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Introduction

Welcome to the 26th edition of the Conference on Computational Natural Language Learning (CoNLL).
For the fifth time in a row, CoNLL is collocated and co-organized with EMNLP. The COVID-19 pande-
mic is still not behind us, but possibilities of traveling and meeting in person are increasing again. As
such, this year’s edition is hybrid with both in-person and online talks and poster presentations.

CoNLL 2022 follows CoNLL 2020 and CoNLL 2021 in making this the third edition that specifically
“focuses on theoretically, cognitively and scientifically motivated approaches to computational lingui-
stics.” Just like in the previous two editions, this new focus was specified in the call for papers, in the
instructions to reviewers and area chairs and is emphasized in publicity around the conference. Following
EMNLP, we had a hybrid call accepting both direct and ARR submissions.

We received 102 direct submissions and 5 ARR submissions. From the direct submissions, 94 were sent
out to reviewers (the other 8 being either retracted or desk rejected). The 5 ARR submissions were direc-
tly sent to our area chairs with their ARR reviews. We accepted 28 papers, 26 being direct submissions
and 2 ARR submissions. In addition, CoNLL will feature two keynote talks by Noah Goodman and Al-
lyson Ettinger. We thank both of them for accepting our invitation and are looking forward to their talks.
We furthermore would like to thank all members of our program committee, listed on page iv, and our
Area Chairs for many of whom the schedule overlapped with their Summer Break, in alphabetical order:
Andrew Caines, Tanmoy Chakraborty, Kai-wei Chang, Ryan Cotterell, Dan Goldwasser, Micha Elsner,
Rob van der Goot, Jena Hwang, Nora Hollenstein, Dieuwke Hupkes, Joseph Le Roux, Dipendra Misra,
Preslav Nakov, Nanyun Peng, Maja Popovic, Emily Prud’hommeaux, Roi Reichart, Nathan Schneider,
Kevin Small, Rui Wang, Adina Williams, Mark Yatskar.

Special thanks go to our publication chair R. Thomas McCoy, our publicity chair Jack Hessel and Web-
master Jens Lemmens. Without them, these proceedings could not have been completed or authors and
other interested community members would have missed important information.

We received many useful tips and pieces of information from last year’s organizers, Arianna Bisazza and
Omri Abend as well as from SiGNLL President Julia Hockemaier and SiGNLL Chair Afra Alishahi.
Thank you for your support!

We hope you enjoy these proceedings.

Antske Fokkens and Vivek Srikumar
CoNLL 2022 conference co-chairs
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Abstract

We present a multilingual bag-of-entities model
that effectively boosts the performance of zero-
shot cross-lingual text classification by extend-
ing a multilingual pre-trained language model
(e.g., M-BERT). It leverages the multilingual
nature of Wikidata: entities in multiple lan-
guages representing the same concept are de-
fined with a unique identifier. This enables
entities described in multiple languages to be
represented using shared embeddings. A model
trained on entity features in a resource-rich
language can thus be directly applied to other
languages. Our experimental results on cross-
lingual topic classification (using the MLDoc
and TED-CLDC datasets) and entity typing (us-
ing the SHINRA2020-ML dataset) show that
the proposed model consistently outperforms
state-of-the-art models.

1 Introduction

In the zero-shot approach to cross-lingual transfer
learning, models are trained on annotated data in a
resource-rich language (the source language) and
then applied to another language (the target lan-
guage) without any training. Substantial progress
in cross-lingual transfer learning has been made
using multilingual pre-trained language models
(PLMs), such as multilingual BERT (M-BERT),
jointly trained on massive corpora in multiple lan-
guages (Devlin et al., 2019; Conneau and Lample,
2019; Conneau et al., 2020a). However, recent em-
pirical studies have found that cross-lingual trans-
fer learning with PLMs does not work well for
languages with insufficient pre-training data or be-
tween distant languages (Conneau et al., 2020b;
Lauscher et al., 2020), which suggests the difficulty
of cross-lingual transfer based solely on textual in-
formation.

We propose a multilingual bag-of-entities (M-
BoE) model that boosts the performance of zero-

* Work done as an intern at Studio Ousia.

1

shot cross-lingual text classification by automati-
cally generating links to a language-agnostic knowl-
edge base (KB) and injecting features of these en-
tities into PLMs. KB entities, unlike words, can
capture unambiguous semantics in documents and
be effectively used to address text classification
tasks (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013; Song et al.,
2016; Yamada and Shindo, 2019). In particular, our
model extends PLMs by using Wikidata entities as
input features (see Figure 1). A key idea behind
our model is to leverage the multilingual nature of
Wikidata: entities in multiple languages represent-
ing the same concept (e.g., Apple Inc., H=, 7

7 L) are assigned a unique identifier across lan-
guages (e.g., Q312). Given a document to be classi-
fied, our model extracts Wikipedia entities from the
document, converts them into the corresponding
Wikidata entities, and computes the entity-based
document representation as the weighted average of
the embeddings of the extracted entities. Inspired
by previous work (Yamada and Shindo, 2019; Pe-
ters et al., 2019), we compute the weights using
an attention mechanism that selects the entities rel-
evant to the given document. We then compute
the sum of the entity-based document representa-
tion and the text-based document representation
computed using the PLM and feed it into a linear
classifier. Since the entity vocabulary and entity
embedding are shared across languages, a model
trained on entity features in the source language can
be directly transferred to multiple target languages.

We evaluate the performance of the M-BoE
model on three cross-lingual text classification
tasks: topic classification on the MLDoc (Schwenk
and Li, 2018) and TED-CLDC (Hermann and
Blunsom, 2014) datasets and entity typing on the
SHINRA2020-ML (Sekine et al., 2020) dataset.
We train the model using training data in the source
language (English) and then evaluate it on the tar-
get languages. It outperforms our base PLMs (i.e.,

Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL), pages 1 - 12
December 7-8, 2022 ©2022 Association for Computational Linguistics
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Figure 1: Architecture of M-BoE. Given a document, the model extracts Wikipedia entities, converts them into
corresponding Wikidata entities, and calculates the entity-based document representation by using the weighted
average of the embeddings of the entities selected by an attention mechanism. The sum of the entity-based
representation and the representation computed using a multilingual PLM is used to perform linear classification for

the task.

M-BERT (Devlin et al., 2019) and the XLM-R
model (Conneau et al., 2020a)) for all target lan-
guages on all three tasks, thereby demonstrating
the effectiveness of the entity-based representation.
Furthermore, our model performs better than state-
of-the-art models on the MLDoc dataset.

Our contributions are as follows:

* We present a method for boosting the per-
formance of cross-lingual text classification
by extending multilingual PLMs to leverage
the multilingual nature of Wikidata entities.
Our method successfully improves the per-
formance on multiple target languages simul-
taneously without expensive pre-training or
additional text data in the target languages.

* Inspired by previous work (Yamada and
Shindo, 2019; Peters et al., 2019), we in-
troduce an attention mechanism that enables
entity-based representations to be effectively
transferred from the source language to the tar-
get languages. The mechanism selects entities
that are relevant to address the task.

* We present experimental results for three
cross-lingual text classification tasks demon-
strating that our method outperforms our
base PLMs (i.e., M-BERT and XLM-R) for
all languages on the three tasks and outper-
forms state-of-the-art methods on the MLDoc

dataset.

2 Related Work

Cross-lingual PLMs Zero-shot cross-lingual
transfer learning approaches have relied on par-
allel corpora (Xu and Wan, 2017) or multilingual
word representation (Duong et al., 2017). Con-
siderable progress has been made on PLMs for
various cross-lingual transfer tasks. The representa-
tive models are M-BERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020a), which are multi-
lingual extensions of BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), respectively. Both
models are pre-trained on massive corpora of ap-
proximately 100 languages. LASER (Artetxe and
Schwenk, 2019) is a PLM trained on a parallel
corpus of 93 languages by using a sequence-to-
sequence architecture.

Improving cross-lingual transfer learning Sev-
eral studies have attempted to improve cross-
lingual transfer learning by using additional text
data in the target language. Lai et al. (2019) pro-
posed using an unlabeled corpus in the target lan-
guage to bridge the gap between the language
and the domain. Dong et al. (2020) and Keung
et al. (2019) incorporated adversarial training us-
ing unlabeled target language examples. Dong and
de Melo (2019) and Eisenschlos et al. (2019) pre-
sented methods for data augmentation in which



pseudo-labels are assigned to an unlabeled corpus
in the target language. Conneau and Lample (2019)
additionally pre-trained BERT-based models using
a parallel corpus. However, these methods require
extra training on additional text data for each tar-
get language, and their resulting models work well
only on a single target language. Unlike these meth-
ods, our method does not require extra training and
improves performance simultaneously for all target
languages with only a single PLM. Furthermore,
our method can be easily applied to these models
since it is a simple extension of a PLM and does
not modify its internal architecture.

Enhancing monolingual PLMs using entities
Several methods have been proposed for improv-
ing the performance of PLMs through pre-training
using entities. ERNIE (Zhang et al., 2019) and
KnowBert (Peters et al., 2019) enrich PLMs by
using pre-trained entity embeddings. LUKE (Ya-
mada et al., 2020b) and EaE (Févry et al., 2020)
train entity embeddings from scratch during pre-
training. However, all of these methods are aimed
at improving the performance of monolingual tasks
and require pre-training with a large corpus, which
is computationally expensive. Our method dynami-
cally injects entity information into PLMs during
fine-tuning without expensive pre-training.

Several studies have attempted to incorporate
entity information into PLMs after pre-training to
enhance the performance of monolingual tasks. Os-
tendorff et al. (2019) concatenated contextualized
representations with knowledge graph embeddings
to represent author entities and used them as fea-
tures for the book classification task. E-BERT
(Poerner et al., 2020) inserts KB entities next to
the entity names in the input sequence to improve
BERT’s performance for entity-centric tasks. Ver-
linden et al. (2021) introduced a mechanism for
combining span representations and KB entity rep-
resentations within a BILSTM-based end-to-end in-
formation extraction model. Unlike these methods,
our method aims to improve the cross-lingual text
classification by combining PLMs with language-
agnostic entity embeddings.

Text classification models using entities Sev-
eral methods have been commonly used to address
text classification using entities. Explicit seman-
tic analysis (ESA) is a representative example; it
represents a document as a bag of entities, which
is a sparse vector in which each dimension is a

score reflecting the relevance of the text to each
entity (Gabrilovich and Markovitch, 2006; Chang
et al., 2008; Negi and Rosner, 2013). More re-
cently, Song et al. (2016) proposed cross-lingual
explicit semantic analysis (CLESA), an extension
of ESA, to address cross-lingual text classification.
CLESA computes sparse vectors from the intersec-
tion of Wikipedia entities in the source and target
languages using Wikipedia language links. Unlike
CLESA’s approach, we address cross-lingual text
classification by extending state-of-the-art PLMs
with a language-agnostic entity-based document
representation based on Wikidata.

The most relevant to our proposed approach is
the neural attentive bag-of-entities (NABoE) model
proposed by Yamada and Shindo (2019). It ad-
dresses monolingual text classification using enti-
ties as inputs and uses an attention mechanism to
detect relevant entities in the input document. Our
model can be regarded as an extension of NABoE
by (1) representing documents using a shared entity
embedding across languages and (2) combining an
entity-based representation and attention mecha-
nism with state-of-the-art PLMs.

3 Proposed Method

Figure 1 shows the architecture of our model. The
model extracts Wikipedia entities, converts them
into Wikidata entities, and computes the entity-
based document representation using an attention
mechanism. The sum of the entity-based document
representation and the text-based document repre-
sentation computed using the PLM is fed into a
linear classifier to perform classification tasks.

3.1 Entity detection

To detect entities in the input document, we use two
dictionaries that can be easily constructed from the
KB: (1) a mention-entity dictionary, which binds an
entity name (e.g., “Apple”) to possible referent KB
entities (e.g., Apple Inc. and Apple (food)) by using
the internal anchor links in Wikipedia (Guo et al.,
2013), and (2) an inter-language entity dictionary,
which links multilingual Wikipedia entities (e.g.,
Tokyo, = 37, H) to a corresponding identifier
(e.g., Q7473516) of Wikidata.

All words and phrases are extracted from the
given document in accordance with the mention-
entity dictionary’, and all possible referent entities

]Following past work (Yamada and Shindo, 2019), name
overlap bounds are resolved by detecting only the earliest and



Dataset Language
MLDoc 8
TED-CLDC 12
SHINRA 30

Train Dev. Test
1,000 1,000 4,000
936 105 51-106
417,387 21,967 30k-920k

Table 1: Number of examples in MLDoc, TED-CLDC, and SHINRA2020-ML datasets.

are detected if they are included as entity names in
the dictionary. Note that all possible referent enti-
ties are detected for each entity name rather than
a single resolved entity. For example, we detect
both Apple Inc. and Apple (food) for entity name
“Apple”. Next, the detected entities are converted
into Wikidata entities if they are included in the
inter-language entity dictionary.

3.2 Model

Each Wikidata entity is assigned a representation
v, € RY. Since our method extracts all possible
referent entities rather than a single resolved entity,
it often extracts entities that are not related to the
document. Therefore, we introduce an attention
mechanism inspired by previous work (Yamada
and Shindo, 2019; Peters et al., 2019) to prioritize
entities related to the document. Given a document
with K detected entities, our method computes the
entity-based document representation z € R? as
the weighted average of the entity embeddings:

K
2= acuve,, M
=1

where a., € R is the attention weight correspond-
ing to entity e; and calculated using

a = softmax(W ] ¢), )
b(eird) = [ Cosm;(',"’”“) } 3)

where @ = [ae,, Gey, - -, Gey ] are the attention
weights; W, € R? is a weight vector; ¢ =
[¢(617 d)u ¢(627 d)7 T 7¢(6K7 d)] e R repre-
sents the degree to which each entity e; is related to
document d; and ¢(e;, d) is calculated by concate-
nating commonness® p,, with the cosine similarity
between the document representation computed us-
ing the PLM, h € R (e.g., the final hidden state
of the [CLS] token), and entity embedding, v, .

The sum of this entity-based document represen-
tation z and text-based document representation h
longest ones.

2Commonness (Mihalcea and Csomai, 2007) is the proba-
bility that an entity name refers to an entity in Wikipedia.

is fed into a linear classifier’ to predict the proba-
bility of label c:

p(c| h,z) = Classifier(h + z). 4
4 Experimental Setup

In this section, we describe the experimental setup
we used for the three cross-lingual text classifica-
tion tasks.

4.1 Entity preprocessing

We constructed a mention-entity dictionary from
the January 2019 version of Wikipedia dump* and
an inter-language entity dictionary from the March
2020 version in the Wikidata dump,’ which con-
tains 45,412,720 Wikidata entities (e.g., Q312). We
computed the commonness values from the same
versions of Wikipedia dumps in the correspond-
ing language, following the work of Yamada and
Shindo (2019).

We initialized Wikidata entity embeddings using
pre-trained English entity embeddings trained on
the KB. To train these embeddings, we used the
open-source Wikipedia2Vec tool (Yamada et al.,
2020a). We used the January 2019 English
Wikipedia dump mentioned above and set the di-
mension to 768 and the other parameters to the
default values. We initialized an entity embedding
using a random vector if the entity did not exist in
the Wikipedia2Vec embeddings. Note that we used
only English Wikipedia to train the entity embed-
dings.

4.2 Data

We evaluated our model using three datasets: ML-
Doc (Schwenk and Li, 2018), TED-CLDC (Her-
mann and Blunsom, 2014), and SHINRA2020-ML
(Sekine et al., 2020).

MLDoc is a dataset for multi-class text classi-
fication, i.e., classifying news articles into four

3In preliminary experiments, we also tested concatenation,
but observed worse overall results than with summation.

*nttps://dumps.wikimedia.org/

Shttps://dumps.wikimedia.org/
wikidatawiki/entities/
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Model en fr de ja zh it ru es | target avg.
MultiCCA (Schwenk and Li, 2018) 922|724 812 67.6 747 694 60.8 725 71.2
LASER (Artetxe and Schwenk, 2019) | 89.9 | 78.0 84.8 603 719 694 678 773 72.8
M-BERT 940|794 751 693 680 67.1 653 752 |714+14
+M-BoE 941|840 769 711 722 700 689 755|74.1+0.7
XLM-R 944 | 849 86.7 785 852 734 713 815 80.2+05
+M-BoE 94.6 | 86.4 889 80.0 874 75.6 73.7 83.2| 822+0.6

Table 2: Classification accuracy for topic classification on MLDoc dataset; “target avg.” indicates average scores for

target languages.

Model en fr de it ru es ar tr nl pt pl ro | targetavg.

M-BERT 51.6 | 47.7 439 50.6 479 531 413 442 494 462 451 454 |471+14

+M-BoE | 52.9 | 49.5 46.2 533 492 54.7 447 49.1 510 476 477 482 |496=+1.1

XLM-R 51.5 495 497 487 483 512 456 513 488 463 483 484 |491+18

+M-BoE | 51.7 | 50.0 53.8 513 523 529 505 531 52.0 493 505 49.6 | 51.8£0.9
Table 3: F1 score for topic classification on TED-CLDC dataset.

categories in eight languages. We used the en-
glish.train.1000 and english.dev datasets, which
contain 1000 documents for training and validation
data. As in the previous work (Schwenk and Li,
2018; Keung et al., 2020), we used accuracy as the
metric.

TED-CLDC is a multi-label classification
dataset covering 15 topics in 12 languages based
on the transcripts of TED talks. This topic classifi-
cation dataset is exactly like the MLDoc dataset
except that the classification task is more difficult
because of its colloquial nature and because the
amount of training data is small. Following the
previous work (Hermann and Blunsom, 2014), we
used micro-average F1 as the metric.

SHINRA2020-ML is an entity typing dataset
that assigns fine-grained entity labels (e.g., Per-
son, Country, Government) to a Wikipedia page.
We used this dataset for multi-label classification
tasks; we used all datasets in 30 languages except
English for the test data. Note that our model does
not use information in the test data during train-
ing because we only use the English Wikipedia to
train our entity embeddings. Following the original
work (Sekine et al., 2020), we used micro-average
F1 as the metric.

We created a validation set by randomly select-
ing 5% of the training data in TED-CLDC and
5% of the training data in SHINRA2020-ML. In
all experiments, we trained our model on English
training data, optimized hyper-parameters using
English development data, and evaluated it on the
remaining languages. A summary of the datasets is

shown in Table 1.

4.3 Models

We used M-BERT (Devlin et al., 2019) and XLM-
Rpqse (Conneau et al., 2020a) as the baseline multi-
lingual PLMs to evaluate the proposed method. We
added a single fully-connected layer on top of the
PLMs and used the final hidden state h of the first
[CLS] token as the text-based document representa-
tion. For the MLDoc dataset, we trained the model
by minimizing the cross-entropy loss with softmax
activation. For the TED-CLDC and SHINRA2020-
ML datasets, we trained the model by minimizing
the binary cross-entropy loss with sigmoid activa-
tion. For these two tasks, we regarded each label as
positive if its corresponding predicted probability
was greater than 0.5 during inference.

For topic classification using MLDoc, we com-
pared the performance of the proposed model with
those of two state-of-the-art cross-lingual models:
LASER (Artetxe and Schwenk, 2019) (see Section
2), and MultiCCA (Schwenk and Li, 2018), which
is based on a convolutional neural network with
multilingual word embeddings. To ensure a fair
comparison, we did not include models that use
additional unlabeled text data or a parallel corpus
to train models for each target language.

For entity typing, we tested a model that uses or-
acle entity annotations (i.e., hyperlinks) contained
in the Wikipedia page to be classified instead of
entities detected using the entity detection method
described in Section 3.1. Note that this model also
uses attention mechanisms and pre-trained entity
embeddings.



fr de ja zh it ru es ar tr nl pt pl ro hi no
M-BERT 68.5 842 813 80.7 852 814 856 574 507 556 804 777 769 818 836
+M-BoE 69.3 851 825 822 864 832 866 619 540 590 817 794 80.5 829 84.8
+Oracle M-BOE | 75.4 852 819 81.8 865 830 865 61.9 537 617 81.8 79.7 79.9 83.0 848
XLM-R 73.0 826 774 751 842 81.0 853 589 69.1 637 79.8 800 769 833 824
+M-BoE 774 845 790 770 856 832 858 633 723 655 807 818 778 84.8 840
+Oracle M-BOE | 76.5 848 79.6 772 855 834 862 630 718 676 804 815 788 848 832
th ca da fa id sV vi bg cs fi he hu ko uk  target avg.
M-BERT 840 815 80.1 802 724 794 793 740 746 757 740 77.1 813 780 76.6+07
+M-BoE 851 832 814 821 754 824 812 761 768 77.6 781 792 829 80.0 787+05
+Oracle M-BOE | 853 832 823 824 755 820 816 766 774 774 778 787 833 799 79.0+0.5
XLM-R 814 79.0 810 824 755 755 807 760 77.9 747 705 73.1 826 743 71.1+12
+M-BoE 821 809 833 841 782 787 819 791 79.6 769 719 755 840 770 79.2+09
+Oracle M-BOE | 81.8 812 829 839 783 782 825 79.1 799 77.1 718 758 83.92 769 792409
Table 4: F1 score for entity typing on SHINRA2020-ML dataset.
4.4 Detailed settings M-BoE M-BoE
) Setting (M-BERT) (XLM-R)
We tuned the hyper-parameters on the basis of the target avg. target avg.
English validation set. The details on the hyperpa- Full model 74.1 82.2
rameters of the models can be found in Appendix A. Attention mechanism:
We trained the models using the AdamW optimizer without attention 70.5 81.1
with a gradient clipping of 1.0 commonness only 724 81.8
g ) pping o . cosine only 72.8 81.8
In all experiments, we trained the models until Entity embeddings:
the performance on the English validation set con- random vectors 73.0 80.9
verged. We conducted all experiments ten times KG embedding 73.2 81.4
with different random seeds, and recorded the aver- Entity detection method:
age scores and 95% confidence intervals. entity linking 717 80.5
entity linking + att 73.0 81.9
Baseline 71.4 80.2
5 Results

Tables 2, 3, and 4 show the results of our experi-
ments. Overall, the M-BoE models outperformed
their baselines (i.e., M-BERT and XLM-R) for
all target languages on all three datasets. Further-
more, there was a significant difference in the mean
scores for the target languages for those models in
a paired t-test (p < 0.05). In particular, the perfor-
mance of our model clearly exceeded that of the
M-BERT baseline by 2.7% in accuracy, 2.5% in
F1, and 2.1% in F1, on the MLDoc, TED-CLDC,
and SHINRA2020-ML datasets, respectively.

For entity typing, using the entities detected with
our simple dictionary-based approach achieved
comparable performance to using gold entity
annotations (Table 4: Oracle M-BoE) on the
SHINRA2020-ML dataset, which clearly demon-
strates the effectiveness of our attention-based en-
tity detection method.

6 Analysis

We conducted a series of experiments to analyze the
performance of our model on the MLDoc dataset
(Table 5). We first analyzed the impact on the per-
formance of each component in the M-BoE model,

Table 5: Results of analysis of our model on MLDoc.

including the attention mechanism, pre-trained en-
tity embeddings, and entity detection methods. We
then evaluated the sensitivity of the model’s per-
formance to differences in the number of detected
entities for each language. Finally, we conducted
qualitative analysis by visualizing important enti-
ties.

6.1 Attention mechanism

We examined the effect of the attention mechanism
on performance. When the attention mechanism
was removed (Table 5: Attention mechanism), the
performance was substantially lower than with the
proposed model. This indicates that the attention
mechanism selects the entities that are effective in
solving the classification task. Next, we examined
the effectiveness of the two features (i.e., cosine
and commonness) in the attention mechanism by
excluding them one at a time from the M-BoE
model. Table 5 shows that there was a slight drop
in performance when either of them was not used,
indicating that both features are effective.



Model en (train) | fr de ja zh it ru es | avg.
External entity linking 200 | 19.2 146 8.15 52 11.7 127 13.8 | 13.2
Dictionary-based method (ours) 105.8 | 97.8 789 479 345 532 646 723 |64.2

Table 6: Comparison of the number of detected entities on MLDoc dataset. Numbers indicate average number of

entities detected for each example.
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Figure 2: Classification accuracy for each entity detection rate using MLDoc dataset.

6.2 Entity embeddings

To investigate the effect of entity embedding ini-
tialization, we replaced Wikipedia2Vec with (1)
random vectors and (2) knowledge graph (KG)
embeddings (Table 5: Entity embeddings). For
KG embedding, we used ComplEx (Trouillon
et al.,, 2016), a state-of-the-art KG embedding
method. We trained the ComplEx embeddings
on the wikidataSm dataset (Wang et al., 2021)
using the kge tool.® We set the dimension to
768 and used the default hyper-parameters for
everything else in the wikidata5Sm-complex
configuration in the tool. The results show
that using Wikipedia2Vec was the most effective
although using KG embeddings was better than
using random vectors.

6.3 Entity detection method

To verify the effectiveness of our dictionary-based
entity detection method, we simply replaced it with
a commercial multilingual entity linking system,
Google Cloud Natural Language API’ (Table 5:
Entity detection method). All entities were de-
tected with the API and converted into Wikidata
entities, as explained in Section 3.1. Note that
unlike our dictionary-based method, the entity link-
ing system detects a single disambiguated entity

*https://github.com/uma-pil/kge
"nttps://cloud.google.com/
natural-language

for each entity name.

The results show that our entity detection method
outperformed the API. We attribute this to the num-
ber of entities detected with our dictionary-based
detection method. As shown in Table 6, the number
of entities detected with the entity linking system
was substantially lower than with our entity detec-
tion method because, unlike our method, the sys-
tem detects only disambiguated entities and does
not detect non-named entities. Therefore, we at-
tribute the better performance of our method com-
pared with that of the API to (1) non-named entities
also being important features and (2) the inability
to use the correct entity if the disambiguation error
is caused by entity linking.

Furthermore, as described in Section 5, our
entity detection method performed competitively
with the human-labeled entity annotations on the
SHINRA2020-ML dataset.

Next, we examined the performance impact of
the number of detected Wikidata entities. For the
full model and no attention model, we observed a
change in performance when some percentage of
the entities were randomly removed during train-
ing and inference. Figure 2 shows that, the higher
the entity detection rate, the better the performance
of the full model. When the attention mechanism
was removed, however, there was no consistent
trend. The performance remained the same or even
dropped. These results suggest that the more enti-
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Figure 3: Pearson correlation coefficient and scatter plot of average number of detected entities and rate of
improvement in performance (Rate) for each target language.
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Figure 4: Example results for MLDoc. “Top three entities” indicates the three most influential entities selected by

attention mechanism.

ties detected, the better the performance, and that
the attention mechanism is important for this con-
sistent improvement.

6.4 Performance sensitivity to language
differences

In our method, the number of detected Wikidata
entities during inference differs depending on the
target languages. We investigated how this affects
performance. For each of the datasets, we com-
puted the Pearson’s correlation coefficient between
the number of detected entities and the rate of im-
provement over the baseline performance for each
language (Figure 3). As a result, there was no clear
trend in the correlation coefficients, which ranged
from -0.3 to 0.2. These results indicate that the per-
formance was consistently improved for languages
with a small number of detected entities. We at-
tribute this to the ability of our method to detect
a sufficient number of entities, even for languages

with a relatively small number of entity detections.

6.5 Qualitative analysis

To further investigate how the M-BoE model im-
proved performance, we took the MLDoc docu-
ments that our model classified correctly while M-
BERT did not and examined the influential entities
that were assigned the largest attention weights by
the M-BoE model. Figure 4 shows three examples
in which the M-BoE model effectively improved
performance. Overall, it identified the entities that
were highly relevant to the document. For example,
the first document is a Japanese document about
the Taiwanese stock market, and the M-BoE model
correctly identified the relevant entities, including
Stock certificate, Share price, and Taiwan Capital-
ization Weighted Stock Index.



7 Conclusions

Our proposed M-BoE model is a simple extension
of multilingual PLMs: language-independent Wiki-
data entities are used as input features for zero-
shot cross-lingual text classification. Since the
Wikidata entity embeddings are shared across lan-
guages, and the entities associated with a document
are further selected by the attention mechanism, a
model trained on these features in one language
can efficiently be applied to multiple target lan-
guages. We achieved state-of-the-art results on
three cross-lingual text classification tasks, which
clearly shows the effectiveness of our method.

As future work, we plan to evaluate our model
on low-resource languages and a variety of natural
language processing tasks, such as cross-lingual
document retrieval. We would also like to inves-
tigate whether our method can be combined with
other methods, such as using additional textual data
in the target language.
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Appendix for “A Multilingual Bag-of-Entities Model for
Zero-Shot Cross-Lingual Text Classification”

A Hyper-parameter Details

We conduct a grid-search for batch size € {16, 32, 64, 128} and learning rate € {1e—05, 2e—05, 5e—05}.
The chosen hyperparameters for each model are shown in Table 7.

Model MLDoc TED-CLDC SHINRA2020-ML
M-BERT 32/2e-05 16/2e-05 128 / 5e-05
XLM-R 32/2e-05 16/ 5e-05 64 / 2e-05
M-BoE (M-BERT) | 32/2e-05 16/ 2e-05 128/ 5e-05
M-BoE (XLM-R) | 32/2e-05 16/ 5e-05 64 / 2e-05

Table 7: Hyper-parameters used for experiments. In each cell, the left value indicates batch size, and the right value
indicates learning rate.
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Abstract

Are the predictions of humans and language
models affected by similar things? Research
suggests that while comprehending language,
humans make predictions about upcoming
words, with more predictable words being pro-
cessed more easily. However, evidence also
shows that humans display a similar processing
advantage for highly anomalous words when
these words are semantically related to the pre-
ceding context or to the most probable contin-
uation. Using stimuli from 3 psycholinguis-
tic experiments, we find that this is also al-
most always also the case for 8 contemporary
transformer language models (BERT, ALBERT,
RoBERTa, XLM-R, GPT-2, GPT-Neo, GPT-J,
and XGLM). We then discuss the implications
of this phenomenon for our understanding of
both human language comprehension and the
predictions made by language models.

1 Introduction

Humans process words more easily when they
more contextually predictable, whether predictabil-
ity is determined by humans (Fischler and Bloom,
1979; Brothers and Kuperberg, 2021) or language
models (McDonald and Shillcock, 2003; Levy,
2008; Smith and Levy, 2013). Work on the N400,
a neural signal of processing difficulty, has pro-
vided evidence that the neurocognitive system un-
derlying human language comprehension preacti-
vates words based on the extent to which they are
predictable from the preceding context—thus, pre-
dictable words are easier to process because they
or their features have already been activated before
they are encountered (Kutas and Hillyard, 1984;
Van Petten and Luka, 2012). This has led many to
argue that we should consider the human language
comprehension system to be engaging in prediction
(DeLong et al., 2005; Kutas et al., 2011; Van Pet-
ten and Luka, 2012; Bornkessel-Schlesewsky and
Schlesewsky, 2019; Kuperberg et al., 2020; De-
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Long and Kutas, 2020; Brothers and Kuperberg,
2021).

However, words that are either semantically re-
lated to the elements of the preceding context or to
the most likely next word are also processed more
easily, even if they are semantically implausible
and ostensibly unpredictable. These are known as
related anomaly effects. For an example of the for-
mer, consider the sentences in (1) that were used as
experimental stimuli by Metusalem et al. (2012).

(1) My friend Mike went mountain biking
recently. He lost control for a moment and
ran right into a tree. It’s a good thing he was
wearing his

(a) helmet
(b) dirt
(c) table

Helmet is the most predictable continuation of
the sentence, as determined based on cloze proba-
bility (Taylor, 1953, 1957)—the proportion of peo-
ple to fill in a gap in a sentence with a specific
word. Thus, unsurprisingly, helmet elicited the
smallest N40O0 response, indicating that it is most
easily processed. Dirt and table are both implau-
sible continuations, and equally improbable based
on human responses (both have a cloze probability
of zero). Yet Metusalem et al. (2012) found that
dirt, which is semantically related to the preceding
context of mountain biking, elicits a smaller N400
response than table, which is not. This suggests
that something about dirt’s relation to the mountain
biking event causes it to be preactivated more than
table, despite their seemingly equal implausibility
and unpredictability.

The sentences in (2), used as experimental stim-
uli by Ito et al. (2016), provide an example of
the other previously-discussed form of related
anomaly—where a word semantically related to
the most probable continuation (in this case, that

Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL), pages 13 - 26
December 7-8, 2022 ©2022 Association for Computational Linguistics



with the highest cloze) is easier to process than
one that is not. Even though rail and tyre are both
implausible continuations with a cloze probability
of zero, Ito et al. (2016) find that tail, which is
semantically-related to the highest-cloze continua-
tion dog, elicits a smaller N400 response than fyre,
which is not.

(2) Meg will go to the park to walk her
tomorrow.

(a) dog
(b) tail
(c) tyre

In sum, words related to elements of the preced-
ing context or to the most probable continuation of
a sequence appear to be more preactivated in the
brain than words that are not, even when both are
highly anomalous. This effect has been replicated
many times (Kutas and Hillyard, 1984; Kutas et al.,
1984; Kutas, 1993; Federmeier and Kutas, 1999;
Metusalem et al., 2012; Rommers et al., 2013; Ito
et al., 2016; DeLong et al., 2019; for review see
DelLong et al., 2019).

The key question, therefore, is whether the same
neurocognitive system underlying the predictability
effects on the N400 also underlie related anomaly
effects. Under one account (DeLong et al., 2019;
DeLong and Kutas, 2020), the predictive system
that underlies predictability effects also leads to
these related anomalous words being ‘collaterally
facilitated’ (DeLong and Kutas, 2020, p. 1045) due
to their shared semantic features. Under this ac-
count, therefore, related anomaly effects can all be
explained as by-products of our predictive system
and the semantic organization of information in the
brain. However, there is no direct evidence that
this is the case—in fact, given the metabolic costs
of preactivation (Brothers and Kuperberg, 2021),
it may intuitively seem unlikely that an efficient
predictive system would lead to implausible and
otherwise anomalous words being preactivated. In
fact, many researchers have argued that one or more
associative mechanisms are required to explain re-
lated anomaly and other similar effects (Lau et al.,
2013; Ito et al., 2016; Frank and Willems, 2017;
Federmeier, 2021).

As systems designed specifically to predict the
probability of a word given its context, language
models offer a means to test the viability of the
former hypothesis. If language models calcu-
late that related but anomalous words are more
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predictable than unrelated anomalous words, this
would demonstrate that related anomaly effects
can be produced by a system engaged in predic-
tion alone. This would show that it is possible
that related anomalies can be ‘collaterally facili-
tated’ (DeLong and Kutas, 2020, p. 1045) by a
predictive mechanism in human language compre-
hension. Thus, it would remove the need to posit
additional associative mechanisms on the basis of
related anomaly effects, which could greatly sim-
plify our understanding of human language com-
prehension.

This is what we test in the present study. We run
the stimuli from 3 psycholinguistic experiments
carried out in English (Ito et al., 2016; DeL.ong
et al., 2019; Metusalem et al., 2012) through 8
contemporary transformer language models (De-
vlin et al., 2019; Radford et al., 2019; Liu et al.,
2019; Lan et al., 2020; Conneau et al., 2020; Black
et al., 2021; Wang and Komatsuzaki, 2021; Lin
et al., 2021), calculating the surprisal (negative log-
probability) of each word for which the N400 was
measured. We then compare whether, in line with
the N400 response, anomalous words that are se-
mantically related to the context have significantly
lower surprisals than unrelated words.

2 Related work

There have been a wide range of attempts to com-
putationally model the N400 (Parviz et al., 2011;
Laszlo and Plaut, 2012; Laszlo and Armstrong,
2014; Rabovsky and McRae, 2014; Frank et al.,
2015; Ettinger et al., 2016; Cheyette and Plaut,
2017; Brouwer et al., 2017; Rabovsky et al., 2018;
Venhuizen et al., 2019; Fitz and Chang, 2019; Au-
rnhammer and Frank, 2019; Michaelov and Bergen,
2020; Merkx and Frank, 2021; Uchida et al., 2021;
Szewczyk and Federmeier, 2022; Michaelov et al.,
2022). One of the most successful and influential
approaches has been to model the N400 using the
surprisal calculated from neural language models—
surprisal has been found to be a significant predic-
tor of single-trial N400 data (Frank et al., 2015;
Aurnhammer and Frank, 2019; Merkx and Frank,
2021; Michaelov et al., 2021; Szewczyk and Feder-
meier, 2022; Michaelov et al., 2022), and has been
found to be similar to the N400 response in how it is
affected by a range of experimental manipulations
(Michaelov and Bergen, 2020; Michaelov et al.,
2021). A key finding is that better-performing and
more sophisticated language models perform better



at predicting the N400 (Frank et al., 2015; Aurn-
hammer and Frank, 2019; Michaelov and Bergen,
2020; Merkx and Frank, 2021; Michaelov et al.,
2021, 2022). For this reason, we use contemporary
transformer language models in the present study.
We use experimental stimuli from 3 experiments.
Stimuli from one of these experiments (Ito et al.,
2016) have been previously used in computational
analyses of the N400. This is one of several sets
that Michaelov and Bergen (2020) attempt to model
using recurrent neural network (RNN) language
models, finding that they can indeed calculate that
words related to the highest-cloze continuation are
more predictable than unrelated words. In the
present study, we test whether this result can be
replicated on a larger number of language models,
and specifically, transformer language models.
There has also been work looking at how lan-
guage models deal with semantic relatedness to the
highest-cloze continuation based on stimuli from
other N400 experiments. Michaelov and Bergen
(2020), for example, find that in cases where the
related and unrelated words are both plausible, the
related continuations are more strongly predicted
by RNNs (Gulordava et al., 2018; Jozefowicz et al.,
2016), in line with the original N400 results (Kutas,
1993). Michaelov et al. (2021) conceptually repli-
cate this finding on a different dataset (Bardolph
et al., 2018) using one of the same RNNs (Jozefow-
icz et al., 2016) and GPT-2 (Radford et al., 2019).
However, these prior efforts differ from the present
study in that they investigate N400Os and surprisal to
words that are all plausible continuations of the sen-
tence, and where they both have a low but generally
non-zero cloze probability. In the stimuli analyzed
in the present study, by contrast, both the related
and unrelated words are anomalous—they have a
cloze probability of zero, and are implausible con-
tinuations. Thus, their preactivation does, at least
intuitively, appear to be more clearly ‘collateral’.
We are only aware of one previous study that
directly compares the predictions of transformers
and the human N400 response on related anomaly
stimuli. Ettinger (2020) evaluates BERT in terms
of its similarity to cloze—because the predictions
of a language model, being incremental, may show
similar effects to those found in the N400 (see also
Michaelov and Bergen, 2020 for discussion). For
this reason, Ettinger (2020) tests how good BERT is
at predicting the highest-cloze (most probable) con-
tinuations in the stimuli over anomalous but seman-
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tically related continuations, but does not directly
look at the related anomaly effect—whether the
related anomalous continuations are more strongly
predicted than the unrelated anomalous continu-
ations. Thus, to the best of our knowledge, the
present study is the first to investigate whether the
predictions of transformer language models display
related anomaly effects like humans do.

Finally, there has been some work investigating
whether language models display priming effects
(e.g. Prasad et al., 2019; Misra et al., 2020; Kass-
ner and Schiitze, 2020; Lin et al., 2021; Lindborg
and Rabovsky, 2021). The effect found by Me-
tusalem et al. (2012)—that words related to the
events described in the context are preactivated
more strongly than words that are not—is a form
of semantic priming, as it results in the increased
preactivation of a word based on the semantic con-
tent stimulus that has been recently encountered
(i.e. the event described in the preceding linguistic
context). Thus, our investigation of the patterns in
the prediction of the the stimuli from Metusalem
et al. (2012) is intended to further our knowledge of
priming in language models—specifically, whether
there are systematic ways in which context shapes
the extent to which anomalous words are predicted.

3 General Method

In this study, we took the stimuli from a range of ex-
periments (Ito et al., 2016; DeLong et al., 2019; Me-
tusalem et al., 2012) and ran them through a num-
ber of transformer language models. We used the
transformers (Wolf et al., 2020) implementations of
the (largest and most up-to-date versions of each of
the) following models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), XLM-R (Conneau et al., 2020), GPT-2 (Rad-
ford et al., 2019), GPT-Neo (Black et al., 2021),
GPT-J (Wang and Komatsuzaki, 2021), and XGLM
(Lin et al., 2021). We chose these models to cover
a number of both autoregressive (GPT-2, GPT-Neo,
GPT-J, XGLM) and masked (BERT, RoBERTa,
ALBERT, XLM-RoBERT2) language model archi-
tectures. Given the recent increase in popularity of
multilingual language models, we also made sure
to include one autoregressive (XGLM) and one
masked (XLM-RoBERTa) multilingual language
model, in case there is a difference based on the
number of languages that a model is trained on.
All experimental stimuli used in the present
study have been made available by the original



authors of their respective papers as appendices
or supplementary materials. In our analysis, we
truncated all stimuli to be the preceding context of
the critical word (the word for which the N400 was
measured). We then used the language models to
calculate the probability of the next word, and neg-
ative log-transformed (using a logarithm of base 2,
following Futrell et al., 2019) these probabilities to
calculate the surprisal of each word. For words not
present in the vocabulary of each model, we tok-
enized the word, and then progressively calculated
the surprisal of each sub-word token given the pre-
ceding context; with the sum of all the surprisals
(equivalent to the the negative log-probability of
the product of all the probabilities) being used as
the total surprisal for the word. In this way, we
calculated the surprisal of each critical word given
its preceding context only.

All graphs and statistical analyses were created
and run in R (R Core Team, 2020) using Rstudio
(RStudio Team, 2020) and the tidyverse (Wickham
et al., 2019), Ime4 (Bates et al., 2015), and ImerTest
(Kuznetsova et al., 2017) packages. All reported
p-values are corrected for multiple comparisons
based on false discovery rate across all statistical
tests carried out (Benjamini and Hochberg, 1995).
Because of this correction procedure, if any models
display related anomaly effects, this is evidence
that prediction alone can account for them.

