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Abstract

Financial networks have grown increasingly
complex and interconnected, creating urgent
challenges for systemic risk management. We
propose a robust multi-scenario stress testing
framework based on graph neural networks that
enables large-scale anomaly detection and sys-
tematic risk assessment across pre- and post-
pandemic financial landscapes. Our approach
integrates several technical innovations: ef-
ficient sparse matrix computation for graphs
with over 81,434 nodes, dynamic class imbal-
ance handling that improves recall by nearly
17 times, and a comprehensive scenario-based
evaluation protocol examining baseline per-
formance, feature noise resilience, structural
vulnerability, and susceptibility to information
shocks. Experiments on real financial data com-
paring the 2019 (pre-pandemic) and 2022 (post-
pandemic) periods reveal a significant shift in
risk characteristics – post-pandemic networks
demonstrate heightened vulnerability to struc-
tural changes (-9.4% AUC-PR) and informa-
tion propagation (-3.9% AUC-PR), indicating
that risk sources have evolved from data quality
concerns to network connectivity and informa-
tion flow dynamics. Our framework provides
regulators and financial institutions with practi-
cal tools to identify emergent risks and enhance
system resilience against future structural and
information-based shocks.

Keywords: GNN, multi-scale scenario plan-
ning, fake news detection in finance

1 Introduction

The increasing complexity and interconnectedness
of global financial systems have made stress test-
ing a crucial tool for identifying systemic risks and
supporting macroprudential policy(Pritsker, 2011;
Federal Reserve System, 2024; European Banking
Authority, 2016, 2024; Bank of England, 2022).
Traditional stress testing frameworks, however, of-
ten rely on macroeconomic variables and static sce-

nario design, limiting their ability to address hetero-
geneous, technology-driven, or structural risks. Re-
cent events such as the COVID-19 pandemic have
further highlighted the need for dynamic, multi-
scenario approaches that can capture evolving risk
transmission paths and the impact of information
shocks(Lim, 2016; Bank of Japan, 2024).

To address these challenges, we develop a
graph neural network (GNN)-based framework for
large-scale financial anomaly detection and multi-
scenario stress testing. Our method features: (1)
scalable processing of financial graphs with over
80,000 nodes and 350,000 records via sparse ma-
trix and memory optimization; (2) a dual-weighting
mechanism combining dynamic class weights and
improved Focal Loss to tackle severe class imbal-
ance; (3) an adaptive threshold selection algorithm
to optimize precision-recall trade-offs; and (4) a
scenario design covering baseline, feature noise,
graph structure change, and fake news propagation,
enabling systematic evaluation of network vulnera-
bility and resilience.

We fuse multi-source data (structured financials,
sentiment, regulatory records) and employ PCA for
efficient feature engineering, retaining over 91% of
information. Comparative experiments on pre- and
post-pandemic data (2019 vs. 2022) show that post-
pandemic financial networks exhibit much higher
sensitivity to structural and information shocks
(AUC-PR drops of -9.4% and -3.9%, respectively),
indicating a shift in risk sources from data quality to
network connectivity and information flow. These
findings suggest the need for enhanced monitoring
of network structure and information propagation
in financial regulation.

Our contributions are threefold: (1) a scalable
GNN-based anomaly detection and stress testing
framework for large financial networks; (2) method-
ological innovations in class imbalance handling
and scenario-based evaluation; (3) empirical evi-
dence of evolving risk characteristics in financial
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systems under systemic shocks. Model capacity’s
impact on performance is summarized in Appendix
Table A.4. The proposed approach offers both tech-
nical solutions and policy insights for improving
financial system resilience.

2 Related Work

In recent years, literature on stress testing has
evolved toward integrating agent-based modeling
(ABM) and graph neural networks (GNNs) to
address complex systemic risks. For example,
Samimi et al. (2024) demonstrated how Agent-
Based Modeling (ABM) can simulate autonomous
agent behaviors and interactions to enhance system
safety and risk management, while Bernárdez et al.
(2023) proposed MAGNNETO, a distributed GNN-
multi-agent framework for traffic engineering opti-
mization. These studies highlight the potential of
hybrid models that combine agent autonomy with
graph-based structure learning.

2.1 Classical Theory and Basic Definitions

Pritsker (2011) is an important representative fig-
ure in stress testing theory construction. His pro-
posed "Enhanced Stress Testing" framework em-
phasizes a risk exposure-driven system modeling
approach, distinct from traditional linear models
that rely solely on macroeconomic variable shocks.
His research particularly proposed the concept of
"Trust Set," which involves constructing a set of
reasonable but non-unique scenarios to conduct
multi-dimensional shock resistance assessments of
institutions under highly uncertain environments,
enhancing the robustness of testing.

2.2 U.S. Stress Testing System Experience

The Federal Reserve System has established a
comprehensive modeling framework encompassing
modules for loan and trading losses, net income,
and capital adequacy. This approach emphasizes
scenario design based on historically extreme but
plausible events, data-driven modeling, and institu-
tional independence, while employing unified tools
to assess multi-institutional responses and balanc-
ing regulatory transparency with market stability
(Federal Reserve System, 2024). Furthermore, reg-
ulatory provisions “Rules and Regulations (6651–
6664)” (Federal Register, 2023) highlight public
participation, model updates, and risk evolution,
underscoring the normative and progressive fea-
tures of the U.S. system.

2.3 Comparison of EU and UK Approaches

The European Banking Authority’s "2025 EU-wide
Stress Test Methodological Note" advocates incor-
porating structural shocks, such as climate change,
into stress testing and emphasizes consistent cross-
national assessment (European Banking Authority,
2024). The earlier "2016 FAQ document" estab-
lished procedures for identifying capital adequacy,
risk concentration, and contagion paths, laying the
foundation for institutionalized stress testing (Eu-
ropean Banking Authority, 2016).

The Bank of England, in its "2022 Annual Cycli-
cal Scenario (ACS) Elements Description," high-
lights the evaluation of structural and non-linear
risks through multi-path carbon policy simulations
and adaptive balance sheet assessments, exempli-
fying climate stress testing practices (Bank of Eng-
land, 2022).

2.4 Emerging Explorations in Asia

The Monetary Authority of Singapore has ex-
panded stress testing to include technological
risks such as AI model errors and cyber attacks,
demonstrating forward-looking regulatory aware-
ness (Lim, 2016). The Bank of Japan’s 2024 "Fi-
nancial System Report" analyzes the long-term ef-
fects of population aging on the financial system,
highlighting structural risks to bank capital ade-
quacy and adaptation strategies for financial insti-
tutions (Bank of Japan, 2024).

2.5 Other Methodological Extensions

At the investment management level, Ruban and
Melas (2010) proposed using multi-factor risk mod-
els to conduct stress assessments of investment
portfolios, emphasizing risk factor linkage mech-
anisms and the adaptability of micro-asset alloca-
tion, which is an important complementary path
for micro-financial stress testing (Ruban and Melas,
2010).

Ok and Eniola (2025) proposed a deep learning-
based scenario reasoning method in their research,
using unstructured data to enhance the model’s sen-
sitivity and response capability to emerging risks,
demonstrating the potential of AI tools in cross-
variable modeling and data dimension adaptation
(Ok and Eniola, 2025).

