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Abstract

Effective decision-making in Large Language
Models (LLMs) is essential for handling in-
tricate tasks. However, existing approaches
prioritize performance but often overlook the
balance between effectiveness and computa-
tional cost. To address this, we first introduce
the 3E Criteria to systematically assess the cost-
effectiveness of search strategies, revealing that
existing methods often trade significant effi-
ciency for marginal performance gains. To
improve LLM decision-making while main-
taining efficiency, we propose the Speculative
Reward Model (SRM), a plug-and-play frame-
work that seamlessly integrates with existing
search strategies. Specifically, SRM employs
an external reward assigner to predict optimal
actions, reducing reliance on LLMs’ internal
self-evaluation. And a speculative verification
mechanism is used to prune suboptimal choices
and guide the search toward more promising
steps. We evaluate SRM on several complex
decision-making tasks including mathematical
reasoning, planning and numerical reasoning
in specialized domains. Experimental results
show that SRM reduces costs to 1/10 of the
original search framework on average while
maintaining effectiveness.

1 Introduction

Large Language Models (LLMs) (OpenAl et al.,
2023; OpenAl, 2024; DeepSeek, 2024; Qwen,
2024) have achieved significant progress in nat-
ural language processing, excelling in text gener-
ation and comprehension (Xu et al., 2025). How-
ever, their application to complex reasoning and
decision-making remains challenging (Shao et al.,
2024; Zelikman et al., 2024), particularly when
solving intricate problems that require structured
logical inference rather than pattern-based predic-
tions (Valmeekam et al., 2023; Shao et al., 2024).
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Table 1: Speculative Reward Models (SRM), a plug-and-
play framework designed to balance effectiveness and effi-
ciency. In GSMS8K tasks, all paradigms followed the same
setting with GPT-3.5-turbo and 4-shot learning. The token
cost is expressed in ‘[Prompt Tokens]/ [Completion Tokens]’.
"Ext." denotes Extensibility. For Toolchain®, which lacks
direct execution capability, we estimate cost using identical
prompts but exclude running time.

Efficiency
Paradigm Effectiveness Time Token Ext.
Cost Cost
Acc.[%] Avg.[sec.]Avg.[K]

CoT(Wei et al., 2022) 70.1 32 0.7/0.1 v
DFS(Yao et al., 2023) 69.9 150 70.2/5.0 v

+ SRM 70.5 34.7 18.6/0.8 v
BFS(Yao et al., 2023) 72.3 180 85.5/7.1 v

+ SRM 70.1 44 22.2/1.1 v
BS(Wan et al., 2024) 714 664 2254/44 Vv

+ SRM 72.3 44 30.8/1.1 v
MCTS(Hao et al., 2023) 74.7 122.6 105225 v

+ SRM 80.5 45.2 20.6/0.9 v

Toolchain*

(Zhuang et al., 2023) 78.9 - 40.8/1.9 X

To address these limitations, early studies intro-
duced prompting strategies to enhance reasoning,
such as Chain-of-Thought (Wei et al., 2022) and
AlphaZero-Like Tree-Search Method (Wan et al.,
2024), which guide LLMs to generate intermediate
reasoning steps to improving inference structure
and accuracy. However, these methods rely solely
on prompting without external validation or opti-
mization (Song et al., 2025), limiting their reliabil-
ity. Recent approaches employ tree-based search
algorithms (Besta et al., 2023; Ding et al., 2023;
Putta et al., 2024; Wang et al., 2024) to explore
broader reasoning paths and refine intermediate
steps. By systematically evaluating multiple candi-
dates in test time scaling (Snell et al., 2024), these
methods enhance both the quality and diversity of
reasoning, leading to more robust decision-making.

Despite these improvements, they inevitably in-
troduce substantial computational cost. In Table 1,
we utilize our proposed 3E Criteria—E(fectiveness,
Efficiency, and Extensibility to assess the cost in-
curred during LLM inference. Effectiveness repre-
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sents the success rate, Efficiency denotes the time
and token cost, and Extensibility is the adaptability
to new tasks.

The results reveal that existing methods offer lim-
ited performance gains at disproportionately high
costs. For example, ToT (Yao et al., 2023), which
employs Depth-First Search (DFS), Breadth-First
Search (BFS), provides marginal performance im-
provements (0-3%), but incurs a 50-60x in time
cost and a 100-120x escalation in inference com-
plexity. Similarly, RAP (Hao et al., 2023) lever-
ages Monte Carlo Tree Search (MCTS), yielding a
modest performance improvements of 4-5% at the
expense of a 150-300x increase in inference cost.
Additionally, Toolchain* (Zhuang et al., 2023) and
reasoning enhanced models like QwQ (QwenTeam,
2024), constrained by task-specific heuristics, fails
to reduce cost effectively and lacks extensibility.
In this work, we seek to address:

Research Question

How to improve the reasoning ability of
LLMs while maintaining a balance between
effectiveness, efficiency, and extensibility?

Inspired by studies (Huang et al., 2023) empha-
sizing the need for external validation in decision-
making, we propose Speculative Reward Models
(SRM), a plug-and-play framework designed to
balance effectiveness and efficiency (Jahan et al.,
2016). SRM introduces external rewards to miti-
gate ineffective decision-making in a speculative
manner (Xu et al., 2024; Chen et al., 2023; Xia
et al., 2023). It consists of two key components:
(1) SRM, an independent reward model that as-
signs scores based on decision consistency and
goal alignment. (2) Speculative Verification, a
mechanism that ranks candidate steps by evaluat-
ing the consistency between internal rewards from
LLMs and external rewards from SRM, enabling
efficient pruning of suboptimal choices and guiding
the search toward more promising states, thereby
reducing computational cost.

We first train SRM on datasets with weak pro-
cess rewards and then fine-tune it to SRM™ using
strong search rewards. This allows us to provide
potential success probabilities for specific steps as
external reward signals to LLMs during the search
phase. Extensive validation has demonstrated that
our approach significantly lowers the cost to a frac-
tion of the original search framework’s, without
sacrificing effectiveness. In summary, our contribu-

tions are as follows:

(1) Efficiency. The SRM framework we pro-
posed dramatically increases efficiency with a no-
table reduction in cost, requiring only about 1/10
of the original search paradigms.