All of the code for running the experi-
ments and carrying out the statistical analyses is
provided at https://github.com/jmichaelov/
collateral-facilitation.

4 Experiment 1: Ito et al. (2016)

4.1 Introduction

We begin with Ito et al. (2016), who investigated
whether relatedness to the highest-cloze continu-
ation of a given sentence impacts the amplitude
of the N400 response. They presented human par-
ticipants with experimental stimuli that included
a word that was either the highest-cloze continu-
ation of a sentence, semantically related to that
highest-cloze continuation, similar to the highest-
cloze continuation in terms of their form (e.g. hook
and book), or unrelated. For the purposes of the
present study, we are interested in semantic related-
ness and thus do not consider the formal relatedness
condition. Thus, we look at the stimuli from the
three experimental conditions exemplified in (3)—
an example of Predictable, Related, and Unrelated
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continuations for one sentence frame.

(3) Lydia cannot eat anymore as she is so
now.

* full (Predictable)
* half (Related)
e mild (Unrelated)

Ito et al. (2016) find that related continuations
elicit a smaller N40O response than unrelated con-
tinuations. As stated, this finding was successfully
modeled using the surprisal of two RNN language
models by Michaelov and Bergen (2020).

In the present study, we aim to investigate
whether this can be replicated with contemporary
transformer language models. Thus far, only one
study (Merkx and Frank, 2021) has directly com-
pared the N400 prediction capabilities of RNNs
and transformers while matching number of pa-
rameters, training data, and language modeling
performance, finding that transformers are better
predictors of N400 amplitude overall. We might
therefore expect that the transformers used in the
present study should model the related anomaly ef-
fect found by Ito et al. (2016) at least as well as the
RNNs used by Michaelov and Bergen (2020). How-
ever, a key feature of Merkx and Frank’s (2021)
study is that it uses naturalistic stimuli. This makes
the experiment more ecologically valid, but as has
been pointed out (Michaelov and Bergen, 2020;
Brothers and Kuperberg, 2021), this means that we
cannot tell whether the higher correlation between
surprisal and N400 amplitude is due to any factors
that we are interested in investigating—Merkx and
Frank (2021) do not consider how relatedness to a
previously-mentioned event or to most predictable
continuation impacts surprisal and the N400. For
this reason, it is in fact far from clear that we should
expect this specific related anomaly effect to be
modeled as well by transformers as by RNNs. How-
ever, if it is, this would demonstrate the effect in
two different language model architectures, fur-
ther strengthening the idea that a predictive system
alone can explain related anomaly effects.

Thus, in the present study, we investigate
whether the results of Michaelov and Bergen (2020)
replicate beyond the two RNNs tested, and cru-
cially, whether the results replicate with trans-
former language models. Specifically, we test
whether the surprisal elicited by implausible stim-
uli related to the highest-cloze continuation is lower
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Figure 1: Mean surprisal elicited by each language model for the Ito et al. (2016) stimuli related and unrelated to
the most probable (highest-cloze) continuation of each sentence. Error bars indicate standard error.

Model Test Statistic Corrected p
BERT F(1,120) =7.15 0.0093
ALBERT F(1,92) = 20.6 < 0.0001
RoBERTa F'(1,159) = 60.8 < 0.0001
XLM-R F(1,126) = 21.2 < 0.0001
GPT-2 F(1,157) = 64.0 < 0.0001
GPT-Neo F'(1,152) = 64.1 < 0.0001
GPT-J F(1,149) = 62.5 < 0.0001
XGLM F(1,146) = 72.6 < 0.0001

Table 1: The results of a Type III ANOVA (using Sat-
terthwaite’s method for estimating degrees of freedom;
Kuznetsova et al., 2017) on the Ito et al. (2016) stimuli,
testing for which language models experimental condi-
tion (related or unrelated) is a significant predictor of
their surprisal. This is the case for all language models.

than the surprisal elicited by implausible stimuli
unrelated to the highest-cloze continuation.

4.2 Results

The results of the experiment are shown in Fig-
ure 1. As can be seen, numerically, related words
elicit lower surprisals than unrelated words, indi-
cating that they were more highly predicted by the
language models. This in turn suggests that these
models do in fact collaterally predict the related
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continuations.

In order to test this more directly, we ran sta-
tistical analyses of the surprisals elicited by the
language models. This was done by constructing
linear mixed-effects regressions for each language
model surprisal with experimental condition as a
main effect, and the maximal random effects struc-
ture that would successfully converge for all mod-
els (see Barr et al., 2013). For all regressions except
for that predicting RoBERTa surprisal, this random
effects structure was a random intercept of sentence
frame and of critical word. For the RoOBERTa sur-
prisal regression, the latter random intercept was
removed due to it causing a singular fit. As creating
null models with only the random effects structure
resulted in singular fits for multiple regressions,
we were unable to run likelihood ratio tests to test
whether experimental condition—that is, whether
the word was semantically related or unrelated to
the highest-cloze continuation—was a significant
predictor of surprisal. For this reason, we instead
tested whether experimental condition was a signif-
icant predictor of surprisal by running a Type III
ANOVA using Satterthwaite’s method for estimat-
ing degrees of freedom (Kuznetsova et al., 2017)
on the aforementioned linear mixed-effects mod-
els that included experimental condition as a fixed
effect.

The results of the tests are shown in Table 1. As
can be seen, condition is a significant predictor of
the surprisal from every language model, confirm-
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Figure 2: Mean surprisal elicited by each language model for the DeLong et al. (2019) stimuli related and unrelated
to the most probable (highest-cloze) continuation of each sentence. Error bars indicate standard error.

ing that language models predict related stimuli to
be more likely than unrelated stimuli.

The results of this experiment demonstrate that
all the language models tested—BERT, ALBERT,
RoBERTa, XLLM-R, GPT-2, GPT-Neo, GPT-J, and
XGLM—display the related anomaly effect in re-
sponse to the Ito et al. (2016) stimuli. All eight
models predict implausible continuations that are
related to the most probable continuations to be
more likely those that are unrelated.

5 [Experiment 2: Del.ong et al. (2019)

5.1 Introduction

DeLong et al. (2019) also investigated the differ-
ence between the N400 amplitude elicited by im-
plausible words that are related or unrelated to the
most predictable (highest-cloze) continuation. As
in Ito et al. (2016), these stimuli were chosen such
that both related and unrelated words were highly
implausbile—in this case, ‘unpredictable words
were strategically chosen not to make sense in their
given contexts’ (DeLong et al., 2019, p. 4). These
stimuli are exemplified by the set shown in (4).

(4) The commuter drove to work in her

after breakfast.

e car (Predictable)
* brakes (Related)
* poetry (Unrelated)
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Model Test Statistic Corrected p
BERT F(1,159) =< 0.1 0.9322
ALBERT F(1,112) =6.3 0.0138
RoBERTa F'(1,159) = 50.7 < 0.0001
XLM-R F(1,132) = 18.2 0.0001
GPT-2XL F(1,134) =120.7 < 0.0001
GPT-Neo  F(1,142) =111.7 < 0.0001
GPT-J F(1,141) = 132.6 < 0.0001
XGLM F(1,159) = 1224 < 0.0001

Table 2: The results of a Type III ANOVA (using Sat-
terthwaite’s method for estimating degrees of freedom;
Kuznetsova et al., 2017) on the DeLong et al. (2019)
stimuli, testing for which language models experimental
condition (related or unrelated) is a significant predictor
of their surprisal. This is the case for all language mod-
els except BERT.

Like Ito et al. (2016), DeLong et al. (2019) find
that overall, related continuations elicit a smaller
N400 response than unrelated continuations.

5.2 Results

As in Experiment 1, we ran the stimuli from the
original experiment through the 8 language models
and calculated the surprisal of each critical word.
The results of the experiment are shown in Figure 2.



In all models except BERT, related stimuli all elicit
numerically lower surprisals than unrelated stimuli,
indicating that they were more highly-predicted by
the language models.

We again ran the same statistical test as in Exper-
iment 1, testing whether experimental condition (re-
lated or unrelated to the highest-cloze continuation)
is a significant predictor of the surprisal elicited by
the stimuli in each language model. The ALBERT,
XLM-R, GPT-2, GPT-Neo, and GPT-J regressions
had random intercepts of sentence frame and criti-
cal word, while the BERT, RoBERTa, and XGLM
regressions had only random intercepts for sen-
tence frame. The results of the Type Il ANOVA are
shown in Table 2. Condition is a significant predic-

tor of the surprisal of every model except BERT—

in these models, related stimuli are predicted to be
more likely continuations of the sentence than un-
related stimuli. Thus, with the exception of BERT,
we replicate the findings of Experiment 1.

6 Experiment 3: Metusalem et al. (2012)

6.1 Introduction

Metusalem et al. (2012) investigated the extent to
which relatedness to the event described in the pre-
ceding context impacts the amplitude of the N400
response. Metusalem et al. (2012) presented human
participants with experimental stimuli that included
either the most probable (highest-cloze) continua-
tion of a sentence, an implausible continuation that

BERT (Large, WWM) ALBERT (Large)

RoBERTa (Large)

was related to the event described, or an implau-
sible continuation that was unrelated to the event
described. All of the implausible stimuli also had a
cloze probability of zero. The stimuli are exempli-
fied by the set for a single sentence frame shown
in (5).

(5) We’re lucky to live in a town with such a
great art museum. Last week I went to see a
special exhibit. I finally got in after waiting in
along

¢ [ine (Predictable)
* painting (Related)
* toothbrush (Unrelated)

Metusalem et al. (2012) found that despite their
implausibility and improbability (based on cloze),
critical words related to the event described in the
context preceding them elicited smaller N40O re-
sponses than words that were unrelated to the event,
a clear example of a related anomaly effect.

6.2 Results

As in Experiments 1 and 2, we ran the stimuli from
the original experiment through the 8 language
models and calculated the surprisal of each critical
word. The results of the experiment are shown in
Figure 3. As in Experiment 1, numerically, in all
models related stimuli elicit lower surprisals than
unrelated surprisals, indicating that they were more
highly predicted by the language models.

XLM-R (Large)

0- -' .. -. .. Condition

GPT-2 (XL) GPT-Neo (2.7B)

Surprisal
w
o

Related Unrelated

Related Unrelated Related Unrelated

GPT-J (6B)

. Related

Unrelated

XGLM (7.5B)

Related Unrelated

Relatedness to highest-cloze continuation

Figure 3: Mean surprisal elicited by each language model for the Metusalem et al. (2012) stimuli related and
unrelated to the most probable (highest-cloze) continuation of each sentence. Error bars indicate standard error.



Model Test Statistic Corrected p
BERT F(1,29) =771 < 0.0001
ALBERT  F(1,29) =78.7 < 0.0001
RoBERTa F'(1,28) = 188.1 < 0.0001
XLM-R F(1,34) =83.4 < 0.0001
GPT-2XL F(1,35)=211.5 < 0.0001
GPT-Neo  F'(1,42) =200.1 < 0.0001
GPT-J F(1,35) = 265.5 < 0.0001
XGLM F(1,33) =222.5 < 0.0001

Table 3: The results of a Type III ANOVA (using Sat-
terthwaite’s method for estimating degrees of freedom;
Kuznetsova et al., 2017) on the Metusalem et al. (2012)
stimuli, testing for which language models experimental
condition (related or unrelated) is a significant predictor
of their surprisal. This is the case for all language mod-
els.

We again ran the same statistical analyses as in
Experiments 1 and 2, constructing linear mixed-
effects regression models, all of which had random
intercepts of sentence frame and critical word. Us-
ing a Type III ANOVA, we tested whether experi-
mental condition (related or unrelated to the event
described in the preceding context) is a significant
predictor of N400 amplitude. The results are shown
in Table 3. As can be seen, experimental condition
was a significant predictor of the surprisal of all
models.

7 General Discussion

7.1 Summary of Results

In all but one specific case—BERT in Experiment
2—experimental condition significantly predicted
language model surprisal in the same direction as
human N400 responses. The results of Experiments
1 and 2, therefore demonstrate convincingly that,
like humans, language models do tend to predict
that anomalous words related to the most probable
continuation are more probable than anomalous
words that are not. The results of Experiments
3, analogously, demonstrate that like humans, lan-
guage models tend to predict that anomalous words
related to a relevant event described in the pre-
ceding context are more probable than anomalous
words that are not. Thus, like the human language
comprehension system, language models exhibit
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related anomaly effects.

7.2 Psycholinguistic implications

These results have clear implications for psycholin-
guistic research on the effects of related anomalies
on human language processing. First, a predictive
system can display the effects—in fact, there is
only one set of stimuli for which not all models do.
This demonstrates the sufficiency of a predictive
system for preactivating related anomalous stimuli
to a greater degree than unrelated anomalous stim-
uli. In other words, based on a parsimony criterion,
there is no need to posit that related anomaly effects
on human language processing require something
beyond a predictive system such as an associative
system, either instead of or in addition to a predic-
tive one.

Second, both kinds of related anomaly effect
explored—the reduction in N400 amplitude corre-
lated with relatedness to the most probable contin-
uation and that correlated with relatedness to the
event in the preceding context—are explainable by
a single mechanism. This may seem counterintu-
itive, given how intuitively different the effects may
seem. Yet this finding is consistent with the idea
in the literature that the two effects can be consid-
ered different variants of the same phenomenon
(DeLong et al., 2019; DeLong and Kutas, 2020).

Given that this study is based on computational
modeling, we should note that the results do not
constitute direct proof of a neurocognitive predic-
tive system or of the lack of the involvement of an
additional associative mechanism. However, they
are consistent with such accounts, and open the
door for future research, both computational and
experimental. For example, it may be the case that
other phenomena that have been argued to consti-
tute evidence for a separate associative mechanism
(see Federmeier, 2021, for review) may also be ex-
plainable on the basis of prediction. On the other
hand, the approach we use here can also be used
to design stimuli that do not differ in probability in
order to further test whether prediction can explain
all related anomaly effects.

7.3 Implications for NLP

The results of the present study demonstrate that re-
lated anomaly effects occur in contemporary trans-
former language models. Based on the present
study, this does not appear to be impacted by
whether the model is an autoregressive or masked
language model; or by whether the model is mono-



lingual or multilingual. In fact, the only model
that does not show the effect every time is BERT,
the least powerful model tested (all other models
are either larger, trained on more data, or both).
Thus, in line with previous research showing that
higher-quality language models better predict hu-
man processing metrics (Merkx and Frank, 2021),
the present results suggest that better language mod-
els are also more likely to display human-like pat-
terns of prediction.

The results of this study also have several im-
plications for understanding how the predictions
of humans and language models relate. As has
been previously discussed, some researchers have
argued that we should evaluate the predictions of
language models based on cloze probability (Et-
tinger, 2020). In fact, some have suggested training
models on cloze probabilities (Eisape et al., 2020).
However, the results of this study, along with others
(Frank et al., 2015; Aurnhammer and Frank, 2019;
Michaelov and Bergen, 2020; Aurnhammer and
Frank, 2019; Merkx and Frank, 2021; Szewczyk
and Federmeier, 2022; Michaelov et al., 2022), sug-
gest that the predictions of language models are
highly correlated with N400 amplitude; and recent
work has argued that that the activation states of
transformers are highly correlated with activation
in the brain during language comprehension more
generally (Schrimpf et al., 2020). Thus, while it
may be useful for certain tasks to have cloze-like
predictions, it may be the case that we are gener-
ally more likely to get N400-like predictions from
language models.

If so, this is a cause for both optimism and pes-
simism. Given that humans are the gold-standard
in natural language tasks generally, if a language
model can make predictions that closely match
those that humans make as part of language com-
prehension, this may also suggest that the represen-
tations learned are at least in some ways function-
ally similar to those that humans use to generate
the same predictions. On the other hand, by the
same token, it may suggest a limit to the possibil-
ities of language modeling alone—there is much
more to language comprehension than the kinds
of prediction that underlie the N40O response (see,
e.g., Ferreira and Yang, 2019; DeL.ong and Kutas,
2020; Kuperberg et al., 2020).
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8 Conclusion

In order to better understand related anomaly ef-
fects in humans, we investigated whether contem-
porary transformer language models display them.
We found that in all but one case, they do, suggest-
ing that related anomaly effects in both humans
and language models may be driven by prediction
alone.
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be (DeLong et al., 2019), and how consistent our
results are (after statistical correction for multiple
comparisons, all three related anomaly effects are
modeled by all but one transformer, which only
fails to model one effect), we do not believe this
presents a problem for our analysis.

Finally, the three experiments modeled were all
carried out in English. Related anomaly effects
have been reported in other languages (DeLong
et al., 2019) such as Dutch (Rommers et al., 2013);
and these are not modeled in our study. Thus, it
is an open question whether our results general-
ize to related anomaly effects in languages other
than English. However, we also note the evidence
that higher-quality models are better at predicting
N400 amplitude (Merkx and Frank, 2021). For this
reason, given the overwhelming focus on English
in computational linguistics (Bender, 2009, 2011;
Tsarfaty et al., 2013; Munro, 2015; Mielke, 2016;
Kimetal., 2016; Amram et al., 2018; Bender, 2019;
Clark et al., 2022), current language model archi-
tectures are likely to be best suited to predicting
English—indeed, current state-of-the-art models
such as GPT-3 (Brown et al., 2020), OPT (Zhang
et al., 2022), PaLM (Chowdhery et al., 2022), and
LaMDA (Thoppilan et al., 2022) are trained mostly
or only on English data. Thus, while the focus on
modeling English may be an issue for the field as a
whole, in this case, focusing on experiments carried
out in English may in fact give us the best possi-
ble chance to evaluate what the human predictive
system could predict.

B Models used

The details of the models used in this study are
provided in Table 4.

Model Name Full Name on the Hugging Face Model Hub Reference

BERT bert-large-cased-whole-word-masking
ALBERT albert-xxlarge-v2

RoBERTa roberta-large

XLM-R xlm-roberta-large

GPT-2 XL gpt2-x1

GPT-Neo EleutherAI/gpt-neo-2.7B

GPT-J EleutherAI/gpt-j-6B

XGLM facebook/xglm-7.5B

Devlin et al. (2019)

Lan et al. (2020)

Liu et al. (2019)

Conneau et al. (2020)

Radford et al. (2019)

Black et al. (2021)

Wang and Komatsuzaki (2021)
Lin et al. (2021)

Table 4: Transformer langauge models used in the present study. All were accessed using the transformers (Wolf

et al., 2020) package.
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Abstract

This paper investigates how hate speech varies
in systematic ways according to the identi-
ties it targets. Across multiple hate speech
datasets annotated for targeted identities, we
find that classifiers trained on hate speech tar-
geting specific identity groups struggle to gen-
eralize to other targeted identities. This pro-
vides empirical evidence for differences in hate
speech by target identity; we then investigate
which patterns structure this variation. We find
that the targeted demographic category (e.g.
gender/sexuality or race/ethnicity) appears to
have a greater effect on the language of hate
speech than does the relative social power of
the targeted identity group. We also find that
words associated with hate speech targeting spe-
cific identities often relate to stereotypes, his-
tories of oppression, current social movements,
and other social contexts specific to identities.
These experiments suggest the importance of
considering targeted identity, as well as the so-
cial contexts associated with these identities, in
automated hate speech classification.

Warning: This paper contains offensive and
hateful terms and concepts. We have chosen
to reproduce these terms for clarity in aiding
efforts against hate speech.

1 Introduction

Researchers working in natural language process-
ing (NLP) often treat hate speech as a binary, uni-
fied, concept that can be detected from language
alone. However, as a linguistic concept that relies
heavily on social context, hate speech contains a
variety of related phenomena (Brown, 2017). Hate
speech is characterized by variation in linguistic
features (e.g. implicit vs. explicit), context (e.g.
platforms, prior conversations), and communities
(social histories and hierarchies). This paper fo-
cuses on a crucial aspect of this variation: how hate
speech varies by the identity groups it targets.

To study this variation, we analyze hate speech
datasets that include annotations for which identity
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group is targeted. Drawing from multiple of these
datasets, we sample new corpora that target the
same identity group. These identity groups vary
according to several dimensions, including relevant
demographic category (e.g. gender, religion) and
relative social power (e.g. socially marginalized or
dominant). We empirically test which dimensions
most clearly separate different forms of hate speech
by evaluating how well classifiers trained on one
set of identities generalize to hate speech directed
at different sets of identities.

We find that hate speech varies most prominently
by the targeted demographic category and less so
by the social power of the targeted identity group.
Theorists working in philosophy and sociolinguis-
tics have drawn attention to how hate speech di-
rected at marginalized groups differs from hate
directed toward socially dominant groups (Butler,
1997; Lakoff, 2000). However, we do not find that
hate speech toward dominant groups is sufficiently
different to consistently increase classification per-
formance when removed from existing datasets.

Analyzing the most representative terms in hate
speech directed toward different identities, we
find that many words reflect identity-specific con-
text such as histories of oppression or stereo-
types. These results have implications for NLP
researchers building generalizable hate speech clas-
sifiers, as well as for a more general understanding
of variation in hate speech.

Contributions

1. An empirical analysis of variation in hate
speech by target identity. Specifically, how
well classifiers trained on hate speech directed
toward specific identities generalize to hate
speech directed at other identities.

. An analysis of which dimensions of social
difference (demographic category, power)
among targeted identities reflect the most vari-
ation in hate speech.
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3. A qualitative analysis of the hate speech terms
most strongly associated with specific target
identities.

2 Hate Speech

Hate speech is an example of a “thick concept” with
a set of related, but difficult to define meanings and
understandings (Pohjonen and Udupa, 2017). Le-
gal theorist Alexander Brown (2017) argues for a
set of attributes that make an expression more or
less likely to be considered hate speech, similar to
Wittgenstein’s “family resemblances” concept. Key
attributes include an incitement of emotion and vi-
olence, and a direction of that incitement toward a
targeted identity group (Sanguinetti et al., 2018; Po-
letto et al., 2021). Though others have studied the
linguistic properties of this incitement (Marsters,
2019; Wiegand et al., 2021), we focus on how vari-
ation in the identity group targeted by hate speech
affects the linguistic characteristics of hate speech.

2.1 Variation by identity

Identities are central to hate speech. Classifiers
often learn to associate the presence of identity
terms, especially derogatory ones, with hate speech
and abusive language (Dixon et al., 2017; Uyheng
and Carley, 2021). Computational studies of the
targets of online hate speech have included mea-
surement studies of its prevalence toward different
targets. Silva et al. (2016) and Mondal et al. (2017)
searched for templates such as “I hate ___” to mea-
sure hate toward different identity groups. We ana-
lyze datasets manually annotated with the targets
of hate speech. This captures a broader range of
hate speech, including indirect hate speech and
stereotypes. ElSherief et al. (2018a,b) investigated
differences between hate toward groups versus in-
dividual targets. In contrast, we compare differ-
ences among identity targets. Rieger et al. (2021)
measured multiple types of variation, including
by identity target, in hate speech from fringe plat-
forms such as 4chan and 8chan. We test if such
differences affect the generalization of hate speech
classifiers.

Many identities are involved in the production
and recognition of hate speech, including the iden-
tities of those who produce hate speech and those
who annotate hate speech datasets. The post his-
tory and inferred gender of social media users
have been found to be useful in predicting hate
speech (Waseem and Hovy, 2016; Unsvag and
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Gambick, 2018; Qian et al., 2018). Waseem (2016)
find differences in hate speech annotations between
crowdworkers and experts, while Sap et al. (2022)
find differences by the political ideology of annota-
tors. We focus on identities presented in the hate
speech itself.

2.2 Generalizability

In this paper, we evaluate the ability of hate speech
classifiers to generalize across targeted identities.
Grondahl et al. (2018) find that hate speech models
generally perform poorly on data that differs from
their training data; we look at how shifts in the
distribution of identity targets affects generaliza-
tion. Swamy et al. (2019) look at generalizability
across subtasks of abusive language detection and
find that a larger proportion of hateful instances
aids generalization. Pamungkas et al. (2020) and
Fortuna et al. (2020) find that hate speech models
using variants of BERT (Devlin et al., 2019) gen-
eralize better than other models. We thus use a
variant of BERT in our generalization experiments.
See Yin and Zubiaga (2021) for a more thorough
survey on generalizability in hate speech detection.

3 Data

From surveys of hate speech datasets (Vidgen and
Derczynski, 2020; Poletto et al., 2021) and the Hate
Speech Dataset Catalogue!, we selected datasets
with annotations for targeted identities. We only
selected datasets that do not restrict target identities
in order to minimize differences in other properties
(e.g, domain, year) when comparing across targeted
identities. This excludes hate speech datasets and
shared tasks that focus on particular targeted iden-
tity groups, such as women or immigrants (Kwok
and Wang, 2013; Basile et al., 2019).

We also did not consider hate speech datasets
that label targeted demographic category, such as
race or gender (Waseem, 2016), but do not specify
the identity group targeted. Demographic category
is just one of the dimensions of similarities and
differences among identity groups that we wish
to compare for their affect on hate speech. We
included datasets from all domains, except those
with synthetic data.

Since we only found one non-English dataset
that contained unrestricted annotations for targeted
identities (Ousidhoum et al., 2019), we focus on
hate speech in English in this work.

1https: //hatespeechdata.com/
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For generalization analyses, we sampled corpora
specific to identity groups across datasets large
enough to contain a minimum number of instances
of hate speech against enough groups (described
in Section 4.1). These are the first 4 datasets noted
in Table 1. All datasets are used in the analysis of
removing dominant groups (Section 6.2).

Datasets are resampled to a 30/70 ratio of hate to
non-hate to eliminate a source of variance among
hate speech datasets known to affect generaliza-
tion (Swamy et al.,, 2019). Non-hate instances
are upsampled or downsampled to meet this ra-
tio, which was chosen as typical of hate speech
datasets (Vidgen and Derczynski, 2020). If they
do not already contain a binary hate speech label,
dataset labels are binarized as described in Ap-
pendix A.

3.1 Target identity label normalization

Annotations for targeted identities vary consider-
ably across datasets. Some of these differences
are variations in naming conventions for identity
groups with significant similarity (‘Caucasian’ and
‘white people’, for example). Other identities are
subsets of broader identities, such as ‘trans men’ as
a specific group within ‘LGBTQ+ people’.

To construct identity-based corpora across
datasets, we normalized and grouped identities an-
notated in each dataset. One of the authors, who has
taken graduate-level courses on language and iden-
tity, manually normalized the most common iden-
tity labels in each dataset and assigned these nor-
malized identity labels into broader identity groups
(such as ‘LGBTQ+ people’). Intersectional iden-
tities, such as ‘Chinese women’, were assigned to
multiple groups (in this case ‘Asian people’ and
‘women’). Hate speech was often directed at con-
flated, problematic groupings such as ‘Muslims and
Arabs’. Though we do not condone these group-
ings, we use them as the most accurate descriptors
of identities targeted.

4 Cross-Identity Generalization

We examine variation among hate speech target-
ing different identities in a bottom-up, empirical
fashion. In order to do this, we construct corpora
of hate speech directed at the most commonly an-
notated target identities, grouped and normalized
as described in Section 3.1. We then trained hate
speech classifiers on each target identity corpus and
evaluated on corpora targeting other identities.
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Along with practical implications for hate speech
classification generalization, this analysis suggests
which similarities and differences among identities
are most relevant for differentiating hate speech.

4.1 Data sampling

In order to have enough data targeting many iden-
tities and to generalize beyond the particularities
of specific datasets, we assembled identity-specific
corpora from multiple source datasets. To mitigate
dataset-specific effects, we uniformly sampled hate
speech instances directed toward target identities
from the first 4 datasets listed in Table 1. We se-
lect these datasets since they contain enough data to
train classifiers targeting a sufficient variety of iden-
tities. The corpus for each target identity contains
an equal amount of hate speech drawn from each of
these datasets, though the total number of instances
may differ among corpora. Negative instances were
also uniformly sampled across datasets, and were
restricted to those which had no target identity an-
notation or an annotation that matched the target
identity of the hate speech.

We selected target identities that contained a
minimum of 900 instances labeled as hate across
these four datasets after grouping and normaliza-
tion. We selected this threshold as a balance be-
tween including a sufficient number of identities
and having enough examples of hate speech toward
each identity to train classifiers. In order to in-
clude a variety of identities in the analysis while
maintaining uniform samples for each dataset, we
upsample identity-specific hate speech from indi-
vidual datasets up to 2 times if needed. Corpora
are split into a 60/40 train/test split. Selected target
identities and the size of each corpus can be found
in Table 2. These identity-specific corpora, which
are samples of existing publicly available datasets,
are available at https://osf.io/53tfs/.

4.2 Cross-identity hate speech classification

Due to the high performance of BERT-based mod-
els on hate speech classification (Mozafari et al.,
2019; Samghabadi et al., 2020), we trained and
evaluated a DistilBERT model (Sanh et al., 2019),
which has been shown to perform very similarly to
BERT on hate speech detection with fewer param-
eters (Vidgen et al., 2021). Models were trained
with early stopping after no improvement for 5
epochs on a development set of 10% of the training
set. An Adam optimizer was used with an initial
learning rate of 10~°. Input data was lowercased
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Dataset Domain Original size
Civil Comments (Borkan et al., 2019) News comments 1999516
Social Bias Inference Corpus (Sap et al., 2020)  Reddit, Twitter, Gab, Stormfront 44781
Kennedy et al. (2020) YouTube, Twitter, Reddit 39565
HateXplain (Mathew et al., 2021) Twitter, Gab 20148
Contextual Abuse Dataset (Vidgen et al., 2021) Reddit 27494
ElSherief et al. (2021) Twitter 19650
Salminen et al. (2018) YouTube, Facebook 3222

Table 1: Overview of datasets used in this study. Original size is the number of instances before resampling for
experiments. The last 3 datasets are only used in the experiment removing hate toward dominant social groups

(section 6.2).

Corpus Train size Test size
Women 27960 18624
Black people 17664 11776
Muslims, Arabs 13712 9136
LGBTQ+ people 10544 7000
Asian people 7968 5312
Latinx people 7016 4688
Jews 5080 3400
White people 2328 1560
Men 1832 1232
Christians 1816 1224
Race/ethnicity 71024 47240
Gender/sexuality 63032 42056
Religion 32144 21376
Marginalized 168904 112792
Dominant 7952 5368

Table 2: Number of instances in corpora used in gen-
eralization experiments. These corpora are sampled by
target identity uniformly from the first 4 datasets listed
in Table 1.

and an uncased base DistilBERT model was fine-
tuned using the Hugging Face Transformers pack-
age, Keras, and Tensorflow. We removed URLs,
hashtags and @mentions of users, but kept emoji
in preprocessing. To mitigate random variation, we
trained separate DistilBERT models 5 times and
report the average performances.

As a baseline, we also evaluated a logistic re-
gression classifier with TF-IDF unigram features
over the entire vocabulary. This classifier used L2
regularization with a constant C' = 1.

Results from only the DistilBERT models are
reported as they consistently outperformed the
logistic regression model by 0.1 F1 or more.
Generalization performance trends across identi-
ties were similar for DistilBERT and logistic re-
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Table 3: Hate speech classification performance (F1
score) across identity-specific corpora

gression. Code for these analyses are available
at https://github.com/michaelmilleryoder/
hate_speech_identities.

4.3 Results

Table 3 shows generalization performance, mea-
sured by Fl-score on the positive class of hate
speech, across identity splits. We choose F1 on
the ‘hate’ class since that focuses on performance
in detecting hate speech across different target iden-
tities, rather than the non-hate instances which may
or may not target identities. Generalization across
target identities is poor, often dropping from over
70 F1-score when training and test sets match by
targeted identity to less than 40 when they do not.

Following Uyheng and Carley (2021), we per-
form a PCA dimensionality reduction of this gen-
eralization performance to 2 factors in order to
visualize which target identities exhibit similarities
(Figure 1).

Evident from this PCA is a clustering of iden-
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Figure 1: PCA of cross-identity hate speech classifi-
cation performance. Hate speech classifiers trained on
data targeting identities in the same demographic cate-
gories perform most similarly.

tity targets by demographic category. In particular,
three clusters are evident: identities that reference
religion are in a similar space, while identities that
reference race and ethnicity are in a different space,
as are terms that reference gender and sexuality.
We look specifically at the effect of these distinc-
tions on hate speech in Section 5.

Three identities included have relative social
power in the European and North American
English-speaking contexts from which our datasets
were drawn: white people, Christians, and men.
These identities do not form a clear cluster in Fig-
ure 1, though they contain factor loadings relatively
close to O for both factors. In Section 6, we in-
vestigate how hate speech varies according to the
relative social power of the identities targeted.

S Variation by Demographic Category

Poor generalization results across identity targets
(Table 3) suggest that hate speech varies signifi-
cantly by the identities it targets. Our results also
suggest that this variation patterns largely by de-
mographic categories such as race/ethnicity, gen-
der/sexuality, and religion (Figure 1). We hypothe-
size that if demographic categories are particularly
discriminative, hate speech classification perfor-
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ethnicity

Religion

Train

Gender/
sexuality

Table 4: Hate speech generalization performance (F1
on hate) by demographic category.

mance will drop sharply when attempting to gener-
alize across categories.

To test this, we manually assigned normalized
and grouped identities to the categories referenced
by the identity. For example, the identity of ‘Asian’
references race/ethnicity, while ‘Asian women’ ref-
erences both race/ethnicity and gender/sexuality.
In cases where target groups fit multiple categories
(which is not common), we include instances in
all corpora they reference. Though targeted iden-
tities sometimes reference categories such as pol-
itics, interests, and age, the only categories that
met a threshold of 900 hate speech instances uni-
formly sampled across datasets were race/ethnicity,
religion, and gender/sexuality. Details on corpora
constructed by category can be found in Table 2.

We then train DistilBERT hate speech classifica-
tion models on each corpus and test on all others
to measure generalization performance in the same
way as for identity generalization. Results can be
found in Table 4.

Performance drops across identity categories,
sometimes falling by almost half of the FI-
score. This suggests that for purposes of auto-
matic classification, hate speech varies significantly
by demographic category. Classifiers generalize
particularly poorly from race/ethnicity and reli-
gion to gender/sexuality, and less poorly between
race/ethnicity and religion. This may be because
of the blurred lines in hate speech targets between
racial and religious categories, for example, by
conflating Muslims and Arabs or targeting Jews by
both religious and racial characteristics.



6 Variation by Power

Another significant dimension of variation among
targeted identities is relative social power in the so-
cieties from which hate speech data has been drawn.
Work on hate speech detection in NLP is often
motivated as an effort to fight sexism, racism, ho-
mophobia, and other oppressions of marginalized
groups, and improve participation of these groups
online (Mathew et al., 2021; Jurgens et al., 2019).
However, this work often frames hate speech as
a property of language without considering social
context. Abstracting away from the particulars
of targeted identities, datasets often include hate
speech directed at any identity group, regardless
of the social context of power or marginalization.
Such datasets thus include hate speech directed to-
ward groups with relative social power, such as
white people or men in English-speaking European
and American contexts.

Calls are growing to consider the role of power
and historical oppression in NLP work (Blodgett
et al., 2020; Field et al., 2021). Moreover, some
theorists of social meaning in language argue that
hate speech is fundamentally different when di-
rected at social groups with power (Butler, 1997;
Lakoff, 2000). They note that such speech does
not reference the same historical threat of possible
violence and recurring oppression as does hate di-
rected toward marginalized groups. From a lens
of social dominance theory (Sidanius and Pratto,
1999), hate speech serves either to perpetuate or
challenge group hierarchies depending on its target.
Activists have called for social media platforms
to incorporate this social context by treating hate
speech toward marginalized groups as more seri-
ous than hate directed toward groups with relative
social power (Nurik, 2019; Dwoskin et al., 2020).

For these theoretical and practical reasons, we
consider empirical differences in hate speech based
on the social power of targeted identity groups.
Similar to previous experiments, we test the gener-
alization of classifiers across identities with differ-
ent levels of social power. We also test for effects
on classification performance when removing hate
directed toward socially dominant identity groups
from hate speech datasets. If this type of hate is suf-
ficiently different, including it could “muddy” the
concept we are after and reduce the effectiveness
of classifiers in identifying hate speech. Remov-
ing it would more closely match commonly stated
motivations of NLP work on hate speech.
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6.1 Generalization

Just as with demographic categories, we construct
separate corpora of hate speech directed at identi-
ties with relative social power and identities with
relative social marginalization.

We manually label normalized, grouped identity
terms with a coarse-grained label as either dom-
inant, marginalized, or other. This labeling was
done by one of the authors familiar with the North
American and European English-speaking contexts
from which hate speech datasets were drawn. Iden-
tity groups certainly have different social power
depending on the setting. For example, though
LGBTQ+ people are generally marginalized, gay
men in LGBTQ+ spaces can have higher social
power relative to people with more marginalized
genders and sexualities (Stulberg, 2018). Our goal
in annotation was to label identity groups for which
there would be broad agreement of enduring dom-
inance or marginalization in North American and
European English-speaking societies. All other
cases were marked other. This included political
identities such as ‘Republican’ or ‘liberal’, since
political power is generally transient in these soci-
eties. Some targeted identities were intersectional,
that is, contained multiple identity groups, such as
“white women” or “transgender men”. These cases
were taken case-by-case, considering the marginal-
ization of each identity component and marking
other for many tough cases. A full list of identities
labeled as dominant and marginalized is available
in Table 7 in Appendix A. Any identities not in
these lists were marked other by default.

Some datasets all annotators to mark multiple
targeted identities. We marked these instances as
directed to marginalized groups if there was only
marginalized or other identities targeted. Instances
with both marginalized and dominant identities
targeted were marked as other. Details on corpora
constructed by power are in Table 2.

As with identities and demographic categories,
we evaluated the ability of DistilBERT hate speech
classification models to generalize across marginal-
ized and dominant identity targets (Table 5).

Generalization does not suffer as much across
target identities with differences in social power,
particularly when trained on the corpus of hate di-
rected at marginalized identities. This suggests that
which target identities have power does not struc-
ture variation in hate speech as much as differences
in demographic category.
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Table 5: Hate speech generalization performance (F1
on hate) by relative social power.

6.2 Removing hate speech toward socially
dominant groups

We further evaluate the effect of removing hate
speech toward socially dominant groups on clas-
sification performance. We hypothesize that if it
is sufficiently different, as some theorists argue,
then it may act as noise. For this experiment, we
resample all 7 hate speech datasets listed in Table 1
separately instead of combining across datasets as
in generalization experiments. This allows us to
see trends across even more datasets than we could
examine if uniformly sampling from just those with
enough to reach a certain threshold.

We resample each dataset to exclude or include
hate toward dominant social groups. All instances
are the same between these samples except for
instances of hate speech toward dominant social
groups and those instances replaced by them. This
allows a comparison across samples of equal size
and hate speech ratio.

Removing hate speech toward any set of target
identities could improve performance since the re-
maining instances are more likely to be similar to
each other. For this reason we compare removing
hate speech toward dominant groups with removing
hate speech toward a set of non-dominant identities.
We select these “control” identities to be similar
in frequency across datasets to identities labeled
as dominant. Specifically, we match each identity
labeled as dominant with the non-dominant iden-
tity that has the closest log frequency distribution
across datasets (by Euclidean distance).

We perform 5x2-fold cross-validation with a Dis-
tilBERT model to estimate performance with and
without dominant or control identities. Parameters
are the same as were used with the models built
to test generalization, and 10% of training sets are
used as development sets for early stopping.
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Two out of the 7 datasets, ElSherief et al. (2021)
and HateXplain, show significant improvement af-
ter removing hate speech toward dominant social
identities. However, when removing the control
identities, 2 out of the 7 datasets, Civil Comments
and HateXplain, also show significant improve-
ments, while the Social Bias Inference Corpus
shows a significant decrease in performance. This
does not show convincing evidence that hate speech
toward dominant groups is sufficiently different to
act as noise for hate speech classification.

7 Lexical Variation Across Target
Identities

To explore how hate speech varies by target iden-
tity, we examine the words most strongly asso-
ciated with each target identity and grouping of
identities. We use the Sparse Additive Genera-
tive Model (SAGE; Eisenstein et al., 2011) to find
words that are most representative of each hate
speech corpus. SAGE finds representative words
by learning a generative model that contrasts terms
in documents in a section of a corpus with a back-
ground frequency distribution over the whole cor-
pus. We run SAGE over 3 separate corpora: one
where each section is an identity-specific split, an-
other with category splits, and another with splits
by relative social power. We run SAGE with a
vocabulary size of the most frequent 3000 words
and a smoothing rate of 50. Larger vocabulary
sizes and lower smoothing included less informa-
tive, specialty words that did not occur frequently
in the corpus. The 10 most representative terms for
each of these splits are shown in Table 6.

Identity terms, many of them derogatory, form
the bulk of these representative words. This pro-
vides more evidence for the centrality of identities
to hate speech (Uyheng and Carley, 2021). Some
representative words relate to identity-specific his-
tories of oppression. For example, ‘oven’ and ‘gas’
are representative terms of antisemitic hate speech.
Identity-specific stereotypes are also visible: ‘ter-
rorist’ and ‘bomb’ are top terms in hate speech
against Muslims and Arabs. Current culture wars
issues are also relevant. For example, transphobic
attitudes around bathrooms are reflected in the top
terms in hate speech targeting LGBTQ+ people.
‘BLM’, for the Black Lives Matter movement, is a
top term associated with anti-Black hate speech.