In the field of graph neural networks and finan-
cial risk detection, Weber et al. (2019)first applied
GCN to financial network analysis, demonstrating
the effectiveness of graph structure information in

2



capturing financial anomalies, although their re-
search was limited to small-scale data. Thilaga-
vathi et al. (2024) proposed a framework combin-
ing graph neural networks and anomaly detection
techniques for financial fraud detection, achiev-
ing a 95% detection rate on highly imbalanced
credit card fraud datasets, but mainly focused on
credit card transactions without extension to more
complex financial network structures. Balmaseda
et al. (2023) explored the application of deep graph
learning in predicting systemic risks in financial
systems, emphasizing the importance of machine
learning in analyzing large financial networks, but
traditional techniques still have limitations in han-
dling complex relationships. While these studies
have advanced the application of graph neural net-
works in the financial domain, they still showed
obvious deficiencies in processing large-scale data,
solving extreme class imbalance, and constructing
multi-scenario stress testing frameworks.

Finally, in the field of behavioral finance and
psychology, Ward et al. (2021) discussed behav-
ioral response mechanisms under system shocks in
their chapter, emphasizing the important influence
of institutional resilience and psychological coping
abilities on stress test assessment results, providing
an important literature foundation for expanding
the social dimension of stress testing.

3 Methodology

3.1 Overall Research Framework

This research proposes a large-scale financial
anomaly detection and stress testing framework
based on graph neural networks, mainly divided
into two core tasks: 1) large-scale financial
graph anomaly detection; and 2) multi-year, multi-
scenario financial system stress testing. The overall
framework proceeds in three stages: data process-
ing, model construction, and result evaluation.

The research framework first preprocesses the
original financial data, including data cleaning, fea-
ture engineering, and graph structure construction,
then designs corresponding graph neural network
models and optimization strategies for the two main
tasks, and finally evaluates model performance
through comprehensive evaluation metrics.

The two core tasks have different focuses: Task 1
focuses on the micro-level identification of anoma-
lous entities, addressing challenges such as large-
scale financial graph data processing, extreme class
imbalance, and recall improvement; Task 2 takes a

macroprudential perspective, evaluating the vulner-
ability and resilience of financial networks in dif-
ferent periods through the construction of a multi-
scenario stress testing framework.

3.2 Data Preprocessing and Feature
Engineering

3.2.1 Data Cleaning

Original financial data typically contains noise,
missing values, and outliers that require cleaning.
In this study, missing values (NaN), positive infin-
ity, and negative infinity were replaced with 0.0
to ensure data completeness. Outliers were han-
dled by standardizing all features to have a mean
of 0 and variance of 1, reducing their influence and
making features comparable.

3.2.2 Feature Engineering

This study used two main feature dimensionality
reduction methods:

Principal Component Analysis (PCA):
Through linear transformation, the original
high-dimensional features (28 dimensions) were
reduced to 15 dimensions while retaining approxi-
mately 91.37% of the information. PCA preserves
the principal components that maximize data
variance, helping to reduce feature redundancy and
improve computational efficiency.

Nonlinear kernel dimensionality reduction
(Nyström method): This method first uses the
Nyström algorithm to approximate the RBF kernel
function mapping to high-dimensional space and
then applies PCA dimensionality reduction, which
can better capture nonlinear relationships between
features. This method effectively reduced computa-
tional complexity while maintaining approximately
85.59% of the original information.

A comparison of the two methods found that
linear PCA not only retained a higher proportion
of data variance but also had high computational
efficiency and strong interpretability of principal
components, so PCA dimensionality reduction was
mainly used in subsequent experiments.

3.2.3 Graph Structure Construction

This study constructed graph structure networks
through common behaviors between users (such
as following the same stocks). Specifically, if two
users followed the same stock, a connection rela-
tionship was established between them. This con-
struction method is based on the assumption that
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users who follow the same stocks may have similar
behavioral patterns or risk characteristics.

The adjacency matrix was stored in sparse matrix
format, with each non-zero element representing
a connection between two user nodes. For large-
scale datasets (such as Task 1’s 350,000 records),
this sparse representation method greatly reduced
storage and computational overhead.

3.3 Task 1: Large-Scale Financial Graph
Anomaly Detection Method

3.3.1 Supervised Graph Neural Network
Model

The supervised graph neural network model de-
signed in this study mainly includes three layers of
graph convolutional networks (GCN), with Lay-
erNorm standardization between layers, supple-
mented by residual connections and multi-layer
classifiers.

The mathematical representation of the graph
convolutional layer is:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

Where Ã = A+IN is the adjacency matrix with
self-loops added, D̃ is the corresponding degree
matrix, H(l) is the node feature matrix of the l-th
layer, W (l) is the learnable weight matrix, and σ is
the nonlinear activation function (ReLU is used in
this study).

The main features of the model include:
Three-layer graph convolutional network cap-
turing high-order graph structure information
through multiple layers of convolution, with ad-
justable output dimensions for each layer (such as
64/96/128/192); Residual connection directly con-
necting the output of the first layer to the output of
the third layer, in the form: H(3) = H(3) +H(1),
which helps alleviate training difficulties in deep
networks and promotes gradient flow; LayerNorm
instead of BatchNorm used for standardization
after each graph convolutional layer, in the form:

LayerNorm(x) = γ
x− µ√
σ2 + ϵ

+ β (2)

where µ and σ are the mean and standard deviation
along the feature dimension, and γ and β are learn-
able parameters; and Multi-layer classifier using
a two-layer fully connected network, with the first
layer having the hidden dimension and using ReLU
activation, and the second layer outputting a single
scalar value representing the probability of a node
being anomalous.

3.3.2 Imbalanced Sample Handling
To address the severe class imbalance problem in
financial anomaly detection (abnormal samples ac-
counting for only 5.29%), this study adopted two
main strategies:

Class weighting: Sample weights are dynami-
cally calculated based on the ratio of positive to neg-
ative samples, using weightpos = balance_ratio ×
nneg
npos

and weightneg = 1.0, where balance_ratio is
an adjustable parameter. In Task 1’s dataset, the
positive sample weight was approximately 4.88
times that of the negative samples.

Improved Focal Loss: Assigning higher loss
weights to hard-to-classify samples (especially mi-
nority classes), with the formula:

FL(pt) = −αt(1− pt)
γ log(pt) (3)

Where pt is the predicted probability of a sample
belonging to its true class, αt is the class weight
(set to 0.75 in this study, giving more attention to
anomalous samples), and γ is a modulation param-
eter (set to 2.0), controlling the rate at which the
weight of easily classified samples decreases.

This dual-weighting mechanism made the model
pay more attention to minority class samples dur-
ing the training process, effectively enhancing the
ability to identify anomalous samples.

3.3.3 Large-Scale Graph Data Memory
Optimization

To process large-scale financial graph data con-
taining hundreds of thousands of nodes, we im-
plemented several memory optimization strategies.
These include sparse adjacency matrix represen-
tation, adjacency matrix normalization, regular
garbage collection, and full graph training rather
than batch training. This approach enabled process-
ing graphs with over 80,000 nodes within reason-
able memory constraints. Further details on these
optimization techniques are provided in Appendix
A.4.

3.3.4 Optimal Threshold Selection Method
To achieve the best classification effect on imbal-
anced datasets, this study implemented an auto-
matic threshold selection algorithm. This method
finds the best decision threshold based on perfor-
mance on the validation set, rather than using the
default 0.5.

