34 0.05 7.10 <0.001
English + Urum (47m) 0.23 0.05 4.94 <0.001
English + CS (47m) 0.18 0.05 3.93 <0.001
English + Urum/CS (94m) 0.22 0.05 4.67 <0.001
Russian + Urum (47m) 0.33 0.05 6.87 <0.001
Russian + CS (47m) 0.29 0.05 6.08 <0.001
Russian + Urum/CS (94m) 0.35 0.05 7.17 <0.001
Utterance duration -2.13 0.47 -4.56 <0.001
Contamimation amount -0.94 0.10 -9.46 <0.001
Speaker seen in training -0.08 0.34 -0.24 0.814
Utt is Urum-only 0.06 0.03 1.94 0.053
Prec vowel -0.31 0.03 -10.18 <0.001
Prec approx -0.16 0.04 -3.94 <0.001
Prec tap/trill -0.26 0.04 -6.28 <0.001
Prec nasal 0.10 0.04 2.26 <0.05
Prec fric 0.24 0.04 6.12 <0.001
Prec affr 0.33 0.10 3.34 <0.001
Prec stop 0.15 0.03 4.64 <0.001
Vowel -0.23 0.04 -5.90 <0.001
Approximant -0.96 0.04 -23.66 <0.001
Tap/trill -1.11 0.04 -27.73 <0.001
Nasal 0.03 0.04 0.60 0.547
Fricative 0.45 0.05 9.97 <0.001
Affricate 1.62 0.17 9.72 <0.001

Table 9: Logistic mixed-effects regression results for accuracy. Accuracy is 1 if the midpoint of the system interval
lies within the corresponding gold interval. Models were treatment-coded, each compared to the train-from-scratch
Urum-only (47m) model. The current phone class was sum-coded with the held-out level of stop; the previous
phone class was sum-coded with the held-out level of silence. Utterance duration was entered as hectoseconds
(seconds / 100).
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