The difficulty in a binary distinction of domi-
nance and marginalization can be seen through the



Identity

Top terms

Asian chinese, china, asian, ching, chong, asians, japanese, chinaman, ch*nk, japan
Black n*ggas, black, n*gga, n*gger, africa, blm, negro, ethiopian, blacks, african
Christians priest, catholic, jesus, priests, bible, christians, christianity, christian, church
Jews jewish, jews, holocaust, jew, israel, hitler, gas, oven, zionist, k*ke

Latinx latinos, latino, mexico, mexican, mexicans, beaner, sp*c, latin, hispanic, beaners
LGBTQ+ transgender, transgendered, transgenders, bisexual, queers, bathroom, f*g, gay
Men divorce, dudes, men, male, negative, movies, man, priests, soy, dad

Muslims, Arabs  islam, muslim, islamic, muslims, isis, terrorist, terrorists, iran, bomb, radical
White redneck, white, supremacist, supremacy, mudshark, trash, fascist, shootings
‘Women hoes, sexist, woman, hoe, feminist, women, feminists, feminism, slut, bitches
Category

Gender/sexuality hoes, dyke, transgender, f*ggot, f*g, sexist, sexual, lesbian, hoe, dykes
Race/ethnicity chinese, black, blacks, asian, asians, mexicans, whites, africa, supremacist
Religion catholic, priest, christians, christian, christianity, religion, church, jesus, koran
Power

Dominant priest, catholic, priests, jesus, catholics, virgin, church, devil, dress
Marginalized muslim, muslims, she, islam, her, woman, n*gger, black, jews, women

Table 6: Most representative terms (lowercased) in corpora divided by different target identity sets from SAGE.

most representative words in hate directed toward
groups with high relative social power. As a marker
of Christianity, ‘Catholic’, for example, could be
seen as dominant in European and American con-
texts where Christianity has historically been a reli-
gion with relative social and cultural prominence.
However, some white nationalist groups such as
the Ku Klux Klan have targeted Catholics as out-
side idealized Christian Protestantism (Burris et al.,
2000; Berlet and Vysotsky, 2006). ‘Redneck’ and
‘trash’ are top terms in hate targeting white people,
and ‘virgin’, a top term in hate targeting dominant
groups, is used in jokes stereotyping incest. Such
terms target poor white people based mainly on
class. Also in the top terms against white people
is ‘mudshark’, a derogatory term targeting white
women who have relationships with Black men.
These terms target groups that are marginalized
within broadly dominant groups: white women,
poor white people, and Catholics. Such examples
show how social power is relative, complex, and in-
tersectional. They also evidence a tendency for hate
speech to target marginalized groups, even within
groups that have higher relative social power.

8 Discussion

Our results demonstrate that hate speech varies
considerably according to which identities are tar-
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geted. We show evidence that classifiers trained on
hate toward one target identity generalize poorly
to other target identities, especially across demo-
graphic categories such as race/ethnicity, religion
and gender/sexuality.

These results suggest that the designers of hate
speech classifiers pay attention to the distribution
of targeted identities in training data. Many com-
monly used hate speech datasets do not specify this
information. If the distribution skews toward a par-
ticular identity group (such as anti-Black racism),
then using such a classifier on data that has a differ-
ent distribution (e.g., mostly antisemitic) would
likely give poor performance. More generally,
these results suggest a value in treating hate speech
as a social and linguistic category with lots of in-
ternal variance. This variance depends in part on
the social context around targeted identities.

Classifiers trained on hate speech toward dom-
inant or marginalized groups suffered somewhat
when tested on the opposite group. However, we
did not find evidence that removing hate speech
toward dominant groups clarifies the hate speech
signal enough to consistently increase performance
beyond what might be expected by removing a ran-
dom set of targeted identities. This suggests that
differences based on the social context of power do
not affect the language of hate speech enough to



be easily detectable by machine learning classifiers.
Differences in severity between hate speech tar-
geting socially marginalized or powerful groups is
more likely a matter of interpretation by those with
social knowledge of power in a particular society.

9 Conclusion

We present a meta-analysis of hate speech datasets
annotated for identity group targets. This analysis
shows that hate speech differs significantly by tar-
get identity, as classifiers trained on hate speech
toward one identity do not generalize well to other
identities. We then examine what factors of social
context structure this variation by target identity.
We find evidence for hate speech varying substan-
tially by demographic category, and less so by the
relative social power of targeted identities.

These results reinforce the importance of varia-
tion by social context within hate speech and sug-
gest that researchers pay attention to variation by
target identity. Future work may address improving
generalization across target identities by strategi-
cally sampling training data or incorporating mul-
tiple identity-specific classifiers. Similar analyses
may also be conducted on multilingual hate speech
datasets in future work.

10 Limitations and Ethics

As a meta-analysis of existing datasets, this study
is limited by the availability of hate speech data
labeled with target identity. Performance estimates
with and without hate speech toward dominant
groups would be more reliable with more labeled
hate speech toward socially dominant groups. The
scarcity of hate speech against socially dominant
groups is not coincidental: this speech is less proto-
typically considered hate speech than that against
marginalized groups. This can be seen in the
dataset from Kennedy et al. (2020), for example,
where annotators rate the average severity of hate
against dominant groups as less than the average
severity of hate against marginalized groups.
Another limitation is that datasets each have their
own definitions of hate speech and associated anno-
tation criteria, which may vary considerably. We at-
tempted to mitigate the effects of any one dataset’s
definition with uniform sampling (see Section 4.1).
Since we take these annotations as representative
of hate speech, it is necessary to be mindful that we
are not capturing any true sense of “hate speech”,
but simply what annotators have identified as hate
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speech. However, we wished to investigate the role
of target identity in existing hate speech classifi-
cation approaches, for which existing datasets and
their associated definitions are most relevant.

These datasets are only in English and largely
reflect European and American societies. Our find-
ings are specific to this context. Experiments on
multilingual datasets may reveal other trends and
reflect different social associations around identity
terms, which are culturally specific.

When sampling identity-based corpora from
datasets, we attempted to control for the idiosyn-
crasies of any particular dataset. However, the sizes
of the resulting identity-specific corpora vary de-
pending on how much hate speech directed toward
them occurs across datasets. This could influence
our generalization experiments. Classifiers trained
on identities with small corpora still perform well
on test sets of identities with the same demographic
category, the general trend we report. As seen in
Figure 1, identities with lots of data sometimes ex-
hibit behavior similar to identities with not as much
data. These factors lead us to doubt that corpus size
has a large impact on generalization results.

Care must always be taken to specify that dif-
ferences based on identity, in this case hate speech
directed toward identities, are due to social, not
biological, factors (Hanna et al., 2020; Lu et al.,
2022). We attempt to be clear that these differences
are the result of social context.

Acknowledgements

This work was supported in part by the Collabo-
ratory Against Hate: Research and Action Center
at Carnegie Mellon University and the University
of Pittsburgh. The Center for Informed Democ-
racy and Social Cybersecurity at Carnegie Mellon
University also provided support. We thank the
researchers who made their annotated hate speech
data publicly available, which enabled this meta-
analysis.

References

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. SemEval-
2019 Task 5: Multilingual Detection of Hate Speech
Against Immigrants and Women in Twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019), pages 54-63.

Chip Berlet and Stanislav Vysotsky. 2006. Overview of


http://evalita.org
http://evalita.org
http://evalita.org

U.S. white supremacist groups. Journal of Political
and Military Sociology, 34:11-48.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5454—
5476, Online. Association for Computational Lin-
guistics.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced met-
rics for measuring unintended bias with real data for
text classification. In Companion Proceedings of the
2019 World Wide Web Conference, pages 491-500.
Association for Computing Machinery.

Alexander Brown. 2017. What is hate speech? part 2:
Family resemblances. Law and Philosophy, 36:561—
613.

Val Burris, Emery Smith, and Ann Strahm. 2000. White
supremacist networks on the Internet. Source: Socio-
logical Focus, 33:215-235.

Judith Butler. 1997. Excitable Speech, 1st edition. Rout-
ledge.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. 2017. Measuring and mit-
igating unintended bias in text classification. In
AAAI/ACM Conference on Artificial Intelligence,
Ethics, and Society (AIES).

Elizabeth Dwoskin, Nitasha Tiku, and Heather Kelly.
2020. Facebook to start policing anti-black hate
speech more aggressively than anti-white comments,
documents show. The Washington Post.

Jacob Eisenstein, Amr Ahmed, and Eric P. Xing. 2011.
Sparse additive generative models of text. In Pro-
ceedings of the 28th International Conference on
Machine Learning, pages 1041-1048.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018a.
Hate lingo: A target-based linguistic analysis of hate
speech in social media. In Proceedings of the Inter-
national AAAI Conference on Web and Social Media,
volume 12.

Mai ElSherief, Shirin Nilizadeh, Dana Nguyen, Gio-
vanni Vigna, and Elizabeth Belding. 2018b. Peer
to peer hate: Hate speech instigators and their tar-
gets. In Proceedings of the Twelfth International

36

AAAI Conference on Web and Social Media (ICWSM
2018), pages 52—61.

Mai ElSherief, Caleb Ziems, David Muchlinski, Vaish-
navi Anupindi, Jordyn Seybolt, Munmun De Choud-
hury, and Diyi Yang. 2021. Latent hatred: A bench-
mark for understanding implicit hate speech. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 345-363.

Anjalie Field, Su Lin Blodgett, Zeerak Waseem, and
Yulia Tsvetkov. 2021. A survey of race, racism, and
anti-racism in NLP. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1905-1925, Online. Association
for Computational Linguistics.

Paula Fortuna, Juan Soler, and Leo Wanner. 2020.
Toxic, hateful, offensive or abusive? what are we
really classifying? an empirical analysis of hate
speech datasets. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
6786—6794, Marseille, France. European Language
Resources Association.

Tommi Grondahl, Luca Pajola, Mika Juuti, Mauro Conti,
and N. Asokan. 2018. All you need is “love”: Evad-
ing hate speech detection. In Proceedings of the 11th
ACM Workshop on Artificial Intelligence and Security
(AlSec ’18), pages 2—12. Association for Computing
Machinery.

Alex Hanna, Emily Denton, Andrew Smart, and Jamila
Smith-Loud. 2020. Towards a critical race methodol-
ogy in algorithmic fairness. In FAT* 2020 - Proceed-
ings of the 2020 Conference on Fairness, Account-
ability, and Transparency, pages 501-512.

David Jurgens, Eshwar Chandrasekharan, and Libby
Hemphill. 2019. A just and comprehensive strategy
for using NLP to address online abuse. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3658-3666. As-
sociation for Computational Lingustics.

Chris J. Kennedy, Geoff Bacon, Alexander Sahn, and
Claudia von Vacano. 2020. Constructing interval
variables via faceted Rasch measurement and multi-
task deep learning: a hate speech application.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In Twenty-Seventh
AAAI Conference on Artificial Intelligence, pages
1621-1622.

Robin Tolmach Lakoff. 2000. The Language War. Uni-
versity of California Press.

Christina Lu, Jackie Kay, and Kevin R. McKee. 2022.
Subverting machines, fluctuating identities: Re-
learning human categorization. In FAccT '22: 2022
ACM Conference on Fairness, Accountability, and
Transparency, pages 1005-1014.


https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1007/s10982-017-9300-x
https://doi.org/10.1007/s10982-017-9300-x
https://doi.org/10.4324/9780203948682
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.aies-conference.com/wp-content/papers/main/AIES_2018_paper_9.pdf
http://www.aies-conference.com/wp-content/papers/main/AIES_2018_paper_9.pdf
https://www.washingtonpost.com/technology/2020/12/03/facebook-hate-speech/
https://www.washingtonpost.com/technology/2020/12/03/facebook-hate-speech/
https://www.washingtonpost.com/technology/2020/12/03/facebook-hate-speech/
https://doi.org/10.18653/v1/2021.acl-long.149
https://doi.org/10.18653/v1/2021.acl-long.149
https://aclanthology.org/2020.lrec-1.838
https://aclanthology.org/2020.lrec-1.838
https://aclanthology.org/2020.lrec-1.838
https://doi.org/10.1145/3270101.3270103
https://doi.org/10.1145/3270101.3270103
https://doi.org/10.1145/3351095.3372826
https://doi.org/10.1145/3351095.3372826
http://arxiv.org/abs/2009.10277
http://arxiv.org/abs/2009.10277
http://arxiv.org/abs/2009.10277
http://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=1&amp;ved=0CC0QFjAA&amp;url=http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/download/6419/6821&amp;ei=e7hJUq2EAtKq4AOB04HoDg&amp;usg=AFQjCNEi9mX0w71lUCo8tdxTnQJkR74MLg&am
http://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=1&amp;ved=0CC0QFjAA&amp;url=http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/download/6419/6821&amp;ei=e7hJUq2EAtKq4AOB04HoDg&amp;usg=AFQjCNEi9mX0w71lUCo8tdxTnQJkR74MLg&am
https://doi.org/10.1525/j.ctt1pp38b.7
https://doi.org/10.1145/3531146.3533161
https://doi.org/10.1145/3531146.3533161

Alexandria Marsters. 2019. When hate speech leads to
hateful actions: A corpus and discourse analytic ap-
proach to linguistic threat assessment of hate speech.
Ph.D. thesis, Georgetown University.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam,
Chris Biemann, Pawan Goyal, and Animesh Mukher-
jee. 2021. Hatexplain: A benchmark dataset for ex-
plainable hate speech detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14867-14875.

Mainack Mondal, Leandro Aradjo Silva, and Fabricio
Benevenuto. 2017. A measurement study of hate
speech in social media. In HT 2017 - Proceedings
of the 28th ACM Conference on Hypertext and So-
cial Media, pages 85-94. Association for Computing
Machinery.

Marzieh Mozafari, Reza Farahbakhsh, and Noél Crespi.
2019. A BERT-Based Transfer Learning Approach
for Hate Speech Detection in Online Social Media.
In International Conference on Complex Networks
and Their Applications., pages 928-940.

Chloé Nurik. 2019. "Men Are Scum": Self-Regulation,
Hate Speech, and Gender-Based Censorship on Face-

book. International Journal of Communication,
13:2878-2898.

Nedjma Ousidhoum, Zizheng Lin, Hongming Zhang,
Yangqiu Song, and Dit-Yan Yeung. 2019. Multilin-
gual and Multi-Aspect Hate Speech Analysis. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 4675-4684.

Endang Wahyu Pamungkas, Valerio Basile, and Viviana
Patti. 2020. Misogyny detection in twitter: a mul-
tilingual and cross-domain study. Information Pro-
cessing and Management, 57.

Matti Pohjonen and Sahana Udupa. 2017. Extreme
speech online: An anthropological critique of hate
speech debates. International Journal of Communi-
cation, 11:1173-1191.

Fabio Poletto, Valerio Basile, Manuela Sanguinetti,
Cristina Bosco, and Viviana Patti. 2021. Resources
and benchmark corpora for hate speech detection: a
systematic review. In Language Resources and Eval-
uation, volume 55, pages 477-523. Springer Science
and Business Media B.V.

Jing Qian, Mai Elsherief, Elizabeth M Belding, and
William Yang Wang. 2018. Leveraging Intra-User
and Inter-User Representation Learning for Auto-
mated Hate Speech Detection. In Proceedings of
NAACL-HLT 2018, pages 118—-123.

Diana Rieger, Anna Sophie Kiimpel, Maximilian Wich,
Toni Kiening, and Georg Groh. 2021. Assessing the
Extent and Types of Hate Speech in Fringe Commu-
nities: A Case Study of Alt-Right Communities on
8chan, 4chan, and Reddit. Social Media and Society,
7(4).

37

Joni Salminen, Hind Almerekhi, Milica Milenkovic,
Soon-gyo Jung, Jisun An, Haewoon Kwak, and
Bernard J Jansen. 2018. Anatomy of online hate:
developing a taxonomy and machine learning models
for identifying and classifying hate in online news
media. In Tielfth International AAAI Conference on
Web and Social Media, pages 330-339.

Niloofar Safi Samghabadi, Parth Patwa, Srinivas Pykl,
Prerana Mukherjee, Amitava Das, and Thamar
Solorio. 2020. Aggression and misogyny detection
using bert: A multi-task approach. In Proceedings
of the Second Workshop on Trolling, Aggression and
Cyberbullying, pages 11-16.

Manuela Sanguinetti, Fabio Poletto, Cristina Bosco,
Viviana Patti, and Marco Stranisci. 2018. An Ital-
ian Twitter Corpus of Hate Speech against Immi-
grants. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC’18), pages 2798-2895.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In 5tk
Workshop on Energy Efficient Machine Learning and
Cognitive Computing.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5477-5490.

Maarten Sap, Swabha Swayamdipta, Laura Vianna,
Xuhui Zhou, Yejin Choi, and Noah A Smith. 2022.
Annotators with attitudes: How annotator beliefs and
identities bias toxic language detection. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Jim Sidanius and Felicia Pratto. 1999. Social Domi-
nance. Cambridge University Press.

Leandro Silva, Mainack Mondal, Denzil Correa, Fabri-
cio Benevenuto, and Ingmar Weber. 2016. Analyzing
the targets of hate in online social media. In Proceed-
ings of the Tenth International AAAI Conference on
Web and Social Media (ICWSM 2016), pages 687—
690.

Lisa M Stulberg. 2018. LGBTQ social movements. John
Wiley & Sons.

Steve Durairaj Swamy, Anupam Jamatia, and Bjorn
Gambick. 2019. Studying generalisability across
abusive language detection datasets. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning, pages 940-950. Association for
Computational Linguistics.

Elise Fehn Unsvag and Bjorn Gambick. 2018. The
Effects of User Features on Twitter Hate Speech De-
tection. In Proceedings of the Second Workshop on
Abusive Language Online (ALW2), pages 75-85.


https://doi.org/10.1145/3078714.3078723
https://doi.org/10.1145/3078714.3078723
https://doi.org/10.1016/j.ipm.2020.102360
https://doi.org/10.1016/j.ipm.2020.102360
https://ijoc.org/index.php/ijoc/article/download/5843/1965
https://ijoc.org/index.php/ijoc/article/download/5843/1965
https://ijoc.org/index.php/ijoc/article/download/5843/1965
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1177/20563051211052906
https://doi.org/10.1177/20563051211052906
https://doi.org/10.1177/20563051211052906
https://doi.org/10.1177/20563051211052906
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.1017/cbo9781139175043.002
https://doi.org/10.1017/cbo9781139175043.002
http://arxiv.org/abs/1603.07709
http://arxiv.org/abs/1603.07709

Joshua Uyheng and Kathleen M. Carley. 2021. An
identity-based framework for generalizable hate
speech detection. In International Conference on So-
cial Computing, Behavioral-Cultural Modeling and
Prediction and Behavior Representation in Modeling
and Simulation, pages 121-130.

Bertie Vidgen and Leon Derczynski. 2020. Directions
in abusive language training data, a systematic re-
view: Garbage in, garbage out. PLoS ONE, 15.

Bertie Vidgen, Dong Nguyen, Helen Margetts, Patricia
Rossini, and Rebekah Tromble. 2021. Introducing
CAD: the contextual abuse dataset. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 22892303,
Online. Association for Computational Linguistics.

Zeerak Waseem. 2016. Are You a Racist or Am I See-
ing Things? Annotator Influence on Hate Speech
Detection on Twitter. In Proceedings of the First
Workshop on NLP and Computational Social Science,
pages 138—142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of the
NAACL-HLT 2016, pages 88-93.

Michael Wiegand, Josef Ruppenhofer, and Elisabeth
Eder. 2021. Implicitly abusive language — what does
it actually look like and why are we not getting there?
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 576-587, Online. Association for Computa-
tional Linguistics.

Wenjie Yin and Arkaitz Zubiaga. 2021. Towards gener-
alisable hate speech detection: a review on obstacles
and solutions. PeerJ Computer Science, 7:1-38.

A Appendix

We applied the following transformations to
datasets for binary hate speech labels:

¢ Civil Comments (Borkan et al., 2019): toxic-
ity value >= 0.5 was labeled hate

* Social Bias Inference Corpus (Sap et al.,
2020): offensive value > 0.5 was labeled hate,
following the original paper’s binarization

* Kennedy et al. (2020): hate speech value > 1
was labeled hate
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e Salminen et al. (2018): labeled hate if the
class was labeled hateful
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Marginalized women, people with mental disabilities, black people, gay men, transgender people,
muslims, jewish people, gay people, sexual and gender minorities, feminists, chinese
women, people with autism, Igbtqa community, people from china, illegal immi-
grants, people from pakistan, working class people, elderly people, non-white people,
people from mexico, people from india, people with aspergers, people with mental
health issues, people with disabilities, romani people, ethnic minorities, immigrants,
minorities, jews, blacks, black folks, illegals, people of color, non-whites, islamic
people, gays, mexicans, illegal aliens, arabs, africans, refugees, indians, hispanics,
black men, arabians, hindus, black lives matter, iranians, mexican, latino folks, asian
folks, foreigners, jewish folks, muslim folks, latino/latina folks, physically disabled
folks, mentally disabled folks, lesbian women, folks with mental illness/disorder,
holocaust victims, native american/first nation folks, trans women, arabic folks, folks
with physical illness/disorder, overweight/fat folks, trans men, rape victims, bisex-
ual women, children, poor folks, african folks, ethiopians, bisexual men, sexual
assault victims, harassment victims, africa, old folks, orphans, mexican folks, in-
dian folks, child rape victims, ethiopian folks, child sexual assault victims, young
children, ethiopian, genocide victims, pregnant folks, ethiopia, pedophilia victims,
kids, japanese, chinese folks, holocaust survivors, asian, black, latinx, middle eastern,
native american, pacific islander, hindu, jewish, muslim, immigrant, migrant worker,
undocumented, non_binary, transgender_men, transgender_unspecified, transgen-
der_women, bisexual, gay, lesbian, seniors, disability_physical, disability_cognitive,
disability_neurological, disability_visually_impaired, disability_hearing_impaired,
disability_unspecific, disability_other, disability, xenophobia, islam, jews/judaism,
special_needs, african_descent, indian/hindu, asians, asian people, muslims and ara-
bic/middle eastern people, lgbtq+ people, victims of violence, non-binary people,
older people, bisexual people, chinese people, arabic/middle eastern people, african
people, indian people, ethiopian people, japanese people, mexican people, transgender
men, undocumented immigrants, latinx people, native american people, people with
physical disabilities, transgender women, buddhists, indigenous people, gay or lesbian
people, gay and lesbian people

Dominant involuntary celibates, white people, police officers, people from america, men, chris-
tians, rich people, white men, whites, white folks, conservative males, white con-
servatives, white liberals, americans, white nationalists, male conservatives, cops,
police, white, conservative men, christian folks, christian, straight, middle_aged, law
enforcement, wealthy people, corporations, military, armed forces, straight people,
middle-aged people

Other left-wing people, moderators, liberals, communists, left-wing people (social justice),
non-gender dysphoric transgender people, right-wing people, democrats, activists
(anti-fascist), donald trump supporters, republicans, conservatives, gamers, activists
(animal rights), people with drug problems, fans of anthropomorphic animals (“fur-
ries”), catholics, progressives, leftists, white women, antifa, germans, journalists,
islamists, southerners, media, religious people, assault victims, mass shooting victims,
terrorism victims, ugly folks, atheist, buddhist, mormon, specific country, teenagers,
young_adults, terrorism, humanity, left_wing_people, terrorists, mormons, atheists,
young adults, nonreligious people

Table 7: Labels of relative social power assigned to lowercased identity terms from hate speech datasets. Any
identities not in these lists were marked other by default.
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Abstract

Conventional natural language process (NLP)
generation models are trained offline with
a given dataset for a particular task, which
is referred to as isolated learning. Research
on sequence-to-sequence language generation
aims to study continual learning model to con-
stantly learning from sequentially encountered
tasks. However, continual learning studies often
suffer from catastrophic forgetting, a persistent
challenge for lifelong learning. In this paper,
we present a novel NLP transformer model that
attempts to mitigate catastrophic forgetting in
online continual learning from a new perspec-
tive, i.e., attention calibration. We model the at-
tention in the transformer as a calibrated unit in
a general formulation, where the attention cal-
ibration could give benefits to balance the sta-
bility and plasticity of continual learning algo-
rithms through influencing both their forward
inference path and backward optimization path.
Our empirical experiments, paraphrase gener-
ation and dialog response generation, demon-
strate that this work outperforms state-of-the-
art models by a considerable margin and effec-
tively mitigate the forgetting.

1 Introduction

Sequence-to-sequence (Seq2Seq) generation has
been widely applied in artificial learning (AI) sys-
tem to deal with various challenging tasks, e.g.,
paraphrase, dialogue system (Bordes et al., 2016),
machine translation, etc. In addition, powerful rep-
resentation learning (e.g., Transformer) have been
used in Seq2Seq models, which have taken the
state-of-the-art of generation models to a new level.
Generally, nature language generation (NLG) mod-
els leverage an encoder to create a vector repre-
sentation for source inputs, and then pass this rep-
resentation into a decoder so as to output a target
sequence word by word. For example, Bart (Lewis
et al., 2019) is such a transformer-based NLG ar-
chitecture that is equipped with the BERT-type net-
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work structure (Devlin et al., 2019) as its encoder
and with the GPT-type structure as the decoder.

Despite the remarkable ability on sequence gen-
eration, the conventional paradigm aims to learn
a Seq2Seq model on the whole available dataset,
which limits its ability in accumulating knowledge
in continual learning scenario. When switching to
a new task from some previously learned ones, the
fine-tuned model on the new task sometimes faces
a significant performance drop on previous learned
data, where such a phenomenon is also referred to
as catastrophic forgetting (Parisi et al., 2019; Mai
et al., 2021; Yin et al., 2021; Li et al., 2022a,b). In
contrast, humans and animals exhibit remarkable
ability to deal with new tasks by effectively adapt-
ing their acquired knowledge without forgetting the
previously learned skills. If one desires to build a
human-like NLG model, continual learning ability
is a necessary skill for achieving this goal.

The existing replay-based continual learning
approaches have taken into account of differ-
ent perspectives of the model training process
to remedy the catastrophic forgetting dilemma,
such as regularizing the parameter change dur-
ing training (Chaudhry et al., 2018; Parisi et al.,
2019), selective memory storage or replay (Aljundi
et al., 2019), Bayesian and variational Bayesian
training (Kirkpatrick et al., 2017; Nguyen et al.,
2018), and task-specific parameterization of the
model (Pham et al., 2021; Singh et al., 2020). In
this paper,we tackle the problem from a novel angle
that is distinct to all the aforementioned attempts,
i.e., seeking a better balance between stability and
plasticity with neuron calibration. Specifically, we
refer to neuron calibration as a process of math-
ematically adjusting the transformation functions
in various layers of transformer-based architecture.
In this way, the neuron calibration is able to prior-
itize both model parameter and feature map that
are suitable to new tasks. In detail, our proposed
neuron calibration approach regularizes the param-
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eter update against catastrophic forgetting via pos-
ing a trainable soft mask on the attention and fea-
ture maps, which then influences both the model
inference process and the model training process
through the forward inference path and the back-
ward optimization path.

The contributions of our work are three-fold:
(i) we introduce a general and light-weight feature
calibration approach to tackle task-incremental con-
tinual learning problems where the models are for-
mulated as feed-forward transformer-based func-
tion approximations; (ii) we formulate a novel
task-incremental learning paradigm to train the
calibrated model with an interleaved optimization
scheme to mitigate the forgetting issue; (iii) we in-
dicate through extensive empirical experiments that
the proposed method could outperform the recent
continual learning algorithms on Seq2Seq language
generation applications.

2 Related Work

Continual Learning. Existing continual learning
methods can be classified into three categories. The
regularization approaches (Li and Hoiem, 2017;
Zenke et al., 2017; Schwarz et al., 2018) impose a
regularization constraint to the objective function to
mitigate the catastrophic forgetting. The rehearsal
approaches (Rolnick et al., 2019; Aljundi et al.,
2019; Buzzega et al., 2020; Wang et al., 2022) al-
locate a small memory buffer to store and replay
the exemplar from the previous task to consoli-
date the historical knowledge. The architectural
approaches (Rusu et al., 2016; Serra et al., 2018;
Singh et al., 2020; von Oswald et al., 2020) avoid
catastrophic forgetting through approximating the
training of the task-specific network and allowing
the expansion of the parameters during continual
learning. Nonetheless, all these methods are con-
fined to supervised classification problem, which
limits their application in real-life problems. Life-
long GAN (Zhai et al., 2019) tackles the genera-
tion problem of continual learning and learn task-
specific representation on shared parameters. Their
method is restricted to image generation tasks and
not directly applicable to NLP benchmark datasets.

Continual Language Generation. Few work has
been done in continual learning for Seq2seq lan-
guage generation. The most relevant work is
from Mi et al. (2020), which propose a contin-
ual learning framework that builds a human-like
dialogue system in an incremental learning man-
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ner. Specifically, this method combines the mem-
ory replay with the regularization technique to ad-
dress the catastrophic forgetting, and empirically
achieves a promising result on the MultiWoZ-2.0
dataset. Nonetheless, their system is specifically
designed for the dialogue task and lacks generaliza-
tion to Seq2Seq tasks. Our method differs from Mi
et al. (2020) in terms of the following three points:
(i) our method is built upon a neuron calibration
approach, where such contribution is orthogonal
to that from all the previous works; (ii) our pro-
posed method does not engage any task-specific
part; (iii) we do not store the historical exemplar
from the episodic memories during training. In ad-
dition, our proposed method could be adapted to
various seq2seq language generation applications,
such as summarization, translation, paraphrases,
dialog response generation.

3 Method

3.1 Preliminary

We introduce the setting of online continual learn-
ing. Formally, we denote the sequence of train-
ing tasks in continual learning as {77,---,7r}.
The tasks come and go in an online fashion, and
the training data for each task is available only
at that time slot. When the new task arrives, the
previous task’s data is deleted and cannot be used
any more. For the ¢-th task, we denote its training
dataset as D;. The objective of the task is to learn
a transformer-based generation model. Our work
tackles the natural language generation (NLG)-
based continual learning problems and thus the
model is typically modeled as a feed-forward trans-
former with L-blocks (i.e, {I;}X,), with its corre-
sponding parameters denoted as {6;}% ;.

3.2 Transformer Calibration

We introduce a general calibration mechanism to
tackle the continue learning problems on Seq2Seq
generation, where the models are parameterized by
the transformer-based NLG models. By applying
neuron calibration, we aim to adapt the transforma-
tion function in the deep transformer layers. Our
proposed learning paradigm with neuron calibra-
tion could perform both model selection and feature
selection to effectively avoid catastrophic change
on the model parameters while accomplishing a
stable consolidation of knowledge among tasks. In
this framework, the calibration module is indepen-
dent from the pre-trained base model in order to
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Figure 1: Overview of our proposed transformer calibration for continual learning framework. This method consists
of two types of calibration modules: attention calibration module (ACM) and feature calibration module (FCM),
which are sequentially applied to the layers in the multi-head attention model (as shown in the figure) to calibrate

the attention signals and feature maps, respectively.

preserve the learned knowledge and avoid catas-
trophic forgetting. Figure 1 provides an illustration
of our neuron calibration process.

Formally, we introduce two types of general cal-
ibration modules to be applied on the transformer-
based NLG models: (i) attention calibration module
(ACM) and (ii) feature calibration module (FCM).
The attention calibration module learns to scale the
attentions of the transformer function whereas the
feature calibration module learns to scale the fea-
ture map output from the transformer block. When
calibrating the i-th layer of the transformer block,
we use A; to denote its scaled attention function
after applying attention calibration (ACM). Mean-
while, we use h; and h; to denote the output fea-
ture maps before and after applying feature calibra-
tion (FCM), respectively.

We first introduce the formulation for ACM. To
calibrate the attention, we first define a learnable
matrix ®; € RY*N which presents the importance
of each pair of words, where N is the maximal
number of words in the sentence and a subset of
parameters is used according to sentence length.
The scale dot-product attention is formulated as:

(E)) Vi (D
Vd

where © is the element-wise product. As ®; is
learned across the sequential tasks, the task-aware
attention can serve as a task representation instead
of traditional task embedding. The overall cali-
brated attention can be decoupled into two parts:
the QK T term presents the content-based attention,

Atten = Softmax (Q,KZT O] (
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and ®;/ \/& term acts as the soft mask for attention
calibration. This united design offers more task
adaptation by suppressing the unrelated attention
values and highlighting the important ones. With
the ACM, the calibrator module plays a crucial role
during the model training process: at the forward
inference path, it scales the value of the attention
in the attention block to make prediction; at the
backward learning path, it serves as a prioritized
weight to regularize the update on parameters.

By applying attention calibration on transformer
blocks, the attention function at the i-th layer
Atten(Q;, K;, V;, ®;) is parameterized by ®; and
produces the output as follows,

h; = fAi (hifl), s.t. A; = Atten(Qi, K;, Vi, <I>i)

2
The output h; of the attention function is then pro-
cessed by a feature calibration module (FCM) to
generate the calibrated feature map for that layer.
We use €2y, (+) to denote the feature transformation
function at the ¢-th layer, parameterized by ;. With
FCM, the calibration parameters also interact with
the feature map h; with a multiplicative operation.
Specifically, the calibrated feature is computed as:

Oy, (hi) = tile(\;) @ hy, A € RY by € RV*4
3)
given the dimension of feature map d.

In the end, the outputs from (2) and (3) get added
up in an element-wise manner by a residual con-
nection. This is followed by normalization and acti-
vation operations to produce a final output for that
layer. In summary, the overall calibration process



for the i-th layer could be formulated as follows,

hi = 0 (LN (Q, (Fa, (hi1)) ® Fa, (hi-1))),
4
where LN (-) denotes the layer normalization, &
denotes an element-wise addition operator, and o (-)
is an activation function. Then h; is sent as input
to the 7 + 1-th layer in the feed-forward network.
All the aforementioned calibrator parameters are
initialized with a value of 1 at the start of training.
We illustrate an example case of applying the cali-
bration on a transformer-based model in Figure 1.

3.3 Learning Calibration Parameters

We propose an interleaved learning paradigm to
train the calibrated transformer model. In the train-
ing procedure, we aim to exploit the training of the
calibrator parameters to mitigate the catastrophic
forgetting on the continual learning. Since the ‘for-
getting’ in the training is often attributed to dra-
matic changes in parameter values, we design the
learning objective for the calibrator learning as to
regularize the parameter change after accessing the
new knowledge not to be biased too much from the
model values learned from previous ones.

To formulate the objective function for the cali-
brated model training, we inherit the elastic weight
consolidation (EWC) approach proposed in Kirk-
patrick et al. (2017) . Specifically, EWC approxi-
mates the true posterior distribution for the contin-
ual learning parameters by a Gaussian distribution
given by the mean from the previous tasks and
a diagonal precision from the Fisher information
matrix. In this work, we formulate a weight cali-
bration process to prevent the catastrophic change
on model parameters. Then we train the calibrator
parameters with the following loss function,

Lo=vec(6—06")" Ayvec (6 — 6") + BLL(T, A, 6)

term (b)

4)
where (3 is a trade-off parameter, and the operator
vec (-) stacks the tensor into a vector.

The matrix A; in term (a) are the Fisher infor-
mation matrix, which is obtained from the data
training loss for previous observed tasks, while
the £;(U, A, 6) in term (b) is the loss for the cur-
rent task. The two terms perform the consolidation
process to retain the essential parameters towards
past knowledge when the base model parameters
are trained to absorb new tasks. To consolidate the

term (a)
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knowledge on the calibrated model, the Fisher in-
formation matrix is computed upon the gradients
on calibrated parameters.

3.4 Optimization

We formulate the optimization process to train the
calibrated model under an iterative optimization
schema, with the parameters from the base model
and those from the calibration module being op-
timized by the loss function (5). During the inter-
leaved optimization process, we first fix §; and take
gradient steps with regard to {U, A} as follows:

Ui ¥ —asyw Le((¥,0),0,Dy), (6)

)\t-i-l — )\t _QVA ‘CC ((\Ij7>\)7‘9t7,Dt)7 (7)
Then, we go on to optimize the base model param-
eter when the inference takes place with the up-
dated base model,

Orr1 < 0 — 79 Lo (0, (Vir1, Aeg1), D) (8)

where « is the learning rate. By employing the cal-
ibrated parameterization of the transformer-based
network, and optimizing it with the iterative learn-
ing scheme, our method achieves the trade-off be-
tween new data adaptation and past knowledge con-
solidation. We present the details in Algorithm 1.

Algorithm 1: Transformer Calibration for
Continual Learning Algorithm (TCCL)

Input: Base model 6, calibrator (®, \)
learning rate «, trade-off parameter
B, training data {D{", ..., DI}, test
data {Dl¢, ..., DIt}

Output: Base model Fy, calibrator F (g »).

function train_and_eval

Randomly initialize 6, ¥ and \.

fort <+ 1toT do

for b + 1tonpgicn do
Observe a batch of data

Bt = {x;,y;}%%, from Di".
P+ & — aVeLl (B0, P, )\)
N X—aVyL(B50,D,0)
0 <+ 0 — aVeLl (B0, N)
Compute A; according to VgL,

for te <~ 1tot do
Evaluate testing accuracy for the

current model on Df¢_;:
gl,...,t — ]:(le’ta eta q)t, )‘t)




4 Empirical Experiments

We evaluated the proposed algorithm on seq2seq
generation tasks. We applied the algorithms on two
datasets for seq2seq generation tasks in the contin-
ual learning. We also conducted the ablation study
with respect to attention calibration and feature cali-
bration to evaluate the robustness and effectiveness
of the proposed calibration techniques.

4.1 Application: Paraphrase Generation

Dataset. For paraphrase generation, we train the
model over three existing paraphrase datasets,
Quora!, Twitter? and Wiki_data (linked-wiki-
text2)3, in a sequential manner, where the model ob-
serves the three sequential tasks (i.e., datasets) one
by one. See Table 1 for Statistics of the datasets.

train valid test
Quora 111,947 8,000 37,316
Twitter 85,970 1,000 3,000
Wiki_data | 78,392 8,154 9,324
total 276,309 17,154 49,640

Table 1: Statistics of Dataset on Paraphrase Generation

Experimental Setting. We exploit the SOTA gener-
ation model, BART, as the generation model back-
bone in the continual learning framework. We com-
pare our approach with the following baselines:

¢ Finetune: for each new task, the model is ini-
tialized with the parameters learned from pre-
vious observed tasks, and then fine-tuned with
data of the current new task.

Full: the model is trained with all the available
instances from three datasets together, which
regarded as the up-bounded performance for
the continual learning techniques.

EWC: the EWC (Kirkpatrick et al., 2017) is
introduced in the objective function to train
the model over the sequential tasks.

For evaluation metrics, we use Bleu4, RougeL
and Meteor for the Seq2Seq generation tasks. To
measure the forgetting rates of different methods,
we basically exploit the model learned on ¢-th task
to evaluate its performance on previous tasks, i.e.,

"https://huggingface.co/datasets/quora

“https://metatext.io/datasets/paraphrase-and-semantic-
similarity-in-twitter-(pit)

3https://paperswithcode.com/dataset/wikitext-2
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1,---,t — 1 task. We tune the learning rate o from
{1073,1072,...,10°} for both model parameter
and calibrator parameter, and trade-off parameter
g from {0.1,0.5,1,5,10}. Meanwhile, the batch
size is set to be {128,256, 512} on all datasets. All
training and evaluation experiments are performed
using Tesla V100S GPUs. The whole learning pro-
cess takes around 0.5 GPU day.

4.1.1 Experimental Results

Accuracy Measurement: Table 2 presents the ac-
curacy results in the continual learning setting,
where the model is evaluated after the model has
been trained on sequential tasks one after another.
In the table, the first three models are independent
baselines trained on either one of three datasets.
As expected, model trained on new dataset may
suffer the significant performance drop on previous
instances, due to the data distribution gap between
old and new datasets. For example, twitter includes
the short casual text while Wiki_data contains for-
mal academic text.

For the fine-tune, the model is trained in a Quora-
Tweeter-Wiki (QTW) order, in which the model is
initialized with the model parameters learned on the
previous task and then fine tuned over the follow-
ing task. We observe that finetune results on Quora
and Wiki_data are comparable with those when
building the model from scratch. In addition, EWC
can achieve a better performance than Finetune and
independent training over any evaluation metrics
on Quora and most metrics on Twitter and Wiki,
demonstrating the effectiveness of EWC in contin-
ual learning. Nonetheless, our calibration model
consistently achieves the best performance across
all sequential tasks, demonstrating that the calibra-
tion model yields a promising domain adaptation
in continual learning.

Forgetting Measurement. Table 3 presents the
results when the current models are evaluated on
testing data from the previous tasks. The purpose
of this experimental setting is to measure the for-
getting rate of the models in the sequential train-
ing. In the order of QTW, the results are evaluated
on Quora after the model is trained on Twitter, as
well as on Quora and Twitter after the model is
trained on Wiki. Our method is compared with in-
dependent baseline, finetune and EWC. Table 3 in-
dicates that our method obtains a less performance
drop than Finetune and EWC, with a low forget-
ting rate. Moreover, after the model is trained on



Quora Test Twitter Test Wiki Test
Models bleud* rougel. meteor | bleud* rougel. meteor | bleud* rougel meteor
Quora-trained 30.11 5585 5717 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 3547 5749 5457 4.60 9.76 7.50
Wiki_data-trained | 22.38  43.44  46.23 9.32 1793  21.03 | 42.12 7386 73.10
Finetune 30.11 5585 57.17 | 3579 5632 5493 | 42.12 7386 73.10
EWC 30.25 56.16 5798 | 3352 5441 5421 | 42.15 7353 7359
Ours 32.14 5812 59.13 | 36.81 5846 5532 | 4447 7449 73.66
Full ‘ 3399 5956  61.67 | 3856 58.76  56.01 ‘ 46.86  76.59 7591

Table 2: Results of model evaluations on QTW setting
bleud* denotes a more strict scoring version for the baseline evaluation
g

Train: Twitter — Test: Quora

Models bleud* rougel. meteor
Quora-trained | 30.11 55.85 57.17
Finetune 15.80 4659 4731
EWC 15.63  41.53  46.03
Ours 1593 46.65 4581

Train: Wiki_data — Test: Quora

Models bleud* rougel. meteor
Quora-trained | 30.11 5585  57.17
Finetune 19.07 51.76 5595
EWC 19.63 4935  53.02
Ours 21.39 53.62 56.44
Train: Wiki_data — Test: Twitter
Models bleud* rougel. meteor
Twitter-based | 35.79  56.32  54.93
Finetune 14.09 3797 4589
EWC 14.84 38.65 4633
Ours 16.62  40.25 48.44

Table 3: Results of all the methods when testing new
models on previous domains (from 2nd row to the last).

Wiki, the performance on Quora is even improved
from the one after trained on Twitter. Moreover,
this work outperforms EWC on all the evaluation
domains with a noticeable margin, which demon-
strates that our calibration module is effective to
boost the performance for continual learning via
properly regularizing the parameter update against
catastrophic forgetting. Overall, the empirical re-
sult demonstrates that the calibration mechanism
can mitigate the forgetting issue greatly.