(2) Effectiveness. There is no sacrifice of effec-
tiveness for SRM; in fact, by integrating reward
signals for process supervision, it achieves a up to
a 10% performance improvement over CoT and
approximately a 2% increase compared to using
searching algorithms only.

(3) Extensibility! SRM provides generalizable
weak rewards and a universal framework for de-
riving strong rewards. Fine-tuning with strong
rewards transforms SRM into SRM™, enabling
domain-specific adaptation without full retraining.

2 Problem Formulation

The decision-making process can be formulated
as a Markov Decision Process (MDP) (Puterman,
1990), where the state space S represents all possi-
ble problem states with s € S, and the action space
A consists of actions a € A that transition the state
toward a solution. The LLM acts as a generator G,
producing candidate actions G(a|s, prompt;) and
determining state transitions G(s'|s, a, prompts).
A reward function R (s, a) evaluates the effective-
ness of actions in progressing toward the goal.
Tree-based search paradigms in LLMs decom-
pose complex problems into a sequence of manage-
able sub-problems, each represented as an action
modifying the current state toward the final solu-
tion. The search tree 7 = (S, A) in Figure 1 repre-
sents the decision process, where nodes are states
and edges are actions. Starting from an initial state
s0, LLM iteratively generates candidate actions
A, = {al,}}X,, assigns rewards r,; = R(sn,al,),
selects the optimal action a, and transitions to
the next state s,,+1. The search process continues
until the goal state s, is reached, optimizing the
cumulative expected reward along the way.

3 Method

In this section, we introduce our SRM framework
across three key dimensions: (1) Speculative Re-
ward (SR) for Efficiency, reducing computational
cost by pruning less promising search paths; (2)
Reward Consistency (RC) for Effectiveness, ensur-
ing stable and reliable decision-making by aligning

IRefers to whether the method requires retraining to adapt
to new problems across different domains.
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Figure 1: An example in GSM8K (K = 4, N = 5), where our SRM uniquely solves the case correctly across all
baselines in 10 tests while achieving the lowest time and token costs. The decision-making process showcases SRM’s
pruning via Speculative Reward (S R), with green actions for acceptance and red for rejection. By SR, searching
bypasses bad nodes and expands promising ones first. The selection strategy is determined by Reward Consistency
(RC), prioritizing high- RC' actions for earlier development, streamlining the path to the goal. Dangerous’ sub-
questions, characterized by excessively large spans (&), are pruned efficiently.

internal and external reward signals; (3) SRM™ for
Extensibility, enabling adaptation to diverse tasks
with minimal retraining.

Speculative Reward for Efficiency Search
strategies typically rely on invoking LL.Ms to evalu-
ate each state-action pair (s, a), determining the re-
ward R (s, a). While effective, frequent LLM calls
across large search spaces introduce significant in-
efficiencies. Inspired by Speculative Sampling (Xu
et al., 2024; Chen et al., 2023), which accelerates
inference by using a smaller model to speculate a
larger model’s predictive distribution, we propose
the SRM to mimic the LLM as a reward assigner.

Given a pre-order state node s,,, and K candidate
actions A, = {al,...,al*} generated from the
LLM Generator G(-), SRM assigns a speculative
reward R3RM(s,,, al,) for each action a, as:

RgRM(sn, afl) = Pg(aﬁsn,promptl), (1)

where 6 is the parameters of SRM.

By bypassing LLMs for reward assignment,
SRM significantly accelerates the search process.
To maintain alignment with LLMs priors, follow-
ing Chen et al. (2023), the reward R3*(s,,, a?)

for a!, is accepted with probability:
@D (Pim(ay, |sn, prompty))

win (1 BRI (s, ) ) ©

where @(-) denotes the normalization operator:
f(z)
P ()

2o (@)

Notably, Piim(al|sn,prompty) is directly ob-
tained from the generation process of a%, eliminat-
ing additional LLMs queries. Once the action a’, is
accepted, we update a’, < a?, and transition to the
next state s,+1 by G(sn+t1|Sn, al, prompty).This
process is repeated for a,1 until either the goal
conditions are met or the search reaches the depth
limit. If all actions a’,(i = 1,2,---, K) are re-
jected, we regenerate a new candidate action set
Al from Generator G(-) and repeat the above pro-
cess (See Algorithm 1).

3)

Reward Consistency for Effectiveness Given
the speculative property of the ratio in Equation 2,
we define it as the Speculative Reward (S'R), a key
metric in our algorithm for pruning. However, as-
sessing absolute performance alone is insufficient,
the consistency of reward signals must also be con-
sidered. To this end, we propose Reward Consis-
tency (RC) as a selection criterion, quantifying the



alignment between internal generator rewards and
external SRM rewards. It is defined as:

1

RO = 1+ |SR—1]

€[0,1]. (€))
An RC value of 1 indicates complete consistency
between internal and external reward signals. Their
role within our SRM framework are illustrated in
Figure 1. Ultimately, the cumulative reward across
states (or nodes) is computed by Raccumulated =
SR - RC('=®) where « is a hyperparameter that
balance the significance of SR and RC.

SRM Training and Fine-tuning The SRM is
trained on weak reward labels for each reason-
ing step—positive, negative, and neutral (see Ap-
pendix A.2.1 for details). Specifically, it is opti-
mized using a cross-entropy loss function to distin-
guish the more advantageous action among candi-
dates:

1
@E(sn,a%,ai)wD (5)

[log (0(RG*M (s, al) —Rg™M(sp,al))))]

loss(f) = —

where R3®M(s,,, a,,) represents the scalar reward
assigned by SRM for preorder state s,, and avail-
able action a,, parameterized by #. The model
favors actions that lead toward the solution, assign-
ing them higher rewards and the dataset D contains
process-supervised reward or tree-based search re-
ward. This training approach leverages differences
in weak rewards to guide SRM in quantifying the
intuitive preference for actions that move toward
the goal state, thereby enhancing its ability to eval-
uate the potential success of reasoning steps. Fol-
lowing (Ouyang et al., 2022), all (%) comparisons
from each prior state sg are processed efficiently as
a single batch element to mitigate overfitting.