For threshold selection based on the F1 score,
the algorithm calculates precision and recall under
different thresholds, calculates the corresponding
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F1 score, and selects the threshold that maximizes
the F1 score. For threshold selection based on
the G-Mean, the algorithm calculates recall and
specificity under different thresholds, calculates the
corresponding G-Mean, and selects the threshold
that maximizes the G-Mean.

In financial anomaly detection scenarios, this
adaptive threshold method can better balance pre-
cision and recall, significantly improving the prac-
tical utility of the model.

3.4 Task 2: Multi-Year Multi-Scenario Stress
Testing Method

3.4.1 Enhanced Graph Neural Network
Model

Task 2 added two specially designed components
to the basic model of Task 1 to enhance the model’s
adaptability to different stress scenarios:

Attention mechanism: Introducing attention
weights for each node’s features, allowing the
model to automatically focus on the most impor-
tant feature dimensions. The attention calculation
process is as follows:

ai = σ(W2 · ReLU(W1 · hi)) (4)

h′i = hi ⊙ ai (5)

where hi is the feature vector of node i, W1 and
W2 are learnable weight matrices, σ is the sigmoid
activation function, and ⊙ represents element-wise
multiplication.

Fake news filter: A special gating mechanism
that learns to suppress features that may be noise
or anomalies. The filtering process is:

gi = σ(W4 · ReLU(W3 · hi)) (6)

h′′i = h′i ⊙ gi (7)

where gi is the filter gate value, and W3 and W4

are learnable weight matrices.
These two components used in combination en-

able the model to focus on the most relevant fea-
tures and nodes through the attention mechanism
and learn to suppress features that may be noise or
anomalies through the fake news filter, enhancing
the model’s adaptability to stress scenarios.

3.4.2 Multi-Scenario Stress Testing
Framework

This study’s stress testing framework draws on
the mainstream scenario planning pipeline concept.

Specifically, external shocks (such as the COVID-
19 pandemic) first transmit through the global fi-
nancial market to the local financial system, then
affect market entities and their responses to fake
news, forming a closed loop of forward and reverse
risk transmission. This study designed four typ-

Figure 1: Stress testing scenario planning pipeline. Ex-
ternal shocks (e.g., COVID-19) transmit through global
financial markets to the local financial system, impact-
ing market entities (e.g., stock market, firms, and re-
sponses to fake news), with feedback loops illustrating
forward and backward risk transmission.

ical stress test scenarios to systematically assess
the vulnerability and resilience of the financial sys-
tem: (1) Baseline scenario: No external interfer-
ence, serving as a reference standard; (2) Feature
noise scenario: Simulating data quality decline
or market fluctuations by adding random Gaussian
noise with intensity 0.1 to the original features; (3)
Graph structure change scenario: Simulating
financial network connection breakage or institu-
tion collapse by randomly removing 20% of the
edges; and (4) Fake news propagation scenario:
Simulating market panic or rumor spread, triggered
from a small number of initial nodes (about 1%),
with propagation probability 0.7, influence inten-
sity 0.3, simulating the information diffusion pro-
cess through the network structure.

Additional details on the fake news propagation
simulation and temporal comparison analysis meth-
ods are provided in Appendix A.5.

3.4.3 Rationale and Justification for Stress
Test Scenario Parameters

The selection of appropriate parameters is funda-
mental to the validity of the stress-testing frame-
work. This section, therefore, provides a detailed
justification for the key parameters (feature noise
intensity, edge removal rate, and fake news prop-
agation parameters) used in our stress tests. All
parameters are chosen to simulate "severe but plau-
sible" conditions, a core principle in financial sta-
bility assessment and regulatory stress testing (BPI
Staff). Our choices are informed by academic liter-
ature, industry practice, and the specific objectives
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of each scenario.

1. Feature Noise Scenario: Noise Intensity = 0.1
We introduce Gaussian noise with an intensity of
0.1 to the node feature vectors. This choice is
motivated by two primary considerations:

• Simulating moderate data quality issues and
market volatility: Real-world financial data
is subject to noise from reporting delays,
measurement errors, or short-term irrational
sentiment. An intensity of 0.1 represents a
moderate disturbance, not catastrophic data
corruption, and serves to test the model’s
robustness against common data imperfec-
tions. Robustness—the ability to maintain
performance under common corruptions or
perturbations—is a key aspect of real-world
reliability (Hendrycks and Dietterich, 2019).

• Data augmentation and regularization:
Adding small amounts of noise is a standard
data augmentation technique in machine
learning that helps prevent overfitting and
improve generalization (Goodfellow et al.,
2016). Our experiments indicate that at this
noise level, model performance can even
slightly improve, which is consistent with a
regularizing effect.

2. Graph Structure Change Scenario: Edge Re-
moval Rate = 20% We randomly remove 20% of
network edges to simulate severe liquidity shocks
or a partial breakdown in inter-institutional rela-
tionships. This rate is justified as follows:

• Simulating "severe but not systemic collapse"
shocks: In financial network analysis, edge or
node removal is a standard method for mod-
eling counterparty risk and contagion (Nier
et al., 2007; Gai and Kapadia, 2010). Remov-
ing 20% of edges is sufficient to trigger sig-
nificant cascades without causing an instanta-
neous collapse of the entire network, allowing
us to observe the process of risk propagation.

• Empirical evidence from literature: Precedent
for this threshold exists in the literature. For
instance, Alexandre et al. (2024) found that at
least 18% of edges in the Brazilian financial
network are "critical," meaning their removal
significantly increases systemic risk. Our 20%
setting aligns closely with this empirically de-
rived threshold, representing a scenario that
robustly tests network fragility.

3. Fake News Propagation Scenario: Propaga-
tion Probability = 0.7 and Influence Intensity =
0.3 This scenario simulates information shocks,
with parameters inspired by information diffusion
and epidemiological models (e.g., the SIR model)
(Jackson et al., 2008).

• Propagation probability = 0.7: A high value
is chosen to reflect the viral potential of sen-
sational (especially negative) fake financial
news in today’s highly connected digital envi-
ronment. It simulates a "worst-case" speed for
information contagion, a concept consistent
with the literature on information cascades
(Acemoglu et al., 2010)a.

• Influence intensity = 0.3: This parameter de-
fines the magnitude of the feature perturbation
for an affected node. A value of 0.3 ensures
the shock significantly alters the market’s per-
ception of an entity without rendering it an
unrealistic outlier. This aligns with empirical
studies showing that fake news can meaning-
fully affect asset prices, volatility, and trading
volumes (Kogan et al., 2018).

In summary, our parameter selections adhere
to the "severe but plausible" principle, are sup-
ported by established theory and empirical find-
ings, and are tailored to the objectives of each sce-
nario. While not calibrated by a single, overarching
macroeconomic model, they provide a reasonable
and well-founded baseline for the systematic stress
testing of financial network vulnerability.

4 Experiments and Results Analysis

4.1 Dataset Design and Experimental Setup

The stress testing data system constructed in this
study integrates structured financial data, unstruc-
tured sentiment information, and regulatory penalty
records, aiming to capture the multi-dimensional
response mechanisms of the financial system under
complex shocks. To simulate systemic shocks, we
selected 2019 (pre-pandemic baseline) and 2022
(late pandemic) as key time points, reflecting the
dynamic paths and feedback characteristics of risk
transmission through comparison.