Ablation Study. We conduct the ablation study
where several simplified versions of the calibration
framework are evaluated in order to understand
the effects of different components. Specifically,
we evaluate the model variants without attention
calibration module (i.e., w/o ACM), or feature cal-
ibration module (i.e., w/o FCM), or EWC regu-
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Quora Test Wiki_data Test
Models bleud* meteor | bleud* meteor
Finetune 30.11  57.17 | 42,12 73.10
w/o FCM | 33.32 5932 | 4333 73.10
w/o ACM | 3225 5891 | 42.15 72.59
w/o R 33.77 59.57 | 43.51 7293
Ours 3544 6145 | 4447 73.66

Table 4: Ablation studies on the proposed calibration
components and regularizion terms.

larization term (i.e., w/o R), and present the com-
parison result in Table 4. From the table, we can
observe that (i) equipped with ACM or FCM, the
performance is apparently better than the original
backbone since dropping the calibration module
(“w/o ACM" and “w/o FCM") would degrade the
performance; (ii)) EWC regularization is also ef-
fective, indicated by the better result than the one
without EWC regularization term (“w/o R"). Over-
all, the results demonstrate that calibrating on latent
feature and attention value is a promising direction.

Next we aim to investigate the effect of the at-
tention calibration that is performed on three dif-
ferent attentions in the transformer model. Specif-
ically, we equipped the calibration component on
either one of the self-attention of encoder, the self-
attention of decoder and the encoder-decoder (ED)
attention. The comparison results in Table 5 indi-
cate that (i) the self-attention calibration on encoder
is more effective to boost the performance; (ii)
the calibration on encoder-decoder attention yields

Quora Test
Model Variants bleud* rougel. meteor
Self-Attention (E) | 33.31  59.94  59.56
Self-Attention (D) | 32.65 58.76  58.34
ED-Attention (D) | 34.81 60.55 60.33
Ours (All) 3544 6137 6145

Table 5: Ablation studies of the calibration different

attention blocks in language model.




SOURCE BART

Ours

TARGET

What is the best home workout
to reduce waist fat?

How can I reduce my
waist fat through a diet?

What is best home remedy for
reducing ?

What is best home remedy for
reducing ?

What’s it like to be What is it like for
a married man to be

a married man? in a relationship?

What’s it like to be

a married man?

What’s it like to be

a married man?

which provides a
sonic underscore to the
onscreen action

which provides a sonic
underscore to the onscreen
action

which provides a
sonic underscoring to the
onscreen action

which provides a
underscore to the onscreen
action

Example gymnasium scene,
Angela ’s first encounter
with Angela

Example gymnasium scene’s
first encounter with Angela

For example, the gymnasium

One example is the gymnasium

scene,
with Angela

scene, ’s first encounter
with Angela.

’s first encounter

Table 6: Examples of the generated paraphrases by BART and Ours on QTW data setting.

much better results than other two self-attentions.
Overall, the results demonstrate that the attention
calibration plays an important role for boosting the
performance of the transformer-based generation
model.

Case Study. In Table 6, we perform the case stud-
ies on paraphrase generation tasks. All examples
are results generated by the final model, e.g., the
model trained on Wiki_data is used to generate
samples on Quora, Twitter, Wiki_data. Among the
four examples, the first two is from Quora, and
the others from Wiki_data. We compare our gen-
erated sentence with ones from BART backbone.
From the table, we observe that our method has a
better generation on all four cases. In those gen-
eration samples, the colored parts are key words.
Yet, BART model either fails to generate those key
words or creates the examples of false causality. In
contrast, our method is able to generate key words
in all cases with correct word relations.

4.2 Application: Dialog Response Generation

Dataset. The proposed model is evaluated on the di-
alog response generation task using the MultiWoZ-
2.0 dataset (Budzianowski et al., 2018), which
contains 6 domains (Attraction, Hotel, Restaurant,
Booking, Taxi and Train) and 7 DA intents (“In-
form, Request, Select, Recommend, Book, Offer-
Booked, No-Offer"). We follow the setting (Mi
et al., 2020) to generate the train/validation/test
splits of MultiWoz. The details of the dataset is
present in Table 7.

Experimental Setting. To evaluate the method
performance, we exploit the slot error rate (SER)
and BLEU4 score as the evaluation metrics. The
lower value of SER indicates a better performance.
To estimate the forgetting rate, the above met-
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Domain and Intents of MultiWoZ-2.0 Data

Domains  #. Total Intents #. Total

Attraction 8,823 Inform 28,700
Hotel 10,918 Request 7,621
Restaurant 10,997 Select 865
Booking 8,154 Book 4,525
Taxi 3,535 Recommend 3,678
Train 13,326 | Offer-Booked 2,099
No-Offer 1,703

Table 7: Statistics on the Dialog Response dataset

rics are reported in two continual learning set-
tings (Kemker et al., 2018): Q. = % 2?21 Qaini
and Qg = % ZiT:1 Qfirst,i» Where T' is total
number of tasks in the sequential order. €2, ; is the
test performance on all the tasks evaluated by the
model learned with the i-th task, while ;. ; is
the test result on the first task after the ¢-th task has
been learned.

Our work exploits the well-known seq2seq gen-
eration model, conditional variational encoder
(CVAE) as the backbone model, and the proposed
model is compared with the following baselines:

a) Finetune: the model trained from previous ob-
served tasks is used to be fine-tuned with data of
the current new task.

b) Full: this model is trained with the data from
current tasks and all historical tasks together.

¢) ARPER (Mi et al., 2020): the model introduces
memory replay and adaptive regularization together
to mitigate the catastrophic forgetting issue.

d) ER: the model with the chosen exemplars that
best approximate the mean DA vector (Rebuffi
et al., 2017).

For CVAE, we equipped the feature calibration
module on the backbone, due to no attention on
the CVAE. In the following experiment, we follow



the setting (Mi et al., 2020) and utilize the selected
exemplars to compute the Fisher information as in
the function (5).

4.2.1 Comparison Result

We conduct comparison experiments with baselines
with various number of exemplars. The first one is
that all methods do not use any exemplars. The rea-
son for this comparison is that our proposed method
is memory-free, i.e., no memory buffer required to
store and replay the exemplar for data rehearsal. In
such setting, ARPER reduces to the general reg-
ularization technique. Table 8 gives the evidence
that without any exemplars, our method achieves a
better performance than ARPER in both (2,;; and
Q45> with a noticeable margin. We observe that
the ARPER severely relies on the exemplars. With-
out the exemplars, the ARPER suffer a significant
performance drop in terms of the accuracy, even
poorer than Finetune.

With the increased number of exemplars, our
method can obtain a better performance since the
fisher matrix in our objective can cumulative the
informative data throughout the training process.
In addition, ER and APRE are memory-based tech-
niques and are obviously beneficial from the ex-
emplars. Nonetheless, our method can consistently
outperform APRER and ER in both settings of 250
exemplars and 500 exemplars. That indicates that
our memory-free calibration technique can effec-
tively exploit the exemplar knowledge without the
need of data storage for the exemplars.

4.2.2 Dynamic Results in Continual Learning

64 6
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Figure 2: BLEU-4 and SER on all observed domains
(solid) and on the first domain (dashed) over the six
continually observed domains using 250 exemplars.

Figure 2 presents the comparison results along
the six continually observed domains of dialog re-
sponse. We compare the performance of the cal-
ibrated model with the original CVAE backbone.
With more tasks continually learned, our method
gradually performs better performance than the
original backbone. On the first task (dashed lines),
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Zero exemplars in total

Qau inrst
Models SER BLEU4 SER BLEU4
Finetune 64.46 0361 107.27 0.253
ER 67.23 0360 105.33  0.181
ARPER 63.54 0360 102.87 0.192
Ours 5690 0395 68.60  0.258
ALL 426  0.599 3.60 0.616

250 exemplars in total

Qall inrst
Models SER BLEU4 SER BLEU4
Finetune 64.46 0361 107.27 0.253
ER 16.89  0.535 9.89 0.532
ARPER 522  0.590 2.99 0.624
Ours 441  0.603 2.33 0.635
ALL 426  0.599 3.60 0.616

500 exemplars in total

Qall inrst
Models SER BLEU4 SER BLEU4
Finetune 64.46 0361 10727 0.253
ER 12.25  0.555 4.53 0.568
ARPER 512  0.598 2.81 0.627
Ours 433  0.606 2.21 0.638
ALL 426  0.599 3.60 0.616

Table 8: Average Results of all the methods when
learning six domains using 0/250/500 exemplars.
(BLEU4 follows the setting in Mi et al. (2020))

the calibrated model outperforms the original one
on both metrics. These results illustrate the advan-
tage of our calibration components throughout the
entire continual learning process.

5 Conclusions

We propose an efficient seq2seq generation model
with the calibration on the transformer, where a
fixed architecture network after calibration can dy-
namically adjust the function with respect to each
individual task. To optimize our method, we fur-
ther propose a reproductive learning equipped with
an iterative optimization objective that trade-off
between plasticity and stability. Moreover, our cal-
ibration module is very light-weight without in-
troducing any task-specific parameters. Extensive
empirical experiments indicate that our approach
outperforms the baselines and achieves a promising
result. We also indicate that the calibration module
and interleaved optimization play a vital role to
boost the performance. Finally, extending the cali-
bration module to multi-lingual pre-trained model
is a promising future research direction.
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“That’s so cute!”: The CARE Dataset for Affective Response Detection

Jane Dwivedi-Yu
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Abstract

Social media plays an increasing role in our
communication with friends and family, and
in our consumption of entertainment and in-
formation. Hence, to design effective ranking
functions for posts on social media, it would
be useful to predict the affective responses of a
post (e.g., whether it is likely to elicit feelings
of entertainment, inspiration, or anger). Similar
to work on emotion detection (which focuses
on the affect of the publisher of the post), the
traditional approach to recognizing affective re-
sponse would involve an expensive investment
in human annotation of training data.

We create and publicly release CAREy;,, a
dataset of 230k social media post annotations
according to seven affective responses using
the Common Affective Response Expression
(CARE) method. The CARE method is a
means of leveraging the signal that is present in
comments that are posted in response to a post,
providing high-precision evidence about the
affective response to the post without human
annotation. Unlike human annotation, the anno-
tation process we describe here can be iterated
upon to expand the coverage of the method,
particularly for new affective responses. We
present experiments that demonstrate that the
CARE annotations compare favorably with
crowdsourced annotations. Finally, we use
CARE; to train competitive BERT-based mod-
els for predicting affective response as well as
emotion detection, demonstrating the utility of
the dataset for related tasks.

1 Introduction

Social media and other online media platforms
have become a common means of not only inter-
acting and connecting with others, but also find-
ing interesting, informing, and entertaining content.
Users of those platforms depend on the ranking sys-
tems of the recommendation systems to show them
information they will be most interested in and to
safeguard them against unfavorable experiences.
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1. Extract indicators via regex of CARE patterns

Regex: '"A(that|this) (is|was) (so* |really* )* ([a-z])'

v

This is so funny. — Indicator: funny

3. Expressed affects
of comments
= affective response
of posts

2. Label expressed affect
of comments

This is so funny. I
Really funny!! —-\

g
I laughed so much. -

Pizza alone
wont fill the
emptiness of
your soul..

This confuses me. You'll also

need beer.

A. Collect comments
of all posts labeled amused

I B. Expand patterns
: via frequent ngrams
| ‘you are very’

| ‘made me laugh’ Made me laugh out loud.
|
|

‘now that's really’

C. Expand lexicon |
via frequent indicators | Now that's really amusing.
‘comical’ :

‘amusing’ |
‘hilarious’ I

You are very comical :)

|
|
|
:
|
<
|
|
|
|
|
|

|

|

|

|

|

|

. S I
This was so hilarious. |
I

|

|

|

|

|

Figure 1: Overview of the CARE Method (pseudo-code
in Appendix, Algorithm 1). The top half of the figure
(steps 1-3) shows how the affective response to a post
is computed by aggregating the expressed affects in
comments from users viewing the post. The bottom
half of the figure (steps A—C) shows how we expand the
collection of CARE patterns and the lexicon based on
labels that have been obtained from prior iterations.

Towards this end, a key technical problem is to
predict the affective response that a user may have
when they see a post. Some affective responses
can be described by emotions (e.g., angry, joyful),
and others may be described more as experiences
(e.g., entertained, inspired). Predicting affective
response differs from emotion detection in that the
latter focuses on the emotions expressed by the
publisher of the post (referred to as the publisher
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affect in Chen et al. (2014)) and not on the viewer
of the content. While the publisher’s emotion may
be relevant to the affective response, it only pro-
vides a partial signal (Dwivedi-Yu et al., 2022),
and the two are not always equivalent (see Figure 2
for an illustrative example). Affective response
for recommender systems has shown to be critical
in several applications such as music, emotional
health monitoring systems, product and travel rec-
ommendations (Rosa et al., 2015, 2018; Akram
et al., 2020; Artemenko et al., 2020; Dwivedi-Yu
et al., 2022).

Publisher

June Bug
/) 6m- @

Had a great time at Isabella’s birthday party!! Thanks
~ for being an amazing client. More to come!

o)l
)

Publisher Affect:
Thankful, happy

Viewer £
Q%0204 125 Comments 291 Shares
< %‘ Write a comment 8 @O

Affective Response:
Scared

ft &5 O & =

Figure 2: An example case of differing publisher affect
and affective response. This work focuses on affective
response through signals such as comments and reac-
tions. Post image sourced from Shutterstock (Tapia).

Current approaches to predicting affective re-
sponse require obtaining training data from human
annotators who try to classify content into classes
of a given taxonomy. However, obtaining enough
training data can be expensive, and moreover, due
to the subjective nature of the problem, achieving
consensus among annotators can be challenging.
Some methods explore inferring responses from
physiological data or facial expressions from users,
but this is a highly invasive process and can be diffi-
cult to scale to multiple users. (Tkal¢ic et al., 2017,
2019; Angelastro et al., 2019).

This paper introduces the Common Affective
Response Expression method (CARE for short), a
means of obtaining labels for affective response in

an unsupervised way from the comments written in
response to online posts. CARE uses patterns and
a keyword-affect mapping to identify expressions
in comments that provide high-precision evidence
about the affective response of the readers to the
post. For example, the expression “What a hilar-
ious story” may indicate that a post is humorous
and “This is so cute” may indicate that a post is
adorable. We seed the system with a small number
of high-precision patterns and mappings. We then
iteratively expand on the initial set by considering
frequent patterns and keywords in unlabeled com-
ments on posts labeled by the previous iteration.

Using CARE, we create the largest dataset to
date for affective response, CARE;,, which con-
tains 230k posts annotated according to 7 affec-
tive responses. We validate the effectiveness of
CARE by comparing the CARE annotations with
crowdsourced annotations. Our experiments show
that there is a high degree of agreement between
the annotators and the labels proposed by CARE
(e.g., in 90% of the cases, at least two out of three
annotators agree with all the CARE labels). Fur-
thermore, we show that the CARE patterns/lexicon
have greater accuracy than applying SOTA emo-
tion recognition techniques to the comments. Us-
ing CARE 4, we train CARE-BERT', a BERT-based
model that can predict affective response without
relying on comments. CARE-BERT provides strong
baseline performance for the task of predicting af-
fective response, on par with the SOTA models for
emotion recognition. Furthermore, we show that
CARE-BERT can be used for transfer learning to a
different emotion-recognition task, achieving sim-
ilar performance to Demszky et al. (2020), which
relied on manually-labeled training data.

In summary, our contributions are as follows:

* CARE, a novel method for leveraging the sig-
nal present in comments in order to label the
affective response of a post, without the need
for human annotation.

* CARE, a dataset of 230k annotated posts ac-
cording to 7 affective responses using CARE.

* Error analysis using human annotations for a
sampled set of posts from CARE y,.

* Quantitative results that demonstrate CARE
performs better than a method leveraging a
state-of-the-art publisher-affect classifier.

'The CARE patterns, lexicon, CAREg4,, and CARE-
BERT are made available at https://github.com/
facebookresearch/care.


https://github.com/facebookresearch/care
https://github.com/facebookresearch/care

* CARE-BERT: A model for labeling affective
response from the post text, without the need
for comments.

* Transfer learning experiments that demon-
strate transferability to different emotion-
recognition tasks under low-resource settings.

2 Related work

We first situate our work with respect to previous
research on related tasks.

2.1 Emotion detection in text

Approaches to emotion detection can be broadly
categorized into three groups: lexicon-based, ma-
chine learning, and combinations of the first two.
The lexicon-based approach typically leverages lex-
ical resources such as lexicons and encoded rules
to guide emotion prediction (Tao, 2004; Ma et al.,
2005; Asghar et al., 2017). Though these methods
can be fast and interpretable, they are often not as
robust and flexible because of the constraints of the
lexicon (Alswaidan and Menai, 2020; Acheampong
et al., 2020). Additionally, the scope of emotions
predicted by these works is usually fairly small,
ranging from two to five, and most datasets uti-
lized are usually smaller than 10k, making it un-
clear if they extrapolate well. Among the ML ap-
proaches, many SOTA works employ deep learning
methods (Demszky et al., 2020; Felbo et al., 2017,
Barbieri et al., 2018; Huang et al., 2019a; Bazi-
otis et al., 2017; Huang et al., 2019b), but while
these show significant improvement over prior tech-
niques, they are highly uninterpretable and often
require prohibitively large human-labeled datasets
to train. In both the lexicon-based approach and the
ML-approach, the classes of emotions predicted in
these works are usually non-extendable or require
additional labeled data.

While there are some commonalities between
works in emotion detection and affective response
detection, the problems are distinct enough that
we cannot simply apply emotion recognition tech-
niques to our setting. Emotion recognition focuses
on the publisher affect (the affect of the person
writing the text). The publisher affect may pro-
vide a signal about the affective response of the
reader, but there is no simple mapping from one
to the other. For example, being ‘angered’ is an
affective response that does not only result from
reading an angry post—it can result from a mul-
titude of different publisher affects (e.g. excited,
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angry, sympathetic, embarrassed, or arrogant). For
some affective responses, such as feeling ‘grateful’
or ‘connected’ to a community, the corresponding
publisher affect is highly unclear.

2.2 Affective response detection

There have been some works that address affec-
tive response through natural language in limited
settings, such as understanding reader responses
to online news (Katz et al., 2007; Strapparava and
Mihalcea, 2007; Lin et al., 2008; Lei et al., 2014).
In contrast, our goal is to address the breadth of
content on social media. There are works which
use Facebook reactions as a proxy for affective re-
sponse, but these are constrained by the pre-defined
set of reactions (Clos et al., 2017; Raad et al.,
2018; Pool and Nissim, 2016; Graziani et al., 2019;
Krebs et al., 2017). The work described in Rao et al.
(2014) and Bao et al. (2012) attempts to associate
emotions with fopics, but a single topic can have a
large variety of affective responses when seen on
social media, and therefore their model does not
apply to our case. Some works in the computer
vision community study affective response to im-
ages (Chen et al., 2014; Jou et al., 2014); as they
note, most of the work in the vision community
also focuses on publisher affect.

2.3 Methods for unsupervised labeling

A major bottleneck in developing models for emo-
tion and affective response detection is the need for
large amounts of training data. As an alternative
to manually-labeled data, many works utilize meta-
data such as hashtags, emoticons, and Facebook
reactions as pseudo-labels (Wang et al., 2012; Sut-
tles and Ide, 2013; Hasan et al., 2014; Mohammad
and Kiritchenko, 2015). However, these can be
highly noisy and limited in scope. For example,
there exist only seven Facebook reactions, and they
do not necessarily correspond to distinct affective
responses. Additionally, for abstract concepts like
emotions, hashtagged content may only capture a
superficial interpretation of the concept. For exam-
ple, searching #inspiring on Instagram will return
many photos featuring selfies or obviously inspira-
tional quotes, which do not sufficiently represent
inspiration. The work we present here extracts la-
bels from free-form text in comments rather than
metadata. The work done in Sintsova and Pu (2016)
is similar to our work in that it pseudo-labels tweets
and extends its lexicon, but the classifier itself is
a keyword, rule-based approach and is heavily re-



liant on the capacity of these lexicons. In contrast,
our work leverages the high precision of CARE and
uses these results to train a model, which is not con-
strained by the lexicon size in its predictions. Our
method also employs bootstrapping to expand the
set of patterns and lexicon, similar to Agichtein and
Gravano (2000) and Jones et al. (1999) but focuses
on extracting affect rather than relation tuples.

3 The CARE Method

In this section, we provide a formal description
of CARE for annotating the affective response of
posts. Before we proceed, we note two aspects of
affective responses. First, there is no formal defi-
nition for what qualifies as an affective response.
In practice, we use affective responses to under-
stand the experience that the user has when seeing
a piece of content, and these responses may be both
emotional and cognitive. Second, the response a
user may have to a particular piece of content is
clearly a very personal one. Our goal here is to pre-
dict whether a piece of content is generally likely
to elicit a particular affective response. In practice,
if the recommendation system has models of user
interests and behavior, these would need to be com-
bined with the affect predictions for personalized
predictions.

3.1 CARE patterns and the CARE lexicon

CARE is composed of two major components:
CARE patterns, regular expressions used to extract
information from the comments of a post, and the
CARE lexicon, a keyword-affect dictionary used
to map the comment to an affect.

CARE patterns are not class or affect-specific
and leverage common structure present in com-
ments for affective response extraction. There is an
unlimited number of possible CARE patterns, but
we seeded the system with six CARE patterns and
an additional 17 more were automatically discov-
ered using the expansion method. In the same spirit
as Hearst Patterns (Hearst, 1992), CARE patterns
are tailored to extract specific relationships and rely
on two sets of sub-patterns:

 Exaggerators { E'}: words that intensify or ex-
aggerate a statement, e.g., so, very, or really.

* Indicators {/}: words (up to 3) that exist in
the CARE lexicon, which maps the indicator
to a particular class. For example, ‘funny’ in
“This is so funny” would map to amused.
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We present the six CARE patterns below that
were used to seed the system: (The symbol *
(resp. ) indicates that zero (resp. one) or more
matches are required.) Example: This is so amaz-
ing!

¢ Demonstrative Pronouns:
{this|that|those|these } {is|are}*{ E}*{I}T
Example: This is so amazing!

* Subjective Self Pronouns:
{i|we}{amlis|are|have has}*{ E}*{I}*
Example: I am really inspired by this recipe.

* Subjective Non-self Pronouns:
{he|she|they} {is|are|have|has}*{ E}*{I}T
Example: They really make me mad.

* Collective Nouns:
{some people|humans|society } { E} T {1}
Example: Some people are so dumb.

e Leading Exaggerators: {E}*T{I}"
Example: So sad to see this still happens.

* Exclamatory Interrogatives:
{what alhow }{ E}*{I}T
Example: What a beautiful baby!

Given the indicators extracted by the CARE pat-
terns, the CARE lexicon is responsible for mapping
the comment to particular affective responses. The
lexicon contains 163 indicators for the 7 classes we
consider (123 of which were automatically iden-
tified in the expansion process described in the
next section). We also considered using other lexi-
cons (Strapparava and Valitutti, 2004; Poria et al.,
2014; Staiano and Guerini, 2014; Esuli and Se-
bastiani, 2006; Mohammad et al., 2013), but we
found that they were lacking enough application
context to be useful in our setting. Table 1 shows
the affects in the CARE lexicon and corresponding
definitions and example comments that would fall
under each affect (or class). The classes excited,
angered, saddened, and scared were chosen since
they are often proposed as the four basic emotions
(Wang et al., 2011; Jack et al., 2014; Gu et al.,
2016; Zheng et al., 2016). The classes adoring,
amused, and approving were established because
they are particularly important in the context of
social media for identifying positive content that
users enjoy. Overall, a qualitative inspection in-
dicated that these seven have minimal conceptual
overlap and sufficiently broad coverage. We note,



however, that one of the benefits of the method we
describe is that it is relatively easy to build a model
for a new class of interest compared to the process
of human annotation.

3.2 Labeling posts

Here we describe how to combine and use the two
major components (CARE patterns and lexicon)
at the comment-level in order to annotate the post-
level affective response. The pipeline for labeling
posts is shown in steps 1-3 of Figure 1 and de-
scribed in detail in Appendix, Algorithm 1. We
begin with reg-ex matching of CARE patterns and
individual sentences of the comments. We truncate
the front half of a sentence if it contains words
like ‘but’ or ‘however’ because the latter half usu-
ally indicates their predominant sentiment. We
also reject indicators that contain negation words
such as ‘never’, ‘not’, or ‘cannot’ (although one
could theoretically map this to the opposite affec-
tive response using Plutchik’s Wheel of Emotions
(Plutchik, 1980)). Note that contrary to traditional
rule-based or machine-learning methods, we do not
strip stop words (e.g., ‘this’ and ‘very’) because
it is often crucial to the regular expression match-
ing, and this specificity has a direct impact on the
precision of the pipeline.

Given the reg-ex matches, we use the lexicon
to map the indicators to the publisher affect of the
comment (e.g., excited). It is important to note
that the expressed affects of the comments should
intuitively equate to the affective responses of a
post. Consequently, we obtain post-level affective
response labels by aggregating the comment-level
labels and filtering out labels that have a support
smaller than ¢. Specifically, a post would be labeled
with the affective response a if at least ¢ of the com-
ments were labeled with a. In our experiments,
we used a value of t = 5, after qualitative inspec-
tion of CAREy, discussed in Section 4. We note,
however, that it is possible for a comment to be
labeled according to multiple classes if it has mul-
tiple indicators. In reality, the program should be
permissive of multiple labels for a single comment,
because emotions are in many cases not mutually
exclusive—an individual, for example, could be ex-
periencing both sadness and anger simultaneously.

3.3 Expanding CARE patterns/lexicon

We seeded our patterns and lexicon with a small
intuitive set. We then expanded these by looking at
common n-grams that appear across posts with the

54

same label (steps A—C of Figure 1). At a high level,
for a given affect a, consider the set, comm(a), of
all the comments on posts that were labeled a, but
did not match any CARE pattern. From these com-
ments, we extract new keywords (e.g. ‘dope’ for
approving as in ‘This is so dope.’) for the CARE
lexicon by taking the most frequent n-grams in
comm/(a) but infrequent in comm/(b), where b in-
cludes all classes except a. On the other hand, the
most common n-grams co-occuring with multiple
classes were converted to regular expressions and
then added as new CARE patterns (see Table B1
for a few examples). We added CARE patterns
according to their frequency and stopped when we
had sufficient data to train our models. After two
expansion rounds, the set of patterns and indicators
increased from 6 to 23 and 40 to 163, respectively.
Counting the possible combinations of patterns and
indicators, there are roughly 3500 distinct expres-
sions. When considering the possible 23 CARE
patterns, 163 CARE lexicon indicators, and 37
exaggerators, there are a total of 130k possible
instantiations of a matching comment.

4 Evaluating CARE;,

In this section we apply our method to social me-
dia posts and validate these annotations using hu-
man evaluation (Section 4.1). Section 4.2 discusses
class-wise error analysis, and in Section 4.3, we ex-
plore the alternative possibility of creating CAREy;,
using a SOTA publisher-affect classifier (Demszky
et al., 2020) to label the comments instead of using
the CARE patterns/lexicon.

CARE,,: Our experiments use a dataset that is
created from Reddit posts and comments in the
pushshift.io database that were created between
2011 and 2019. We create our dataset, CARE, as
follows. We used CARE patterns and the CARE
lexicon to annotate 34 million comments from
24 million distinct posts. After filtering with a
threshold of ¢ = 5, we obtained annotations for
400k posts (the total number of posts that have
at least 5 comments was 150 million). The low
recall is expected given the specificity of CARE
patterns/lexicon. We also filtered out posts that
have less than 10 characters, resulting in a total of
230k posts in CARE4,. Table 1 shows the break-
down of cardinality per affective response. 195k of
the posts were assigned a single label, whereas 26k
(resp. 8k) were assigned two (resp. three) labels.
Note that the distribution of examples per class in



AR Definition Example comment Size
Adoring Finding someone or something cute, adorable, or attractive. He is the cutest thing ever. 36
Amused Finding something funny, entertaining, or interesting. That was soooo funny. 30
Approving  Expressing support, praise, admiration, or pride. This is really fantastic! 102
Excited Expressing joy, zeal, eagerness, or looking forward to something.  Really looking forward to this! 41
Angered Expressing anger, revulsion, or annoyance. I'm so frustrated to see this. 26
Saddened Expressing sadness, sympathy, or disappointment. So sad from reading this. 34
Scared Expressing worry, concern, stress, anxiety, or fear. Extremely worried about finals. 2

Table 1: Definition of affective responses (AR), examples of comments which would map to each affective response,
and the number of posts (in thousands) per class in CARE;,. The portion of each example which would match a

CARE pattern in a reg-ex search is italicized.

CARE, is not reflective of the distribution in the
original data, because different classes have differ-
ent recall rates. The CARE, dataset features the
pushshift.io ID and text of the post as well as the
annotations using CARE.

4.1 Human evaluation

In our next experiment, we evaluate the labels pre-
dicted by CARE with the help of human annotators
using Amazon Mechanical Turk (AMT), restrict-
ing to those who qualify as AMT Masters and have
a lifetime approval rating greater than 80%. The
dataset for annotation was created as follows. We
sub-sampled a set of 6000 posts from CARE;, en-
suring that we have at least 500 samples from each
class and asked annotators to label the affective re-
sponse of each post. Annotators were encouraged
to select as many as appropriate and also permitted
to choose ‘None of the above’ as shown in Fig-
ure C1. In addition to the post, we also showed
annotators up to 10 sampled comments from the
post in order to provide more context. This was
also done in an effort to make the comparison to
CARE more fair, since CARE relies upon having
access to the comments of the post. Every post was
shown to three of the 91 distinct annotators. For
quality control, we also verified that there no indi-
vidual annotator provided answers that disagreed
with the CARE labels more than 50% of the time
on more than 100 posts.

We observed an average Fleiss’ kappa score of
0.59, which is considered moderate agreement, the
breakdown of which is shown in Table C1. Table 2
shows that the rate of agreement between the anno-
tators and the labels proposed by the CARE method
is high. For example, 94% of posts had at least one
label proposed by CARE that was confirmed by 2
or more annotators, and 90% had all the labels con-
firmed. The last column measures the agreement
among annotators on labels that were not suggested

55

by CARE, which was 53% when confirmed by 2
or more annotators. We expected this value for
‘other’ to be reasonably large because the CARE
patterns/lexicon were designed to generate a highly
precise set of labels, rather than highly comprehen-
sive ones. However, the value is still much smaller
relative to the agreement rate for the CARE labels
(53% versus 94%). On average, each annotation
answer contained around 1.8 labels per post (with
a standard deviation of 0.9). We note that ‘None of
the above’ was chosen less than 0.2% of the time.
Table C2 and Figure C2 present annotator agree-
ment statistics and label prevalence, respectively,
broken down by class.

#Agree Any CARE All CARE Other
>1 98 96 82
>2 94 90 53
=3 80 76 24

Table 2: The rate of agreement between the annotators
and the labels proposed by CARE. The first column
specifies the number of annotators to be used for con-
sensus. The rest of the columns shows, for all posts, the
average rate of intersection of the human labels with at
least one CARE label, all CARE labels, and any label
that is not a CARE label.

4.2 Error Analysis

Evaluating CARE reveals that the accuracy of
CARE varies by class (Figure C2), and in particu-
lar, is lower for amused and excited. As can be seen
from the interclass Spearman correlations (Fig-
ure G4) and a two-dimensional projection of the
embeddings of the labeled comments (Figure G3),
there appears to be non-trivial overlap amongst the
classes amused, excited, and approving. To better
understand if certain pattern or indicator matches
are at fault here, we investigate the precision and
recall at the pattern and lexicon level.
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Figure 3: Precision versus recall of each class using
varying thresholds (t = 0 to 9). Ground truth labels
utilized are those which have at least 2 out of 3 annotator
agreement. For clarity, only odd values of t are labeled.

Recall that instantiating a match for a comment
involves choosing a (pattern, keyword) combina-
tion. Separating the lexicon from the patterns en-
ables us to encode a large number of instantiated
patterns parsimoniously, but some pair combina-
tions provide a much weaker signal than others,
particularly for the class amused (see Figure H6 for
examples). Hence, for future iterations of CARE,
we intend to implement a mechanism to exclude
certain pattern and keyword combinations and a
means for using different thresholds for each class.

Alternatively, another mechanism for accom-
modating these class-wise discrepancies in perfor-
mance is by tuning for each class an optimal thresh-
old ¢ (i.e., the number of matched comments we
need to see in order to reliably predict a label). Fig-
ure 3 shows how the precision and recall of each
class varies according to different threshold val-
ues. To achieve precision and recall greater than
0.7, a threshold of 1 actually seems viable for most
classes, while for amused and excited a threshold of
at least 3 is needed. In fact, for most of the classes,
using thresholds larger than 3 has negligible impact
on the precision score, but does reduce the recall.

4.3 Can we leverage emotion classification?

Recall, steps 1 and 2 of Figure 1 uses the CARE
patterns and lexicon to label the publisher affect of
the comments. Conceivably, this could have been
done instead by using a SOTA emotion classifier
such as the GoEmotions classifier (Demszky et al.,
2020), which is trained specifically to predict the
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publisher affect of Reddit comments. Here, we
show that our method for labeling the publisher
affect of comments performs comparatively bet-
ter. Let us define the method CARE®, a modified
version of the CARE method where steps 1 and
2 are replaced with labels using the GoEmotions
classifer. We apply CARE® to our human anno-
tated dataset (Section 4.1) by first applying the
GoEmotions classifier to all comments of the posts.
These GoEmotion labels are then mapped to our
taxonomy in Table 1 using the mapping defined in
Table 3, which is based on the grouping of emo-
tions at the Ekman level used in Demszky et al.
(2020). We then, as usual, aggregate and filter post
labels according to a threshold ¢.

CARE?Y (Table F4) shows a relative decrease of
12.9% and 18.0% in the rate of annotator agreement
with any and all labels, respectively, compared to
that of CARE. These decreases hold even when
partitioning on each individual class. The compara-
tively lower performance of CARE® is most likely
due to the low F1-scores (<0.4) of the GoEmo-
tions classifer for nearly half of the 28 classes, as
reported in the original work Demszky et al. (2020,
Table 4). It is also important to note that in addition
to demonstrating higher precision, CARE patterns
and lexicon are valuable because they do not re-
quire human annotated data, unlike GoEmotions.
It may, however, be useful to leverage multiple
emotion detection approaches. Section F discusses
a potential ensembling strategy for this.

To validate the mapping in Table 3, we applied
steps 1 and 2 of CARE to the GoEmotions dataset
(see Section E), and computed the rate of agree-
ment among the labels in our defined mapping.
We find this rate of agreement to be high (87.3%
overall). Note, we perform this equivalence at
the publisher affect level, because as discussed be-
fore, the affective response and publisher affect are
not always equivalent. In addition to prior work
(Dwivedi-Yu et al., 2022), Section D presents ex-
periments that indicate that affective response and
publisher affect labels intersect only 44% of the
time.

5 Predicting affective response for posts
without comments

In this section we describe CARE-BERT, a multi-
label affective response classifier that is trained
only on the post-level text and annotations in
CAREg,. Such a model is important in order to



AR GoEmotion label % agree
Amused Amusement 79.8
Approving Admiration, Approval 89.3
Excited Joy 81.3
Angered Anger, Annoyance, Disgust 93.3
Saddened Disappointment, Sadness 90.9
Scared Fear, Nervousness 84.9

Table 3: CARE to GoEmotions mapping. The last col-
umn summarizes the rate at which the mapping holds.
The average across all datapoints was 87.3%.

make predictions early in the life of the post and
in cases where the comments may not exist or
may not match any CARE patterns or keywords.
Note that the model is not given the comments text
and is therefore not restricted to the CARE pat-
tern/lexicon semantics. In section 5.2, we describe
how CARE-BERT can be further fine-tuned for re-
lated tasks like emotion detection.

5.1 Creating and evaluating CARE-BERT

We train CARE-BERT with the CARE labels in
CARE, using the pre-trained model bert-base-
uncased from the Huggingface library (Wolf et al.,
2020). We use a max length of 512 and we add
a dropout layer with a rate of 0.3 and a dense
layer to allow for multi-label classification. We
used an Adam optimizer with a learning rate of
5e-5, a batch size of 16, and 5 epochs. We used a
train/validation/test split of 80/10/10%. See Sec-
tion I for other settings we explored.

The evaluation on the human-annotated set (held
out from training) is shown in Table 4. We use
labels with support from all annotators as ground
truth. The classes of lowest prevalence, such as
scared, had the poorest results, while the more
frequent classes (adoring, approving, saddened)
had the highest results. To put these results in
perspective, we use the mapping in Table 3 and
compare with the numbers from Demszky et al.
(2020). Note, the comparison is not for the same
dataset—our results pertain to predicting on the
post, whereas GoEmotions predicts the comments.
Still, CARE-BERT demonstrates a 35% improve-
ment in the overall micro-averaged F1-score.

CARE vs. CARE-BERT: Compared to the hu-
man annotators and CARE, CARE-BERT is disad-
vantaged by not having access to the comments.
We use human annotated set of CARE,;, and find
that 0.89 of the CARE labels are also proposed
by human annotators, while this value is 0.72 for
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CARE-BERT (Table J6). In Table J7 we display se-
lect examples that may illustrate reasons for this
discrepancy. Firstly, one of the challenges that
CARE-BERT faces is that there may not be suffi-
cient context in the post alone. In the example
“Who is this LIRIK guy, and why does he have S0K
subscribers” it is challenging to predict that some
people find the subject adorable without additional
context. Relatedly, the conversation that the post
initiates can be challenging to foresee. The last
example reads "AskReddit: Imagine the last thing
you ate has been made illegal. What would that
be?" In some cases, commenters just ate something
they didn’t like and are therefore content with the
premise. In other cases, commenters just ate some-
thing they very much enjoy and are saddened by
the hypothetical. Our results show that this is not
particular to ‘AskReddit’ posts, and given these
challenges, it is reasonable that the CARE method
provides more reliable labels.

Affect P R F1  GoEmotions F1
Adoring 0.73 0.66 0.70 -
Amused  0.63 0.54 0.60 0.80

Approving 0.73  0.72 0.75 0.53

Excited 058 0.52 0.58 0.51

Angered 0.70 0.61 0.69 0.40

Saddened 0.78 0.62 0.73 0.39
Scared 068 03 047 0.54
micro-avg  0.70 0.68  0.69 0.51
macro-avg  0.69 0.62 0.65 0.53
stdev 0.06 0.12 0.09 0.14

Table 4: Precision (P), recall (R), and F1 of CARE-
BERT using CAREy;, on the post text of the human-
annotated set and F1-scores of the GoEmotions classifier
from Demszky et al. (2020) on comments.

5.2 Transfer learning to emotion detection

We now demonstrate that CARE-BERT is also useful
for pre-training of another related task in a setting
with limited annotated data. We consider trans-
fer learning to the ISEAR Dataset (Scherer and
Wallbott, 1994), which is a collection of 7666 state-
ments from a diverse set of 3000 individuals la-
beled according to six categories (anger, disgust,
fear, guilt, joy, sadness, and shame). The labels
pertain to the publisher affect and not affective re-
sponse, as considered in this work. Our experiment
explores transfer learning to predict the labels in
the ISEAR dataset using an additional drop-out
layer of 0.3 and a dense layer.

Our experiments follow closely to that of Dem-



szky et al. (2020) and uses different training set
sizes (500, 1000, 2000, 4000, and 6000) for 10
different train-test splits. We plot the average and
standard deviation in the F1-scores across these
10 splits in Figure 4. We compare four differ-
ent fine-tuning setups: the first two are trained us-
ing CARE-BERT and then fine-tuned on the bench-
mark dataset, one with no parameter freezing
(no_freeze), and one with all layers but the last
two frozen (freeze). The third setup is similar to
CARE-BERT (no_freeze) but is trained on GoEmo-
tions rather than CAREg,. The last setup is the
bert-base-uncased model trained only on ISEAR,
where all setups use the same architecture and hy-
perparameters as discussed in Section 5.

Our values differ slightly from that cited in Dem-
szky et al. (2020) due to the small differences in
architecture and hyperparameters. However, the
overall results corroborate that of Demszky et al.
(2020) in that models with additional pre-training
perform better than the baseline (no additional pre-
training) for limited sample sizes. From Figure 4,
it is apparent that CARE-BERT and the model built
from GoEmotions perform essentially on par in
these transfer learning experiments, in spite of the
fact that CARE-BERT does not utilize human anno-
tations. It is also worth noting that GoEmotions
and the ISEAR dataset address the same task (emo-
tion detection) while CARE-BERT predicts affective
response. The comparable performance of CARE-
BERT with the GoEmotions models demonstrates
the utility of CARE-BERT for other tasks with lim-
ited data and the promise of CARE as a means of
reliable unsupervised labeling.

6 Conclusion

We described a method for extracting training data
for models that predict the affective responses of a
post on social media. CARE is an efficient, accu-
rate, and scalable way of collecting unsupervised
labels and can be extended to new classes. Using
CARE, we created CAREy, a large dataset which
can be used for affective response detection and
other related tasks, as demonstrated by the compet-
itive performance of CARE-BERT to similar BERT-
based models in emotion detection. We release the
annotations and models in the hopes that this will
unlock future research.