SRM™ for Extensibility SRMT is fine-tuned
from SRM with same loss described in Equation 5,
but with a distinct RewardTuning dataset. This
dataset includes step-level, strong rewards with
specific values derived from tree-based search tech-
niques for targeted tasks. Thus, at this stage, SRM™
is more accurate to learn the relative quality of
movements through strong labels. The evolution
from SRM to SRM™ is illustrated in Figure 2. Be-
sides, further details on the training and fine-tuning
methodologies are available in Appendix A.1, with
data collection for the RewardTuning dataset de-
tailed in Appendix A.2.2.
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Figure 2: SRM was trained using the PRM800K dataset,
in conjunction with LLMs, to provide weak Speculative
Rewards (SR) for each action. Subsequently, SRM™
underwent fine-tuning with the RewardTuning dataset,
enabling it to generate strong SR for task-specific ac-
tions. Various actions are denoted by dots, with the
intensity of their green hue indicating the magnitude of
the Reward Consistency (RC) on each accepted node.
A deeper green signifies a larger RC.

4 Experiment

In this section, we demonstrate the superior-
ity of the SRM framework > in terms of Effi-
ciency, Effectiveness, and Extensibility through
comprehensive experiments. We evaluate SRM
across a diverse range of decision-making sce-
narios, including mathematical reasoning on
GSMSEK (Cobbe et al., 2021), reasoning and plan-
ning in BlocksWorld (Valmeekam et al., 2023), and
financial numeric reasoning on FinQA (Chen et al.,
2021). Table 5 concisely aligns the three tasks with
the decision-making problem framework.

4.1 Experiment Setup

As shown in Figure 1, we set K = 4 (number
of candidate actions per step) and N = 5 (maxi-
mum search depth) for all tasks in our experiments.
A detailed discussion of the GSM8K task is pre-
sented, while further information on BlocksWorld
and FinQA, including their setups and case stud-
ies, can be found in Appendix C. Details regarding
implementation specifics like SRM configuration,
baseline alignment, and our selection of DeBERTa-
v3-large as the base model are provided in Ap-
pendix A. Moreover, prompts used in each task are
available in Appendix E.



Table 2: The result we tested 10 times on GSM8K and put on the average accuracy and cost. The values of total
running time and total token cost are represented as multiples of the CoT row’s value.

LLaMA-2-70B \ LLaMA-33B \ LLaMA-2-13B
Method
Effe. [Acc.] Time [xCoT] Token [xCoT] | Effe. [Acc.] Time [XCoT] Token [xCoT] | Effe. [Acc.] Time [xCoT] Token [xCoT]
CoT 0.54 1.0 1.0 0.29 1.0 1.0 0.20 1.0 1.0
DFS 0.52 28.4 1727.2 0.25 19.4 610.9 0.19 350.7 1306.8
+SRM 054 (D) 42 2333 0.26 (1) 2.9 32.0 0.20 (1) 439 64.6
+SRM* 0.5 (1) 42 241.2 0.28 (1) 2.9 32.4 0.24 (1) 42.0 69.5
BFS 0.58 36.3 1133.7 0.38 37.8 237.8 0.23 368.5 661.5
+SRM 0.55 3.4 1339 0.35 2.1 415 0.23 19.5 485
+SRM*  0.59 (1) 3.4 123.4 0.38 2.2 422 0.26 (1) 19.2 422
MCTS 0.61 1145 295.1 0.49 74.6 108.1 030 61.2 180.7
+SRM  0.62 (1) 8.0 66.7 0.49 22 19.9 0.27 153 33.0
+SRMT  0.64 (1) 8.0 63.4 051 (1) 2.3 20.7 0.29 153 31.8
MCTS+SRM DFS with SRM mitigates this decline by pruning
MCTS weak nodes and expanding stronger ones. The
fine-tuned SRM™ further enhances search perfor-
mance while stabilizing the framework at a lower
Sl DFSHSRM cost. Additionally, SRM can be fine-tuned using
§ other tree-based search rewards, as discussed in
5 s BFS Appendix D. Overall, MCTS+SRM proves to be
O 724 .
< BS the most cost-effective approach across GPT-3.5-
) turbo and the LLaMA series. Among the evaluated
search paradigms, MCTS exhibits the highest ac-
,.CoT Bks curacy yet the highest time cost. This can be

I) 2'5 5‘0 . 7'5 . 180 . 1;5 l;O 1;5
Running Time (in Sec.)
Figure 3: Comparison of the effectiveness and efficiency

of search methods using the plug-and-play SRM frame-
work. The bigger the dot is, the larger the token cost. Af-
ter applying the SRM framework, it is obvious that the
running time of the point representation is reduced (),
and the accuracy is flat or increased (1).

4.2 Effectiveness and Efficiency Analysis

To evaluate the impact of SRM on effectiveness
and efficiency, we present results on GSMS8K from
GPT-3.5-turbo and the LLaMA series (Touvron
et al., 2023; Grattafiori et al., 2024) in Table 1
and Table 2. The results show that SRM signif-
icantly reduces both time and token costs by nearly
90% while maintaining or improving performance
(Figure 3). Notably, these benefits come without
compromising extensibility.

SRM applied to LLaMA-2-70B improves accu-
racy by 2% on ToT-DFS and 1% on RAP-MCTS.
When used with GPT-3.5, its cost is only 10% to
30% of the original search algorithms. However,
results highlight the instability of search paradigms
in decision-making tasks. DFS, for example, per-
forms 2% worse than CoT alone. Integrating

2Code available at:
Speculative-RM

https://github.com/Kuvvius/

attributed to its more reliable reward system, de-
rived from multiple simulations, rather than the
self-evaluation and positional relationship utilized
by BFS and DFS. Therefore, in our experiment,
we use the MCTS reward in RewardTuning as the
strong reward label to acquire SRM™. Overall,
MCTS+SRM emerges as the most cost-effective ap-
proach for decision-making tasks, as demonstrated
using GPT-3.5-turbo and the LLaMA series.