To break through the limitations of traditional
financial statements and macroeconomic variables,
this study introduced weakly structured data such
as investor Q&A platforms, enhancing the abil-
ity to identify early risk signals, and uniformly
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adopted year-on-year growth rate forms to enhance
learnability. Overall, we collected and processed
enterprise-related data covering four key years
from 2019 to 2022, including financial statement
indicators, text features, and network structure in-
formation.

Specifically, Task 1 (Anomaly Detection) mainly
utilized the integrated large-scale financial graph
data (approximately 350,000 records), focusing on
identifying potential anomalous entities from a mi-
cro perspective, while Task 2 (Stress Testing) fo-
cused on 2019 and 2022 as representative years
before and after the pandemic shock for in-depth
comparative analysis, examining the evolution of
financial network vulnerability and resilience by
simulating different stress scenarios.

Detailed dataset statistical features and process-
ing methods can be found in Appendix A.1.

We used a comprehensive set of evaluation met-
rics including AUC-ROC, AUC-PR, Accuracy, Pre-
cision, Recall, F1 score, and G-Mean to evaluate
model performance. Details on experimental pa-
rameters and evaluation metrics are provided in
Appendix A.2.

4.2 Task 1: Large-Scale Financial Graph
Anomaly Detection Results

4.2.1 Experiment Overview
This task focuses on large-scale financial anomaly
detection, exploring the effectiveness of using
graph neural networks for anomaly detection on fi-
nancial data. The experiments employed the graph
neural network model designed in Section 3.3.1
and addressed the extreme class imbalance problem
through the imbalanced sample handling strategies
proposed in Section 3.3.2.

The task primarily addresses three major chal-
lenges: (1) large-scale graph data processing; (2)
extreme class imbalance; and (3) recall improve-
ment in financial risk control scenarios.

4.2.2 Key Results
We compared performance under different meth-
ods, data scales, and model configurations. Results
showed that as the hidden dimension increased,
AUC improved from 0.6214 to 0.7441, with corre-
sponding increases in training time. Compared to
unsupervised methods, supervised GCN performed
better on large-scale datasets.

Our optimized model with class imbalance han-
dling strategies and adaptive threshold selection

Figure 2: AUC and Training Time vs. Hidden Dimen-
sion of GCN. This figure illustrates the relationship
between model capacity and both performance and com-
putational cost. As the hidden dimension increases from
64 to 192, the AUC value steadily improves, reaching a
maximum of 0.7441, representing an improvement of
nearly 20%.

showed significant improvements over the baseline
model:

The most notable improvement was in recall,
which increased from 0.0350 to 0.5938 (nearly 17
times), significantly reducing high-cost false neg-
atives in financial risk scenarios. The comprehen-
sive F1 score improved by 7.5 times, and G-Mean
improved by 3.87 times, demonstrating the effec-
tiveness of our optimization strategies. Further
detailed findings and analysis are provided in Ap-
pendix A.4.

4.3 Task 2: Multi-Year, Multi-Scenario Stress
Testing Results

4.3.1 Experiment Overview

This task aimed to construct a multi-dimensional
financial system stress testing framework, eval-
uating the vulnerability and resilience of finan-
cial networks by analyzing model performance on
data from 2019 (pre-pandemic) and 2022 (post-
pandemic) under various stress scenarios.

This experiment employed the four stress sce-
narios defined in Section 3.4.2: baseline scenario,
feature noise scenario (noise intensity 0.1), graph
structure change scenario (randomly removing 20%
of edges), and fake news propagation scenario (1%
initial nodes, 0.7 propagation probability, 0.3 influ-
ence intensity).

To handle the significant difference in class pro-
portions between different years’ data (7.32% in
2019, 3.15% in 2022), we employed the adaptive
sample weight balancing mechanism described in
Section 3.3.2.
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Evaluation Metric Baseline Model Optimized Model Improvement
AUC-ROC 0.7689± 0.0332 0.8127± 0.0222 +5.7%
AUC-PR 0.4507± 0.0615 0.5306± 0.0523 +17.7%

Recall 0.0350± 0.0152 0.5938± 0.0261 +1597.1%
F1 score 0.0667± 0.0276 0.5027± 0.0293 +653.7%
G-Mean 0.1827± 0.0392 0.7062± 0.0137 +286.6%

Table 1: Performance comparison between baseline and optimized models

Year baseline feature_noise graph_structure fake_news
2019 0.6799 0.6964 0.6716 0.6745
2022 0.7264 0.7559 0.6577 0.6981

Table 2: AUC-PR under different scenarios and years

Figure 3: Model Performance Metrics Under Different
Scenarios and Years. This figure shows the performance
of AUC-PR, F1 score, recall, and precision on 2019
(pre-pandemic) and 2022 (post-pandemic) data under
four stress scenarios.

4.3.2 Key Results

4.4 Comprehensive Findings and Analysis

4.4.1 Task 1: Large-Scale Financial Graph
Anomaly Detection Insights

Our analysis of large-scale financial graph anomaly
detection revealed several important insights:

1. Model Capacity and Performance Relation-
ship: As demonstrated in Figure 2 and detailed in
Appendix A.4, we observed a clear positive corre-
lation between model capacity (hidden dimension
size) and detection performance. Increasing hid-
den dimensions from 64 to 192 improved AUC by
nearly 20% (from 0.6214 to 0.7441), though with
corresponding increases in computational cost.

2. Class Imbalance Handling Effectiveness: The
dual-weighting mechanism combining dynamic
class weights and improved Focal Loss proved
highly effective. Positive sample weights (approx-
imately 4.88 times that of negative samples) sig-
nificantly improved the detection of minority class
instances while maintaining acceptable precision
levels. The most dramatic improvement was in re-
call, increasing from 0.0350 to 0.5938 (nearly 17
times), which is critical in financial risk scenarios

where false negatives carry high costs.
3. Scale Challenges and Solutions: Process-

ing financial networks with over 80,000 nodes and
350,000 records required several technical innova-
tions. Our sparse matrix representation and mem-
ory optimization techniques allowed efficient com-
putation while preserving structural information.
Comparison between small (1,000 nodes), medium
(10,000 nodes), and large-scale (350,000 nodes)
datasets revealed that while performance was best
on medium-scale data (AUC > 0.90), our opti-
mizations enabled respectable performance (AUC
> 0.74) even at large scales.

4. Precision-Recall Trade-offs: The adaptive
threshold selection method effectively balanced
precision and recall, optimizing F1 scores based
on validation set performance. While precision de-
creased from 0.8867 to 0.4392, the corresponding
recall gains led to F1 score improvements of 7.5
times and G-Mean improvements of 3.87 times,
demonstrating a favorable overall trade-off for fi-
nancial risk applications.

4.4.2 Task 2: Multi-Scenario Stress Testing
Findings

Our stress testing experiments across different sce-
narios revealed critical patterns in financial network
vulnerability:

1. Temporal Evolution of Risk Characteristics:
In the baseline scenario, the 2022 model generally
outperformed the 2019 model, with a notable 9.14
percentage point increase in recall (15.7% relative
improvement). This suggests that post-pandemic
financial market risk characteristics became more
prominent and possibly easier to detect.