In particular, there are two main cases in which
CARE can be improved upon: (1) when there does
not exist a set of common phrases that are indica-
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Figure 4: The Fl-score of each model using varying
training set sizes of the ISEAR dataset. The light blue
line refers to using CARE-BERT, but with freezing all
parameters except in the last layer. The dark blue is the
same but without freezing. Lastly, the purple line refers
to the same architecture as CARE-BERT (no freezing) but
trained on GoEmotions instead of CARE;, and the red
line is trained only on the ISEAR dataset using a bert-
base-uncased model with the same hyperparameters.

tive of an affect, and (2) when an indicator maps
to multiple affects. In the latter case, there is still
partial information that can be gleaned from the
labels. In addition to developing methods for the
above cases, future work also includes incorpo-
rating emojis, negations, and punctuation, extend-
ing to new classes, or possibly using embedding
similarity rather than exact match for the CARE
patterns. Finally, we also plan to investigate the
use of CARE for predicting the affective response
to images as well as multi-modal content such as
memes.
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A Broader Impact

Any work that touches upon emotion recognition
or recognizing affective response needs to ensure
that it is sensitive to the various ways of expressing
affect in different cultures and individuals. Clearly,
applying the ideas described in this paper in a pro-
duction setting would have to first test for cultural
biases. To make “broad assumptions about emo-
tional universalism [would be] not just unwise,
but actively deleterious” to the general community
(Stark and Hoey, 2021). We also note that emotion
recognition methods belong to a taxonomy of con-
ceptual models for emotion (such as that of Stark
and Hoey (2021) and these “paradigms for human
emotions [...] should [not] be taken naively ground
truth.”

Before being put in production, the method
would also need to be re-evaluated when applied
to a new domain to ensure reliable performance in
order to prevent unintended consequences. Addi-
tionally, our work in detecting affective response
is intended for understanding content, not the emo-
tional state of individuals. This work is intended to
identify or recommend content, which aligns with
the user’s preferences. This work should not be
used for ill-intended purposes such as purposefully
recommending particular content to manipulate a
user’s perception or preferences.

B Details on expanding CARE

n-gram frequency class
adorable 9000 Adoring
gorgeous 8422 Adoring
fantastic 7796 Approving
interesting 5742 Amused
sorry for your 5202 Saddened
brilliant 4205 Approving
fake 2568 Angered
sorry to hear 2323 Saddened
why i hate 1125 Angered
i feel like 293 pattern
you are a 207 pattern
this is the 173 pattern
this made me 110 pattern
he is so 102 pattern

Table B1: Examples of n-grams resulting from
GetNgrams in Algorithm 1 and steps B1 and B2 of
Figure 1. The n-grams above the middle line are added
to the lexicon under the specific class listed, while the
n-grams below are used for further expansion of CARE
patterns after translating to reg-ex format manually.
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Algorithm 1 on page 18 presents pseudo-code for
the process of labeling posts and expanding CARE
patterns and the CARE lexicon. Table B1 presents
example results from the expansion process.

C Annotation details

What are the affective responses to the post below?
Sampled comments of the post are shown for context.
Select as many as appropriate.

Original post: ${text}

Comments: ${comments}
Expressing approval or pride 1
Excited or Looking forward to 2
Finding cute or attractive 3
Humored or Entertained or Intrigued 4

Angered or Annoyed or Disgusted 5

Scared or Anxious or Worried 6
Saddened or Disappointed 7
None of the above n

Figure C1: Interface for crowdsourcing process using
Amazon Mechanical Turk. Three distinct annotators
were used to annotate each post. Annotators were told
an affective response is an emotion or cognitive response
to the post and the definitions and examples in Table 1
were shown to them.

AR % wl Avg Fleiss’

support support kappa
Adoring 99.2 2.8 0.78
Amused 93.2 2.1 0.43
Approving 98.8 2.8 0.51
Excited 83.6 2.1 0.58
Angered 99.4 2.8 0.59
Saddened 99.6 2.9 0.61
Scared 98.8 2.6 0.64
Average 96.1 2.6 0.59

Table C2: The percent of CARE-labeled examples (max-
imum of 100) with agreement from at least one labeler
by class and of those examples, the average number of
annotator agreement (maximum of 3). The third column
shows the Fleiss® kappa, which was computed for class
a based on the presence and absence of label a by each
annotator for a given post. The bottom row is the aver-
age over all classes.

The annotators were paid a competitive wage in
order to temper the effects of the ethical and sam-
pling limitations and concerns as described in Fort
et al. (2011) and Paolacci and Chandler (2014).
Figure C1 shows the interface used for crowdsourc-
ing human annotations for evaluating CARE pat-
terns. To better understand annotation results for
each class, we present Table C2, which shows an-
notator agreement statistics broken down by class.



We also computed Fleiss’ kappa for each class,
where a value between 0.41-0.60 is generally con-
sidered moderate agreement and a value between
0.61-0.80 is substantial agreement. As can be seen,
classes such as adoring have high average anno-
tator support and Fleiss’ kappa while others like
amused have low average annotator support and
Fleiss’ kappa, an observation that aligns with the

findings in Section 4.2.
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Figure C2: Prevalence of class labels according to an-
notations from AMT on which at least two annotators
agree upon (blue) and according to CARE (orange). The
prevalence of approving was much higher from AMT,
likely due to a large perceived overlap in the definitions
of approving and other classes such excited.

D Are affective response and publisher
affect the same?

The GoEmotions dataset and classifier target the
publisher affect (of comments), whereas CARE-
BERT and CARE target the affective response (of
posts). In an effort to study the correlation be-
tween affective response and publisher affect, we
compare the following sets of labels: 1) human an-
notations of GoEmotion and the predicted affective
responses using CARE-BERT applied to GoEmo-
tions and 2) CARE labels for posts in CARE 4, and
the predicted publisher affects using the GoEmo-
tions classifier applied to CAREg,. Specifically,
for every annotated label (i.e., not from a classifier)
we count the percentage of the time where there
is intersection with the set of predicted labels (i.e.,
from a classifier).

The results of these experiments are shown in
Table D3, broken down according to the class of the
annotated label. Overall, the percentage of affec-
tive response and publisher affect label agreement
(44%) is moderate but seems to indicate that the
affective response detection and emotion detection
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are not necessarily the same problem, in particular
for scared and approving. The classes approving,
excited, and angered have a large variance between
the two datasets, where the first (Table D3, second
column) uses comments and the second (Table D3,
third column) uses posts. This could be due to the
classification errors (either by GoEmotions or by
CARE-BERT) or due to the type of the text (com-
ment or post). More research and data collection
is needed to understand the relationship between
affective response and publisher affect.

AR GoEmotions CARE,;, Average

Amused 63 54 59
Approving 8 47 28
Excited 52 24 38
Angered 4 74 39
Saddened 60 62 61
Scared 44 34 39
Average 39 49 44

Table D3: Rate of intersection between affective re-
sponse and publisher affect labels. The first column
denotes the class. The second column denotes the per-
cent of the time an annotated label in GoEmotions exists
in the set of predicted labels by CARE-BERT when ap-
plied to the GoEmotions dataset. The third column
denotes the percent of the time an annotated label in
CARE-BERT exists in the set of predicted labels by the
GoEmotions classifier when applied to CARE4,. The
last column is the row-wise average.

E Using CARE patterns/lexicon to
predict publisher affect in GoEmotions

The GoEmotions dataset (Demszky et al., 2020) is
a collection of 58k Reddit comments labeled ac-
cording to the publisher affect from a taxonomy
of 28 emotions. There exists a natural mapping
from 6 of our classes to those of GoEmotions (the
exception being adoring) based on the definitions
alone. Hence, applying CARE patterns/lexicon to
the GoEmotions dataset presents another way of
validating the quality of steps 1 and 2 of CARE.
The number of examples in GoEmotions with la-
bels belonging to these 6 classes was 21.0k and the
number of comments that were labeled by CARE
patterns/lexicon was 1259. Table 3 compares the
human annotations in the GoEmotions dataset with
the labels that CARE patterns/lexicon assigned to
the comments and shows that they have a high de-
gree of agreement.

While the low recall is certainly a limitation
of CARE patterns and lexicon when applied to
a specific small dataset, we emphasize that the pri-



mary intention of CARE patterns is to generate
a labeled dataset in an unsupervised manner, so
one can start training classifiers for that affective
response. Given the abundance of freely available
unlabeled data (e.g., on Reddit, Twitter), recall is
not a problem in practice. In the next section and
in Section 4.3, however, we discuss how existing
emotion classifiers, such as the GoEmotions classi-
fier (Demszky et al., 2020) can also be leveraged
in the CARE method.

F CARE and CARES evaluation details

CAREY refers to the CARE method, where steps
1 and 2 of Figure 1 use the GoEmotions classifier
instead of CARE patterns. To evaluate how CARE
and CARE® compares, we use the same human-
labeled dataset described in Section 4.1 and applied
the GoEmotions classifier to all the comments be-
longing to these posts (72k comments). We then
mapped the predicted GoEmotion labels to CARE
pattern labels using the mapping in Table 3. GoE-
motion and CARE labels not in the mapping are
excluded from this analysis.

Threshold Any CARE®  All CARE®  Other
t=1 95 34 25
t=2 91 61 42
t=3 87 71 51
t=4 81 73 57
t=5 73 67 62

=6 58 56 70
t="7 47 45 76
t=38 38 37 81
t=9 30 29 84
t=10 24 23 88

max 89 89 60
CARE 93 89 54
ensemble 94 83 49

Table F4: The rate of intersection between labels agreed
upon by at least two annotators and the labels proposed
by CARE®. The first column indicates the threshold ¢
used in CARE®. Using annotations agreed upon by at
least two annotators, the rest of the columns show the
rate of agreement with at least one predicted label, all
predicted labels, and any human-annotated label that
was not predicted. The row labeled ‘max’ refers to
choosing the comment-level label with the highest fre-
quency for each post. For context, the results for CARE
using ¢ = 5 are shown in the penultimate row. The last
row presents results from combining the CARE pattern
labels and the GoEmotion labels using ¢ = 4.

The same metrics for > 2 annotator agreement
in Table 2 are shown in Table F4 for multiple thresh-
olds and for all classes, excluding adoring. CARE
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labels consistently demonstrate higher agreement
with human annotations than those of CARE®. The
last row of Table F4 shows results for an ensem-
bling approach where steps 1 and 2 use labels from
both CARE patterns in addition to the labels from
the GoEmotions classifier, where the former uses
t = 5 and the latter uses ¢ = 4 in step 3 (optimal
values for each approach, respectively). This en-
sembling approach does reasonably well and can
be used to include classes in the GoEmotions tax-
onomy that do not exist in the taxonomy of Table 1.
Given other emotion classifiers, one could poten-
tially include those as well.
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Figure G3: The two-dimensional projection (using
MDS) of sentence embeddings of comments suggests
that the CARE-based predictions correspond to similar-
ity in the embedding space. Colors correspond to the
labels given by CARE labeling, which were not given
to the embedding model or the MDS.

We visualize the degree of overlap between
the sentence embeddings (using Sentence-Bert
(Reimers and Gurevych, 2019)) of 100 com-
ments in CARE,, for each class. We then use
multi-dimensional scaling or MDS (Cox and Cox,
2008) to map the embeddings to the same two-
dimensional space using euclidean distance as the
similarity metric, as shown in Figure G3 and Fig-
ure G5. Note that the MDS process does not use
the class labels. As can be seen, there is sub-
stantial overlap between amused and other classes,
as well as between excited and approving. Fig-
ure G4 shows the Spearman correlation between



each class and a hierarchical clustering using the
AMT-annotated dataset, and corroborates that ap-
proving and excited indeed do have the highest
degree of correlation. Given that the average num-
ber of human annotations per post was 1.8 (Sec-
tion 4.1), it is likely that a portion of this over-
lap can be attributed to the multi-label nature of
the problem as well as the moderate correlation
between certain classes such as excited and ap-
proving (Figure G4). See Figure G5 for plots of
multi-dimensional scaling for every pair of classes,
as referenced in Section 4.2.
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Figure G4: Pairwise Spearman correlation between each
pair of classes, computed using the degree of annotator
support for each class given a post. The dendrogram
represents a hierarchical clustering of the data, correctly
capturing the distinction between positive and negative
classes.

H Pattern match analysis

To investigate why higher thresholds would be
needed for certain classes, we analyze the CARE
patterns and lexicon at the class level.

Let us define a match as a tuple containing the
pattern name and the word or phrase which maps
the comment to an affect according to the CARE
lexicon. We could also consider exaggerators in
our analysis, but here we assume a negligible ef-
fect on differentiating reliability. We previously
assumed that each instantiated match should have
the same weight of 1, but this may not be appropri-
ate, considering that some patterns or words may
be more reliable.

As can be seen in Figure H6, there are some
cases in which the keyword in general seems to
have a high false positive rate (e.g., happy) and in
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other cases it appears the erroneous combination of
a particular pattern and keyword can lead to high
false positive rates. For example, while the match
‘(so very, funny)’ has a low false positive rate of
0.2, (I, funny)’ has a much higher false positive
rate of 0.57, which intuitively makes since ‘I'm
funny’ does not indicate being amused. We also
investigated whether individual patterns are prone
to higher false positive rates, which does not seem
to be the case. For future iterations of CARE, one
could also use the true positive rate as the weight of
a match to obtain a weighted sum when aggregating
over comments to label a post.

Ait's,happy) e adoring
dit's,sweet) amused
08 »made me,happy) % excited
' s{this makes me,happy)
206
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) o
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Figure H6: Scatter plot of the total frequency of a match
versus its false positive rate. Ground truth labels used
here are those from AMT and agreed upon by at least
2 annotators. For clarity, a match is shown only if its
total count was 10 or more and if it belongs to one of
the three classes (adoring, amused, and excited). Only
those which contain the keywords ‘sweet’ (adoring),
‘funny’ (amused), and ‘happy’ (excited) are labeled.

I Modeling details

AR Precision Recall F1
Positive 0.95 0.95 0.94
Negative 0.77 0.77 0.78
micro-avg 0.89 0.91 0.90
macro-avg 0.86 0.86 0.86
stdev 0.10 0.13 0.11

Table I5: Accuracy of CARE-BERT for the two-class
case: POSITIVE versus NEGATIVE. Note that amused,
excited, adoring, and approving were mapped to positive
and angered, saddened, and scared were mapped to
negative.



We began with the hyper-parameter settings in
Demszky et al. (2020) and explored other hyper-
parameter settings (batch sizes [16, 32, 64],
max length [64, 256, 512], drop out rate [0.3,
0.5, 0.7], epochs [2-10]) but found minimal im-
provements in the F1-score, as computed by the
scikit—-learn package in python. Running
this on two Tesla P100-SXM2-16GB GPUs took
roughly 19 hours. We also experimented with
higher thresholds for the parameter ¢ (see Sec-
tion 3.2) but saw marginal improvements, if any.
We developed two versions of CARE-BERT: one
using the classes in Table 1, and a simpler one
using only the classes POSITIVE, and NEGATIVE.
The first four rows in Table 1 are considered pos-
itive while the last three are negative, the results
of which are featured in Table I5. Naturally, the
two-class model that blurs the differences between
classes with the same valence has higher results.

J Modeling Analysis

Human CARE CARE-BERT

Human 1.0 0.55 0.51
CARE 0.89 1.0 0.72
CARE-BERT 0.72 0.62 1.0

Table J6: Percentage of agreement between annotation
schemes. Each entry corresponds to the percentage of
all labels the annotation scheme along the row agrees
with the annotation scheme along the column.

66



Algorithm 1: Algorithm for producing candidates for new CARE patterns and indicators in the
CARE lexicon. The algorithm uses three hyperparameters ¢ (the minimum number of comments
to label a post), f_lexicon (the minimum frequency of a n-gram to be added to the lexicon), and
f_pattern (the minimum frequency of an n-gram to be a candidate pattern) which was set to 5,
1000, and 100, respectively. The resulting list of candidate patterns needs to be manually converted
into a regular expression matching the structure outlined in Section 3.1.

Data: C': set of comments, P: set of corresponding posts, L: dictionary of keywords to class
(CARE lexicon), D: list of non-class-specific regular expressions (CARE patterns)
1 lexicon_candidates < [|, pattern_candidates < |]
2 labeled_posts < LabelPosts (C, P, L, D), ngrams < GetNgrams (labeled_posts, C)
3 for a in all classes do

4 // Add an ngram as a lexicon candidate if it is exclusively in high frequency with class a

5 for ngram in ngrams[a] do

6 if frequency of ngram in ngrams[aj] > f_lexicon then

7 for b in all classes where b # a do

8 if ngram in ngrams[b] and frequency of ngram in ngrams[b] > f_lexicon then
9 L L Break and continue to new n-gram

10 Append ngram to lexicon_candidates, if not added already
1 // Add an ngram as a pattern candidate if in high enough frequency and present in another class
12 for ngram in ngramsf[a] do
13 if total freq. of ngram in ngrams > f_pattern and ngram in ngrams[b] for b # a then
14 L Append ngram to pattern_candidates, if not added already

Result: lexicon_candidates, pattern_candidates
15
16 Function LabelPosts (C, P, L, D):
17 labeled_comments < {}, labeled_posts < {}
18 /! For each comment, apply reg-ex and map indicator to affect using the lexicon
19 for c in C do
20 if indicator is non-empty after reg-ex matching and in lexicon then
2 L Append c to labeled_comments[L[indicator]]

2 // For each post, aggregate comment labels to label post
23 for p in P do

2 for a in all classes do
25 if number of comments belonging to post p and labeled as class a > t then
26 L Append p to labeled_posts|a]

27 return labeled_posts

28
29 Function GetNgrams (labeled_posts, C) :

30 ngrams < {}

31 for a in all classes do

32 /I Get the n-grams of all comments belonging to a post labeled as a

33 for p in labeled_posts[a] do

34 for c in C belonging to post p do

35 L L Add 1-grams, 2-grams, and 3-grams of comment ¢ to ngrams|a]
36 return ngrams
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Figure G5: Subplots of plotting the multi-dimensional scaling from Figure G3 for each pairwise comparison of the
7 classes. The rows and columns follow in the order adoring, amused, approving, excited, angered, saddened, and
scared. The entire grid is symmetric for ease of exploration.
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Table J7: Examples of posts labeled according to human annotators, CARE, and CARE-BERT. The first three show
examples where all three labeling schemes agree, the second three demonstrates examples where external knowledge
may be needed, and the last three shows examples where the trajectory of the discussion may be more unpredictable.
Note: CARE-BERT does not get access to the comments.

Post | Comments | Human | CARE |  CARE-BERT
Anxiety: I just want to say that | Dude, very proud of you my friend. | approving | approving | approving
I’'m trying...I may not be suc- | Don’t give up.; Good for you. I'm
cessful, but I'm trying. proud of you for trying. Keep at it.;
Happy for you.
AskReddit: What’s something | I'm scared to end up alone and | saddened; | saddened; | saddened; scared
you’ve been wanting to get off | unloved.; I'm so scared to graduate | scared scared
your chest but are too scared to? | college.; I just got engaged, but I'm
not actually happy about it.
AskReddit: What movie really | A Walk to Remember. So sad.; It’s a | saddened; | saddened; | saddened; approv-
emotionally impacted you? Wonderful Life. Makes me so teary- | approving | approving | ing
eyed.; Dead Ringer. Made me so de-
pressed.
Hockey: The Vancouver | This is excellent news!; Holy shit, this | angered; excited excited
Canucks have landed a spot in | is exciting!; Hell yeah, fuck the kings! | excited;
the playofts! approving
Panthers: Divisional Playoffs - | I'M SO MAD; I'm freakin’ scared, | angered; angered angered; excited
Panthers vs. 49ers - Discussion | man.; Screw the whiners! They’re go- | approving
Thread Let’s do this! ing to regret the day they stepped on
our turf!
InfertilityBabies: Going to be a | Good luck! So exciting!; Congrats! | excited excited approving
line jumper! The doctor says my | You’re about to be a mom! I’m very
BP isn’t stellar sol am in L and | excited for you!!!; Super exciting!
amp;D until Monday morning
(37 weeks) induction!
AskReddit: What is your fa- | Arrow. It’s amazing!; Walking Dead. | approving; | approving | approving; amused
vorite TV series ever? So excited for the new season!; Teen | excited
Titans. It’s the best show ever.
Hearthstone: Who is this LIRIK | This is hilarious; What an idiot. Do | amused; amused excited
guy, and why does he have 50K | more research before posting; He’s an | angered;
subscribers? adorable guy. adoring
AskReddit: Imagine that the last | Pizza, and now I’'m super sad.; Frozen | approving; | saddened | approving
thing you ate has been made il- | lasagna. Good riddance.; French onion | saddened
legal. What would that be? dip. I love that stuff.
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Abstract

While there is increasing concern about the in-
terpretability of neural models, the evaluation
of interpretability remains an open problem,
due to the lack of proper evaluation datasets and
metrics. In this paper, we present a novel bench-
mark to evaluate the interpretability of both neu-
ral models and saliency methods. This bench-
mark covers three representative NLP tasks:
sentiment analysis, textual similarity and read-
ing comprehension, each provided with both
English and Chinese annotated data. In order
to precisely evaluate the interpretability, we
provide token-level rationales that are carefully
annotated to be sufficient, compact and compre-
hensive. We also design a new metric, i.e., the
consistency between the rationales before and
after perturbations, to uniformly evaluate the in-
terpretability on different types of tasks. Based
on this benchmark, we conduct experiments on
three typical models with three saliency meth-
ods, and unveil their strengths and weakness
in terms of interpretability. We will release
this benchmark' and hope it can facilitate the
research in building trustworthy systems.

1 Introduction

In the last decade, deep learning (DL) has been
rapidly developed and has greatly improved vari-
ous artificial intelligence tasks in terms of accuracy
(Deng and Yu, 2014; Litjens et al., 2017; Pouyanfar
et al., 2018). However, as DL models are black-box
systems, their inner decision processes are opaque
to users. This lack of transparency makes them
untrustworthy and hard to be applied in decision-
making applications in fields such as health, com-
merce and law (Fort and Couillault, 2016). Conse-
quently, there is a growing interest in explaining the
predictions of DL models (Simonyan et al., 2014;
Ribeiro et al., 2016; Alzantot et al., 2018; Bastings
etal., 2019; Jiang et al., 2021). Accordingly, many

"https://www.luge.ai/#/luge/task/taskDetail?
taskId=15

Sentiment Analysis (SA)
Instance®: although it bangs a very cliched drum at times,
this crowd-pleaser’s fresh dialogue, energetic music, and
are often infectious.
Sentiment label: positive
Instance?: although it bangs a very cliched drum at times,
this crowd-pleaser’s novel dialogue, vigorous music, and
are often infectious.
Sentiment label: positive

Semantic Textual Similarity (STS)
Instancel®: Is there a reason why we should travel alone?
Instance2°: What are some reasons to travel alone?
Similarity: same
Instancel?: Is there any reason why we travel alone?
Instance2?: List some reasons to travel alone?
Similarity: same

Machine Reading Comprehensive (MRC)
Question: What part of France were the Normans located?
Article’: ...and customs to synthesize a unique “Norman”
culture in the north of France. ...

Answer: north

Question: Where in France were the Normans located?
Article?: ...and customs to synthesize a unique “Norman”
culture in the north of France. ...

Answer: north

Table 1: Examples from our benchmark. In each in-
stance, colored tokens are rationales, and tokens in the
same color constitute an independent rationale set. Each
perturbed example () is created on an original example
(?), where underlined tokens in the original example
have been altered. The consistency of rationales under
perturbations is used to evaluate interpretability.

evaluation datasets are constructed and the corre-
sponding metrics are designed to evaluate related
works (DeYoung et al., 2020; Jacovi and Goldberg,
2020).

In order to accurately evaluate model inter-
pretability?> with human-annotated rationales® (i.e.,
evidence that supports the model prediction), many
researchers successively propose the properties that
arationale should satisfy, e.g., sufficiency, compact-

"Despite fine-grained distinctions between “interpretabil-
ity” and “explainability”, we use them interchangeably.

3In this paper, we focus on highlight-based rationales,
which consist of input elements, such as words and sentences,
that play a decisive role in the model prediction.

Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL), pages 70 - 84
December 7-8, 2022 ©2022 Association for Computational Linguistics


https://www.luge.ai/##/luge/task/taskDetail?taskId=15
https://www.luge.ai/##/luge/task/taskDetail?taskId=15

ness and comprehensiveness (see Section 3.3 for
their specific definitions) (Kass et al., 1988; Fischer
et al., 1990; Lei et al., 2016; Yu et al., 2019). How-
ever, the existing datasets are designed for different
research aims with different metrics, and their ratio-
nales do not satisfy all properties needed, as shown
in Table 2, which makes it difficult to track and
facilitate the research progress of interpretability.
In addition, all existing datasets are in English.

Meanwhile, many studies focus on designing
guidelines and metrics for interpretability evalua-
tion, where plausibility and faithfulness are pro-
posed to measure interpretability from different
perspectives (Herman, 2017; Alvarez Melis and
Jaakkola, 2018; Yang et al., 2019; Wiegreffe and
Pinter, 2019; Jacovi and Goldberg, 2020). Plausi-
bility measures how well the rationales provided
by models align with human-annotated rationales.
With different annotation granularities, token-level
and span-level F1-scores are proposed to measure
plausibility (DeYoung et al., 2020; Mathew et al.,
2021). Faithfulness measures to what extent the
provided rationales influence the corresponding
predictions. Some studies (Yu et al., 2019; DeY-
oung et al., 2020) propose to compare the model’s
prediction on the full input to its prediction on
input masked according to the rationale and its
complement (i.e., non-rationale). However, it is
difficult to apply this evaluation method to non-
classification tasks, such as machine reading com-
prehension. Furthermore, the model prediction on
the non-rationale has gone beyond the standard
output scope, e.g., the prediction label on the non-
rationale should be neither positive nor negative in
the sentiment classification task. Thus the metric
provided by this method can not generally and may
not precisely evaluate the interpretability.

In order to address the above problems, we re-
lease a new interpretability evaluation benchmark
which provides fine-grained rationales for three
tasks and a new evaluation metric for interpretabil-
ity. Our contributions include:

* Our benchmark contains three representative
tasks in both English and Chinese, i.e., senti-
ment analysis, semantic textual similarity and
machine reading comprehension. Importantly,
all annotated rationales meet the requirements of
sufficiency, compactness and comprehensiveness
by being organized in the set form.

To precisely and uniformly evaluate the inter-
pretability of all tasks, we propose a new eval-
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uation metric, i.e., the consistency between the
rationales provided on examples before and af-
ter perturbation. The perturbations are crafted in
a way that will not change the model decision
mechanism. This metric measures model fidelity
under perturbations and could help to find the
relationship between interpretability and other
metrics, such as robustness.

We give an in-depth analysis based on three typi-
cal models with three popular saliency methods,
as well as a comparison between our proposed
metrics and the existing metrics. The results
show that our benchmark can be used to evaluate
the interpretability of DL models and saliency
methods. Meanwhile, the results strongly indi-
cate that the research on interpretability of NLP
models has much further to go, and we hope our
benchmark will do its bit along the way.

2 Related Work

As our work provides a new interpretability evalua-
tion benchmark with human-annotated rationales,
in this section, we mainly introduce saliency meth-
ods for the rationale extraction, interpretability eval-
uation datasets and metrics.

Saliency Methods In the post-hoc interpretation
research field, saliency methods are widely used
to interpret model decisions by assigning a distri-
bution of importance scores over the input tokens
to represent their impacts on model predictions
(Simonyan et al., 2014; Ribeiro et al., 2016; Mur-
doch et al., 2018). They are mainly divided into
four categories: gradient-based, attention-based,
erasure-based and linear-based. In gradient-based
methods, the magnitudes of the gradients serve as
token importance scores (Simonyan et al., 2014;
Smilkov et al., 2017; Sundararajan et al., 2017).
Attention-based methods use attention weights as
token importance scores (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019). In erasure-based meth-
ods, the token importance score is measured by the
change of output when the token is removed (Li
et al., 2016; Feng et al., 2018). Linear-based meth-
ods use a simple and explainable linear model to ap-
proximate the evaluated model behavior locally and
use the learned token weights as importance scores
(Ribeiro et al., 2016; Alvarez-Melis and Jaakkola,
2017). These methods have their own advantages
and limitations from aspects of computational effi-
ciency, interpretability performance and so on (Nie



Datasets

Properties

Granularity Sufficiency Compactness Comprehensiveness

e-SNLI* (Camburu et al., 2018) word X v

HUMMINGBIRD (Hayati et al., 2021) word v X -
HateXplain (Mathew et al., 2021) word v _ v
Movie Reviews™ (Zaidan and Eisner, 2008)  snippet v X X
CoS-E* (Rajani et al., 2019) snippet V- X v
Evidence Inference* (Lehman et al., 2019)  snippet v X X
BoolQ* (DeYoung et al., 2020) snippet v X v
WikiQA (Yang et al., 2015) sentence v X -
MultiRC* (Khashabi et al., 2018) sentence v X v
HotpotQA (Yang et al., 2018) sentence v X v
FEVER* (Thorne et al., 2018) sentence v X -
SciFact (Wadden et al., 2020) sentence v X -
Ours word v v v

Table 2: Statistics of existing datasets with highlight-based rationales. The datasets marked with * are collected and
modified by ERASER (DeYoung et al., 2020). ERASER manually reviews and constructs snippet-level rationales to
make them satisfy sufficiency and comprehensiveness. v~ represents the rationale contains key words, but does not
contain enough information for the prediction. The value ‘-’ represents the property is not mentioned in the paper.

et al., 2018; Jain and Wallace, 2019; De Cao et al.,
2020; Sixt et al., 2020).

Interpretability Datasets Many datasets with
human-annotated rationales have been published
for interpretability evaluation, e.g., highlight-based
rationales (DeYoung et al., 2020; Mathew et al.,
2021), free-text rationales (Camburu et al., 2018;
Rajani et al., 2019) and structured rationales (Ye
et al., 2020; Geva et al., 2021). To create high-
quality highlight-based rationales, many studies
give their views on the properties that a rationale
should satisfy. Kass et al. (1988) propose that a ra-
tionale should be understood by humans. Lei et al.
(2016) point that a rationale should be compact
and sufficient, i.e., it is short and contains enough
information for a prediction. Yu et al. (2019) intro-
duce comprehensiveness as a criterion, requiring
all rationales to be selected, not just a sufficient set.
Although the above criteria have been proposed for
highlight rationales, the existing datasets in Table
2 are built with part of them, as they are conducted
on different tasks with individual aims.

Interpretability Metrics For highlight-based ra-
tionales, plausibility and faithfulness are often
used to measure interpretability from the aspects
of human cognition and model fidelity (Arras
et al., 2017; Mohseni et al., 2018; Weerts et al.,
2019). DeYoung et al. (2020) propose to use IOU
(Intersection-Over-Union) F1-score and AUPRC
(Area Under the Precision-Recall curve) score to
measure plausibility of snippet-level rationales.
Mathew et al. (2021) use token F1-score to evaluate
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plausibility of token-level rationales. Jacovi and
Goldberg (2020) provide concrete guidelines for
the definition and evaluation of faithfulness. DeY-
oung et al. (2020) propose to evaluate faithfulness
from the perspectives of sufficiency and compre-
hensiveness of rationales (Equation 4). However,
this evaluation manner is only applicable to classi-
fication tasks and brings uncontrollable factors to
interpretability evaluation. Thus Yin et al. (2022)
propose sensitivity and stability as complementary
metrics for faithfulness. Ding and Koehn (2021)
evaluate faithfulness of saliency methods on natu-
ral language models by measuring how consistent
the rationales are regarding perturbations.

In this work, we provide a new interpretability
evaluation benchmark, containing fine-grained an-
notated rationales, a new evaluation metric and the
corresponding perturbed examples.

3 Evaluation Data Construction

As illustrated in Figure 1, the construction of our
datasets mainly consists of three steps: 1) data
collection for each task; 2) perturbed data construc-
tion; 3) iterative rationale annotation and checking.
We first introduce the annotation process, includ-
ing the annotation criteria for perturbations and
rationales. Then we describe our data statistics.
In addition, we show other annotation details in
Appendix A.

3.1 Data Collection

In order to provide a general and unified inter-
pretability evaluation benchmark, we construct



Data Perturbed Data

Collection Creation
L Rationale Rationale Rationale
Annotation Score Modification T

Figure 1: The construction workflow of our datasets.

evaluation datasets for three representative tasks,
i.e., sentiment analysis, semantic textual similar-
ity, and machine reading comprehension. Mean-
while, we create both English and Chinese evalua-
tion datasets for each task.

Sentiment Analysis (SA), a single-sentence
classification task, aims to predict a sentiment label
for the given instance. For English, we randomly
select 1,500 instances from Stanford Sentiment
Treebank (SST) (Socher et al., 2013) dev/test sets,
and 400 instances from Movie Reviews (Zaidan
and Eisner, 2008) test set. For Chinese, we ran-
domly sample 60,000 instances from the logs of an
open SA API* with the permission of users. The
annotators select instances for annotation (see Ap-
pendix A for details) and label a sentiment polarity
for each unlabeled instance. Then 2,000 labeled
instances are chosen for building evaluation set.

Semantic Textual Similarity (STS), a sentence-
pair similarity task, is to predict the similarity be-
tween two instances. We randomly select 2,000
pairs from Quora Question Pairs (QQP) (Wang
et al., 2018) and LCQMC (Liu et al., 2018) to build
English and Chinese evaluation data respectively.

Machine Reading Comprehension (MRC), a
long-text comprehension task, aims to extract an
answer based on the question and the correspond-
ing passage. We randomly select 1,500 triples
with answers and 500 triples without answers from
SQUAD?2.0 (Rajpurkar et al., 2018) and DuReader
(He et al., 2018) for building English and Chinese
evaluation set respectively.

3.2 Perturbed Data Creation

Recent studies (Jacovi and Goldberg, 2020; Ding
and Koehn, 2021) claim that a saliency method is
faithful if it provides similar rationales for similar
inputs and outputs. Inspired by them, we propose
to evaluate the model faithfulness via measuring
how consistent its rationales are regarding perturba-

4https://ai.baidu.com/tech/nlp_apply/
sentiment_classify. Due to the diversity of these
logs, we choose instances from these logs for annotation.

73

tions that are supposed to preserve the same model
decision mechanism. In other words, under per-
turbations, a model is considered to be faithful if
the change of its rationales is consistent with the
change of its prediction. Consequently, we con-
struct perturbed examples for each original input.

Perturbation Criteria Perturbations should not
change the model internal decision mechanism. We
create perturbed examples from two aspects: 1) per-
turbations do not influence model rationales and
predictions; 2) perturbations cause the alterations
of rationales and may change predictions. Please
note that the influence of perturbations comes
from human’s basic intuition on model’s decision-
making mechanism. Based on the literature (Jia
and Liang, 2017; McCoy et al., 2019; Ribeiro et al.,
2020), we define three perturbation types.

* Alteration of dispensable words. Insert, delete
and replace words that should have no effect on
model predictions and rationales, e.g., the sen-
tence “what are some reasons to travel alone” is
changed to “list some reasons to travel alone”.

Alteration of important words. Replace im-
portant words which have an impact on model
predictions with their synonyms or related words,
such as “i dislike you” instead of “i hate you”. In
this situation, the model prediction and rationale
should change with perturbations.

Syntax transformation. Transform the syntax
structure of an instance without changing its se-
mantics, e.g., “the customer commented the hotel”
is transformed into “the hotel is commented by
the customer”. In this case, the model prediction
and rationale should not be affected.

For each original input, the annotator first se-
lects a perturbation type, then creates a perturbed
example according to the definition of this pertur-
bation type. Please note that the annotators can
select more than one perturbation type for an orig-
inal input. We ask the annotator to create at least
one perturbed example for each original input. And
they need to create at least 100 perturbed examples
for each perturbation type. For each task, we have
two annotators to create perturbed examples and
label golden results for these examples, i.e., sen-
timent label for SA, similarity label for STS and
answer for MRC. According to the perturbation cri-
teria, most of the perturbed examples have the same
results as their original ones. Then we ask the other
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two annotators to review and modify the created
examples and their corresponding results. Since
the annotation task in this step is relatively easy,
the accuracy of created examples after checking is
more than 95%.

3.3 Iterative Rationale Annotation Process

Given an input and the corresponding golden result,
the annotators highlight important input tokens that
support the prediction of golden result as the ratio-
nale. Then we introduce the rationale criteria and
the annotation process used in our work.

Rationale Criteria As discussed in recent stud-
ies (Lei et al., 2016; Yu et al., 2019), a rationale
should satisfy the following properties.

* Sufficiency. A rationale is sufficient if it con-
tains enough information for people to make the
correct prediction. In other words, people can
make the correct prediction only based on tokens
in the rationale.

Compactness. A rationale is compact if all of its
tokens are indeed required in making a correct
prediction. That is to say, when any token is
removed from the rationale, the prediction will
change or become difficult to make.

Comprehensiveness. A rationale is comprehen-
sive if its complements in the input can not imply
the prediction, that is, all evidence that supports
the output should be labeled as rationales.

Annotation Process To ensure the data quality,
we adopt an iterative annotation workflow, consist-
ing of three steps, as described in Figure 1.

Step 1: rationale annotation. Based on hu-
man’s intuitions on the model decision mechanism,
given the input and the corresponding golden result,
the ordinary annotators who are college students
majoring in languages label all critical tokens to
guarantee the rationale’s comprehensiveness. Then
they organize these tokens into several sets, each
of which should be sufficient and compact. That is
to say, each set can support the prediction indepen-
dently. As described in Table 1, the first example
contains three rationale sets, and tokens in the same
color belong to the same set. Based on this set form,
the rationale satisfies the above three criteria.

Step 2: rationale scoring. Our senior annota-
tors® double-check the annotations by scoring the

>They are full-time employees, and have lots of experience
in annotating data for NLP tasks.
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Tasks English Chinese

o Size RLR RSN Size RLR RSN
SA 1,999 20.1% 2.1 | 2,160 27.6% 14
STS 2,248 504% 1.0 | 2,146 66.6% 1.0
MRC | 1,969 104% 1.0 | 2,315 9.8% 1.0

Table 3: Overview of our datasets. “Size” shows the
number of original/perturbed pairs. “RLR” represents
the ratio of rationale length to its input length. “RSN”
represents the number of rationale sets in an input. We
report the average RLR and RSN over all data.

given rationales according to the annotation cri-
teria. For each rationale set, the annotators rate
their confidences for sufficiency and compactness.
The confidences for sufficiency consist of three
classes: can not support result (1), not sure (2)
and can support result (3). And the confidences
for compactness compose of four classes: include
redundant tokens (1), include disturbances (2), not
sure (3) and conciseness (4). Then based on all ra-
tionale sets for each input, the annotators rate their
confidences for comprehensiveness on a 3-point
scale including not be comprehensive (1), not sure
(2), be comprehensive (3).

A rationale is considered to be of high-quality if
its average score on sufficiency, compactness and
comprehensiveness is equal to or greater than 3.0,
3.6, 2.6. That is to say, at least two-thirds of the an-
notators give the highest confidence, and less than
one-third of the annotators give the confidence of
“not sure”. Then all unqualified data whose average
score on a property is lower than the corresponding
threshold goes to the next step.

Step 3: rationale modification. Low-quality ra-
tionales are shown to the ordinary annotators again.
The annotators correct the rationales to meet the
properties with scores below the threshold.

Then the corrected rationales are scored by se-
nior annotators again. The unqualified data after
three loops is discarded. This iterative annotation-
scoring process can ensure the data quality.

Other annotation details, such as annotator infor-
mation, annotation training and data usage instruc-
tions, are described in Appendix A.

3.4 Data Statistics

We give a comparison between our benchmark and
other existing datasets, as shown in Table 2. Com-
pared with existing datasets, our benchmark con-
tains three NLP tasks with both English and Chi-
nese annotated data. Compared with ERASER
which collects seven existing English datasets in



Models SA STS MRC
Acc! Acc” | Accf Ace” | FIY  FI”
English
LSTM 782 862 | 746 698 | 544 534
RoBERTa-base 93.8 924 | 9277 893 | 71.7 80.8
RoBERTa-large | 954  91.5 932 888 | 76.0 76.7
Chinese
LSTM 60.0 704 | 752 80.7 | 664 822
RoBERTa-base 59.8 77.0 855 881 | 658 893
RoBERTa-large | 62.6  80.6 8.0 874 | 67.8 833

Table 4: Model performance on the original full input
(Accf) and human-annotated rationale (Acc”).

its benchmark and provides snippet-level rationales
to satisfy sufficiency and comprehensiveness, our
benchmark provides token-level rationales and sat-
isfies all three primary properties of rationales.

Table 3 shows the detailed statistics of our bench-
mark. We can see that the length ratio and the
number of rationales vary with datasets and tasks,
where the length ratio affects the interpretability
performance on plausibility, as shown in Table 6.

Meanwhile, we evaluate the sufficiency of
human-annotated rationales by evaluating model
performance on rationales, as shown in Table 4.
Despite the input construction based on rationales
has destroyed the distribution of original inputs,
model performance on human-annotated rationales
is competitive with that on full inputs, especially
on MRC task and Chinese datasets. We can con-
clude that human-annotated rationales are suffi-
cient. Meanwhile, we give more data analysis in Ta-
ble 7, such as model performance on non-rationales,
sufficiency and comprehensiveness scores.

4 Metrics

Following existing studies (DeYoung et al., 2020;
Ding and Koehn, 2021; Mathew et al., 2021), we
evaluate interpretability from the perspectives of
plausibility and faithfulness. Plausibility measures
how well the rationales provided by the model
agree with human-annotated ones. And faithful-
ness measures the degree to which the provided
rationales influence the corresponding predictions.

Different from existing work, we adopt token-
F1 score for plausibility and propose a new metric
MAP for faithfulness.

Token F1-score is defined in Equation 1, which
is computed by overlapped rationale tokens. Since
an instance may contain multiple golden rationale
sets, for the sake of fairness, we take the set that
has the largest F1-score with the predicted rationale
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as the ground truth for the current prediction.

N
1 Py X R;
Token-F1 = N ;:1(2 X P Ri) "
Sl |57 N S|
where PZ = W and RZ = W

where S? and S{ represent the rationale set of i-th
instance provided by models and human respec-
tively; IV is the number of instances.

MAP (Mean Average Precision) measures the
consistency of rationales under perturbations and is
used to evaluate faithfulness. According to the orig-
inal/perturbed input pair, MAP aims to calculate
the consistency of two token lists sorted by token
importance score, as defined in Equation 2. The
high MAP indicates the high consistency.

|XP]
=1

(X, G, X1,)) /i

MAP =
| X7

)

where X° and XP represent the sorted rationale
token list of the original and perturbed inputs, ac-
cording to the token important scores assigned by
a specific saliency method. |XP| represents the
number of tokens in X?. X7.. consists of top-z im-
portant tokens of X°. The function G(z,Y) is to
determine whether the token x belongs to the list
Y, where G(z,Y) =1iffz €Y.