Case Study SRM mitigates error propagation
by prioritizing reliable search paths and pruning
error-prone branches. Figures 1 and 6 compare
MCTS+SRM and MCTS alone, demonstrating how
SRM reduces early mistakes that would otherwise
propagate through later steps. SRM prioritizes
concise sub-questions with higher SR and RC,
effectively pruning unreliable branches and guid-
ing search toward more reliable paths. In con-
trast, MCTS alone struggles to avoid error-prone
branches, leading to early mistakes that propagate
through later steps. MCTS relies on fast rewards
and LLM self-evaluation, which, while efficient in
some cases, often fails to prevent accumulating er-
rors. Without external supervision, minor mistakes
can significantly impact tree search algorithms, as
LLMs struggle to self-correct. As shown in Fig-
ures 1 and 6, reducing step size and verifying each
step prevents errors from compounding, demon-
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Table 3: The baseline is MCTS. Sampling refers to
the rejection sampling strategy outlined in Section 3,
absent which there is no pruning. Consistent with ear-
lier sections, token costs are denoted as [Prompt To-
kens]/[Completion Tokens].

Efficiency
Method Effectiveness Time Cost Token Cost

Acc.[%] Avg.[Sec.] Avg.[K]
MCTS 74.7 122.6 105.2/2.5
+ SR + sampling 70.2)4 5% 28.3 16.3/0.4
+ RC + sampling 714339 96.5 53.2/1.5
+SR* - ROU- 4 sampling  80.545 59 452 20.6/0.9
+ SR no sampling 78.443 79 105.1 70.8/2.1
+ RC no sampling 73.311.4% 143.2 98.1/2.7
+SR* - RCU=) no sampling  75.149.4% 58.8 34.7/0.9

strating SRM’s role in stabilizing search efficiency
while maintaining accuracy.

Ablation Study We conduct ablation studies
with the MCTS paradigm to evaluate the impact
of reject sampling via SR and selection mecha-
nisms via RC (Table 3). The results indicate that
both components in SRM’s speculative approach
contribute to reducing cost while maintaining per-
formance. Using only SR for R,ccumulative SIg-
nificantly lowers cost but also reduces effective-
ness. In contrast, relying solely on RC results in
a smaller accuracy drop but at the expense of ef-
ficiency. Without sampling, cost increases due to
the lack of tree pruning, sometimes exceeding the
baseline search algorithms. These findings con-
firm SRM’s effectiveness in optimizing tree-based
search performance.

4.3 Extensibility Analysis

Table 4: Result of Blocksworld (LLaMA-2-70B) and
FinQA (GPT-3.5 and GPT-4).

Mode Method Eff. Time Token
CoT 0.08  1.0x 3.8

, MCTS 0.66 560.9x 366.0
BW(Easy) MCTS +SRM  0.66 54.4x  40.1
MCTS + SRM'™  0.68 583x  47.0
CoT 005  1.0x 38

MCTS 051 709.5x 4167
BW(Hard) MCTS +SRM 049 54.8x 342
MCTS + SRM' 054 69.9x 455
CoT 049 45 34
FinQA MCTS 0.60 160.6 200
(GPT3.5) MCTS+SRM 065 519 542
MCTS + SRM' 068 521 537
FinQA (GPT-4) CoT 070 49 35

Table 4 highlights SRM’s adaptability across
decision-making tasks. In Blocksworld (BW), CoT
with LLaMA-2-70B struggles with planning, while
MCTS improves decisions at high computational
cost. SRM reduces inference by 7% while main-

taining accuracy, and SRM™ further enhances per-
formance via RewardTuning (See Appendix A.2.2).

Beyond planning, SRM seamlessly transfers to
FinQA, improving accuracy by 5% with minimal
retraining, while SRM™ achieves an 8% gain. No-
tably, SRM™ enables GPT-3.5 to match GPT-4 in
efficiency, demonstrating its ability to optimize
LLM:s across domains. By integrating speculative
verification and fine-tuning with task-specific re-
wards, SRM ensures efficient, cost-effective adap-
tation to new tasks.

5 More Discussion

Diversity and randomness bring stable improve-
ment. The methods related to Decision-making
agents would have unstable issues and strongly
depend on the general ability of the base model.
During the reasoning process, MCTS introduces a
degree of randomness in generating the final results.
This randomness, combined with the diversity at
intermediate nodes, allows for stable optimization
of the sampling outcomes from language models.
Consequently, MCTS consistently demonstrates
superior performance compared to other search
methods.

External signals can effectively supervise the
generation process of the content. When a
decision-making agent engages in complex rea-
soning and problem-solving, it heavily relies on
the generative capabilities of the language model.
However, using only self-evaluation methods of-
ten fails to provide stable and reliable judgments,
making effective process supervision difficult. In
such cases, introducing an external verifier for pro-
cess supervision proves to be effective. The verifier
can provide feedback on the quality of the model’s
current outputs and offer guidance, which helps
improve performance.

By leveraging diversity (note that the “diversity”
here differs from “diversity” in the field of infor-
mation retrieval (Liang et al., 2017; Liang, 2019))
and randomness, the use of effective external sig-
nals for proper guidance can help avoid the high
costs associated with repetitive exploration in the
search space. Specifically, the verification signals
provided by our proposed SRM in domain-specific
problems, combined with search methods that al-
low for sufficient exploration and randomness,
can achieve cost-effective performance improve-
ments.