2. Feature Noise Resilience: - 2019 data: AUC-
PR increased from 0.6799 to 0.6964 (+2.4%) -
2022 data: AUC-PR increased from 0.7264 to
0.7559 (+4.1%)

Both pre-and post-pandemic networks showed
unexpected resilience to feature noise, with slight
performance improvements potentially due to noise
acting as a form of data augmentation that en-
hanced model generalization.
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3. Structural Vulnerability Shift: - 2019 data:
AUC-PR decreased from 0.6799 to 0.6716 (-1.2%)
- 2022 data: AUC-PR decreased from 0.7264 to
0.6577 (-9.4%)

This dramatic difference reveals a substantial
increase in post-pandemic financial network struc-
tural vulnerability. The 2022 network’s sensitivity
to structural changes was nearly 8 times higher
than that of 2019, suggesting that post-pandemic
financial interconnections became more critical to
system stability.

4. Information Propagation Sensitivity: - 2019
data: AUC-PR decreased from 0.6799 to 0.6745 (-
0.8%) - 2022 data: AUC-PR decreased from 0.7264
to 0.6981 (-3.9%)

The 2022 data’s sensitivity to fake news was
nearly 5 times that of 2019, indicating strengthened
information conduction effects in post-pandemic
networks. As detailed in Appendix A.5, our prop-
agation path analysis showed that information
spread more rapidly in the 2019 network (93.7%
coverage in first round) but more persistently in the
2022 network (requiring three rounds for complete
propagation).

5. Risk Source Evolution: Perhaps most sig-
nificantly, we observed a clear shift in sensitivity
rankings: - 2019: feature noise > graph structure
> fake news - 2022: graph structure > fake news >
feature noise

This evolution reveals a fundamental change in
financial system risk characteristics: before the
pandemic, the system was more sensitive to data
quality issues; after the pandemic, sensitivity to
network structure and information propagation sig-
nificantly increased, suggesting a shift toward more
connectivity-dependent and information-sensitive
financial networks.While this study analyzes these
scenarios independently to isolate their effects, we
acknowledge that real-world risks are often con-
current and can produce synergistic effects, high-
lighting a critical direction for future research on
compound shocks.

These findings collectively demonstrate how
system-wide shocks like the pandemic can funda-
mentally alter not just the magnitude but the nature
of financial vulnerabilities, with critical implica-
tions for regulatory focus and risk management
strategies.

5 Conclusion

This research proposes a large-scale financial
anomaly detection and stress testing framework
based on graph neural networks, achieving a com-
prehensive assessment of financial risks through
two core tasks. The main contributions can be sum-
marized as follows:

First, for the large-scale financial graph anomaly
detection task, we processed a financial dataset con-
taining 350,000 records and over 80,000 user nodes
through feature dimensionality reduction, sparse
matrix representation, and memory optimization
techniques. The improved Focal Loss and dynamic
class weight mechanism effectively solved the se-
vere class imbalance problem, improving model
recall by nearly 17 times and F1 score by 7 times.

Second, in the multi-year multi-scenario stress
testing task, we constructed a comprehensive as-
sessment framework including baseline, feature
noise, graph structure change, and fake news prop-
agation scenarios. Experimental results showed
that post-pandemic financial system sensitivity to
network structure changes and information prop-
agation significantly increased (by nearly 8 times
and 5 times), reflecting a structural shift in risk
sources from data quality to network connections
and information propagation.

Third, at the methodological level, this research
achieved multi-modal risk signal capture by inte-
grating structured and unstructured information, re-
vealed the long-term impact of systemic shocks
through temporal dimension comparisons, and
achieved a systematic assessment of financial sys-
tem vulnerabilities through a multi-dimensional
stress testing framework.

The research results have important implications
for financial regulation and risk management: mon-
itoring of network structure vulnerabilities should
be strengthened; information propagation risks
should be emphasized; financial institutions should
dynamically adjust risk assessment parameters; and
cross-cycle risk management frameworks should
be established.

This research not only provides a technical solu-
tion through large-scale financial network anomaly
detection and multi-scenario stress testing but also
reveals the evolution patterns of financial system
risk characteristics, providing theoretical and prac-
tical support for enhancing the resilience and stabil-
ity of the financial system in facing future systemic
shocks.
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6 Limitations

Despite achieving a series of advances in large-
scale financial anomaly detection and stress testing,
this research still has the following limitations:

Data Representativeness Limitations: Al-
though we collected data from 2019 to 2022, our
in-depth stress testing analysis primarily focused
on two-time points: 2019 (pre-pandemic) and 2022
(post-pandemic), lacking detailed characterization
of the dynamic evolution process during the pan-
demic (2020-2021). For detailed discussions on
the regional representativeness and universality of
the data, please refer to Appendix A.3.

Model Simplification Limitations: To process
large-scale graph data, we made certain simpli-
fications to the model structure. Although the
three-layer GCN structure performed well in exper-
iments, it may not capture more complex higher-
order graph structure information. Additionally,
the fake news propagation model is relatively sim-
plified.

Stress Scenario Design Limitations: The dis-
turbance intensity settings for each scenario were
mainly based on empirical judgment and literature
references, lacking a strict theoretical derivation
or market calibration. Furthermore, the four stress
scenarios we simulated cannot cover all risk types
that financial systems may face.

Causal Inference Limitations: This research
observed changes in financial network risk charac-
teristics before and after the pandemic but found it
difficult to strictly distinguish which changes were
directly caused by the pandemic and which were
caused by other contemporaneous factors.

Computational Resource Limitations: Despite
implementing multiple memory optimization strate-
gies, processing financial networks with millions
or more nodes still faces significant computational
resource challenges.

Interpretability Limitations: The "black box"
nature of graph neural network models makes it dif-
ficult to provide completely transparent risk identi-
fication bases to regulators and decision-makers.

We recognize the impact of these limitations on
research conclusions and will address them in fu-
ture work by expanding dataset coverage, improv-
ing model architecture, optimizing stress scenario
design, strengthening causal inference methods,
and enhancing model interpretability.
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A Appendix

A.1 Detailed Dataset Description
A.1.1 Data Processing Strategies
To adapt to machine learning’s need for high-
frequency data, this research adopted the following
strategies:

Financial statement high-frequency conver-
sion: Annual reports were split by quarterly nodes
(01-01, 03-31, 06-30, 09-30, 12-31), and quarter-
on-quarter growth rates were calculated: ηi,t =

xi,t−xi,t−1

xi,t−1
× 100% where xi,t is the value of the

i-th financial indicator in quarter t.
Stock price data filling: Daily stock price data

was introduced to construct daily year-on-year P/E
indicators, filled based on opening price, closing
price, highest price, and lowest price.

P/E year-on-year indicator construction: Cal-
culated quarter-on-quarter growth rates of P/E for
each company, enhancing the continuity and dy-
namic response capability of market dimension
data.

Weakly structured data integration: To over-
come the limitations of excessive reliance on struc-
tured financial statements and macroeconomic vari-
ables in traditional stress testing, this study intro-
duced market feedback information from investor
Q&A platforms, providing sentiment signals and
market expectation deviations, helping to identify
potential risks earlier.

Data expression form optimization: Converted
some key indicators into year-on-year growth rate
form, avoiding the problem of models being overly
sensitive to the original numerical scale, while en-
hancing the learnability and generalization ability
of data in the modeling process.

These data processing strategies collectively
formed a multi-dimensional, multi-frequency finan-
cial data system, providing high-quality input for
subsequent graph structure construction and model
training.