Meanwhile, we also report results of metrics
proposed in DeYoung et al. (2020), i.e., IOU F1-
score for plausibility, and the joint of sufficiency
and comprehensiveness for faithfulness.

IOU F1-score is proposed on span-level ratio-
nales, which is the size of token overlap in two sets
divided by the size of their union, as shown by S;
in Equation 3. A rationale is considered as a match
if its S; is equal to or greater than 0.5, as illustrated
by the Greater function.

N

1
I0U-F1 = 5 ;Greater(si,()ﬁ)
_1sens?

157 US|

3)

where S;

The joint of sufficiency (Score-Suf) and com-
prehensiveness (Score-Com) is shown in Equation
4. A lower sufficiency score implies the rationale
is more sufficient and a higher comprehensiveness
score means the rationale is more influential in the
prediction. A faithful rationale should have a low
sufficiency score and a high comprehensiveness



SA (Acc) STS (Acc) MRC (F1)

Models ‘ Ori  Ours | Ori  Ours Ori  Ours
English

LSTM 786 782 | 78.6 746 | 58.6 544

RoBERTa-base | 92.1 938 | 91.5 927 | 784 71.7

RoBERTa-large | 91.3 954 | 914 932 | 83.8 76.0
Chinese

LSTM 86.7 60.0 | 774 752 | 750 664

RoBERTa-base | 95.1 59.8 | 88.1 855 | 744 65.8

RoBERTa-large | 95.0 62.6 | 88.1 86.0 | 77.8 67.8

Table 5: Conventional performance of base models on
three tasks, where “Acc” is short for accuracy. The “Ori”
dev/test set comes from the same dataset as training set.
“Ours” represents our evaluation datasets.

score.

M=

(F(xi); — F(ri);)

2|~

Score-Suf =

-

<
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Score-Com =

M=

(F(xi)j — F(zi\1i);)

z|=
)

-
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where F'(x;); represents the prediction probability
provided by the model F' for class 7 on the input
x;; r; represents the rationale of x;, and z; \ 7;
represents its non-rationale.

5 Experiments

5.1 Experiment Settings

We implement three widely-used models and three
saliency methods. We give brief descriptions of
them and leave the implementation details to Ap-
pendix B. The source code will be released with
our evaluation datasets.

Saliency Methods We adopt integrated gradient
(IG) method (Sundararajan et al., 2017), attention-
based (ATT) method (Jain and Wallace, 2019) and
linear-based (LIME) (Ribeiro et al., 2016) method
in our experiments. IG assigns importance score
for each token by integrating the gradient along the
path from a defined input baseline to the original
input. ATT uses attention weights as importance
scores, and the acquisition of attention weights
depends on the specific model architecture. LIME
uses the token weights learned by the linear model
as importance scores.

For each saliency method, we take the top-k?
important tokens to compose the rationale for an
input, where k? is the product of the current input
length and the average rationale length ratio of a
dataset d, as shown by RLR in Table 3.

Comparison Models For each task, we re-
implement three typical models with different net-
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work architectures and parameter sizes, namely
LSTM (Hochreiter and Schmidhuber, 1997),
RoBERTa-base and RoBERTa-large (Liu et al.,
2019). Based on these backbone models, we then
fine-tune them with commonly-used datasets of
three specific tasks. For SA, we select training sets
of SST and ChnSentiCorp® to train models for En-
glish and Chinese respectively. For STS, training
sets of QQP and LCQMC are used to train English
and Chinese models. For MRC, SQUAD2.0 and
DuReader are used as training sets for English and
Chinese respectively. For each task, we select the
best model on the original dev set.

In order to confirm the correctness of our imple-
mentation, Table 5 shows model performances on
both original dev/test and our evaluation datasets.
We can see that our re-implemented models output
close results reported in related works (Liu et al.,
2018; WANG and JIANG:; Liu et al., 2019). Mean-
while, the results of Chinese SA and MRC tasks
decrease significantly on our evaluation sets. This
may be caused by the poor generalization and ro-
bustness of the model, as our evaluation datasets
contain perturbed examples and Chinese data for
SA is not from the ChnSentiCorp dataset.

5.2 Evaluation Results

Table 6 shows the evaluation results of inter-
pretability from the plausibility and faithfulness
perspectives. Within the scope of baseline mod-
els and saliency methods used in our experiments,
there are three main findings. First, based on all
models and saliency methods used in our experi-
ments, our metrics for interpretability evaluation,
namely token-F1 score and MAP, are more fine
and generic, especially MAP, which applies to
all three tasks. Second, IG method performs
better on plausibility and ATT method performs
better on faithfulness. Meanwhile, ATT method
achieves best performance in sentence-pair tasks.
Third, with all three saliency methods, in these
three tasks, LSTM model is comparable with
transformer model (i.e., RoOBERTa based model
in our experiments) on interpretability, though
LSTM performs worse than transformer in term of
accuracy. We think that the generalization ability
of LSTM model is weak, leading to low accuracy,
even with relatively reasonable rationales.

In the following paragraphs, we first give a com-
parison between our proposed metrics and those

6
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SA STS MRC

Models + Methods Plausibility [ Faithfulness Plausibility Faithfulness Plausibility  [Faithfulness

Token-FI11 IOU-FI1T MAPT Suf| Comf|Token-FI IOU-FI MAP Suf Com |Token-F1 IOU-FI MAP
LSTM +IG 36.9 12.1 67.2 -0.025 0.708 | 54.1 173 69.0 0.048 0.441| 40.7 11.0 72.3
RoBERTa-base + IG 37.4 10.4 64.1 0.059 0.392| 529 242 653 0.153 0.478| 42.1 11.0 66.9
RoBERTa-large + IG 35.0 7.9 40.6 0.130 0.260 | 52.7 359 49.7 0.224 0.400| 18.0 0.1 18.0
LSTM + ATT 36.6 12.4 67.8 0.123 0.298 | 49.6 11.8 76.0 0.221 0313 19.9 0.4 88.3
RoBERTa-base + ATT 332 9.4 69.2 0.267 0.128 | 66.5 542 73.6 0.185 0.337| 22.6 2.6 55.0
RoBERTa-large + ATT 23.3 3.1 759 0.301 0.095| 56.8 359 754 0.136 0.399| 26.6 1.3 76.0
LSTM + LIME 36.6 11.3 632 -0.040 0.762| 54.5 192 60.0 0.134 0311 - - -
RoBERTa-base + LIME 415 13.8 61.0 0.032 0.568 | 58.7 349 70.5 0.064 0.509
RoBERTa-large + LIME 41.4 14.3 629 0.053 0.505| 61.2 423  71.8 0.019 0.524

Table 6: Interpretability evaluation results on English datasets of three tasks. The metric with T means the higher
the score, the better the performance. Conversely, | means a low score represents a good performance. As LIME is
specially designed for classification tasks, we have not applied it to MRC. Meanwhile, the sufficiency score (Suf)
and the comprehensiveness score (Com) are also only suitable for classification tasks, as shown in Equation 4. Thus

we do not report these two scores on MRC.

used in related studies. Then we give a detailed
analysis about the interpretability results of three
saliency methods and three evaluated models.

Comparison between Evaluation Metrics We
report results of token-F1 and IOU-F1 scores for
plausibility. The higher the scores, the more plau-
sible the rationales. It can be seen that the two
metrics have the similar trends in all three tasks
with all three saliency methods. But token-F1 is
much precise than IOU-F1, as the IOU-F1 score
of a rationale is 1 only if its overlap with ground
truth is no less than 0.5 (Equation 3). However,
in all three tasks, overlaps of most instances are
less than 0.5, especially in the task with a low RLR.
Thus IOU-F1 is too coarse to evaluate token-level
rationales. Instead, token-F1 focuses on evaluat-
ing token impact on model predictions, so as to be
more suitable for evaluating compact rationales.

For faithfulness evaluation, we report results of
MAP, sufficiency and comprehensiveness scores.
We can see that our proposed MAP is an efficient
metric for faithfulness evaluation. Specifically, it
applies to most tasks, especially non-classification
tasks. Moreover, in the two classification tasks
(i.e., SA and STS), with IG and LIME methods,
MAP has the same trend as the other two metrics
over all three models, which further indicates that
MAP can well evaluate the faithfulness of ratio-
nales. With ATT method, there is no consistent
relationship between these three metrics. We think
this is because the calculations of sufficiency and
comprehensiveness scores with ATT method are
not accurate and consistent enough. For exam-
ple, in the SA task, from the comparison of three
saliency methods with LSTM model, we can see
that the rationales extracted by these methods have
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similar plausibility scores, but the sufficiency score
with ATT method is much higher than that with
the other two methods. Please note that a low suffi-
ciency score means a sufficient rationale. Similarly,
in the STS task with RoBERTa-base model, the
rationales extracted by ATT method have a higher
plausibility score, as well as a higher sufficiency
score. Finally, we believe that other metrics can be
proposed based on our benchmark.

Evaluation of Saliency Methods LIME, which
uses a linear model to approximate a DL classifica-
tion model, is model-agnostic and task-agnostic. It
obtains the highest performance on token-F1 and
sufficiency scores in SA and STS tasks, as the ratio-
nales extracted by it more accurately approximate
the decision process of DL models. But how to
better apply LIME to more NLP tasks is very chal-
lenging and as the future work.

When comparing 1G and ATT, we find ATT per-
forms better on faithfulness and sentence-pair tasks.
In SA and MRC, IG performs better on plausibility
and ATT method achieves better results on faith-
fulness, which is consistent with prior works (Jain
and Wallace, 2019; DeYoung et al., 2020). In STS,
ATT method achieves higher results both on plau-
sibility and faithfulness than IG method. We think
this is because the cross-sentence interaction atten-
tions are more important for sentence-pair tasks.
Interestingly, on all three tasks, there is a positive
correlation between MAP (faithfulness) and token-
F1 (plausibility) with IG method.

Evaluation of Models While analyzing inter-
pretability of model architectures, we mainly fo-
cus on IG and ATT methods, as LIME is model-
agnostic. We find that interpretability of model
architectures vary with saliency methods and tasks.



Compared with transformer models, based on IG
method, LSTM is competitive on plausibility and
performs better on faithfulness in all three tasks.
On the contrary, based on ATT method, transformer
models outperform LSTM on plausibility and are
competitive on faithfulness in STS and MRC tasks.
As discussed above, the interaction between inputs
is more important in these two tasks.

From the comparison between two trans-
former models with different parameter sizes, i.e.,
RoBERTa-base and RoBERTa-large, we find that
RoBERTa-base outperforms RoBERTa-large on
plausibility with these two saliency methods. In-
terestingly, for faithfulness evaluation, RoOBERTa-
base performs better than RoBERTa-large with IG
method, and RoBERTa-large performs better than
RoBERTa-base with ATT method.

We believe these findings are helpful to the fu-
ture work on interpretability.

6 Limitation Discussion

We provide a new interpretability evaluation bench-
mark which contains three tasks with both English
and Chinese annotated data. There are three limita-
tions in our work.

* How to evaluate the quality of human-annotated
rationales is still open. We have several annota-
tors to perform quality control based on human
intuitions and experiences. Meanwhile, we com-
pare model behaviors on full inputs and human-
annotated rationales to evaluate the sufficiency
and comprehensiveness of rationales, as shown
in Table 4 and Table 7. However, this manner
has damaged the original input distribution and
brings uncontrollable factors on model behaviors.
Therefore, how to automatically and effectively
evaluate the quality of human-annotated ratio-
nales should be studied in the future.

We find that the interpretability of model archi-
tectures and saliency methods vary with tasks, es-
pecially with the input form of the task. Thus our
benchmark should contain more datasets of each
task type ( e.g., single-sentence task, sentence-
pair similarity task and sentence-pair inference
task) to further verify these findings. And we
will build evaluation datasets for more tasks in
the future.

Due to space limitation, there is no analysis of
the relationships between metrics, e.g., the rela-
tionship between plausibility and accuracy, and
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the relationship between faithfulness and robust-
ness. We will take these analyses in our future
work.

Finally, we hope more evaluation metrics and
analyses are proposed based on our benchmark.
And we hope our benchmark can facilitate the re-
search progress of interpertability.

7 Conclusion

We propose a new fine-grained interpretability eval-
uation benchmark, containing token-level ratio-
nales, a new evaluation metric and corresponding
perturbed examples for three typical NLP tasks,
i.e., sentiment analysis, textual similarity and ma-
chine reading comprehension. The rationales in
this benchmark meet primary properties that a ra-
tionale should satisfy, i.e., sufficiency, compactness
and comprehensiveness. The experimental results
on three models and three saliency methods prove
that our benchmark can be used to evaluate inter-
pretability of both models and saliency methods.
We will release this benchmark and hope it can
facilitate progress on several directions, such as
better interpretability evaluation metrics and causal
analysis of NLP models.
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A Other Details of Our Datasets

Other Annotation Details We give more details
about data collection, annotator information, anno-
tation training and payment, and instructions for
data usage.

Data collection. Except for Chinese data of SA,
the annotated instances for other datasets are col-
lected from the existing datasets, as described in
Section 3.1. In the process of collection, we ask an-
notators to discard instances that contain: 1) offen-
sive content, 2) information that names or uniquely
identifies individual people, 3) discussions about
politics, guns, drug abuse, violence or pornography.

Annotator information. We have two ordinary
annotators for each task, and three senior annota-
tors for all tasks. The ordinary annotators annotate
the rationales and modify the rationales according
to the scores from the senior annotators. They are
college students majoring in languages. Our senior
annotators are full-time employees, and perform
quality control. Before this work, they have lots of
experience in annotating data for NLP tasks.

Annotation training and payment. Before real
annotation, we train all annotators for several times
so that they understand the specific task, rationale
criteria, etc. During real annotation, we have also
held several meetings to discuss common mistakes
and settle disputes. Our annotation project for each
task lasts for about 1.5 month. And we cost about
15.5 RMB for the annotation of each instance.

Instructions of data annotation and usage. Be-
fore annotation, we provide a full instruction to all
annotators, including the responsibility for leaking
data, disclaimers of any risks, and screenshots of
annotation discussions. Meanwhile, our datasets
are only used for interpretability evaluation. And
we will release a license with the release of our
benchmark.

Data Analysis We report sufficiency and compre-
hensiveness scores of human-annotated rationales,
as shown in Table 7. The sufficiency scores of
human-annotated rationales are lower than those
of rationales provided by transformer models or
extracted by IG and ATT methods. We can con-
clude that our human-annotated rationales are suf-
ficient. However, with IG and LIME methods, the
comprehensiveness scores of human-annotated ra-
tionales are lower than those of rationales provided
by models. As discussed before, the model perfor-
mance on non-rationales is not accurate enough,
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as shown by Acc™, which achieves about 50%
on non-rationales. How to effectively evaluate the
quality of human-annotated rationales should be
studied in the future.

B Implementations Details

B.1 Implementations of Evaluated Models

We utilize HuggingFace’s Transformer (Wolf et al.,
2019) to implement RoBERTa based models for
three tasks. Please refer to their source codes’ for
more details. The LSTM model architectures for
three tasks are shown in Figure 2.

B.2 Implementations of Saliency Methods

We first describe experimental setups for three
saliency methods. Then we introduce implementa-
tion details of attention-based method. Finally, we
illustrate the limitations of LIME in STS and MRC
tasks.

Experimental setup. In IG-based method, to-
ken importance is determined by integrating the
gradient along the path from a defined baseline x(
to the original input. In the experiments, a sequence
of all zero embeddings is used as the baseline xy.
And the step size is set to 300.

LIME uses the token weight learned by the linear
model as the token’s importance score. For each
original input, N perturbed samples which contains
K tokens of it are created. Then the weighted
square loss is used to optimize the selection of
tokens that are useful for the model prediction. In
the experiments, we set NV to 5,000 and K to 10.
In the STS task, an input is a pair of two instances.
Each perturbed sample for an input consists of a
perturbed example for one instance and the original
input for the other instance.

ATT method on LSTM models. Figure 2 shows
the architectures of LSTM models in three tasks.
In the SA task, given the input instance (), an
LSTM encoder is used to get the representation for
each token, denoted as h?. And a full connected
layer (FC) is used to get the instance representa-
tion based on the last hidden representation. We
use h/€ to represent the representation after the FC
layer. Then the instance representation h/€ is fed
into the softmax layer to get the predicted label.
The attention weight for token ¢ in () is calculated

nfe. h.Q
by W,
of tokens in ). Then the attention weight of the

where |Q)| represents the number

7https: //huggingface.co/transformers/
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Models SA STS MRC
Acc?” Acc” Acc™  Suf Com |Acc? Acc” Acc™ Suf Com |F17 FI1”
English
LSTM 782 86.2 60.7 0.151 0217746 69.8 61.3 0.152 0.291[54.4 53.4
RoBERTa-base | 93.8 924 70.6 0.084 0.251|92.7 89.3 54.8 0.075 0.418|71.7 80.8
RoBERTa-large | 954 91.5 744 0.086 0.234| 93.2 88.8 53.9 0.085 0.420|76.0 76.7
Chinese
LSTM 60.0 70.4 487 0.172 0.135[ 752 80.7 51.2 0.083 0.339[66.4 82.2
RoBERTa-base | 59.8 77.0 50.2 0.252 0.207| 85.5 88.1 48.8 0.048 0.399|65.8 89.3
RoBERTa-large | 62.6 80.6 47.6 0.212 0.147| 86.0 87.4 489 0.051 0.433|67.8 83.3

Table 7: Model performance on the original full input (Acc’), human-annotated rationale (Acc”), and non-rationale
(Acc™") by removing human-annotated rationale from the original full input. Suf and Com represent the sufficiency
score and comprehensiveness score of the human-annotated rationales, as shown in Equation 4. We do not report
F1"" on the MRC task, as the golden answer is not from the non-rationale.

Label Label

SoftMax

FC

>
>
>

Answer

A
Answer Point Layer

N BN .
Match LSTM

-
]
3
<

| LSTM

(A) SA (B) STS

(C) MRC

Figure 2: LSTM model architectures for three tasks.

token is used as its importance score for the model
prediction.

Similarly, in the STS task, the model architec-
ture is mostly the same as that of SA. The main
difference is that the input of STS consists of two
instances, denoted as () and P, and the concatena-
tion of their last hidden representations is fed into
an FC layer. Then, referring to the attention weight
calculation of @, the attention weight for the token

hfe.nP
=P 5 Where | P| repre-
S nien!

J
sents the number of tokens in P. For each instance
in a pair, we select top-k? important tokens as the
rationale.

in P is calculated by

In the MRC task, the input also consists of two
sequences: the question ) and the passage P.
We adopt the match-LSTM model (WANG and
JIANG) as our baseline model. The match-LSTM
model uses two LSTMs to encode the question
and passage respectively. Then it uses the standard
word-by-word attention mechanism to obtain the
attention weight for each token in the passage. And
the final representation of each token in the passage
is obtained by combining a weighted version of the
question. We use B{D to represent the representation
of i-th token in the passage. Then the importance

&3

score of j-th token is calculated by Equation 5.

el .. .
i=1 €ij

he - RP
a; =
’ 1Ql

== & == (5)
ZL@1 h? : hkP

€ij

where a; is used as the importance score of token
g
ATT method on pre-trained models. Fol-
lowing related studies (Jain and Wallace, 2019;
DeYoung et al., 2020), on transformer-based pre-
trained models, attention scores are taken as the
self-attention weights induced from the [CLS] to-
ken index to all other indices in the last layer. As
the pre-trained model uses wordpiece tokeniza-
tion, we sum the self-attention weights assigned to
its constituent pieces to compute a token’s score.
Meanwhile, as the pre-trained model has multi-
heads, we average scores over heads to derive a
final score. In the MRC task, for each token in
the passage, importance score is taken as the aver-
age self-attention weights induced from this token
index to all indices of the question in the last layer.
Limitations of LIME. Given an input, LIME
constructs a token vocabulary for it and aims to
assign an important score for each token in this
vocabulary. That is to say, for the token that ap-
pears multiple times, LIME neglects its position



SA STS MRC

Models + Methods Plausibility [ Faithfulness Plausibility | Faithfulness Plausibility  [Faithfulness

Token-FI11 IOU-FI1T MAPT Suf| Comf? |Token-FI IOU-FI MAP Suf Com |Token-FI IOU-F1 MAP
LSTM +IG 38.2 9.8 60.6 -0.131 0.707 | 68.2 61.5 58.6 0336 0419 199 0.6 87.1
RoBERTa-base + IG 35.2 12.5 51.5 0.118 0.489| 719 714  62.1 0.139 0470| 34.0 9.1 67.9
RoBERTa-large + IG 37.9 12.9 43.6 0.123 0.381 71.8 72.0 58.1 0.251 0.547| 252 1.7 61.9
LSTM + ATT 24.0 9.8 72.6 0.171 0225| 727 72.1 773 0.110 0.359 2.7 0.0 79.6
RoBERTa-base + ATT 25.7 6.0 69.5 0.191 0320 672 554 713 0.201 0.399| 28.5 53 61.4
RoBERTa-large + ATT 30.7 8.2 679 0.173 0.248| 68.0 59.8 67.0 0.251 0.547| 28.5 5.5 48.8
LSTM + LIME 38.6 10.1 59.4 -0.130 0.701 74.8 79.0 659 -0.015 0.411 - - -
RoBERTa-base + LIME 37.3 14.3 56.6 0.051 0.660| 77.3 832 74.8 -0.041 0.494 - - -
RoBERTa-large + LIME 39.0 14.5 53.0 -0.013 0.653| 76.8 829 743 -0.024 0.562 - - -

Table 8: Interpretability evaluation results on Chinese datasets of three tasks.

information and only assigns one score for it. How-
ever, in STS and MRC, the position of a token is
very important. Therefore, It can not guarantee
the effectiveness of evaluation on these two tasks
with LIME. In addition, as LIME is designed for
classification models, it is difficult to apply it to the
MRC task.

C Interpretability Evaluation on Chinese
Datasets

We report interpretability results of three baseline
models with three saliency methods on Chinese
evaluation datasets in Table 8. It can be seen that
interpretability results on Chinese datasets have the
similar trends as those on English datasets. Differ-
ent from the conclusions on English datasets, on
all three tasks, IG-based method outperforms ATT-
based method on plausibility. And ATT method
performs better than IG on faithfulness in SA and
STS tasks.
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Abstract

A number of papers have recently argued in
favor of using artificially generated languages
to investigate the inductive biases of linguistic
models, or to develop models for low-resource
languages with underrepresented typologies.
But the promise of artificial languages comes
with a caveat: if these artificial languages are
not sufficiently reflective of natural language,
then using them as a proxy may lead to inac-
curate conclusions. In this paper, we take a
step towards increasing the realism of artificial
language by introducing a variant of indexed
grammars that draw their weights from hierar-
chical Pitman-Yor processes. We show that this
framework generates languages that emulate
the statistics of natural language corpora better
than the current approach of directly formulat-
ing weighted context-free grammars.

1 Introduction

In the World Atlas of Linguistic Structures, Dryer
(2013) reports that the plurality of world languages
follow a subject-object-verb (SOV) word order.
However, relatively few SOV languages (Japanese,
Turkish, Persian) have a significant Internet foot-
print. Today, the Internet is dominated by subject-
verb-object (SVO) languages like English, Spanish,
and Chinese. The resulting paucity of non-SVO
data makes it difficult to study whether linguistic
models have an inductive bias towards particular
word orders, or to develop models that perform
well on low-resource languages from underrepre-
sented linguistic families. In recent work, Wang
and Eisner (2016), Ravfogel et al. (2019) and White
and Cotterell (2021) argue that artificial languages
could be an effective tool for addressing challenges
like these, enabling researchers to create large cor-
pora that manifest targeted linguistic phenomena.
An obvious objection presents itself: what if the
models aren’t realistic enough? If not, then con-
clusions drawn from artificial languages may not
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transfer to natural languages. One response to this
objection would be to abandon the entire enterprise,
and with it the potential advantages of simulated
data. An alternative is to follow the tradition of
other disciplines who model natural systems (e.g.
physics, geology, meteorology) and iterate on these
models until they are sufficiently good predictors
of observed phenomena.

In this spirit, this paper builds upon the frame-
work of White and Cotterell (2021), who used
weighted context-free grammars to construct ar-
tificial languages for studying the inductive biases
of neural language models towards particular word
orders. Observing that their framework did not
account for selectional preference (the linguistic
phenomenon that head words and their syntactic
dependents are not probabilistically independent),
we generalize weighted context-free grammars by
introducing the weighted random-access indexed
grammar, which facilitates the development of ar-
tificial languages that manifest selectional prefer-
ence. We also present a methodology for building
grammars that emulate statistical relationships ob-
served in natural language corpora. Inspired by Teh
(2006), we use hierarchical Pitman-Yor processes
(Pitman and Yor, 1997) as the token-generating
distributions for open-class categories (like noun,
verb, and adjective). We set the hyperparameters
by matching the statistics of the produced artifi-
cial languages with natural language corpora. As
a pilot experiment for our framework, we partially
replicate an experiment performed by White and
Cotterell (2021) that studied the inductive bias of
transformer and LSTM-based language models to-
wards languages featuring various syntactic param-
eter configurations (Chomsky, 1981; Baker, 2008).

Finally, we accompany this paper with a Python
package called testperanto!, to allow researchers
to use and refine our framework for further linguis-

"https://github.com/Mark-Hopkins-at-Williams/
testperanto (Apache 2.0 license)
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Figure 1: A comparison of the singleton proportion curves of adjective-noun bigrams in the Europarl corpus with
bigrams generated using independent adjective and noun distributions.

tic studies.

2 Related Work

Both Wang and Eisner (2016) and Ravfogel et al.
(2019) constructed artificial languages by manipu-
lating sentences from existing natural language cor-
pora. Both approaches made use of a dependency
parser (or a gold parsed corpus) to inform these
manipulations, altering syntactic constituent order
(Wang and Eisner, 2016; Ravfogel et al., 2019) or
token morphology (Ravfogel et al., 2019).

White and Cotterell (2021) argued that manip-
ulated natural language corpora have downsides.
Based on a series of negative results (Cotterell et al.,
2018; Mielke et al., 2019), they suggested that it
may not be possible to remove confounding lin-
guistic features from an existing corpus, making
it difficult to isolate typological features for study.
To maximize the ability to run a controlled experi-
ment, they generated fully artificial languages from
hand-built weighted context-free grammars. How-
ever, although their grammars modeled certain syn-
tactic dependencies (e.g. conjugating a verb with
its subject), they did not model semantic depen-
dencies. We assert that it is prohibitively difficult
to directly formulate weighted context-free gram-
mars that model semantic dependencies (e.g. selec-
tional preference), motivating our extension — the
weighted random-access indexed grammar.

3 Motivation

White and Cotterell (2021) generated artificial
language using a weighted context-free grammar
(WCFG). A WCFG augments a context-free gram-
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mar (CFG) with a function ¢ that assigns a non-
negative weight ¢(r) to each grammar rule r. This
induces a weight for each derivation: the product
of the weights of the rules used in the derivation.
More formal details can be found in Collins (2013).

WCFGs produce terminal symbols (words) ac-
cording to probability distributions that depend ex-
clusively on the grammar nonterminals. Consider
the following CFG:

S — NNVP
VP — VBNN
VB — drank | ate
NN — you | it | water | food

By using plain nonterminals like VB and
NN, the respective probabilities of sentences
it drank water and it drank food depend only
on the probability of the rules VB — water and
VB — food. Crucially, the verb choice does not
differentiate the sentence probabilities. This is un-
realistic — it is more common to drink water than to
drink food, whereas it is more common to eat food
than to eat water. This phenomenon (that linguistic
arguments are not independent of their predicates)
is known as selectional preference.

One way to detect selectional preference (Teh,
20006) is to collect dependency relationships from
a parsed natural language corpus (e.g. amod,
nsubj, dodj) and extract the dependency bigrams
(e.g. for amod, the first three dependency bigrams
in Europarl are internal market, European
citizens, and cultural exception). Then, as
we stream through the dependency bigrams, we
plot either the number of observed bigram types



Towpm NN[2, 28]

Figure 2: An example hierarchical Pitman-Yor process.
NN[] is the global noun distribution. NN[1] and NN|2]
respectively represent the likelihood that a noun is the
subject or object of a verb. NN[2,27] and NN|2, 28]
respectively represent the likelihood that a noun is the
object of verb 27 (eat) or verb 28 (drink) of the vocab.

(a type-token curve) or the proportion of bigrams
whose type has been observed exactly once (a sin-
gleton proportion curve). In Figure 1, we contrast
the curves generated” using four Europarl corpora
(Koehn, 2005) with a bigram corpus constructed
by sampling one adjective and one noun from inde-
pendent distributions respectively derived from ad-
jective and noun frequency in the English Europarl
corpus. The curves generated using the indepen-
dent bigram corpus are outliers. For instance, when
the number of observed bigrams is plotted on a log
scale, the natural corpora have roughly linear sin-
gleton proportion curves, whereas the independent
corpus has a considerable bow in the curve.

We would like to generate artificial languages
such that the dependencies have similar statistics to
naturally observed dependencies. Rather than inde-
pendently generating open-class words, Teh (2006)
suggests using a hierarchical Pitman-Yor process
(Pitman and Yor, 1997) — a tree-structured set of
distributions over the same domain, in which child
distributions are resamplings of their parents. Fig-
ure 2 shows an example. A hierarchical Pitman-Yor
process allows us to model context-specific word
distributions (e.g. food is more likely to appear as
the object of the verb eat than water, I, or me) that

2To generate Figure 1, we shuffled the Europarl sentences
and extracted the adjective-noun dependencies using spaCy.
The shuffling smooths irregularities caused by topic shift.
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are jointly influenced by global word frequency
priors. A Pitman-Yor process PY(d, 0, Pyase) is
characterized by a discount parameter d € [0,1),
a strength parameter 0 € (—d,00), and a base
distribution P,e over integers {1,...,V}. We
follow (Teh, 2006) in describing a Pitman-Yor pro-
cess as a stochastic process that generates samples
(x1,x2,...) from ii.d. samples (y1,y2,...) drawn
from base distribution Pp,ee. Intuitively, it is a
“rich-get-richer” process, in which the jth sample
x; is set to either the value y; assigned to a previ-
ous x-sample (with probability proportional to the
number of previous x-samples that were assigned
the value y;), or the next y-sample in the sequence
that hasn’t yet been used. Formally, let b = 1
and draw subsequent binary values b, from a
Bernoulli (coin-flip) distribution where:

0+d > b

1<i<n
0+n

Variable b,,11 determines whether the (n + 1)th
sample is set to the value of a previous assignment
(bp1 = 0) or the next unused y; sample (b, 11 =
1). Now define ¢; = 1 and consider j,n € Z*. If
bp+1 = 0, then let ¢,,11 = j with probability:

% PIRICE)

1<i<n

Plbyi1=1) =

Otherwise, if b, 11 = 1:

tny1 =1+ Z b;

1<i<n
The nth sample drawn from the Pitman-Yor pro-
cess is p, = y,. A Pitman-Yor process, for all
practical purposes, can generate an “open-class” of
words by using a uniform base distribution P,;f
with a sufficiently large vocabulary size V' (for our
experiments, we use the space of all 32-bit inte-
gers).

A hierarchical Pitman-Yor process is simply a
Pitman- Yor process that uses another Pitman-Yor
process as its base distribution. For instance, we
could define a global adjective distribution P,q; =
PY (0.4, 500, Pynif), and then for noun y; of our
vocabulary, we could define a noun-dependent ad-
jective distribution P,qj,, = PY(d, 0, Pagj).

4 Approach

The main challenge: how do we construct a WCFG
that derives its weights from the linked distribu-
tions of a hierarchical Pitman-Yor process? Con-
cerned with the induction of better n-gram language



Sﬁ]
S[28]
\
VP[28]
/ N\
NN[?] VB[28] NNI[57]
it drank water

Figure 3: An example derivation, using the indexed
grammar from Figure 4.

| ¢
SH — S[Zl] Z] — VBH

S[yl] — NN[Zl] VP[yl] Z1 — NN[l,yl]
VP[yl] — VB[yl] NN[Zl] Z1 — NN[2,y1]
VB[27] — ate
VB[28] — drank

NN[9] — it
NN[56] — food
NN[57] — water

Figure 4: An example indexed grammar. The base
weight wo(p) of each indexed rule pis 1.

models, previous work (Teh, 2006; Blunsom and
Cohn, 2011) mainly focused on how to incorporate
hierarchical Pitman-Yor processes into sequential
models like Hidden Markov Models. Here, our con-
cern is how to incorporate these distributions into
a generative syntactic model convenient for engi-
neering artificial languages with specific linguistic
typologies. There exist many syntactic models to
choose from, including dependency grammars (Eis-
ner, 1996), tree-adjoining grammars (Joshi, 1987),
lexical functional grammars (Kaplan, 1985), CCGs
(Steedman and Baldridge, 2011), HPSGs (Pollard
and Sag, 1994) and GPSGs (Gazdar et al., 1985). In
this work, we choose to extend context-free gram-
mars, partly because of their popularity and partly
to facilitate comparison with (White and Cotterell,
2021), who used WCFGs — however, our approach
can be adapted to other syntactic formalisms.

4.1 Intuition

Our approach is a variation on indexed grammars
(Aho, 1968; Hopcroft et al., 2001), which augment
CFG nonterminals with a sequence of symbols
called indices. Before going through the formalism,
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we briefly preview how it works, using a deriva-
tion (Figure 3) for an example indexed grammar
(Figure 4). At the top level, it applies CFG rule
S[] — S[28], which involves two choices:

1. the choice of “indexed rule": S[] — S[z1]

2. the choice of indices to assign to its z-
variables: {z; — 28}

Next, the derivation expands S[28] by applying the
CFG rule S[28] — NNJ[9] VP[28]. Again, this
involves two choices:

1. the choice of indexed rule:
NN{z1] VP[y1]

Syl —

2. the choice of indices to assign to its z-
variables: {z; — 9}

Note the role of the variables: y-variables match
LHS indices and copy them to the RHS, whereas
z-variables introduce new indices on the RHS.
Each z-variable z; of an indexed rule is associ-
ated with a key ((z;) (Figure 4, right column)
that references a distribution in a “distribution ta-
ble” 7. The weight associated with a derivation
rule (e.g. S[28] — NN[9] VP[28)) is the prod-
uct of the base weight wq of the indexed rule (e.g.
wo(S[y1] — NNJ[z1] VP[y1]), and the probabilities
of the z-assignments (e.g. 7(NN[1,28])(9)). As
with CFGs, the weight of a derivation is the prod-
uct of the derivation rules.

4.2 Random-access Indexed Grammars

LetY = {yl,yg,...} and Z = {21,22,...} be
reserved symbols called y- and z-variables. A

random-access indexed grammar (RIG)® is a 5-
tuple (N, T, F, S, R) where:

* N is a set of nonterminal symbols
* T'is a set of terminal symbols
« Fis a set of index symbols, or indices*

* S € N is the start symbol

3The standard definition of indexed grammars (Hopcroft
et al., 2001) treats the indices as a stack, rather than as a
random-access array. Our departure from the standard defini-
tion (introducing y- and z-variables to allow random-access
matching) prioritizes the ease of grammar engineering over
definitional conciseness and representational power. More-
over, since our use case is generation, we are not concerned
with indexed grammar variants that prioritize efficiency of
parsing or induction (e.g. (Gazdar, 1987)).

*In this paper, we will use the set of nonnegative 32-bit
integers as our set I of indices.



* R is a finite set of indexed rules (to be defined
shortly)

In contrast to standard CFG rules, indexed rules
use indexed nonterminals, symbols of the form
Al[¢], where A € Nand ¢ € (FUY UZ)*. A
grounded indexed nonterminal is an indexed non-
terminal A[¢] such that ¢ € F™*. An indexed rule
has the form:

A[¢] — rhs

where A[¢] is an indexed nonterminal without z-
variables, and rhs is a sequence of terminals and
indexed nonterminals whose y-variables all appear
in ¢.

To define the semantics of a RIG, let a substi-
tution be a function ¢ : D — F' with domain
D C Y U Z. We apply a substitution o to a in-
dexed nonterminal A[¢1, . .., ¢n] as follows:

o(A[g1,..., ¢n]) = Alg(¢1), -+ ,5(¢n)]
where:
. Jo(x) ifzeD
o(@) = {:r ifx ¢ D

forz € FUY U Z. We apply a substitution o to
an indexed rule p by applying o to every indexed
nonterminal in p. For example, if:

o {y1+ 52,21 — 14}

Sly1] = NN[z1] VP[y4]
then:
o(p) = S[52] — NNJ[14] VP[52]

Each indexed rule p implicitly represents the set
of CFG rules that can be obtained by applying a
substitution to the variables of the indexed rule:

Rip) ={a(p) | o :V(p) = F}

Here, V(p) C Y U Z is the set of variables that
appear in indexed rule p. The RIG encodes a CFG
consisting of the union (J ,c p R(p) of these rules.

4.3 Weighted RIGs

Next, we introduce weights from a hierarchical
Pitman-Yor process. We reference the process dis-
tributions via a distribution table — a function 7
that maps grounded indexed nonterminals to dis-
tributions (e.g. the distributions of a hierarchical
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Pitman-Yor process). For instance, in the distri-
bution table 7 implied by Figure 2, 7(NN[2, 28])
corresponds to the lower right distribution.

A weighted random-access indexed grammar
(WRIG) is a tuple (G, 7, wp, () where:

* G=(N,T,F,S,R)is aRIG
e 7 1is a distribution table

* wq assigns a nonnegative weight (called the
base weight) to each indexed rule p € R

* ( assigns a z-weighting to each indexed rule
p € R. The z-weighting ((p), abbreviated
(p for clarity, is a function that assigns an
indexed nonterminal (that may contain y- but
not z-variables) to each z-variable of the rule.

Every WRIG encodes a WCFG. Each CFG rule
r = o(p) encoded by indexed rule p (where o :
V(p) — F is a substitution) has weight:

q(r) = wol(p) - ] walo(2))

z€Z(p)

where Z(p) C Z is the set of z-variables that ap-
pear in indexed rule p, and w, = 7(0((,(2))) is
the distribution associated with grounded indexed
nonterminal o ((,(z)) in the distribution table 7.

Example: The second rule of the RIG in Fig-
ure 4 encodes (among others) the CFG rule:

S[28] — NN[9] VP[28]
The weight of this CFG rule is:

wo(S[y1] — NN[z1] VPy1])
7(NN[1,28])(9)

In other words, it is the base weight of the indexed
rule, multiplied by the probability of word 9 (it)
being the subject of verb 28 (drink).

4.4 Voiceboxes

Using a WRIG, syntax can be specified with rela-
tive ease, i.e. without the need to manually formu-
late an arduous number of rules. However, terminal
rules (i.e. rules that generate the lexemes) are a dif-
ferent story. We need an auxiliary mechanism to
automatically invent lexemes from grounded in-
dexed preterminals, i.e. a mechanism that will
translate a preterminal (see Figure 4) like VB[27] —
the 27th verb of the vocabulary —into a lexeme (e.g.,
ate). To do so, we pair the WRIG with a voicebox,



| ¢

S| — S[z1,22] z; — VBJ[],z2 — COUNT]]
S[yl,yg] — |C[y1,y2] R DC[Zl,ZQ] Z] VB[] Zy — COUNTH
ICly1,y2] — NP[z1,y2,1] VP[y1,y2] z1 — NNJ[1,yq]
C[yl,yg] —  weil NPJzj,y2,1] VPD[y1,y2] | z1 — NN[1,yq]
[yl,yg] — VB[yl,yg] NP[21,22,2] Z1 NN[2 yl] Zy COUNTH
VPD[yl,yz] — NP[Zl,Z2,2] VB[yl,yz] Z1 NN[2 yl] Zy COUNTH
NPly1,y2,y3] — DTly2,y3] NN[y1,y2,ys]

Figure 5: A WRIG capturing simple German syntax and morphology. Each indexed rule has base weight 1.

x 7(x) description

VB]]| PY(0.4,1, Pynif) global verb distribution

NN{] PY (0.4, 500, Pynif) global noun distribution

NNI1] PY(0.4,500,7(NNJ[]))  global subject distribution

NNI[1,y1] Y(O 4,10,7(NN[1]))  subject distribution for head verb y;

NN[2] PY(0.4,500,7(NNJ[]))  global object distribution

NN[2,y1] PY(0.4,0.1,7(NN[2])) object distribution for head verb y;

COUNTI] Unif({1,2}) global count distribution (1=singular, 2=plural)

Figure 6: Distribution table for the WRIG in Figure 5. P,;¢ is a uniform distribution over all 32-bit integers.

a function that maps grounded indexed nontermi-
nals (specifically, preterminals) to lexemes. The
voicebox is then used to generate terminal rules
on-the-fly. Note that the voicebox can also sup-
port morphology. For example, if the pretermi-
nal VB[27, 3, 1] encodes the third-person singular
conjugation of verb 27, then the voicebox might
produce 3(VB[27, 3, 1]) = eats.

5 Demo: Simple German Syntax with
Selectional Preference

To demonstrate how linguistic phenomena can be
modeled by a WRIG, we present a small exam-
ple in Figure 5, whose distribution table is given
by Figure 6. It models various aspects of German
syntax: word order (independent clauses are SVO,
whereas dependent clauses are SOV), verb conjuga-
tion (present singular and present plural), and case
roles (nominative and accusative). Figure 7 shows
the first five sentences of a corpus generated by
the WRIG. To interpret the indexed nonterminals,
note that subject count (1=singular, 2=plural) and
case (1=nominative, 2=accusative) are encoded as
integer indices:

* S[y1,y2],1Cly1,y2], DCly1, y2]:  respectively
produce a sentence, independent clause, and

dependent clause with subject count y», whose
head is the y;*™" verb of the vocabulary
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* NPJy1,y2,y3]: produces a noun phrase with
count y, and case y3, whose head is the y; "
noun of the vocabulary

* VP(D)[y1, y2): produces a (dependent clause)
verb phrase with subject count yo, whose head
is the y; ™" verb of the vocabulary

 NN[y1,y2, y3]: produces the y; " noun of the
vocabulary, declined for count y, and case y3

* VBly1, yo]: produces the y; ™" verb of the vo-
cabulary, conjugated for subject count y,

* DT][y1, y2): produces a determiner for a noun
with count y; and case y;

Terminal rules for open-class nonterminals
NN[y1,y2,y3] and VBJyi,y2] are generated by a
voicebox that randomly concatenates German syl-
lables to create new words, and adds German mor-
phological endings based on count and case. For
the closed-class DT[ys, y»], the voicebox generates
the German definite determiner for the specified
count and case. For instance (see Figure 7), the
noun hunghub’ appears as den hunghub when it
is accusative singular and die hunghuben when it
is accusative plural.