Why a relatively small model can help large
base model? Our reward model underwent train-
ing that supervised the decision-making process,
but it’s significantly smaller compared to the gener-
ative language models it supports. The feasibility
of using a smaller-scale reward model to effectively
assist a much larger, more powerful model lies in
our acknowledgment of the errors inherent in the
weak labels provided by the Supervised Reward
Model (SRM). However, within our framework, we
do not intend for the more robust model to learn or
replicate these errors. Instead, our aim is to guide
it toward understanding the intentions behind the
supervision (i.e., signals of external oversight), not
the inaccuracies themselves. We maintain the as-
sumption that the larger, base model inherently pos-
sesses all necessary reasoning and decision-making
capabilities but might not currently exhibit them
due to limitations in the decision-making context.
Under the guidance of a weaker model, it becomes
possible to activate this latent knowledge and adjust
the base model towards a direction of self-reward,
thereby enhancing its performance and decision-
making processes in alignment with the supervi-
sors’ intentions.

6 Related Work

6.1 Decision-Making Agents

LLM-based decision-making agents, such as
XoT (Ding et al., 2023), and Quiet-STaR (Zelik-
man et al., 2024) generate structured actions using
formal languages like PDDL or API calls. These
models rely on binary or scalar feedback for pol-
icy optimization, differing from human decision-
making (Zhuge et al., 2025). Memory-enhanced
methods (Shinn et al., 2023; Zhuang et al., 2023)
treat LLMs as autonomous agents, but reward inter-
pretation remains a challenge (Song et al., 2025).
Our SRM addresses these limitations with a struc-
tured, cost-effective decision-making approach.

6.2 Tree-Based Search Algorithms

Tree-based search, including DFS, BFS, and
MCTS, plays a key role in LLM-driven decision-
making (Snell et al., 2024). DFS and BFS explore
solutions systematically, while MCTS improves
decision quality via random sampling. However,
methods like ToT (Yao et al., 2023), RAP (Hao
et al.,, 2023) and AlphaZero-Like Tree-Search
Method (Wan et al., 2024) incur high inference
costs due to frequent LLM calls.
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6.3 Speculative Sampling

Speculative sampling (Xu et al., 2024; Chen et al.,
2023; Xia et al., 2023) speeds up LLM inference by
drafting candidate tokens and verifying them with
a target model, reducing latency while maintain-
ing quality. Inspired by this, SRM applies specula-
tive verification to decision-making, using rejection
sampling to prune search paths, minimize redun-
dancy, and improve efficiency.

7 Conclusion

We propose the Speculative Reward Model (SRM),
a cost-effective framework that enhances LLM
decision-making by speculating on potential re-
wards. SRM reduces ineffective decisions through
Speculative- Verification, efficiently ranking steps
by given scores. Our contributions include signifi-
cant cost reductions, a 10% performance improve-
ment over CoT, a 2% increase over search-based al-
gorithms, and broad applicability. Additionally, we
introduce RewardTuning, a dataset for fine-tuning
the reward model on three tasks. As to future work,
we intend to extend our model for other tasks (Xian
et al., 2025; Pasupat and Liang, 2015).

Limitations

Dependency on External Models SRM need to
fine-tuned with task reward data to improve the cor-
responding performance on the specific task. relies
on external reward models, which might introduce
additional complexity and potential inaccuracies
if the external models are not well-calibrated or
if they fail to capture the nuances of the specific
tasks.

Scalability Challenges While SRM reduces
costs and improves efficiency, it is itself a relatively
small model with only about 500M parameters.
This limited capacity can pose challenges when
scaling to more complex tasks or larger datasets,
potentially hindering its ability to generalize effec-
tively.
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Figure 5: The process of building our weak reward dataset from PRMS800K dataset, which SRM was trained on.
The data samples of state and action pairs can be found in Appendix A.2.1.

A Implementation Details

To better illustrate the Decision-making process
with SRM, we provide pseudo-code in Algorithm 1
and a selection process (including rejection for
pruning and acceptance sorting for efficient naviga-
tion) as shown in the Figure 4.

A.1 LLM Configuration

In order to align the existing experimental results,
we opted for the GPT-3.5-turbo (a previous version)
as the engine in constructing the LLM-based agent
framework. We configured the solution generation
to have a maximum length of 512, with a tempera-
ture setting of 0.8, as detailed in Section 4. In the
case of LLaMA-2 experiments, we similarly set the
maximum solution length at 512 and the tempera-
ture at 0.8. The experiments were conducted using
8 NVIDIA Tesla V100 32GB GPUs to facilitate the
inference process for both the LLaMA-2 7B and
13B models.

To maintain consistency with the established
search algorithms, we adjusted weights as the same
as them.
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A.2 SRM Training and Fine-tuning Details

SRM was trained on DeBERTa-v3-large with sen-
tence pairs with weak labels 7 to obtain SRM, and
fine-tuned by strong labels 8 evolving into SRM+.
As the loss function in Equation 5, we train SRM
to learn the differences in text with different labels
through comparison. Finally, with the input pairs
with same state sentence, SRM can give the pre-
dicted reward labels, which show relatively good or
bad. The dataset we built in our work will be fully
released upon acceptance. In the A.2.1 and A.2.2,
we provide further clarification and explanations
through data samples.

A.2.1 Process Reward Dataset

The original training data has 1,055,517 pieces of
data and 10,833 instructions (i.e. questions). After
processing, there are 3,150,704 pairs. The gener-
ating process and data examples are shown in the
Figure 7.

A.2.2 RewardTuning Dataset

We use the existing searching method to acquire the
strong reward label for each step of sub-question
or each state for blocks as shown in Figure 8. The
form of reward is an exact value. We build all
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Time:.71.90s | Token: 94.1K.
Q1: What s the increased value of the house after the repairs?
A1: The value of the house increased by 150%, which is 150% of
$50,000, so the increased value is $50,000 + 0.5($50,000) =

Time:15.27s | Token: 18.7K

on repairs, so he spent $80,000 + $50,000 = $130,000.
[The answer is $130,000. «

[Q1: How much did the value of the house increase after the repairs?
A1: The answer i the value of the house increased by $120,000 after the repairs.
Josh spent $80,000 on buying the house and $50,000 on repairs, so he spent
$80,000 + $50,000 = $130,000 i total. The answer is $130,000.