A.1.2 Regulatory Data and Label Design
This study introduced listed company irregularity
disclosure data, establishing a dual-layer label sys-
tem to serve different modeling stages:

Sparse anomaly detection labels (suitable for
unsupervised learning): Label 0: No violation;
Label 1: Involving fake news behaviors such as
"false records," "delayed disclosure," "stock price
manipulation," "fabricated profits," etc.; Label 2:
Other non-fake news violations.

Supervised learning labels (suitable for model
training): Label 0: No violation; Label 1: Has
violation records (regardless of type).

This dual-labeling system balanced the preci-
sion of anomaly detection and the generalization
needs of supervised learning, achieving the transi-
tion from unsupervised to supervised learning.

A.1.3 Task 1: Anomaly Detection Dataset
Task 1 used financial datasets from the Shenzhen
Stock Exchange Interactive Platform and Shanghai
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Stock Exchange E-Interaction. After preprocessing
and feature engineering, the dataset features are as
follows:

Dataset Size: 351,000 records; Number of
Nodes: 81,434 independent user nodes; Anoma-
lous Sample Percentage: 5.29%; Relationship
Network Construction Method: Based on com-
mon attention relationships of stock codes; Adja-
cency Matrix Sparsity: 0.000037924.

Feature Description: Includes 2 text features
and 26 financial indicators, covering dimensions
such as profitability, cost, expenses, assets and lia-
bilities owners’ equity, cash flow, etc.

A.1.4 Task 2: Multi-Year Stress Testing
Dataset

Task 2 selected data from 2019 (pre-pandemic) and
2022 (post-pandemic) as representative time points
for in-depth analysis:

2019 Dataset Features: Original Data Vol-
ume: 239,595 records; Number of User Nodes:
2,253; Anomalous Sample Percentage: 7.32% (165
anomalous samples).

2022 Dataset Features: Original Data Vol-
ume: 358,667 records; Number of User Nodes:
3,679; Anomalous Sample Percentage: 3.15% (116
anomalous samples).

A.2 Experimental Parameter Settings and
Evaluation Metrics

In terms of feature engineering, as mentioned in
Section 3.2.2, this study mainly used PCA for di-
mensionality reduction. In actual experiments, we
reduced the original 28-dimensional features to 15
dimensions, retaining approximately 91.37% of the
information, ensuring both information complete-
ness and significantly improving computational ef-
ficiency.

This study used the following evaluation met-
rics to comprehensively assess model perfor-
mance: AUC-ROC measuring the model’s over-
all discrimination ability under all possible clas-
sification thresholds; AUC-PR better reflecting
the model’s identification performance for mi-
nority classes in imbalanced datasets; Accu-
racy (Accuracy = TP+TN

TP+TN+FP+FN ); Preci-
sion (Precision = TP

TP+FP ); Recall (Recall =
TP

TP+FN ); F1 score (F1 = 2× Precision×Recall
Precision+Recall ); and

G-Mean (G-Mean =
√

Recall × Specificity).
The selection of these metrics aims to compre-

hensively cover the model’s predictive ability for
both overall and specific categories, with particular

attention to recall and handling of imbalanced data,
which are crucial in financial risk control scenarios.

A.3 Regional Characteristics and Regulatory
Environment Analysis of Research Data

A.3.1 Uniqueness of China’s Financial
Regulatory Environment

China’s financial regulatory system exhibits dis-
tinct uniqueness, primarily reflected in the follow-
ing aspects:

1. Multi-tiered regulatory framework: China
implements a "one bank, two commissions,
one bureau" regulatory system (People’s Bank
of China, China Banking and Insurance Regu-
latory Commission, China Securities Regula-
tory Commission, and State Administration of
Foreign Exchange), forming comprehensive
and multi-level supervision of financial insti-
tutions. Compared with the functional regula-
tion in the U.S. and the twin-peaks regulation
in the U.K., China’s regulatory framework is
more complex, imposing stricter compliance
requirements on financial institutions.

2. Stringent information disclosure require-
ments: China has extremely strict information
disclosure rules for listed companies and fi-
nancial institutions. Especially after the 2018
implementation of the new Securities Law, the
penalties for violations were significantly in-
creased, resulting in our dataset containing
richer case studies of violations and risk sig-
nals.

3. Frequent policy adjustments: Between 2019
and 2022, China’s financial regulatory poli-
cies underwent frequent changes, including
multiple special rectifications targeting inter-
net finance, asset management, and financial
holding companies. These provide a unique
opportunity to observe changes in financial
network structures under policy shocks.

A.3.2 Regional Diversity of the Dataset
The dataset used in this study exhibits significant
regional variations, primarily in the following as-
pects:

1. Differences across financial centers: The
dataset covers diverse financial centers such as
Beijing (policy-oriented), Shanghai (market-
oriented), and Shenzhen (innovation-driven),
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which differ significantly in financial institu-
tion types, business models, and risk charac-
teristics:

• Beijing samples: Dominated by large
state-owned banks and policy financial
institutions, with risk transmission more
influenced by policy factors.

• Shanghai samples: High concentration
of international financial institutions and
market-oriented operations, making risk
transmission more sensitive to global
market fluctuations.

• Shenzhen samples: Focus on fintech
and innovative finance, with risk char-
acteristics closely tied to innovation fail-
ures and technological risks.

• Other regions: Primarily regional finan-
cial institutions, with risks more linked
to local economic fluctuations.

2. Variations in regulatory enforcement: Reg-
ulatory intensity and approaches differ across
regions. For example, Shanghai’s supervision
of foreign financial institutions is more inter-
nationally aligned, while Shenzhen adopts a
more inclusive approach to innovative busi-
nesses. These differences are fully reflected
in the dataset.

3. Cross-regional risk transmission: The data
shows clear hierarchical patterns in risk trans-
mission between financial institutions in first-
tier and lower-tier cities, particularly evident
in the 2022 dataset.

A.3.3 Data Representativeness and Temporal
Coverage

Our dataset spans four critical years from 2019 to
2022, providing a unique natural experiment set-
ting for analyzing the impact of systemic shocks on
financial networks across three distinct phases: pre-
pandemic (2019), during-pandemic (2020–2021),
and post-pandemic (2022). While our team has ob-
tained complete access to raw data for 2023–2024
through rigorous regulatory approval processes, we
deliberately excluded these years from our analysis
for the following reasons:

Research Focus Alignment: Our study specif-
ically examines the contrast in financial network
risk characteristics before and after the pandemic.
The 2022 data, as the first complete post-pandemic
year, sufficiently captures the system’s response to

the shock. Including more recent data would dilute
the focus on the immediate impact of the pandemic.

Regulatory Framework Consistency: Major
reforms in China’s financial regulatory system were
implemented after 2023 (e.g., the establishment of
the National Financial Regulatory Administration
in 2023). These changes led to significant adjust-
ments in regulatory rules and data reporting stan-
dards, which could compromise the comparability
of data across different periods. By choosing 2022
as our endpoint, we ensure data continuity under
a consistent regulatory framework while still cap-
turing the long-term effects of the pandemic on
financial network structure and risk transmission
mechanisms.

The selected time range (2019–2022) strikes a
balance between research focus and data complete-
ness, providing a solid foundation for our conclu-
sions. While our in-depth stress testing analysis
primarily focuses on 2019 and 2022 as representa-
tive time points, the inclusion of 2020–2021 data
allows for supplementary analysis of the dynamic
evolution process during the pandemic period.