In this grammar, all nouns are masculine. See the
testperanto tutorials for an example of how to model noun
gender.



der zerheimherrun konzumschlage den lagfrischhan , weil der terterfin die wirnachparen kennjahre
der dungtun milchsichkeite die hunghuben , weil die vorsamrichen den tagwohn jahrkolen

der derver milchsichkeite den hunghub , weil der tiktikflach die hunghuben milchsichkeite

die kenngunhungen milchsichkeiten den milchmanmilch , weil der tiklang den frauhung telmonhane
der niedlang milchsichkeite den dichgeh , weil die frauhungrungen die langterleren samkenntelen

Figure 7: Example sentences generated by the simple German WRIG. Observe that the verb milchsichkeiten
strongly tends to take the noun hunghub as its object — the hyperparameters of this particular WRIG have been set
to encourage atypically strong selectional preference between verbs and their objects.

singleton proportion

1.0

0.8

corpus
— base
ours
dev AN

- test =

108 104 105 106 107

num bigrams

Figure 8: Singleton proportion of verb-object depen-
dency bigrams as corpus size increases.

By associating the noun distributions with the
distributions of a hierarchical Pitman-Yor process,
we also model selectional preference. By assigning
a Pitman-Yor process of very low strength (0.1)
to the verb-dependent object distributions, we en-
force unusually strong selectional preference be-
tween verbs and objects, allowing us to see its man-
ifestation of in just a small sample of generated
sentences (Figure 7). In particular, the invented
verb milchsichkeiten frequently takes the noun
hunghub as its object.

6 Experiment: Word Order Bias

As a pilot study of our framework, we re-created
an experiment performed by White and Cotterell
(2021), who used WCFGs to investigate the induc-
tive biases of neural language models for various
word orders exhibited by natural language. We cre-
ated a WRIG based on their WCFG description,
which produces simple declarative sentences with
relative clauses, prepositional phrases, and clausal
complements. We used a voicebox that assigned
concatenations of random syllables to each generic
noun, verb, and adjective. It used English prepo-
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singleton type-token
proportion ratio
dev test | dev test
amod base || 0.099 0.094 | 0.23  0.23
ours || 0.0074 0.013 | 0.016 0.018
nsubj base || 0.045 0.057 | 0.083 0.12
ours || 0.0044 0.010 | 0.014 0.041
dobj base || 0.081 0.088 | 0.18  0.22
ours || 0.0081 0.014 | 0.036 0.054

Figure 9: Absolute difference of singleton proportion
and type-token ratio between artificial corpora (ours and
base) and natural corpora (dev and test), averaged over
power-of-two corpora sizes from 27 to 222

sitions, determiners, and morphology (e.g. verbs
with a singular subject were suffixed with the letter
“s”). We set the parameters of our Pitman-Yor pro-
cesses by specifying discount and strength parame-
ters so that our produced sentences closely matched
the type-token ratio and singleton proportion curves
of the English side of the WMT 2014 German-
English parallel corpus (Bojar et al., 2014; Luong
et al., 2015) for the following dependency bigrams:
adjective-noun (amod), verb-subject (nsubj), verb-
object (dobj). Figure 8 compares the singleton pro-
portion curves of verb-object dependencies for our
generated corpus, versus the development corpus
(WMT 2014 Ger-Eng) and a held-out test corpus:
the English side of the JParaCrawl 3.0 Jpn-Eng cor-
pus (Morishita et al., 2022). We also compare our
corpus statistics to a baseline that attempts to repli-
cate (White and Cotterell, 2021), using independent
adjective, noun, and verb distributions rather than
tied hierarchical Pitman-Yor distributions. Visual
inspection shows that the independent baseline is
an outlier, unrepresentative of the statistics man-
ifested by natural corpora. We can distill these
curves into a single numeric indicator by averaging
the absolute difference between an artificial corpus
curve (ours or base) and a natural corpus curve
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Figure 10: Visualization of experimental results using a
point plot. The transformer produces lower-perplexity
language models for the artificial languages that follow
a Japanese word order, while the LSTM produces lower-
perplexity language models for the artificial languages
that follow an English word order.

(dev or test) for each power of two on the x-axis.
Figure 9 presents these numbers for singleton pro-
portion and the type-token ratio: the statistics for
our generated corpus are an order-of-magnitude
closer to natural corpora than the baseline.

We created two variants of the WRIG, corre-
sponding to the standard word orders of English
and Japanese. For instance, as a head-final lan-
guage, the Japanese WRIG included the rule®:

VP[y1,y2] = NPz1, z5] VBly1, y2]

and as a head-initial language, the English WRIG
included the rule:

VPly1,y2] = VBly1,y2] NP[z1, 25]

Following (White and Cotterell, 2021), the WRIGs
also differed in:

* the position of the complementizer in comple-
ments, relative to the sentential component

* the position of the adposition in adpositional
phrases, relative to the adpositional object

* the position of a relative clause, relative to the
noun it modifies

We generated 1,000,000 sentences for each WRIG
variant, and divided these into ten evenly sized cor-
pora. Each corpus of 100,000 sentences was further

A brief guide to the referenced indexed nonterminals
of the WRIG: VPy:1.y2] produces a verb phrase with sub-
ject count yo, whose head is the y;*" verb of the vocabulary.
NP[y1, y2] produces a noun phrase with count y,, whose head
is the y1*" noun of the vocabulary. VBIy1, y2] produces the
y1t" verb of the vocabulary, conjugated for subject count y».
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divided into an 80k-10k-10k train-dev-test partition.
On each train set, we trained’ a transformer-based
and an LSTM-based language model, resulting in
10 trained language models (LMs) per choice of
neural architecture and WRIG. Finally, we evalu-
ated these LMs on the respective test sets.

For each architecture (transformer and LSTM)
and word order (English and Japanese), Figure 10
visualizes the test perplexity over the ten trials us-
ing a point plot®. For transformer LMs, we ob-
tained lower perplexity on the languages that fol-
lowed a Japanese word order. For LSTM LMs, we
observed the opposite: a (statistically significant)
lower perplexity on the languages that followed an
English word order. While these results generally
support the findings of White and Cotterell (2021),
White and Cotterell (2021) did not find significant
differences between the LSTM LMs. We find it
encouraging that our results do not differ wildly
from White and Cotterell (2021) (it would be trou-
bling for the prospects of artificial languages if
each iterative improvement dramatically reversed
the conclusions of the previous iteration). At the
same time, we also find it encouraging that the dif-
ferences between their results and ours offer a pos-
sible reconciliation between White and Cotterell
(2021) and Ravfogel et al. (2019), who reported,
based on experiments with naturally-derived cor-
pora, that LSTM LMs performed better on SVO
(versus SOV) languages.

7 Conclusion

With this work, our goal is to enable researchers
to more easily develop models for typologically
diverse languages, and to investigate under what
conditions such models perform effectively. By
demonstrating that RIGs (weighted by hierarchical
Pitman-Yor processes) can model realistic syntac-
tic and semantic dependencies, we hope to provide
some confidence that the framework can prove a
useful proxy for real-world data, when such data is
not readily available. To facilitate adoption of our
framework, we are also releasing an open-source
Python package called testperanto for building
WRIGsS, providing fellow researchers with a means
to generate artificial languages that emulate the ty-
pology of the natural languages they seek to study.

"Like White and Cotterell (2021), we used the fairseq
implementation (Ott et al., 2019) of these language models.

8We used seaborn to generate the plot. A point plot shows
the mean of the ten trials (the dot) and the 95% confidence
interval (the line).



References

Alfred V Aho. 1968. Indexed grammars—an exten-
sion of context-free grammars. Journal of the ACM
(JACM), 15(4):647-671.

Mark C Baker. 2008. The atoms of language: The
mind’s hidden rules of grammar. Basic books.

Phil Blunsom and Trevor Cohn. 2011. A hierarchical
Pitman-Yor process HMM for unsupervised part of
speech induction. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
865-874, Portland, Oregon, USA. Association for
Computational Linguistics.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ale§ Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Noam Chomsky. 1981. Principles and parameters in
syntactic theory. Explanation in linguistics, pages
32-75.

Michael Collins. 2013.  Lexicalized probabilistic
context-free grammars. Lecture Notes.

Ryan Cotterell, Sabrina J. Mielke, Jason Eisner, and
Brian Roark. 2018. Are all languages equally hard
to language-model? In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 536-541, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew S. Dryer. 2013. Order of subject, object and
verb. In Matthew S. Dryer and Martin Haspelmath,
editors, WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Gerald Gazdar. 1987. COMIT ==> PATR II. In Theo-
retical Issues in Natural Language Processing 3.

Gerald Gazdar, Ewan Klein, Geoffrey K Pullum, and
Ivan A Sag. 1985. Generalized phrase structure
grammar. Harvard University Press.

John E Hopcroft, Rajeev Motwani, and Jeffrey D
Ullman. 2001. Introduction to automata theory,
languages, and computation. Acm Sigact News,
32(1):60-65.

Aravind K Joshi. 1987. An introduction to tree adjoin-
ing grammars. Mathematics of language, 1:87-115.

93

Ronald M. Kaplan. 1985. Structural correspondences
and Lexical-Functional Grammar. In Proceedings
of the first Conference on Theoretical and Method-
ological Issues in Machine Translation of Natural
Languages, Hamilton, NY.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79-86,
Phuket, Thailand.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412-1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975-4989, Florence,
Italy. Association for Computational Linguistics.

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and
Masaaki Nagata. 2022. Jparacrawl v3. 0: A large-
scale english-japanese parallel corpus. arXiv preprint
arXiv:2202.12607.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Jim Pitman and Marc Yor. 1997. The two-parameter
poisson-dirichlet distribution derived from a stable
subordinator. The Annals of Probability, pages 855—
900.

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase
structure grammar. University of Chicago Press.

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. 2019.
Studying the inductive biases of RNNs with synthetic
variations of natural languages. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3532-3542, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. Non-Transformational
Syntax: Formal and Explicit Models of Grammar.
Wiley-Blackwell, pages 181-224.

Yee Whye Teh. 2006. A hierarchical Bayesian lan-
guage model based on Pitman-Yor processes. In
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,


https://aclanthology.org/P11-1087
https://aclanthology.org/P11-1087
https://aclanthology.org/P11-1087
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.18653/v1/N18-2085
https://doi.org/10.18653/v1/N18-2085
https://wals.info/
https://wals.info/
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://aclanthology.org/T87-1009
https://aclanthology.org/1985.tmi-1.9
https://aclanthology.org/1985.tmi-1.9
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-1356
https://doi.org/10.18653/v1/N19-1356
https://doi.org/10.3115/1220175.1220299
https://doi.org/10.3115/1220175.1220299

pages 985-992, Sydney, Australia. Association for
Computational Linguistics.

Dingquan Wang and Jason Eisner. 2016. The galac-
tic dependencies treebanks: Getting more data by
synthesizing new languages. Transactions of the As-
sociation for Computational Linguistics, 4:491-505.

Jennifer C. White and Ryan Cotterell. 2021. Examining
the inductive bias of neural language models with
artificial languages. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 454—463, Online. Association
for Computational Linguistics.

94


https://doi.org/10.1162/tacl_a_00113
https://doi.org/10.1162/tacl_a_00113
https://doi.org/10.1162/tacl_a_00113
https://doi.org/10.18653/v1/2021.acl-long.38
https://doi.org/10.18653/v1/2021.acl-long.38
https://doi.org/10.18653/v1/2021.acl-long.38

Causal Analysis of Syntactic Agreement Neurons
in Multilingual Language Models

Aaron Mueller!, Yu Xia®, Tal Linzen®
IJohns Hopkins University
amueller@jhu.edu, yx1675@nyu.edu, linzen@nyu.edu

Abstract

Structural probing work has found evidence
for latent syntactic information in pre-trained
language models. However, much of this anal-
ysis has focused on monolingual models, and
analyses of multilingual models have employed
correlational methods that are confounded by
the choice of probing tasks. In this study, we
causally probe multilingual language models
(XGLM and multilingual BERT) as well as
monolingual BERT-based models across vari-
ous languages; we do this by performing coun-
terfactual perturbations on neuron activations
and observing the effect on models’ subject-
verb agreement probabilities. We observe
where in the model and to what extent syn-
tactic agreement is encoded in each language.
We find significant neuron overlap across lan-
guages in autoregressive multilingual language
models, but not masked language models. We
also find two distinct layer-wise effect patterns
and two distinct sets of neurons used for syn-
tactic agreement, depending on whether the
subject and verb are separated by other tokens.
Finally, we find that behavioral analyses of lan-
guage models are likely underestimating how
sensitive masked language models are to syn-
tactic information.

1 Introduction

Syntactic information is necessary for robust gener-
alization in natural language processing tasks (for
a case study using the natural language inference
task, see McCoy et al. 2019). The success of pre-
trained language models (LMs) such as ROBERTa
(Liu et al., 2019) and GPT-3 (Brown et al., 2020)
in many NLP tasks has prompted hypotheses that
they accomplish their performance through struc-
tural representations induced during pre-training,
rather than only lexical or positional represen-
tations (Manning et al., 2020); behavioral evi-
dence for LMs’ syntactic abilities has been found
in masked LMs (MLMs; Warstadt et al., 2020;
Warstadt and Bowman, 2020; Goldberg, 2019) and
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autoregressive LMs (ALMs; Hu et al., 2020). Ev-
idence for structural representations has been re-
ported for multilingual pre-trained LMs (Goldberg,
2019; Mueller et al., 2020) and in sequence-to-
sequence models (Mueller et al., 2022).

Despite efforts to understand the structural infor-
mation encoded by pre-trained LMs (Hewitt and
Manning, 2019; Chi et al., 2020; Elazar et al., 2021;
Ravfogel et al., 2021; Finlayson et al., 2021; inter
alia), it remains unclear how and where multilin-
gual models encode this information. Most multi-
lingual probing studies are correlational and use
dependency parsing or labeling as a proxy task in-
dicative of syntactic information (Chi et al., 2020;
Stariczak et al., 2022). This is problematic: Models
do not need structural or word order information to
achieve high performance on dependency labeling
(Sinha et al., 2021), and training a parametric prob-
ing classifier introduces many confounds (Hewitt
and Liang, 2019; Antverg and Belinkov, 2022).

Causal probing, however, enables
parametric analyses of models through coun-
terfactual interventions on inputs or model
representations. Causal probing studies have
argued for the existence of specific syntactic
agreement neurons and units in neural language
models (Finlayson et al., 2021; Lakretz et al.,
2019; De Cao et al., 2021), but these studies have
focused on monolingual models—usually (though
not always) in English. Causal methods allow us
to make stronger arguments about where and how
syntactic agreement is performed in pre-trained
LMs, and we can apply them to answer questions
about the language specificity and construction
specificity of syntactic agreement neurons.

non-

In this study, we extend causal mediation analy-
sis (Pearl, 2001; Robins, 2003; Vig et al., 2020) to
multilingual language models, including an autore-
gressive LM and a masked LM. We also analyze
a series of monolingual MLMs across languages.
We employ the syntactic interventions approach
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of Finlayson et al. (2021) on stimuli in languages
typologically related to English, such that we can
observe whether there exist syntax neurons that
are shared across a set of languages that are all
relatively high-resource and grammatically similar.
Our contributions include the following:

1. We causally probe for syntactic agreement
neurons in an autoregressive language model,
XGLM (Lin et al., 2021); a masked language
model, multilingual BERT (Devlin et al.,
2019); and a series of monolingual BERT-
based models. We find two distinct layer-wise
effect patterns, depending on whether the sub-
ject and verb are separated by other tokens.

. We quantify the degree of neuron overlap
across languages and syntactic structures, find-
ing that many neurons are shared across struc-
tures and fewer are shared across languages.

. We analyze the sparsity of syntactic agree-
ment representations for individual structures
and languages, and find that syntax neurons
are more sparse in MLMs than ALMs, but also
that the degree of sparsity is similar across
models and structures.

Our data and code are publicly available.'

2 Related Work

Multilingual language modeling. Multilingual
language models enable increased parameter effi-
ciency per language, as well as cross-lingual trans-
fer to lower-resource language varieties (Wu and
Dredze, 2019). This makes both training and de-
ployment more efficient when support for many
languages is required. A common approach for
training multilingual LMs is to concatenate train-
ing corpora for many languages into one corpus,
often without language IDs (Conneau et al., 2020;
Devlin et al., 2019).

These models present interesting opportunities
for syntactic analysis: Do multilingual models
maintain similar syntactic abilities despite a de-
creased number of parameters that can be dedi-
cated to each language? Current evidence suggests
slight interference effects, but also that identical
models maintain much of their monolingual per-
formance when trained on multilingual corpora
(Mueller et al., 2020). Is syntactic agreement, in
particular, encoded independently per language or

"https://github.com/aaronmueller/
multilingual-1lm-intervention
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shared across languages? Some studies suggest
that syntax is encoded in similar ways across lan-
guages (Chi et al., 2020; Staiczak et al., 2022),
though these rely on correlational methods based
on dependency parsing, which introduce confounds
and may not rely on syntactic information per se.

Syntactic probing. Various behavioral probing
studies have analyzed the syntactic behavior of
monolingual and multilingual LMs (Linzen et al.,
2016; Marvin and Linzen, 2018; Ravfogel et al.,
2019; Mueller et al., 2020; Hu et al., 2020). Re-
sults from behavioral analyses are generally eas-
ier to interpret and present clearer evidence for
what models’ preferences are given various con-
texts. However, these methods do not tell us where
or how syntax is encoded.

A parallel line of work employs parametric
probes. Here, a linear classifier or multi-layer per-
ceptron probe is trained to map from a model’s
hidden representations to dependency attachments
and/or labels (Hewitt and Manning, 2019) to locate
syntax-sensitive regions of a model. This approach
has been applied in multilingual models (Chi et al.,
2020), and produced evidence for parallel depen-
dency encodings across languages. However, if
such probes are powerful, they may learn the target
task themselves rather than tap into an ability of
the underlying model (Hewitt and Liang, 2019),
leading to uninterpretable results. When control-
ling for this, even highly selective probes may not
need access to syntactic information to achieve
high structural probing performance (Sinha et al.,
2021). There are further confounds when analyzing
individual neurons using correlational methods; for
example, probes may locate encoded information
that is not actually used by the model (Antverg and
Belinkov, 2022).

Causal probing has recently become more com-
mon for interpreting various phenomena in neu-
ral models of language. Lakretz et al. (2019) and
Lakretz et al. (2021) search for syntax-sensitive
units in English and Italian monolingual LSTMs
by intervening directly on activations and evalu-
ating syntactic agreement performance. Vig et al.
(2020) propose causal mediation analysis for lo-
cating neurons and attention heads implicated in
gender bias in pre-trained language models; this
method involves intervening directly on the inputs
or on individual neurons. Finlayson et al. (2021)
extend this approach to implicate neurons in syn-
tactic agreement. This study extends their data and
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method to multilingual stimuli and models.

Other causal probing work uses interventions on
model representations, rather than inputs. This
includes amnesic probing (Elazar et al., 2021),
where part-of-speech and dependency information
is deleted from a model using iterative nullspace
projection (INLP; Ravfogel et al., 2020). Ravfo-
gel et al. (2021) employ INLP to understand how
relative clause boundaries are encoded in BERT.

3 Methods

3.1 Causal Metrics

We first define terms to represent the quantities we
measure before and after the intervention. We are
interested in the impact of an intervention x on a
model’s preference yx for grammatical inflections
over ungrammatical ones. We start with the origi-
nal input, on which we apply the null intervention:
This represents performing no change to the orig-
inal input. Given prompt u and verb v, we first
calculate the following ratio:

p(vp | “sg)
P(vsg | usg)

ey

ynull(ua U) =

Here, u,, represents a prompt that would re-
quire a singular verb inflection vy, at the [MASK]
for the sentence to be grammatical; for example,
“The doctor near the cars [MASK] it”. w4 is the
third-person singular present inflection of verb v,
and vy, is the plural present inflection; for exam-
ple, vy =“observes” and v,; =“observe”. Note
that this ratio has the incorrect inflection as the
numerator; this entails that if the model computes
agreement correctly, we will have y < 1.

We now define the swap-number intervention,
where the grammatical number of v is flipped (re-
sulting in “The doctors near the cars [MASK] it” for
the previous example). This results in the following
expression for y:

p(vpr | upr)
P(vsg | upt)

2

yswap—number(u> 'U) =

Now, the numerator is the correct inflection, so we
expecty > 1.

As we are interested in the contribution of in-

dividual model components to the model’s over-

all preference for correct inflections, we focus on

indirect effects, where we perform interventions
on individual model components and observe the
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Natural Indirect Effect p(observe)

p(observes)

®

The pilot by the bikes

p(observe)
p(observes)

' X

The pilot by the bikes

~

swap-number

pilet — pilots

Figure 1: Example of computing the natural indirect
effect (NIE). We change a neuron’s activation to what
it would have been if we had intervened on the prompt,
then measure the relative change in y.

change in y. In particular, we measure the natural
indirect effect (NIE), as follows.

We intervene on an individual neuron z. We
change z’s original activation given u and v (de-
noted zny11(u, v)) to the activation it would have
taken if we had performed the intervention on u
(denoted Zsyap-number (4, v)). The rest of the neu-
rons retain their original activations. ‘“Natural” here
refers to the fact that our intervention changes the
activation z to the value it would have in another
natural setting v/, rather than setting it to some
predefined constant (such as 0) that it may or may
not obtain given natural inputs. We measure the
relative change in y after applying the intervention
(see Figure 1 for a visual example):

NIE(swap-number, null;y,z)

|:ynull,zswap_nu,,,ber(u,v) (U, U) — Ynull (u7 U) :|
Eu,v =
Ynu11 (u, v)
Eu,v |:ynU]-17stap-number(u7'U) (U, U) o 1:|
Ynu11 (u, v)

3)

If a neuron encodes useful information for syn-
tactic agreement, we expect y to increase after
the intervention, making the numerator positive.
Positive NIEs indicate that a neuron encodes pref-
erences for correct verb inflections, and negative
NIEs indicate that the neuron prefers incorrect in-
flections. The closer the NIE is to 0, the less of a
contribution a neuron makes to syntactic agreement
in either direction.

3.2 Models

Finlayson et al. (2021) analyzed a series of mono-
lingual autoregressive language models (ALMs):
GPT-2 (Radford et al., 2019), TransformerXL (Dai



Model Layers Neurons Parameters
BERT 12 9126 110M
mBERT 12 9126 110M
GPT-2 24 25600 345M
XGLM 24 25600 564M

Table 1: The size of each model used in this study. Each
monolingual BERT variant (including the ROBERTa-
based CamemBERT) has the same number of layers,
neurons, and parameters as BERT.

et al., 2019), and XLNet (Yang et al., 2019). Here,
we apply their analysis approach to multilingual
models. Multilingual ALMs are rare in the litera-
ture; to our knowledge, the only ALM designed to
be multilingual is XGLM (Lin et al., 2021),2 which
we employ in this study.

Multilingual MLMs are much more common.
We focus on multilingual BERT (Devlin et al.,
2019). We were unable to analyze XLM-R (Con-
neau et al., 2020), a more recent multilingual MLM
that performs better than mBERT on certain bench-
marks, since its tokenizer splits a large proportion
of our nouns and verbs into multiple tokens, which
greatly constrained the stimuli we could use. In
future work, we intend to address this issue by
developing methods that enable multi-token inter-
ventions, as well as calibrated comparisons across
variable-length sequences.

We also analyze a series of monolingual MLMs—
one for each language included in our sample. Four
of these models were based on BERT: BERT (En-
glish), GermanBERT,? BERTje (Dutch; de Vries
et al., 2019), and FinnishBERT (Virtanen et al.,
2019). Our French MLM, CamemBERT (Mar-
tin et al., 2020), is based on RoBERTa (Liu et al.,
2019), which is very similar to BERT.

3.3 Materials

We translate the stimuli from Finlayson et al. (2021)
(Figure 2) to French, German, Dutch, and Finnish.
Since the subjects and verbs on which we inter-
vene must be one token each,* we are restricted

2GPT-3 (Brown et al., 2020) is technically multilingual, as
its training corpus contains data from other languages. How-
ever, it was not designed with multilinguality in mind, and the
vast majority of its training data is English.

3https://www.deepset.ai/german-bert

*It is not clear how to compare the probability of variable-
length sequences in masked language models, and autore-
gressive language models tend to prefer sequences containing
fewer tokens. There have been attempts to compare variable-
length sequence probabilities using iterative approaches (e.g.,
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Simple Agreement:
The athlete investigates/*investigate. . .

Across Prepositional Phrase:
The manager behind the bikes
observes/*observe. . .

Across Object Relative Clause:
The farmers that the parent loves
*confuses/confuse. . .

Figure 2: Constructions used in this study, grouped by
whether the subject and verb are adjacent. We use a
subset of constructions from Finlayson et al. (2021), di-
rectly translating the stimuli to French, German, Dutch,
and Finnish. See Appendix A for examples of each
structure in each language.

to very frequent words in the pre-training cor-
pus which do not get split into subwords by a
model’s tokenizer. This limits us to high-resource
language varieties—and as most of the top lan-
guages in mBERT and XGLM’s pre-training cor-
pora are Indo-European, this also limits the typo-
logical range of this method. A virtue of our sam-
ple of languages, however, is that is allows us to
study whether neurons are shared across typologi-
cally similar languages, where shared neurons and
similar layer-wise effect patterns are most likely
to occur: If syntactic agreement neurons are not
shared across similar languages, they are unlikely
to be shared across any languages.

For each structure, we sample up to 200 sen-
tences. If there are fewer than 200 sentences where
the subjects and verbs are single tokens, we take
the entire set of valid stimuli. When we use the
original stimuli from Finlayson et al. (2021), we of-
ten have very few sentences where the subjects and
verbs are single tokens. Thus, we also create short-
word versions of the stimuli, where we use shorter
and more common words (e.g., instead of "man-
agers" or "observe", we can use "cats" or "see").
Our results are consistent when using the original
and short nouns and verbs; see Appendix B.

The original stimuli were generated from a gram-
mar given a list of manually selected terminals.
By generating artificial stimuli and not sampling
sentences from a corpus, we partially control for
memorized sequences or token collocations in the
pre-training corpus.

Schick and Schiitze, 2021), though this generally requires
fine-tuning to work properly.
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Figure 3: Natural indirect effects for the top 5% of neurons in each layer for monolingual masked language models.
There are two distinct layer-wise NIE contours in each language, depending on whether the subject and verb are
separated by other tokens (as in ‘across a relative clause’ and ‘across a prepositional phrase’ structures) or not (as in

‘simple agreement’).
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Figure 4: Natural indirect effects for mBERT (top) and
XGLM (bottom) for Germanic languages. There are
two distinct layer-wise NIE patterns in each language.
NIE patterns for the same structure look very similar
across languages.

Finlayson et al. (2021) found two distinct layer-
wise NIE patterns for syntactic agreement: one
when the subject and verb are adjacent (the short-
range effect), and another when they are separated
by any number of tokens (the long-range effect).
To understand whether the short-range effect is due
to preferences for frequent bigrams (rather than
specifically grammatical subject-verb bigrams), we
also design a bigram swap intervention. We use
high-mutual-information adjective-noun English
bigrams as the original inputs and intervene by ran-
domly swapping the first or second words in the
bigram with words from a different bigram. For ex-

ample, given the bigrams coaxial cable and police
p(officer|coaxial)

E—————< and
p(cable|coaxial)

. Then we can compute

officer, we can define yn 11 =

) __ p(officer|police)
yswap—b1gram'— p(cab]e|police)
the NIE as in Equation 3.

Finally, to test whether separate neurons are used
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for short- and long-range token collocations in gen-
eral, we also define short- and long-range semantic
plausibility baselines, where nouns are associated
with stereotypical adjectives (e.g., square T.V. and
red apple). The short-range semantic plausibility
intervention is the same as for the bigram inter-
vention: We compute the probability ratio of the
first and second noun in a pair of bigrams before
and after swapping the adjective. For long-range se-
mantic plausibility, the prompt u is “The T.V./apple
is”, and v is the probability ratio of the adjectives
before and after swapping the nouns.

4 Results

4.1 Layer-wise NIE contours are similar
across languages

We present indirect effects for monolingual masked
language models (Figure 3), as well as mBERT
and XGLM (Figure 4). Here, we select the top
5% of neurons per layer by NIE. In each language,
whether in a monolingual or multilingual MLM
or ALM, there are two distinct layer-wise NIE
effect patterns for number agreement: one for
short-range dependencies and one for long-range
dependencies. This agrees with the findings of Fin-
layson et al. (2021) on autoregressive English LMs.
However, these effects look more distinct across
monolingual models, whereas multilingual mod-
els exhibit more similar layer-wise NIE patterns
across languages. In other words, monoligual
models accomplish syntactic agreement in differ-
ent layers and neurons depending on the language
(even though these languages are typologically sim-
ilar), but in multilingual models agreement compu-
tations implicate the same layers across languages.
This does not necessarily mean that the same indi-
vidual neuron are being used cross-linguistically
in multilingual models (we explore this question



in more detail in §4.2.1); rather, the model may
simply be learning similar layer-wise strategies for
each language.

While prior work finds that syntactic agreement
is easier to learn in languages that have more ex-
plicit morphological cues to hierarchical structure
(Ravfogel et al., 2019; Mueller et al., 2020), this
does not necessarily imply that different agreement
mechanisms are learned in such languages. We find
similar layer-wise NIEs in mBERT across each lan-
guage we consider, including Finnish, a non-Indo-
European (specifically, Uralic) language.

4.2 Syntax neurons are shared across
structures, but not with semantic baselines

Here, we analyze to what extent the same neurons
are implicated across syntactic structures and lan-
guages in mBERT. For each structure, we take the
top 30 neurons by indirect effect (from any layer);
we then compute the proportion of such high-NIE
neurons that are shared across structures.

First, we investigate to what extent the neurons
that have high NIE for the syntactic structures are
selective to syntax. We do so by computing the
overlaps in English between neurons with high NIE
for syntactic structures and the neurons with high
NIE for our bigram and semantic plausibility base-
lines. We find that the top syntactic agreement
neurons for any structure are not shared with the
neurons implicated in semantic plausibility or bi-
gram collocation (Figure 5). In other words, the
neurons used for syntactic agreement are spe-
cific to agreement and do not track common bi-
grams more generally.

Figure 5 also shows that neurons are shared
across syntactic structures, providing evidence
for an abstract notion of syntactic agreement en-
coded in mBERT that is separate from the indi-
vidual structures that the model is presented with.
However, the varying extents of overlap indicate
that there are also neurons specialized to particular
structures. To further contextualize these overlap
proportions, we also compute overlaps for simple
agreement in a randomly initialized mBERT, as a
baseline. This experiment yields near-zero over-
laps, indicating that the overlaps across structures
we obtain for mBERT and XGLM are unlikely to

Explicit case marking correlates well with performance
on syntactic evaluations (Ravfogel et al., 2019), so we would
expect German and Finnish to exhibit different results if these
cues give rise to different agreement computations.
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Figure 5: Neuron overlap across structures (including
baselines) in English for (a) mBERT and (b) XGLM.
There is zero or near-zero overlap between the baselines
and all syntactic agreement structures, whereas overlap
is relatively high (and statistically significant) for all
other structures.

be due to random chance.®
4.2.1 Neurons are shared across languages in
autoregressive language models

The overlap in neurons across languages (Fig-
ure 6) is significant for all structures in XGLM.
For mBERT, overlap is significant between “across
a PP” structures and other long-distance agreement
structures, but not for any other structure pairs.
Note that in XGLM, the diagonal is no darker
than most other squares; in other words, there
is not more cross-lingual neuron overlap for the
same syntactic structure relative to other structures.
These may be generic cross-lingual syntax neu-
rons which are not specialized to any particular
structure or language. We found in §4.2 that there
is almost no overlap between syntactic agreement
neurons and bigram collocation/semantic plausibil-
ity neurons in English, which is further evidence

®For reference, the probability of at least one neuron be-

ing shared between two random samples of 30 neurons in
9984 —30
(m)BERT-base is 1 — W ~ .086.
30
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Figure 6: Cross-lingual neuron overlaps for the top
30 neurons by NIE in (a) mBERT and (b) XGLM.
We present English-French overlaps; overlaps between
other language pairs look similar (see Appendix C). The
overlap percentages in (b) are significantly higher than
random chance. Overlaps for most structure pairs in (a)
are not significant, except for overlaps between ‘Across
a preposition’ structures and other long-range agree-
ment structures.

that these may be more general syntactic agreement
neurons. Nonetheless, overlap is very low across
languages compared to across structures within a
given language. Thus, in autoregressive language
models, syntactic agreement neurons can be
language-specific or cross-lingual, but most are
language-specific. For masked language models,
syntactic agreement neurons are rarely shared
across languages.

4.3 Neuron sparsity differs across structures,
but not across languages

What proportion of LMs’ neurons encode subject-
verb agreement? The sparsity of syntax neurons in
pre-trained models may vary depending on which
language and structure we observe. Lakretz et al.
(2019) and Lakretz et al. (2021) found that agree-
ment neurons are sparse in LSTMs, but it is not
clear whether this would hold for MLMs or large

Language Model % Neurons for TE % Neurons for Max. NIE
BERT 1.0% 5.8%
en mBERT 1.0% 8.7%
GPT-2 17.5% 25.0%
XGLM 4.5% 16.5%
CamemBERT 6.7% 10.6%
fr mBERT 3.8% 29.8%
XGLM 3.5% 24.0%
GermanBERT 1.0% 8.7%
de mBERT 1.0% 6.7%
XGLM 1.5% 18.0%
BERTje 1.0% 5.8%
nl mBERT 1.0% 2.9%
XGLM 0.5% 37.5%
fi FinnishBERT 1.0% 4.8%

Table 2: Neuron sparsities for the “simple agreement”
structure across languages and models. Multilingual
models do not necessarily encode syntax more sparsely
than monolingual models. Sparsities are generally con-
sistent across languages for the same model.

Transformer-based ALMs. Given our consistent
results across languages, we hypothesize that the
neuron sparsity of subject-verb agreement will be
similar across monolingual models. Given the con-
sistent distinction thus far in how neurons encode
short- and long-range agreement, we also hypothe-
size that neuron sparsity will differ between agree-
ment distances. Due to lower parameterization
per language in multilingual models, however, we
hypothesize that multilingual models encode agree-
ment more sparsely than monolingual models.

We measure sparsity by iteratively selecting the
top k neurons by NIE, intervening on them simul-
taneously, and computing the natural indirect ef-
fect after performing the swap-number interven-
tion. We continue sampling k£ more neurons and
computing NIEs until we have selected all neurons;
the NIE after intervening on all neurons is equiv-
alent to the total effect (TE).” Computing effects
for each neuron and each structure is computation-
ally expensive, so we use k = 128 for XGLM and
GPT-2 (0.5% of neurons selected at a time) and
k = 96 for (m)BERT (~1.0% of neurons selected
at a time).

We report two metrics: (1) the percentage of
neurons at which we see the maximum NIE, and
(2) the minimum percentage of neurons required
for the NIE to reach the TE of the model. These
correspond to the peak NIE and the point at which
the NIEs cross the dashed line in Figure 7.

For ‘simple agreement’ (Table 2), the proportion
of neurons to reach the TE is generally small, espe-

"Intuitively, the TE can be thought of as the preference of
the model as a whole for correct verbs over incorrect verbs.
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Figure 7: Indirect effects when intervening on increas-
ing numbers of neurons in XGLM. The dashed line
represents the total effect. For ‘simple agreement’, there
exists a set of neurons that strongly prefers grammatical
completions; however, there are many more neurons
that have weak preferences against them, and this re-
sults in the model as a whole having weak preferences
for correct verb inflections. For ‘across a singular RC’,
however, almost every set of neurons seems to have
preferences for grammatical inflections.

cially for MLMs. However, the TE itself is often
a couple orders of magnitude smaller for MLMs
than for ALMs; thus, these percentages are not
comparable across model architectures.

The proportion of neurons required to achieve
the maximum NIE is typically lower for MLMs
than ALMSs. In other words, syntax neurons are
more sparse in masked language models than
autoregressive language models.?

The percentage of neurons to reach the maxi-
mum NIE does not significantly differ across mono-
lingual and multilingual models, however. This
means that multilingual models do not consis-
tently encode syntactic agreement in a more
sparse way than monolingual models. This and
our neuron overlap results suggest that multilingual
models encode syntactic information in a similar
way to monolingual models (including the pro-
portion of neurons sensitive to syntax), though

8French is an exception: there are more syntax-sensitive
neurons in both monolingual and multilingual models.

most syntax-sensitive neurons tend to be language-
specific rather than shared across languages.

Sparsity also differs across syntactic structures.
For ‘simple agreement’, NIEs peak at around 5—
20% of neurons. For ‘across a singular RC’, the ad-
dition of every k neurons almost always increases
the NIEs. Long-range syntactic information
seems to be distributed throughout the majority
of neurons in XGLM, but short-range syntactic
information is more sparsely encoded.

These numbers hide more interesting trends,
however. The TEs for mBERT are often close to
0 across structures, while the maximum NIEs are
in the hundreds for those same structures.” This
has interesting implications for interpreting behav-
ioral analyses: studies such as Hu et al. (2020) and
Mueller et al. (2020) suggest that mBERT does
not have strong syntax-sensitive preferences com-
pared to autoregressive language models, and the
low TEs we observe support this. However, this
obscures that there are actually many neurons
in mBERT which are highly sensitive to syn-
tactic agreement, as indicated by the high max-
imum NIEs: we observe weak agreement prefer-
ences in the model as a whole because there are
many more neurons which have weak preferences
against syntactic agreement (i.e., small negative
NIEs), perhaps because those neurons are special-
izing in other phenomena (e.g., token collocations
or semantic agreement). Thus, behavioral analyses
of model behavior may be underestimating the sen-
sitivity of models to syntactic phenomena, for there
is negative interference from neurons that prefer
non-syntax-sensitive completions.

5 Discussion

We observe two distinct layer-wise NIE patterns
for syntactic agreement, depending on whether the
subject and verb are adjacent or separated by other
tokens. This extends the findings of Finlayson et al.
(2021) to multilingual MLMs and ALMs, as well as
monolingual MLMs in various languages. Going
beyond their findings, we ruled out the possibility
that these neurons do not simply track semantic
plausibility or bigram collocations more generally.
While this is not conclusive evidence that these
neurons are specialized to syntax, evidence from
other behavioral and probing studies also supports

The effect contours for mBERT have a similar contour
to those in Figure 7, though the TE (~0) and maximum NIE
(~340) for ‘simple agreement’ are far smaller.
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the existence of neurons focused on syntax (Hewitt
and Manning, 2019; Elazar et al., 2021; Goldberg,
2019). De Cao et al. (2021) found neurons focused
purely on syntax, while Tucker et al. (2022) found
redundantly encoded syntactic information across
neurons. It is not clear how much of the neuron
overlap we observe is due to redundantly encoded
information, but future work could investigate this.

A consistent trend across our experiments is that
ALMs encode syntactic agreement in a distinct way
from MLMs. In ALMs, there is more cross-lingual
and cross-structure neuron overlap than in MLMs;
more similar layer-wise effect patterns across struc-
tures and languages (though they are still distinct);
and a greater proportion of neurons which are sensi-
tive to agreement. This could be partially explained
by ALMs’ left-to-right processing of natural lan-
guage input, which more closely resembles incre-
mental inputs to human learners. MLMs are able to
perform syntactic agreement (Hu et al., 2020; Gold-
berg, 2019), but their fill-in-the-blank pre-training
objectives may induce distinct representations of
sentence structure as compared to models that pro-
cess or predict inputs incrementally.

Why do we observe different indirect effect con-
tours for short- and long-range agreement? Per-
haps syntactic agreement is encoded using a single
mechanism, but the way that syntactic information
is used for predicting output tokens depends on the
structure of the input or prior output tokens. Al-
ternatively, there could be two completely distinct
agreement mechanisms that function in different
ways entirely. While our findings do not disam-
biguate between these possibilities (or some other
separate type or amount of mechanisms), future
work could employ methods like those in Meng
et al. (2022) to observe this distinction more ex-
plicitly. The findings of Meng et al. (2022) suggest
that the model regions that are implicated in say-
ing something are distinct from those implicated in
knowing something—that is, knowledge retrieval
and predicting particular tokens are separate mech-
anisms in pre-trained language models. Perhaps
their method could be extended to study syntac-
tic agreement, such that we can better understand
what, exactly, these distinct indirect effect trends
represent.

6 Conclusions

We have used causal mediation analysis to observe
which neurons track syntactic agreement in multi-

lingual pre-trained language models, and in which
layers they are concentrated. We found two distinct
layer-wise contours for syntactic agreement regard-
less of the language, multilinguality, or architecture
of the model (§4.1); that syntax-sensitive neurons
are shared across languages in autoregressive lan-
guage models (§4.2.1); and that the neuron sparsity
of syntactic agreement is similar in monolingual
and multilingual models (§4.3). We also found that
behavioral analyses of masked language models ob-
scure the extent to which their neurons are sensitive
to syntactic agreement (§4.3).
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A Example Sentences

Here, we present examples of each syntactic struc-
ture we observe in each language.

(1) Simple agreement (English):
. The woman observes/*observe.

(2) Simple agreement (French):

I’ homme approuve/*approuvent.
The man  approves/*approve.

(3) Simple agreement (German):

Der Arzt weill/*wissen.
The physician knows/*know.