$50,000 + $25,000 = $75,000. The answer is $75,000.
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Q2: How much did the value of the house increase after
repairs?
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A3: The value of the house increased by
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$325,000.
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= $65,000. The answer is $65,000. /1

A5: Josh made a profit of $195,000 from flipping
the house. The answer is $195,000.

Q5: Now we can answer the : How much profit
did he make? question

|A5: Josh made a profit of $195,000 from flipping
the house. The answer is $195,000.

Q5: Now we can answer the question: How much profit did he
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AS5: If the value of the house increased by $75,000 and his
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.

Figure 6: Bad Case of MCTS Decision-making
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Figure 7: The process of generating weak reward data pairs. As the example showed, we process the data from

prm800k into state and action pairs with labels

reward data for the training data set of the three
task, and finally use 10% them to fine-tune our
SRM™. The generating process and data examples
are shown in the Figure 8.

B More Analysis

Recent results on GSMS8K indicate that while some
methods achieve relatively high accuracy, their
cost-efficiency remains a major concern. For ex-
ample, QwQ (QwenTeam, 2024) achieves a very
high accuracy of 93.9%. However, its time cost
is not reported (denoted as “-”), and its token cost
(0.7/1.6) is only slightly improved relative to base-
line methods. Moreover, QwQ is marked with “x”
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under Extensibility, which means that despite its
high performance, its applicability to new tasks is
limited due to the reliance on task-specific heuris-
tics (reasoning tasks only).

The results reveal that existing methods offer lim-
ited performance gains at disproportionately high
costs. For instance, ToT (Yao et al., 2023), which
employs Depth-First Search (DFS) and Breadth-
First Search (BFS), provides only marginal im-
provements (0-3%) yet incurs a 50-60x increase
in time cost and a 100-120x escalation in in-
ference complexity. Similarly, RAP (Hao et al.,
2023) uses Monte Carlo Tree Search (MCTYS) to
yield a modest performance improvement of 4—5%,



Algorithm 1 Decision-making process with SRM

1: Given candidate K actions, and depth limit of
tree N.
Given Large Language Model G(-) as gen-
erator, and Speculative Reward Model R(-),
action-prompt prompt; and state-prompt
prompts with few-shot examples, intial state
so=10
Initialise n + 0.
while n < N do
fort=1: K do
Generate candidate actions
repressively al, ~ G(alsy, prompt;)
end for
: Compute
K candidate
ay, ~ R(a|sn, prompts)
R(al|sn),. .., R(aX|s,)
fort=1: K do
Sample ¢ ~ UJ0, 1] from a uniform

distribution.

if ¢ < min (1, GDEPEDY ) then

Seta, < a} andn < n + 1.
else
Continue
end if
end for
end while

AN AN

auto-

[o BN

rewards  of
respectively

speculative
actions

10:
11:

12:

13:
14:
15:
16:
17:
18:

but at the expense of a 150-300x increase in
inference cost. Additionally, while models like
Toolchain* (Zhuang et al., 2023) and reasoning-
enhanced models like QwQ (QwenTeam, 2024)
can achieve high accuracy, they are constrained by
task-specific heuristics, fail to reduce cost effec-
tively, and suffer from poor extensibility.

Table 1 summarizes the performance (Effective-
ness), efficiency (Time and Token Cost) and ex-
tensibility of various paradigms in GSMS8K tasks
under the same setting with GP7-3.5-turbo and
4-shot learning. It is evident that despite high ef-
fectiveness, models such as QwQ, Toolchain*, and
even some search-based paradigms require signif-
icant computational resources, whereas methods
incorporating Speculative Reward Models (SRM)
can offer a better trade-off between performance
and efficiency.
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{"state":

"action":
""label":
0.6518952981160476
{”"state":

"action":

"label": 0.786580977225578

"instruction":

"action":
"label": 0.7980132367124688

Figure 8: The process of generating strong reward data
pairs.

C Task details

Task Setup We evaluate SRM framework with
the MCTS search paradigm in Blocksworld bench-
mark (Valmeekam et al., 2023), where the aim is
to examine the framework’s efficacy in guiding
an agent through a sequence of actions to reorga-
nize blocks into specified configurations. In our
research, we draw from the Blocksworld dataset as
outlined by (Valmeekam et al., 2023), organizing
the test cases by the least number of actions they
necessitate for a solution and giving four test case
to prompt, as same as (Hao et al., 2023), which
detailed in The plan generation task involves creat-
ing a sequence of actions to meet the goal, which
showcases decision-making skills at each step of
the planning process.

BW Result on Step-level Building on these re-
sults, Table 6 provides further evidence of SRM’s
effectiveness in both Easy and Hard modes of
Blocksworld. While MCTS enhances decision-
making, SRM maintains similar performance with
much lower cost. In Hard mode, SRM™ consis-
tently improves accuracy, especially in complex
tasks like the 12-step problems. These findings
confirm that SRM reduces cost while preserving
performance, and SRM™ further extends this by
improving results in more challenging scenarios.
Importantly, the set of possible actions is finite
and determinable through predefined rules rather
than requiring generation by an LLM. The action



Table 5: Alignment of Three Decision-making Tasks. GSM8K and FinQA, differ in complexity and domain, but
both numerical reasoning tasks with action space defined by K and requiring LLM for action generation and
transition. Instead, in Blocksworld, a more complex planning task, an action is composed of one of the 4 verbs (i.e.,
stack, unstack, put, and pick) and manipulated objects. Thus, the action set for a given state consists of m actions,
with m being up to 4, generated independently of LLM assistance.

GSMSK

FinQA Blocksworld

Calculate the correct
answer by multi-step
mathematical reasoning.

Goals

Calculate the correct
answer by numerical
reasoning for financial

Arrange the blocks into
stacks on a table in the

problems specific order.

0

Initial State s

Description of current

0 blocks and a goal.

A correct series of
problem decomposition
leading to the final
answer.

Goal State s,

A correct series of

problem decomposition
leading to the final

A feasible plan including
series actions.
answer.