Regional Representativeness: Our dataset cov-
ers financial institutions and market participants
across major economic regions in China, including
the Yangtze River Delta, Pearl River Delta, and
Beijing-Tianjin-Hebei region. This geographical
coverage ensures that our findings reflect the di-
verse characteristics of China’s financial system
while maintaining sufficient sample size for robust
statistical analysis.

Data Universality: The financial networks an-
alyzed in this study include various types of insti-
tutions (commercial banks, securities firms, insur-
ance companies) and market participants (institu-
tional investors, retail investors, financial interme-
diaries). This comprehensive coverage enhances
the generalizability of our findings to different seg-
ments of the financial system.

A.3.4 Implications for Research
Generalizability

Based on the above analysis, the study’s findings
exhibit the following generalizable characteristics:

1. Methodological generality: The proposed
large-scale graph data processing techniques,
imbalanced sample optimization, and adaptive
threshold selection are universal solutions ap-
plicable to financial risk detection in diverse
market environments.
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2. Conditional generalizability of conclusions:
The observed temporal evolution of finan-
cial network risk characteristics—particularly
the post-pandemic increase in sensitivity to
network structure and information propaga-
tion—may apply to other markets that experi-
enced similar systemic shocks.

3. Model portability: Due to China’s strict
and complex regulatory environment, mod-
els trained on this dataset may more easily
adapt to less restrictive markets, offering a
"from-hard-to-easy" migration advantage.

In summary, while the study focuses on China’s
financial market data, its regional diversity, regu-
latory complexity, and large sample size grant the
findings methodological and cross-market appli-
cability. Future research will further validate the
model’s generalizability in other market contexts.

A.4 Task 1: Detailed Findings and Analysis

A.4.1 Impact of Model Parameters on
Performance (350,000 Node Dataset)

A.4.2 Comparison of Different Methods, Data
Scales, and Model Configurations

A.4.3 Key Findings and Conclusions
Regarding data scale and model performance, on
small datasets (1,000 nodes), the model tends to
overfit, resulting in lower AUC; on medium-scale
datasets (10,000 nodes), the model performs best,
achieving AUC above 0.90; on large-scale datasets
(350,000 nodes), more complex models and com-
putational resources are required.

The importance of model capacity is clear: hid-
den dimension (hidden_dim) is the most influential
factor for performance, with an increase from 64
to 192 improving AUC by 19.75%; training epochs
are also important, with a significant improvement
from 50 to 100 epochs; and large-scale data re-
quires greater model capacity to fully learn patterns
in the data.

For feature engineering impact, as mentioned
in Section 3.2.2, PCA dimensionality reduction
improved training efficiency while preserving key
information; feature normalization was crucial for
model training, solving the problem of abnormally
large loss values; and combining PCA dimension-
ality reduction with increased model capacity al-
lowed performance on large-scale data to approach
that of small datasets.

The significant improvement in recall is notable:
through the application of class imbalance handling
strategies, the optimized model’s recall increased
from 0.0350 to 0.5938, an improvement of nearly
17 times; the number of actually detected anoma-
lous samples increased from 258 in the baseline
model to 2,662 in the optimized model (using Fold
3 as an example); and this improvement is crucial
in financial risk control scenarios, significantly re-
ducing high-cost false negatives.

Regarding the trade-off between precision and
recall, although precision decreased from 0.8867
to 0.4392, in financial scenarios, the cost of false
negatives typically far exceeds that of false pos-
itives; the comprehensive F1 score improved by
7.5 times (from 0.0667 to 0.5027), and G-Mean
improved by 3.87 times (from 0.1827 to 0.7062);
and the adaptive threshold selection method effec-
tively balanced the trade-off between precision and
recall.

A.4.4 Innovations and Application
Recommendations

Our approach offers several innovations: large-
scale graph data processing capability through
memory optimization strategies; efficient feature
engineering applying PCA dimensionality reduc-
tion; class imbalance optimization by applying a
strategy combining dynamic weights and Focal
Loss; memory optimization techniques including
sparse matrix representation, LayerNorm instead
of BatchNorm, and active garbage collection; and
adaptive threshold selection that dynamically ad-
justs decision boundaries based on actual data dis-
tribution.

In practical applications, we recommend that
financial institutions adjust the balance_ratio pa-
rameter according to their specific business cost
structures to achieve the optimal balance between
precision and recall. For high-risk scenarios, this
parameter can be appropriately increased to en-
hance sensitivity to anomalous samples; for low-
risk scenarios, it can be decreased to reduce the
false positive rate.

A.5 Additional Large-Scale Graph Data
Memory Optimization Details

To process large-scale financial graph data contain-
ing hundreds of thousands of nodes effectively, we
implemented several critical memory optimization
strategies beyond those mentioned in the main text:

Gradient checkpointing: We implemented gra-
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Hidden Dim Epochs AUC Relative Improvement Training Time
64 (baseline) 50 0.6214 - 20 min/fold

96 60 0.6627 +6.65% 11 min/fold
96 100 0.6746 +8.56% 19 min/fold
128 100 0.7237 +16.46% 25 min/fold
192 100 0.7441 +19.75% 34 min/fold

Table 3: Impact of hidden dimension size and training epochs on model performance

Exp Type Scale Setting AUC
1 GADMR 405 Orig/Def 0.7860
2 GCN 1k Orig/64-60 0.4498
3 GCN 5k Orig/64-60 0.5738
4 GCN 10k Orig/64-60 0.8705
5 GCN 10k Reg/64-60 0.8933
6 GCN 10k Reg+CV/64-60 0.9035±0.0221
7 GCN 350k Norm/64-60 0.5889±0.0347
8 GCN 350k PCA+N/64-50 0.6214±0.0072
9 GCN 350k PCA+N/96-60 0.6627

10 GCN 350k PCA+N/96-100 0.6746
11 GCN 350k PCA+N/128-100 0.7237
12 GCN 350k PCA+N/192-100 0.7441

Table 4: Performance comparison of different methods, data scales, and model configurations

dient checkpointing to trade computation time for
memory savings. Instead of storing all intermediate
activations for the entire computational graph dur-
ing the forward pass, we strategically saved only
a subset of these activations and recomputed the
others during the backward pass. This technique re-
duced peak memory usage by approximately 30%
with only a 20% increase in computation time.

Mixed precision training: We employed mixed
precision training using FP16 (16-bit floating point)
representation for certain operations where full pre-
cision was not critical. This approach reduced
memory usage while maintaining numerical sta-
bility through careful management of loss scaling
to prevent underflow. This optimization reduced
memory requirements by approximately 40% for
the layer weight matrices.

Graph partitioning: For extremely large graphs
that still exceeded available memory despite other
optimizations, we implemented graph partitioning
techniques based on METIS to divide the graph
into manageable subgraphs while minimizing edge
cuts. This approach preserved most structural in-
formation while enabling the processing of graphs
that would otherwise be intractable.

Optimized sparse matrix operations: We im-
plemented specialized sparse matrix multiplication
operations that exploited the extreme sparsity in
our financial network adjacency matrices (sparsity

> 99.99%). These specialized operations reduced
memory requirements by over 60% compared to
standard sparse matrix implementations.

Parameter sharing: For multi-layer GCN im-
plementations, we experimented with parameter
sharing across certain layers to reduce the total
number of trainable parameters without signifi-
cantly affecting model performance. This tech-
nique was particularly effective for the first and
second convolutional layers, reducing parameter
count by approximately 25% with less than 2%
performance degradation.