All current sub-questions

All current sub-questions

Text description of the

State s, current orientation of the
and answers. and answers.
blocks.
Action Set A,, K sub-questions K sub-questions m actions, m < 4

Table 6: Performance comparison between CoT and
MCTS methods, with and without SRM, across differ-
ent step sizes in Blocksworld (BW) tasks. Results are
shown for both Easy and Hard modes, evaluating accu-
racy at 2-step, 4-step, 6-step, 8-step, 10-step, 12-step,
and overall (All) steps.

Mode Method

CoT
MCTS
MCTS
+SRM
MCTS
+SRM™"

CoT
MCTS
MCTS
+SRM
MCTS
+SRM*

All

0.08
0.66

2-step

0.49
1.00

4-step  6-step  8-step

0.18 0.06 0.01
0.99 0.75 0.61

10-step

0.01
0.32

12-step

0.00
0.32

Easy

1.00 0.97 0.70 0.63 0.33 0.33 0.66

1.00

0.22
0.67

0.99

0.14
0.76

0.76

0.02
0.74

0.65

0.02
0.48

0.33

0.00
0.17

0.35

0.00
0.09

0.68

0.05
0.51

Hard

0.65 0.74 0.73 0.48 0.23 0.11 0.49

0.68 0.79 0.78 0.55 0.31 0.15 0.54

space is dynamically generated, considering both
domain-specific constraints and the current orienta-
tion of the blocks. For state transitions, the frame-
work consults a Large Language Model (LLM)
to forecast the impacts of actions on the blocks’
states, updating the current state to reflect new con-
ditions and eliminate outdated ones. The LLM,
in conjunction with the SRM, generates Successor
Representations (S R) and Reward Contexts (RC')
for potential actions, which then inform the state
transition function. The process concludes once
the goal state is realized or when the search hits the
predetermined depth limit.
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Algorithm 2 Tree-based Search in LLMs.

1: Input: sq: input; G: large language model; M :
the maximum exploring steps; 7": the dynamic
decision tree for search; R (s, ak): function
to return specific reward

2: Initialize T' = {S, A}; S « sg; A < (.

3: fort =1to N do

4: A, ={aW}e |« G(s,) v Invoking
5: al <— argmaxg, cA, R(Sn,an)

6: Add a,, as the edge of s,,.

7: Sn+1 < G(sp,al)

8: Update s,11 asanode of . > Invoking
9: end for

10: Output: The goal state s, including reasoning

steps and answer.

D Tree-based search Reward

Rewards are acquired by tree-based search algo-
rithms, different from common reward for language
model (Kwon et al., 2023; Shinn et al., 2023). And
all the search methods employed are unsupervised,
yet they vary in the balance they strike between
exploration and efficient selection.

We would like to detail three kinds of reward
designs with the order of decreasing exploration.
Besides, we leave the more reward settings cor-
responding to the algorithms in the future work.
Generally, tree-based search algorithms could own
their corresponding reward configure, showing the



flexibility of our framework.

D.1 Priority Reward

This type of reward are designed for the search
with certain priority. Taking DFS for an example,
it begins with "root" state sy and then iteratively
choose the first candidate action a), while there
are K candidate action nodes. Until it reached
the depth limit or the goal state s, containing the
final correct answer. It will then proceed down
the new path as it had before, backtracking as it
encounters dead-ends. Besides, Self-consistancy
Chain-of-Thought (Wang et al., 2022) can be ex-
pressed in reward form with majority voting as a

priority.

where inf{j \a% not visited} represents the smallest
index j among all actions aj, that have not been
visited.

|1 ifi = inf{j|aj, not visited},

RDFS S ai)
(50, an 0 otherwise.

D.2 Heuristic Reward

If only take confirmed priority for one-hot reward,
the search process becomes aimless leading to
low efficiency. Heuristic search algorithms are de-
signed to solve the problem of search efficiency,
such as Greedy Best First Search (GBFS), Dijkstra
and A*. Aligned with the characteristic of algo-
rithms, Heuristic reward defined by the heuristic
function h(s). Here,we would like to take GBFS
for an example and list other heuristic reward in
the appendix. the distance from the current state
sy, to the target state s, is used as the heuristic re-
ward, leading the search direction correctly. Given
a heuristic function h(s) estimating the cost from
any state s to the goal state s, the heuristic reward
for an action afl at state s,, is defined as follows:

Regrs (5n, al)

_ {h(sn+1>

—00
where h(sy+1) represents the heuristic cost from
the resulting state s,, | 1, after taking action a’, to
the goal state s,. The action leading to the state
with the lowest heuristic cost is preferred, guiding
the search towards s,,.

if 5,11 is reached by a,,

otherwise,
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D.3 Simulated rewards

With the fixed heuristic function for reward, it is
evident that most of the decision space lacks cover-
age, resulting in insufficient exploration for search-
ing. In contrast, simulated search algorithms like
MCTS, would explore exhaustively within entire
decision space. In this kind of algorithms, an itera-
tive simulation cycle would continue until a termi-
nal state arrived, which usually encompasses three
phases: selection, expansion and backpropagation.
Alongside the simulation process, a state-action
value function Q(s,, a,) is maintained, indicating
the expected future reward If taking action a,, in
state s,. To control the balance between explo-
ration and exploitation, Upper Confidence bounds
applied to Trees is often used. For each iteration of
simulation, the selected action a* should be :

where N (s) is the number of times state s has
been visited in previous iterations, N (sy, a,) is the
number of times that a,, is selected at the state s,,,
and weight w controls the proportion of exploration
and development.

If taking MCTS as an example and supposed that
to abtain the reward of an action needs simulate
d times, simulated rewards can be expressed as
follow:

N(sn)

a,, = argmax m

an€An

[Q(Sm an) +w

Rumcts (5n, ab)

E Prompt

For transition in SRM, we prompt:

For each sub-question, please answer it in
a complete sentence that includes your rea-
soning. And the last sentence ends with
"{answer_instruction}" followed by a
concise answer.