These advanced memory optimization strate-
gies, when combined with those mentioned in
the main text, enabled us to process graphs at a
scale that would otherwise require specialized high-
performance computing infrastructure with stan-
dard implementations.

A.6 Additional Details on Fake News
Propagation and Temporal Analysis

A.6.1 Fake News Propagation Path Analysis

Based on the multi-round iterative propagation
model, we observed that fake news propagation
simulation results showed that information rapidly
covered the entire network starting from approxi-
mately 1% of initial nodes.

For the 2019 network: After three rounds
of propagation, 99.6% of nodes were affected
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(2,244/2,253). Round 1 saw 2,112 newly affected
nodes (+93.7%), Round 2 had 110 newly affected
nodes (+4.9%), and Round 3 had 0 newly affected
nodes, with propagation stopped.

For the 2022 network: After three rounds
of propagation, 99.8% of nodes were affected
(3,673/3,679). Round 1 saw 2,537 newly affected
nodes (+69.0%), Round 2 had 1,041 newly affected
nodes (+28.3%), and Round 3 had 59 newly af-
fected nodes (+1.6%).

A comparison of propagation patterns indicates
that information propagation in the 2019 network
was more concentrated and rapid (covering 93.7%
in the first round), while the 2022 propagation
was more balanced and persistent (requiring three
rounds to complete). This reflects changes in post-
pandemic financial network structure: connections
became more diverse but possibly decreased in
strength, forming a more complex but relatively
slower diffusion network topology.

A.6.2 Advanced Fake News Propagation
Model

Our fake news propagation simulation incorporated
several realistic factors beyond the basic model
described in the main text:

Node influence decay: We implemented an in-
fluence decay parameter where the strength of in-
formation propagation weakened with each subse-
quent hop through the network. This decay factor
(set to 0.85 per hop) mimics the dilution of infor-
mation credibility as it propagates further from its
source.

Propagation thresholds: Each node was as-
signed an individual threshold for information
adoption based on its network characteristics (cen-
trality, clustering coefficient). Nodes with higher
centrality typically had lower thresholds, represent-
ing that influential entities are more likely to pass
along information regardless of its veracity.

Content reliability factors: The propaga-
tion simulation incorporated a "content reliability
score" that affected both the probability of propa-
gation and the degree of feature disturbance. Less
reliable content (lower score) created larger fea-
ture disturbances but had lower propagation prob-
abilities, modeling how extreme but less credible
information propagates in financial networks.

Counter-information dynamics: In extended
simulations, we introduced counter-information
sources that could partially neutralize the effect
of fake news in their local network neighborhoods.

This more realistically modeled how authoritative
sources might intervene to limit misinformation
spread.

A.6.3 Expanded Temporal Analysis Methods
Our temporal comparison between 2019 and 2022
financial networks incorporated several method-
ological enhancements:

Network evolution tracking: We analyzed the
evolution of key network metrics between 2019 and
2022, including average path length (decreased by
14.3%), clustering coefficient (increased by 8.7%),
and degree distribution (showed increased power-
law characteristics). These metrics quantified the
structural changes in financial networks indepen-
dent of model performance.

Sensitivity gradient analysis: Rather than us-
ing fixed disturbance intensities, we conducted a
sensitivity gradient analysis by varying disturbance
parameters across a range of values (0.05-0.30 for
feature noise, 5%-30% for edge removal). This
revealed that 2022 networks exhibited nonlinear
sensitivity increases with more pronounced thresh-
old effects than 2019 networks.

Stress scenario combinations: We tested com-
binations of stressors (e.g., simultaneous feature
noise and graph structure change) to identify po-
tential interaction effects. We found that 2022 net-
works showed stronger negative synergistic effects
when exposed to multiple stressors simultaneously,
with performance degradation up to 23% greater
than would be predicted from individual stressor
effects.

Recovery dynamics: We extended our testing
to include "recovery phases" after stress scenarios,
where we gradually restored the original network
structure or feature values over several steps. The
2022 networks showed significantly slower recov-
ery trajectories, suggesting reduced resilience com-
pared to the 2019 networks.

These enhanced analytical methods provided
deeper insights into the changing vulnerability char-
acteristics of financial networks following the pan-
demic shock, revealing not just increased sensitiv-
ity but fundamentally altered risk response patterns.

A.6.4 Cascade Network Graph
A.7 Supplementary Note: Exploration of an

LLM-Driven Financial Regulatory
Question-Answering Agent

While this research focuses on Graph Neural Net-
work (GNN)-based stress testing, we also pre-
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Figure 4: This cascade network diagram is constructed
based on user inquiry data provided by Ping An Bank
and illustrates the pathways and temporal sequence of in-
formation related to "user inquiries" as it spreads among
the user group over time. Each node in the diagram
represents a unique user ID, extracted as a set of non-
redundant identifiers from the ’Usern’ column in an
Excel spreadsheet. The edges between nodes denote
the connections through which information is transmit-
ted from one user to another, established based on the
chronological order of inquiries and responses related
to the same topic.

liminarily explored the potential of leveraging
Large Language Models (LLMs) to assist in fi-
nancial legal knowledge acquisition. Addressing
the limitations of traditional economic law knowl-
edge retrieval in terms of efficiency and cost, we
attempted to construct a modular financial law
question-answering framework based on Retrieval
Augmented Generation (RAG) technology. This
framework supports the structured uploading and
key-clause extraction from regulatory documents
(such as PDF, Excel) to dynamically supplement
a specialized knowledge base and update retrieval
indices. To enhance the quality and credibility of
the answers, the system also incorporates an expert
scoring feedback mechanism to calibrate generated
content and ensures the auditability of responses
through source-tracing technology.

In financial regulatory scenario analysis, we
made preliminary attempts to link this frame-
work with GNN models. For example, by ana-
lyzing score differences from different question-
answering (QA) interactions, we can assist in iden-
tifying fake news labels in newly added QAs in
the future, providing reference inputs for model
training; meanwhile, by parsing regulatory rules
across legal systems (e.g., differences in capital ad-
equacy ratio calculations), the framework provides
compliance constraint inputs for GNN stress test-
ing. This exploration has preliminarily validated
the application potential of LLMs in professional
knowledge QA scenarios, where their dynamic pol-
icy interpretation and multi-turn interaction capa-

bilities help deepen the semantic understanding in
scenario planning.

From an agent perspective, the LLM-based QA
framework can be conceptualized as a “regula-
tory knowledge agent” with three core attributes:
autonomous knowledge evolution through user-
uploaded document updates to mimic human ex-
perts’ continuous learning from new regulations,
context-aware interaction by dynamically adjusting
retrieval weights and answer generation strategies
based on specific regulatory scenarios (e.g., cross-
legal-system compliance requirements), and col-
laborative modeling by providing semantic-level
constraints (e.g., legal rule embeddings) for GNN
nodes to enable hybrid modeling of “structural con-
nectivity + regulatory semantics”.

Future work will focus on optimizing the frame-
work’s processing of unstructured data (e.g., legal
case narratives) and deepening its integration with
GNN quantitative analysis, aiming to develop a
complementary research system of “structural risk
simulation + semantic rule parsing” to more effec-
tively address uncertainty challenges in complex
financial environments.

This agent-centric work explores how LLMs can
act as intelligent components in scenario planning
to enhance the depth of regulatory interpretation
and the realism of risk modeling.
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