To apply CoT, we prompt:



Q: Natalia sold clips to 48 of her friends in
April, and then she sold half as many clips
in May. How many clips did Natalia sell
altogether in April and May?

A: Natalia sold 48 clips in April and
half as many clips in May, so she sold
48 = 2 = 24 clips in May. Altogether, she
sold 48 4+ 24 = 72 clips. The answer is 72.

Q: James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?

A: James writes a 3-page letter to 2
different friends twice a week, so he

There are 52 weeks in a year, so he writes
12 x 52 = 624 pages a year. The answer is
624.

Q: Alexis is applying for a new job and
bought a new set of business clothes to wear
to the interview. She went to a department
store with a budget of $200 and spent $30
on a button-up shirt, $46 on suit pants, $38
on a suit coat, $11 on socks, and $18 on a
belt. She also purchased a pair of shoes, but
lost the receipt for them. She has $16 left
from her budget. How much did Alexis pay
for the shoes?

A: Alexis spent $30 on a button-up shirt,
$46 on suit pants, $38 on a suit coat, $11 on
socks, and $18 on a belt, so she spent

30 +46 + 38+ 11 + 18 = $143

on everything else. Alexis had a budget of
$200 and finally there was $16 left, so she
spent

200 — 16 = $184

in total. Since Alexis has spent $143 on
everything else, she spent

184 — 143 = $41

on the shoes. The answer is 41.

Q: Ken created a care package to send to his
brother, who was away at boarding school.
Ken placed a box on a scale, and then he
poured into the box enough jelly beans to

writes 3 X 2 X 2 = 12 pages every week.
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bring the weight to 2 pounds. Then, he
added enough brownies to cause the weight
to triple. Next, he added another 2 pounds
of jelly beans. And finally, he added enough
gummy worms to double the weight once
again. What was the final weight of the box
of goodies, in pounds?

A: Ken poured jelly beans into the box until
the weight was 2 pounds, so the weight of
the box was 2 pounds at first. Then Ken
added enough brownies to cause the weight
to triple, so the weight of the box was

2x3=6

pounds. After Ken added another 2 pounds
of jelly beans, the weight of the box was

6+2=38

pounds. Finally, he added enough gummy
worms to double the weight once again, so
the weight of the box was

8 x2=16

pounds. The answer is 16.

Q: Janet’s ducks lay 16 eggs per day. She
eats three for breakfast every morning and
bakes muffins for her friends every day
with four. She sells the remainder at the
farmers’ market daily for $2 per fresh duck
egg. How much in dollars does she make
every day at the farmers’ market?

A: Janet’s ducks lay 16 eggs per day. She
consumes
34+4=7

eggs daily, leaving her with
16-7=9

eggs to sell. Since each egg sells for $2, her
total daily earnings are

9 x 2 =§$18.

The answer is 18.

To get the transited state for the given action and

state in BW, we prompt:



I am playing with a set of blocks where I
need to arrange the blocks into stacks. Here
are the actions I can do:

- Pick up a block

- Unstack a block from on top of another
block

- Put down a block

- Stack a block on top of another block

I have the following restrictions on my
actions:

- I can only pick up or unstack one block at
a time.

- I can only pick up or unstack a block if my
hand is empty.

- I can only pick up a block if the block is
on the table and the block is clear. A block
is clear if the block has no other blocks on
top of it and if the block is not picked up.

- I can only unstack a block from on top of
another block if the block I am unstacking
was really on top of the other block.

- I can only unstack a block from on top of
another block if the block I am unstacking
is clear. Once I pick up or unstack a block,
I am holding the block.

- I can only put down a block that I am
holding.

- I can only stack a block on top of another
block if I am holding the block being
stacked.

- I can only stack a block on top of another
block if the block onto which I am stacking
the block is clear. Once I put down or stack
a block, my hand becomes empty.

After being given an initial state and an ac-
tion, give the new state after performing the
action.

[SCENARIO 1]

[STATE 0]

I have that, the white block is clear, the cyan
block is clear, the brown block is clear, the
hand is empty, the white block is on top of
the purple block, the purple block is on the
table, the cyan block is on the table and the
brown block is on the table.

[ACTION] Unstack the white block from
on top of the purple block.
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[CHANGE] The hand was empty and is
now holding the white block, the white
block was on top of the purple block and
is now in the hand, the white block is no
longer clear, and the purple block is now
clear.

[STATE 1]

I have that, the purple block is clear, the
cyan block is clear, the brown block is
clear, the hand is holding the white block,
the white block is in the hand, the purple
block is on the table, the cyan block is on
the table and the brown block is on the table.

[SCENARIO 2]

[STATE 0]

I have that, the purple block is clear, the
cyan block is clear, the white block is clear,
the hand is empty, the cyan block is on top
of the brown block, the purple block is on
the table, the white block is on the table and
the brown block is on the table.
[ACTION] Unstack the cyan block from on
top of the brown block.

[CHANGE] The hand was empty and is
now holding the cyan block, the cyan block
was on top of the brown block and is now in
the hand, the cyan block is no longer clear,
and the brown block is now clear.

[STATE 1]

I have that, the purple block is clear, the
brown block is clear, the cyan block is
in the hand, the white block is clear, the
hand is holding the cyan block, the purple
block is on the table, the white block is on
the table and the brown block is on the table.

[SCENARIO 3]

[STATE 0]

I have that, the red block is clear, the blue
block is clear, the hand is empty, the red
block is on top of the yellow block, the blue
block is on top of the orange block, the
orange block is on the table and the yellow
block is on the table.

[ACTION] Unstack the red block from the
yellow block.

[CHANGE] The hand was empty and is
now holding the red block, the red block
was on top of the yellow block and is now




in the hand, the red block is no longer clear,
and the yellow block is now clear.

[STATE 1]

I have that, the yellow block is clear, the
blue block is clear, the hand is holding the
red block, the red block is in the hand, the
blue block is on top of the orange block, the
orange block is on the table and the yellow
block is on the table.
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