4) Simple agreement (Dutch):

De schrijver begrijpt/*begrijpen.
The writer  understands/*understand.

(5) Simple agreement (Finnish):

Tati ymmirtad/*ymmairtivit.
Aunt understands/*understand.

“The aunt understands/*understand.”

For each of the following syntactic structures
containing a grammatical number attractor, we sep-
arate structures by whether the attractor is singular
or plural. For concision, we simply present ex-
amples of each structure without separating out
examples by the number of the attractor. Note
that Finnish mainly uses postpositions rather than
prepositions; the attractor still intervenes between
the main subject and its verb, but the order of the
preposition and noun phrase is different compared
to the Indo-European languages we consider.

(6) Across a relative clause (English):
. The woman that the guards like ob-
serves/*observe.

(7) Across a relative clause (French):

L’ homme que le chef suit
The man  that the boss follows

approuve/*approuvent.
approves/*approve.

(8) Across a relative clause (German):

Der Arzt

den die Tiere  vergeben
The physician that the animals forgive
weil/*wissen.
knows/*know.

(9) Across a relative clause (Dutch):

De schrijver die de ouder roept
The writer  that the parent calls
begrijpt/*begrijpen.
understands/*understand.

(10) Across a relative clause (Finnish):

Tiati jota luistelijat kehuvat
Aunt that skaters  praise
ymmaértdd/* ymmartavat.
understands/*understand.

“The aunt that the skaters praise under-
stands/*understand.”

(11) Across a prepositional phrase (English):
The woman behind the cars ob-
serves/*observe.

(12) Across a prepositional phrase (French):

L’ homme devant le chat
The man  in-front-of the cat

approuve/*approuvent.

follows approves/*approve.

(13)Across a prepositional phrase (German):
Der Arzt nahe den Apfeln wei/*wissen.
The physician near the apples knows/*know.
(14) Across a prepositional phrase (Dutch):

De schrijver achter de fiets
The writer  behind the bike

begrijpt/*begrijpen.
understands/*understand.

(15) Across a postpositional phrase (Finnish):

Téati puiden lahelld ymmaértdd/* ymmairtivit.

Aunt trees near understands/*understand.
“The aunt near the trees under-
stands/*understand.”
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Figure 8: Natural indirect effects for the top 5% of neurons in each layer for monolingual masked language models.
The indirect effect contours we observe do not vary significantly when replacing the nouns and verbs with shorter,
more frequent words—except in layer 11 of CamemBERT.
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Figure 9: Neuron overlap across structures (including
baselines) in English for (a) mBERT and (b) XGLM.
There is significant overlap between the original stimuli
and short-word stimuli, though this is more the case for
XGLM than mBERT.

B Invariance to Short- and Long-Word
Stimuli

When using the stimuli from Finlayson et al.
(2021), most of the subjects and verbs are split
into multiple tokens. These are generally long and
relatively infrequent nouns and verbs like “man-
agers” and “observe”. We could use more stimuli
if we replace each word with words that are shorter
and more frequent in pre-training corpora, such as
“cats” and “see”.

Will these lexical replacements change the trends
we observe? We observe the layer-wise natural in-
direct effect of the top neurons in each layer for
the original stimuli and the short-word stimuli to
see if lexical replacements have an effect on the
way neurons encode syntactic agreement in mono-
lingual BERT models. Our results (Figure 8) are
nearly identical for the original stimuli and the
short stimuli. A notable exception is layer 11 of
CamemBERT, where indirect effects are so large
that the rest of the effects are dwarfed by compari-
son. However, when excluding this result, indirect
effect contours look similar between original and
short stimuli.

We also compare the extent of neuron overlap
between original and short stimuli for multilingual
BERT and XGLM. Our results (Figure 9) show
a relatively high degree of overlap, especially for
XGLM. However, overlap is somewhat lower than
when we use only one stimulus type (Figure 5).
Ideally, overlap should be nearly 100% along the
diagonal of both matrices if these neurons account
only for syntactic agreement rather than specific
lexical items, so these results suggest that lexical
(and not syntactic) features may account for a no-
table proportion of the neuron overlap we observe
in our previous experiments. Alternatively, it could
mean that these neurons attend both syntactic and
lexical information. Nonetheless, overlaps are still
significant and indirect effects still look similar
when swapping our nouns and verbs, so it is likely
that models are picking up on some abstraction for
syntactic agreement that generalizes across specific
token sequences.

These results suggest that the neuron-level ef-
fects we observe are not simply spurious lexical
correlations. More significantly, this is further evi-
dence that the neuron-level effects we observe are
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not word-level effects, but some more abstract
structural feature(s) that the model has learned.

C Neuron Overlap Across Languages:
Full Results

Here, we present neuron overlaps across languages
for mBERT and XGLM (Figure 10). As in §4.2.1,
we present overlaps for the top 30 neurons (in any
layer of the model) per structure per language. As
before, we find that neuron overlap is generally
greater in autoregressive LMs than masked LMs.

Neuron overlaps are most prominent between
English and French; while not typologically the
most closely related language pair, English and
French share a great deal of vocabulary and have
similar SVO word orders when pronominal objects
are not present. German, meanwhile, uses SOV
with V2 in main clauses.

D Limitations

Perhaps the greatest limitation of our method—
and many other causal probing methods (Vig
et al., 2020; Finlayson et al., 2021; Ravfogel et al.,
2021)—is that we are limited to stimuli where the
subjects on which we intervene and the competing
verb forms are one token each. This greatly limits
the range of subjects and verbs (and languages)
we can consider in this study, especially for more
multilingual models where a greater proportion
of words are split into subwords by the tokenizer.
Models may use a different mechanism altogether
to calculate the probability of two competing verbs
given the presence or lack of a morpheme like {-
s} which expresses number information, and our
method would not allow us to understand where
and how models are performing this kind of agree-
ment. While one can, in theory, compare the proba-
bility of variable-length token sequences in autore-
gressive language models, there is no principled
way to do this in masked language models. And
in practice, autoregressive language models tend
to prefer shorter sequences. Future work could
consider probing methods which allow for variable-
length span predictions.

There are also more general issues with probing
individual neurons. Complex phenomena like syn-
tactic agreement are likely to be encoded in sets
of neurons, rather than individual neurons; indeed,
we find evidence for this in §4.3. This means that
analyzing individual neurons can result in oversim-
plified understandings of where and how certain
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phenomena are encoded and used. Future causal
probing work could focus on non-parametric meth-
ods which allow one to probe multiple neurons si-
multaneously, such that we may causally implicate
model regions rather than just individual compo-
nents like neurons or attention heads.
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Abstract

We present a novel method for unsupervised
cognate/borrowing identification from mono-
lingual corpora designed for low and extremely
low resource scenarios, based on combining
noisy semantic signals from joint bilingual
spaces with orthographic cues modelling sound
change. We apply our method to the North
Indian dialect continuum, containing several
dozens of dialects and languages spoken by
more than 100 million people. Many of these
languages are zero-resource and therefore nat-
ural language processing for them is non-
existent. We first collect monolingual data for
26 Indic languages, 16 of which were previ-
ously zero-resource, and perform exploratory
character, lexical and subword cross-lingual
alignment experiments for the first time at this
scale on this dialect continuum. We create bilin-
gual evaluation lexicons against Hindi for 20 of
the languages. We then apply our cognate iden-
tification method on the data, and show that our
method outperforms both traditional orthogra-
phy baselines as well as EM-style learnt edit
distance matrices. To the best of our knowl-
edge, this is the first work to combine tradi-
tional orthographic cues with noisy bilingual
embeddings to tackle unsupervised cognate de-
tection in a (truly) low-resource setup, showing
that even noisy bilingual embeddings can act as
good guides for this task. We release our mul-
tilingual dialect corpus, called HinDialect, as
well as our scripts for evaluation data collection
and cognate induction.?

1 Introduction

Hindi is listed as one of the 22 official languages
of India, with the latest census showing 43.63% of
Indians as having Hindi as their mother tongue.’

*This work was done at Charles University and Saarland
University as a Masters’ Thesis.
2See http://hdl.handle.net/11234/1-4839
and https://github.com/niyatibafna/
north-indian-dialect-modelling, respectively.
Shttps://en.wikipedia.org/wiki/2011_Census_of_
India

However, this figure counts speakers of the lan-
guages of the whole Indic/Indo-Aryan (IA) dialect
continuum, the “Hindi Belt”, that stretches from
Rajasthan in the West to Bihar and Jharkhand in the
East, and of which modern standard Hindi is only
a part.* This continuum, spread out over North
and Central India, contains a wide variety of lan-
guages/dialects that may even be mutually incom-
prehensible, and form subfamilies of their own, e.g.
the Rajasthani, Bihari, or Pahari subfamilies.’

Natural language processing (NLP) resources
for these languages are sorely lacking; most of
these languages, despite having millions of speak-
ers, have little or no monolingual data, no linguistic
resources such as lexicons, grammars, taggers, let
alone more elaborate resources such as parallel data
or pretrained embeddings.

We focus on 26 languages of the Hindi Belt writ-
ten in the Devanagari script and make the following
contributions: (i) we collect the first monolingual
resources for many of these languages, and (ii) we
develop a novel strategy for cognate lexicon induc-
tion in asymmetric truly low-resource scenarios,
tackling this problem for the first time with the
under-researched Indic dialect continuum. Cog-
nate induction is an important first step towards
obtaining bilingual lexicons, one of the most ba-
sic and all-purpose bilingual resources a language
can have. Bilingual lexicons are especially useful
in low-resource scenarios, e.g. for word-by-word
translation, bilingual transfer, and as seeds for a
variety of tasks; they also have applications in his-
torical linguistics. Finally, in the case of severely
under-supported languages, they are crucial for
building dictionaries for speakers and language
learners. In this work, we perform cognate induc-
tion for each language against Hindi, since Hindi

“We also see a shallower north-south dimension to the

continuum, i.e. from Haryana to northern Maharashtra.
5See https://glottolog.org/resource/languoid/
id/indo1321 for the full language tree.
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is the most well-studied and resource-rich of this
set, and therefore the most logical language from
which bilingual transfer may be attempted.

We crawl monolingual data for the continuum,
forming the largest collection (in number of lan-
guages) of a dialect continuum as far as we know.
This also introduces the first monolingual data for
16 zero-resource IA languages to the NLP commu-
nity. Such a corpus has wide applications for work
in transfer, historical linguistics, dialect continua,
and building language support for these communi-
ties. We probe the resulting multilingual collection
at a character, subword and lexical level, finding
a general link between relatedness and genealogi-
cally and geographically proximal languages.

Secondly, we use the corpus for cog-
nate/borrowing induction (CI) for each target
language with Hindi:® identifying cognates from
monolingual corpora containing fully inflected
word forms in a completely unsupervised manner.’
We work in an asymmetric data scarcity situation:
we have abundant monolingual resources for
Hindi, but only a few thousands/ten thousands of
monolingual tokens for target languages. These
constraints set this task apart from most of the
previous literature on cognate identification (List,
2014; Fourrier et al., 2021; List, 2019; Artetxe
et al., 2018); however, this setting is realistic when
attempting to build resources for truly low-resource
languages. We present two simple but novel
strategies for cognate identification, evaluating
on synthetically created test sets. We experiment
with iteratively learning substitution probabilities
within an edit distance paradigm, as well as
combining noisy semantic signals from a subword
embedding space with orthographic distance
measures, reporting qualitative improvements over
the baseline.

2 Related Work

Data and Resources. Languages in the contin-
uum differ in the amount of resources available.
For the highest resourced languages (this corre-
sponds to Band 1 in Section 5) one can find raw
and annotated corpora, pretrained embeddings, and
evaluation resources (Kunchukuttan et al., 2020;

®Henceforth, we use the term “cognate” as including bor-
rowings.

"While we do have lexical resources for Band 1 and 2
languages including WordNets for some Band 1 languages
(see Table 1 for bands), we simulate low-resource scenarios
consistent with the truly low-resource Band 3 languages

Bojar et al., 2014; Nivre et al., 2016). For medium-
resourced languages (Band 2), we have some col-
lection efforts,® mostly monolingual (Ojha, 2019;
Ojha et al., 2020; Goldhahn et al., 2012) but in-
cluding some parallel data. Zampieri et al. (2018)
presented a shared task for language identification
for Awadhi, Braj, Bhojpuri, Magahi, and Hindi pro-
viding 15k sentences for each language. Mundotiya
et al. (2021) collect monolingual corpora for Bho-
jpuri, Magahi, and Maithili, as well as POS-tagged
annotated corpora and WordNets® aligned with
the larger IndoWordNet effort (Sinha et al., 2006)
Mundotiya et al. (2022) presents NER-annotated
corpora and trained NER models for the same 3
languages. The least resourced languages (Band
3) lack any kind of systematic resource and are the
main focus of our work.

Bi/Multilingual Lexicon Induction Much previ-
ous work has been based on non-neural methods.
Batsuren et al. (2019) use semantic relationships
from the Universal Knowledge Core (Giunchiglia
et al., 2018) which is built from existing Word-
Nets,'? gold annotations as well as geographical-
orthographic similarity measures for cognate iden-
tification. Coltekin (2019) compares linear and
neural models to predict the next edit-distance
based action to perform crosslingual morphologi-
cal inflection. In earlier works, Scherrer and Sagot
(2014), inspired by Koehn and Knight (2002), in-
duced cognate sets in a completely unsupervised
manner using a character-based alignment algo-
rithm, as well as co-occurrence-based context vec-
tors. List (2012) induce cognate sets over aligned
word lists of languages in a language family by it-
eratively learning phonological rules; this is imple-
mented in the software LingPy (List, 2014). Hall
and Klein (2010) work with unaligned word lists
for languages in the same family, modelling trans-
fer within a tree-based framework and learning edit-
distance based transformation matrices for each
vertical edge. Although the idea of learning edit
distance matrices is quite old (Bilenko and Mooney,
2003), it has not been used in combination with
modern embeddings-based methods for cognate
identification as far as we know.

Recently, neural and embeddings-based meth-
ods have been gaining importance. Conneau et al.
(2018) is one of the earliest works to link bilingual

8See www.1dcil.org/resourcesTextCorp.aspx
Not publicly available yet
19CogNet contains only Band 1 Indic languages
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lexicon induction (BLI) with bilingual embedding
spaces, or the alignment of monolingual embed-
dings. This idea has been explored by other works
that seek to adapt it to low-resource settings or relax
its strong isometry assumption (Dou et al., 2018;
Patra et al., 2019), sometimes using a bootstrapping
strategy for embedding alignment and bilingual lex-
icon induction (Artetxe et al., 2018; Cao and Zhao,
2021). Fourrier et al. (2021) frame cognate induc-
tion as a machine translation problem, finding that
SMT beats NMT over smaller datasets; Kanojia
et al. (2019) identify cognate sets for (Band 1) In-
dian languages using the IndoWordNet combined
with lexical similarity measures, training neural
models over the resulting data.

3 Orthographic Distance for Cognate
Induction

3.1 Baseline Approach

A straightforward approach for CI involves using
orthographic distance as a stand-in for phonolog-
ical distance, motivated by the fact that Devana-
gari is orthographically shallow, that is, spellings
closely represent associated pronunciations. We
consider source words from Hindi; the best cog-
nate candidate in the other language is chosen by
minimizing orthographic distance. We use two dis-
tances: normalized edit distance (NED), that is, the
edit distance normalized by the maximum of the 2
word lengths, thus scaling to 0-1; and Jaro-Winkler
(JW) distance (Winkler, 1990), which weights dif-
ferences higher in the beginnings of strings.

For all approaches, we use a minimum source
frequency of 5, maximum lexicon size of 5000, and
we collect 5 best candidates per source word; this
ensures identical recall over all approaches given a
fixed source language corpus and test lexicon.

3.2 Expectation-Maximisation Approach

A limiting theoretical deficiency in the baseline
approach is that it treats substitutions of any two
characters equally (similarly for insertions and dele-
tions). By contrast, the expectation-maximisation
(EM) approach optimises substitution probabili-
ties iteratively while simultaneously learning cog-
nate pairs, given two lexicons, in an expectation-
maximization style algorithm. We call it EMT,
EM for “Transform probabilities".

Setup. Given two word lists (that may overlap)
W Ls and W L, let the set of all characters of the

source and target side be xs and yx; respectively.
We use a scoring function S(c;, ¢;), that contains
a “score” for replacing any character ¢; € xs with
cj € x¢;!! for a given character in a source word,
S is modelled as a transformation probability dis-
tribution over ;. S is initialized by giving high
probability (in practice, 0.5) to self-transforms and
distributing the remaining probability mass equally
over other characters.

Given that C'(a, b) is the number of times we
have seen a — b, and T'(a) is the total number of
times we have seen a on the source side, our score
is the conditional probability:

O(Cz‘, Cj)

S(C@,Cj) = T(CZ)

ey

We maintain a list of cognates found over all
EM loops, so that we only update model parameters
once per cognate pair. Note that a word may appear
in many different cognate pairs in this setup.

The EMT Algorithm is composed of two steps.

1) Expectation step. Given a candidate source
and target pair (s, t), we can find Ops(s, t), which
is the minimal list of the operations we need to per-
form to get from s to t. Each member in Ops
is of the type (c;,c;). In addition to “insert”/
“delete”/*replace” operations, we also use a “retain”
operation, for characters that remain the same; we
also want to estimate S(a, a) ¥ a.

The score for the pair (s, ) is computed as

C(Sv t) = - Z loglO(S(aa b))v (2)

(a,b)eOps

where the lower the { the more probable a pair
is a cognate. For a given s, we can then always
find the word that is the most probable cognate as
t = ming£s(C(s,t:)).

Note that in the training phase, we disallow s =
t, to mitigate exploding self-transform probabilities.
Finally, we choose the best K of all cognate pairs
i.e. those with the highest confidence, equivalent
to the lowest ( values.

2) Maximisation step. We update the model pa-
rameters based on the newly identified cognates in
the previous step. This is done by increasing the
counts of all observed edit distance operations:

C(a,b) := C(a,b)+1 V(a,b) € Ops(s,t)

""We model insertion and deletion as special cases of re-
placement, by introducing a null character.
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T(a):=T(a)+1  V(a,b) € Ops(s,t)

Inference is performed by choosing the K best
target candidates that minimise ((s, t) as described
above, now allowing self-matches.

4 Semantic Similarity for Cognate
Induction

Orthographic matching, even with tailored and
learnt substitution matrices for a given pair of lan-
guages, may be inherently inadequate, as it pays no
heed to the shared semantics of cognates. We use
bilingual subword embeddings (BE) to address this
problem in the following way: we use the semantic
space to narrow down possible candidates, and then
apply orthographic matching in order to select the
top K candidates. This is a two-stage approach
that relies mainly on two separate metrics: first, the
quality of semantic similarity judgments provided
by a semantic embedding space, and second, or-
thographic similarity judgments provided by the
distance/similarity metric we choose to use.

SEM_JW: BE+JW In this approach, we re-
trieve K nearest neighbours of each source word.
These candidates are scored by an interpolation of
semantic similarity and orthographic distance, with
equal weighting. We use cosine similarity for the
former, and JW for the latter. All words that are
not within the K nearest neighbours (50 in our ex-
periments) are discarded from consideration. The
idea is to mitigate the effect of chance orthographic
similarities.

For candidates, if F'(s) is the embedding vector
for string s, we minimize:

D(a,b) =1 — scos(E(a), E(b)) - J(a,b), (3)

where scos(vy, v2) captures the cosine similarity
(scaled to [0, 1]) between vectors v1 and vo, and
J(a,b) is the JW similarity.

SEM_EMT: BE+EMT We seek to combine
the benefits of iteratively learning transformation
probabilities with those of semantic spaces. This
approach is almost identical to that in Section 3.2,
except for the fact that only K = 50 nearest neigh-
bours of a source word in the semantic space are
used as its potential cognate candidates, both dur-
ing training and inference.

5 Data Collection

We apply the methods described above to the Indic
dialect continuum. Since these languages cover a

range of resource situations, we divide them into
three categories, Band 1, 2 and 3, based on amount
of resources, with Band 1 containing the best re-
sourced languages, and Band 3 containing (previ-
ously) zero-resource languages. See Table 1 for a
description of the languages under consideration.

5.1 Monolingual Corpora Crawl

Digital presence of Band 3 languages is low to non-
existent; automatic crawling for content faces the
primary problems of scarcity, script handling, and
automatic language identification between closely
related variants.

Kavita Kosh,!? translating roughly to “poetry
collection”, is an online collection of folksongs
and poems in 31 languages from the IA continuum.
Content is manually curated by the organization;
the poetry consists of works by early contempo-
rary writers, mostly from the late twentieth century.
All content is in Devanagari (transliterated in case
of e.g. Bengali content). The website categorizes
pieces by type, language, author/theme, and possi-
bly additional labels such as anthology. We collect
data for a total of 31 languages, of which we have
folksong data for 26 languages, and poetry data for
18 languages.'>'* We leave out 5 languages for
cognate induction: Bangla, Gujarati, Punjabi (writ-
ten primarily in a different script), Sanskrit and
Pali (extinct languages). The data is cleaned at a
character-level, we filter out words with any charac-
ter not within a specified UTF-8 code-point range
and tokenization is performed by white-space split-
ting. See total counts in tokens in Table 1. Poem
and token counts are reported in Appendix A.!3

5.2 Evaluation Data for Cognate Induction

Band 3 languages lack standardized gold bilingual
lexicons that may be used for supervision. After a
survey of possible digital resources for this purpose
(see Appendix B for a listing), we choose to use
Languages Home, an online language learning web-
site,!® containing translations of 80-90 artificially
simple English sentences (e.g. “He ate an apple”,

Zhttp: //kavitakosh.org/kk/

3We also include Korku as an outlier datapoint; it is not an
Indic language and therefore lacks the genealogical similari-
ties of the others.

“We preserve the distinction made by the website between
Khadi Boli and Hindi; the former is the closest to what we
consider modern Hindi.

'*We have been authorized by the organization to make
the folksongs data available but not the poetry. However, our
crawler is publicly available to use.

lf’https: //www.languageshome.com
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Language Primary Regions Language Data | Collected | # native
(Sub-)Family (Tok.) (Tok.) | speakers
BAND 1
Hindi Uttar Pradesh*, Bi- | IA Central, Western Hindi 1.86B | 7127997 250M7
har*, Rajasthan*,
13 others
Marathi Maharastra*, Goa* | IA Southern, Marathic 551M! 3327 73M
Nepali Nepal*, West Ben- | IA Northern, Eastern Pa- 14M? 692657 16M
gal* hari
Sindhi Sindh*, Pakistan, | IA Northwestern, Sindhi- 61M° 51458 25M
Rajasthan, Gujarat | Lahnda
BAND 2
Bhojpuri Bihar, Jharkhand* | IA, Bihari 259K3 197639 40M
Awadhi Bihar IA, Bihari 123K3 500079 38M
Magabhi Bihar, Jharkand* IA, Bihari 234K3 84754 40M
Maithili Bihar*, Jharkhand* | IA, Bihari 300K* 218339 14M
Brajbhasha Uttar Pradesh IA Central, Western Hindi 249K3 160039 M
BAND 3
Rajasthani Rajasthan IA Central, Gujarati- - 187724 50M
Rajasthani
Hariyanvi Haryana, Rajasthan | IA Central, Western Hindi - 233003 13M
Bhili Rajasthan, Gujarati, | IA Central, Bhil - 27326 3M
Madhya Pradesh
Korku Madhya Pradesh, | Austro-Asiatic, North - 15509 0.7M
Mabharashtra Munda
Baiga Chattisgarh IA Central, Chattisgarhi - 13848 UNK
Nimaadi Rajasthan, Madhya | IA Central, Bhil - 14056 2M
Pradesh
Malwi Rajasthan, Madhya | IA Central, Bhil - 9626 M
Pradesh
Bhadavari Jammu Kashmir IA Northern, Western Pa- - 990 0.1M
hari
Himachali Himachal Pradesh IA Northern, Himachali - 466 2M
Garwali Uttarakhand IA Northern, Central Pa- - 92668 6M
hari
Kumaoni Uttarakhand IA Northern, Central Pa- - 1028 2M
hari
Kannauji Uttar Pradesh IA Central, Western Hindi - 327 9.5M
Bundeli Madhya Pradesh, | IA Central, Western Hindi - 26928 5.6M
Uttar Pradesh
Chattisgarhi | Chattisgarh* IA Central, Eastern Hindi - 83226 18M
Bajjika Bihar IA, Bihari - 7414 12M
Angika Bihar, Jharkhand* | IA, Bihari - | 1265146 15M
Khadi Boli Delhi TA Central, Western Hindi - 4507 UNK

Table 1: Language bands. Note that Band 1 languages may have much more data available from other sources such
as Wikipedia; for Band 2 languages, we may have other sources with the same order of magnitude of data. “Primary
Regions” only mentions places in the Indian subcontinent; * indicates official status. Corpora from which data
counts are taken: '(Kakwani et al., 2020), 2(Yadava et al., 2008), 3(Zampieri et al., 2018), 4(Goldhahn et al., 2012)
5(Conneau et al., 2020). Speaker counts taken from (latest) 2011 census if available. t: probably inflated
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“He will come”) into 76 Indian languages (includ-
ing some Dravidian languages and IA languages
for which we do not have data). This resource has
the best coverage as well as consistency over Band
3 languages. Of these, 20 languages are of our
interest, including 12 Band 3 languages. This data
is considerably noisy, with problems including the
fact that it is written in “casual” Roman translit-
eration, inconsistent parenthetic explanations, and
code-switching.

We develop a pipeline to extract the aligned lexi-
cons. The pipeline consists of cleaning, transliter-
ation of the Indic side into Devanagari with indic-
trans (Bhat et al., 2015), parallelizing with Hindi
instead of English,!” and finally extracting word-
alignments over the given Hindi-parallel data with
FAST-ALIGN (Dyer et al., 2013).

The resulting lexicons have an average size of
153.6 elements, a minimum size of 118, and a max-
imum of 177. We manually evaluate the Hindi-
Marathi lexicon, finding that 73.5% of 130 source
words contain at least one correct target.'® De-
spite clear problems of noise, and acknowledging
that these lexicons should be post-edited by native
speakers, this is the best possible evaluation data
that we can use, given its coverage and uniform
format; however, we consider it as a relative rather
than absolute indicator of performance.

6 Experiments and Results

6.1 Probing the Monolingual Corpora

We seek to capture a high-level picture of the data
on the character, subword, and lexical level, com-
paring observations with language-specific char-
acteristics from prior knowledge as well as with
expected cross-lingual relationships. For this, we
perform 3 types of experiments.

Character-level. We inspect the symmetric KL-
Divergence'® over characters as well as char-gram
distributions of the languages. For the latter, the
final metric is simply the average over divergence
values for each char-gram length. Since IA lan-
guages are orthographically shallow, inspecting
such distributions of a language may give us a fairly

"Word alignment of Indic languages with Hindi sentences
as compared to English sentences is likelier to be accurate.

'8Note that a word equivalent used here may not be a cog-
nate even if a cognate does exist in the language.

¥Specifically, for probability distributions P and Q, we
calculate the symmetric quantity D 1. (P||Q) + Dr r(Q||P)

good idea of the general usage of consonants and
vowels in the language.

Lexical Overlap. If L; and L; are the filtered
lexicons of two languages 7 and j, we calculate
_ LNk

00 = Win( LT L) @
for all pairs. We apply a corpus-dependent fre-
quency threshold to the data: we discard all words
in a corpus with size Ny that occur with a fre-
quency less than T'(N7,) = logioo(Ng) — 1. The
exponent 100 and the constant —1 were chosen
such that the threshold does not grow too quickly,
and that datasets with less than 1000 tokens are
fully retained.

Subword-level. We calculate pairwise subword-
level overlap measures, captured by character
grams of length 2—4,%° thinking of subwords as
approximating morphemic units of the language.
Let’s define L;. as the inventory/lexicon of c-length
char-grams for language ¢, then the c-char-gram
overlap O;j. for languages ¢ and j is calculated
identically to lexical overlap in Eqn 4.

We would like to weight O;j. according to c,
capturing the idea that it is more of a similarity
signal for two languages to share c-char-grams for
a higher c. For this purpose, we calculate the “uni-
verse of possibilities” for each c; i.e. the total num-
ber U, of unique c-char-grams that occur in the
entire corpus. Since we want normalizing weights
that are inversely related to the probability of an
accidentally shared c-char-gram, we calculate sub-
word similarity as follows:

Ue
Oij =Y <Oijc' > UC> ®)

Finally, we also calculate pairwise symmetric
KL-Divergence over subword distributions.

Results. Figure 1 is generally representative of
our results across character, subword and lexical re-
sults, both overlap-based and information-theoretic
(see Appendix A for related heatmaps). The fol-
lowing general observations emerge from all the
above experiments. The Purvanchal and eastern
languages from Kannuaji to Angika (represented
in the bottom right), show the highest similar-
ity/overlap within themselves over all calculated
measures. This is expected and confirms that the

Different ranges yield the same trend.
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Figure 1: Overlap-based similarity over ¢-char-grams.

corpus represents the close genealogical and cul-
tural ties between these languages.

We see that Hindi has high lexical/subword-level
similarities with almost every language. This could
be the result of the widespread use of Hindi, or its
large dataset, including noise even after filtering.
We also notice that some languages have consis-
tently low lexical similarities with others. In the
case of Korku, this is expected, given that Korku is
a genealogical outlier. In other cases, such as with
Malwi and Himachali, this is probably because the
collected dataset is too small to be representative of
the vocabulary of these languages. In general, and
as expected, the eastern cluster as well as the west-
ern cluster of languages show close relationships
with each other.

6.2 Bilingual Embeddings

We use FASTTEXT (Bojanowski et al., 2017) for
training bilingual embeddings in a simple joint
manner, with minimum corpus frequency accord-
ing to the corpus-dependent threshold 7'(Ny), de-
scribed in Section 6.1; we hope to leverage its us-
age of subword information, given that that we
are dealing with data-scarce morphologically rich
languages.

Visualizations reveal that low-resource target
language words often cluster around each other,
whereas Hindi words and words belonging to both
languages are more meaningfully distributed. (See
Figure 2, Appendix C for other language plots.) A
possible diagnosis is an effect pointed out by Gong
et al. (2018) who show that low-frequency words
tend to cluster together regardless of their seman-
tics. This, along with the fact that we are unfairly

bhojpuri+hindi-urdu JOINT BILINGUAL EMBEDDINGS
L o
= hindi-urdu

Dim2

Dim1

Figure 2: t-SNE visualization (Van der Maaten and
Hinton, 2008). Bhojpuri words cluster together.

applying the same minimum frequency threshold
(better suited for the high-resource anchor) for both
languages by mixing the data, may explain the poor
quality of the target language embeddings. In order
to mitigate the problem, we upsample the target
language data to bring it to the same order of mag-
nitude as the Hindi data.

Results We use the Nepali WordNet to extract a
Hindi—Nepali bilingual lexicon, and we calculated
Recall@50 (given 50 nearest neighbours). We also
use basic visualizations and a crosslingual integra-
tion metric c/_integ, which measures the fraction
of nearest neighbours per word that belong to the
other language, to compare the two sets of embed-
dings, on average. That is, if vg(w, K) is the set
of K nearest neighbours of w in the embedding
space F and 1, (L) is a sample of n words from a
language with lexicon L, then

1
cl_integis = T E g I(w' € Ly)
n .
we w/

¥n(L1) I/E(ufK)

We report scores as a percentage, with n = 500
and K = 10.

The UPSAMPLE Nepali model has better
Recall@50 for the Hindi—Nepali gold lexicon (33%
vs. 29%).2! Representing cl_integ scores as a pair
of integration values in either direction, i.e. (target-
Hindi, Hindi-target), we find that the UPSAMPLE

2IWe also evaluated differently sized subsets of Nepali data
for over the WordNet lexicon, which yielded consistent results;
see Appendix C for details and more visualizations.
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NED JW EMT SEM_JW SEM_EMT Gold
1 ®E  hE bl G2l el DBEATE
2 ®ENl BEN  bEdl el G
3 wE  FE Pl PETs Pef .
4 VUdbgl hgHl Tdbgl PpedH ofuild -
5 gHT el - ®E qBT -

Figure 3: Hindi source word: /koha:/ (said). SEM_JW
approach performs the best, resulting in Bhojpuri equiv-
alents (except the third prediction) and inflections.
SEM_EMT also results in semantically correct out-
puts (for all but the fourth prediction). The NED/JW
approaches produce orthographically close words that
are semantically unrelated, e.g. /koha:/ (where).

models show scores of (43%, 27%), and the JOINT
models show (91%, 14%), averaged over all lan-
guages. We see that the UPSAMPLE models show
less skew by direction, and higher scores for the
latter direction (which is what we use).

Finally, visualizations for different languages
(see Appendix C.1 for an example) show the tar-
get language words to be better distributed in the
UPSAMPLE approach, with more meaningful col-
locations. All of these are good indications that
upsampling did indeed improve the quality of the
bilingual embedding space. We use these for the
subsequent approaches.

6.3 Cognate Induction

Our main results are presented in Table 2. There is
no clear quantitative winner; SEM_JW performs
slightly better than the other approaches on aver-
age. Cognate identification methods usually work
at a much higher accuracy (Beinborn et al., 2013;
Fourrier et al., 2021), 70-90%. The low accuracies
that we record are due to a number of factors: a
much lower resource range, lack of aligned word
lists, lemmatizers, or supervision and evaluation, as
well as noise in the evaluation data. While most lit-
erature assumes lemmatized word lists as input for
this task, we do not have lemmatizers for these lan-
guages and work with fully inflected word forms;
this is a further challenge for our CI strategies.

Qualitatively, we observe significant differences
across models. See Figure 3 for example outputs.

NED/JW: The NED/JW approaches are often
able to capture the correct answer for longer words,

because the closest candidate in edit distance is
likely to be in the ballpark for closely related lan-
guages. However, we also often get outputs (es-
pecially the second or third prediction) that are
entirely off, as is expected from this naive idea.

EMT: Taking a look into the substitution dis-
tributions learnt by EMT, we see that it learns
some expected relationships e.g. the relationship
between /i/ and /i:/, shifts between other vowels,
or the fact that some rarely used characters are
likely to be deleted. However, the approach is not
able to produce good final outputs. We attribute this
to a bad seed; this approach basically depends on
the seed obtained from simple NED to get started,
and if it meanders down a mistaken path, that error
tends to magnify itself due to the iterative nature of
the algorithm, sometimes resulting in even worse
final outputs than simple NED/JW.

SEM_*: The SEM_* approaches are intended
to address the fundamental inadequacy in the above
approaches: the fact that they do not exploit the
shared semantics of cognates. SEM_JW is accord-
ingly better at producing outputs that are semanti-
cally related, besides the required cognates. Top
predictions tend to be similar to those of NED/JW,
but SEM_JW produces a better collection of out-
puts, from the perspective of bilingual lexicons, es-
pecially since it is less biased against a higher num-
ber of substitutions. However, for many words, the
method produces rather Hindi-like outputs, proba-
bly as a result of the persisting problem of language-
wise clustering in the spaces.”> SEM_EMT still
suffers from the same problems as before; we see
therefore that a stronger orthographic distance met-
ric such as JW is better able to spot the cognate
from semantically related words.

7 Discussion and Conclusion

We analyse the performance of the approaches with
respect to the different facets of cognacy.

Variant inflectional endings: Learning the cor-
respondences between inflections in a dialect pair
is a crucial task when it comes to cognate identifi-
cation for fully inflected word forms. In terms of
producing the right answer, we see an intuitive split
between common and rare words when it comes to
other approaches. For common words, SEM_JW

2This problem may be mitigated with a higher target fre-
quency threshold.
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Total Found NED JWM EMT SEM_JW SEM_EMT
Kumaoni 138.0 118.0 51 4.2 5.1 5.1 4.2
Marathi 138.0 116.0 7.8 5.2 4.3 1.7 34
Bajjika 149.0 123.0 1338 154 138 14.6 114
Malwi 153.0 1250 248 224 200 20.0 15.2
Koraku 140.0 116.0 1.7 0.9 1.7 1.7 0.9
Bundeli 139.0 117.0 265 256 256 30.8 26.5
Bhil 156.0 128.0 195 211 17.2 18.8 18.0
Sindhi 1340 1140 105 13.2 79 10.5 9.6
Magahi 159.0 1290 178 209 186 20.9 17.1
Chattisgarhi  136.0  115.0 252  26.1 243 28.7 26.1
Garwali 143.0 1200 15.8 158 15.0 15.8 14.2
Brajbhasha  155.0 127.0 339 346 323 339 323
Rajasthani 144.0 120.0 30.8 29.2 275 31.7 30.0
Bhojpuri 139.0 1150 313 28.7 322 304 29.6
Maithili 140.0 117.0 179 17.1 16.2 18.8 20.5
Hariyanvi 153.0 126.0 38.1 413 373 43.7 429
Awadhi 148.0 123.0 28.5 26.8 220 26.0 252
Nepali 105.0 95.0 12.6 12.6 9.5 9.5 7.4
Angika 141.0 116.0 21.6 20.7 216 224 21.6
Average 1426 1189  20.1 202 185 20.3 18.7

Table 2: Results for CI, precision (%) over bilingual lexicons presented in Section 5.2. A precision point is calculated
per source word such that any predicted target exists in the evaluation target set.

is likely to perform better than the other approaches
because the word is well embedded and the correct
word form is likely to be nearby in the semantic
space, and subsequently selected by JW. In these
cases, especially for short words, NED/JW are
likely to be derailed by irrelevant words.

Correct semantics: We would like to have se-
mantically sensible outputs even if the predicted
words are not cognates. Naturally, this is per-
formed best by the SEM _* approaches, although
the NED/JW approaches do better than expected.

Sound changes: Sound change is one of the fun-
damental phenomena of cognacy, and can be un-
derstood in the case of borrowing in the sense of
changed pronunciations. Unfortunately, we do not
have the theoretical data of attested sound changes
across these dialects in order to be best able to
check which approach performs best in this respect.

The SEM_JW produces overall the most re-
spectable outputs, although this is more true for
common words. The main inadequacy of all these
approaches is their inability to capture language-
pair specific correspondences. An extension of this
work could focus on refining something akin to
the SEM_EMT, which has the most theoretical
potential in this direction. Improvements could in-
clude searching the hyperparameter space for better
priors. An investigation into better bi/multilingual
spaces is crucial to generalize good performance

over rare words; future work can look into using
orthographic similarities explicitly while training
the space itself, as well as the utility of zero-shot
multilingual contextual embeddings for this task.

We have presented a new approach to unsuper-
vised cognate identification from monolingual cor-
pora under conditions of asymmetric data scarcity.
We collected monolingual data for 26 Indian lan-
guages of the Indic dialect continuum, 16 of which
previously zero-resource, as well as synthetic eval-
uation data. Our experiments show the benefits
of combining weak semantic signals from static
bilingual embeddings with orthographic cues.
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Figure 4: Character-level symmetric KL-Divergence for
all languages

A Data Collection and Probing

We record counts of tokens from the folksongs and
poetry in Table 3.

A.1 Character-level probes

We inspect a table of character distributions over
the language data after it has been cleaned. As
expected, the commonest and most widely used
consonants and vowels in the IA family form the
bulk of the distributions of most languages, e.g.
/t/, /0], [a/, Je/. We see some conspicuously low
numbers, e.g. /[/, /v/, and /n/, fairly common
consonants in the rest of the languages, seem to
be very little used (in this corpus) from Kannauji.
This is in part corroborated by Dwivedi and Kar
(2016), who say that the first two are not native to
Kannuaji but borrowed from Hindi.

We also see spikes in more endemic consonants
as expected, for example /|/ only shows reasonable
percentages in Marathi and Nimaadi. Finally, the
“avagraha” symbol /s/, used in Sanskrit to denote
the deletion of the inherent vowel of the previous
consonant, has only been inherited into the scripts
of certain languages like Nepali and Magahi; in
Hindi, it is sometimes used to denote the elonga-
tion of the previous vowel especially in lyrical texts.
See Figure 4 for a heatmap over pairwise symmet-
ric KL-divergence for character distributions.

A.2 Lexical measures

See Figure 6 for a depiction of pairwise lexical
overlap. We also take a “close-up” look at sections
of the pairwise results for language clusters that
we expect to have closer relationships within the
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Figure 5: Pairwise KL-Divergence over distributions of
i-char-grams. Lower is better.

cluster. See Figures 7a,7b,7c. There are 3 such geo-
graphically motivated bands that we are interested
in.

Firstly, we observe the “north” band, includ-
ing Sindhi, Haryanvi, Punjabi, and the Pahari lan-
guages. Then we have the “north-central” band,
which follows the heartland of the Gangetic plains,
from Rajasthan (Rajasthani) across Delhi (Khadi
Boli), Uttar Pradesh (Awadhi, Kannauji), Chattis-
garh (Chattisgarhi), and Bihar (Bhojpuri, Magahi,
Angika). Finally, we have the “central” band across
southern Rajasthan (Bhili), Madhya Pradesh (Ni-
maadi, Malwi) and Maharashtra (Marathi).

We see that the “north-central” band indeed has
the highest inter-similarities with some pairs (even
excluding Hindi) showing similarities at around
70% (Bundeli-Angika, Kannauji-Awadhi). The
“north” band follows; we see that Haryanvi and
Nepali generally have high overlap with surround-
ing languages. Finally, the “central” band shows
Rajasthani as having high lexical similarity with
languages spoken in nearby regions, e.g. Bhili
and Nimaadi; this makes sense, since Rajasthani
is a catch-all for many related languages with high
influence over nearby languages. Baiga shows gen-
erally low similarities except with Chattisgarhi, of
which it is supposed to be a variant.?

Also see a dendrogram induced from lexical sim-
ilarity measures in Figure 8. We see that some
languages expected to be similar are grouped in
the same subtrees e.g. Haryanvi and Rajasthani,
{ Awadhi, Angika, Bhojpuri}, as well as { Nimaadi,

Bhttps://glottolog.org/resource/languoid/id/
baig1238
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Language Band Folksongs Poetry  Folksongs Poetry Total Total

tokens tokens Pieces tokens
Rajasthani 3 67 1790 7404 180320 1857 187724
Gujarati 1 14 624 1795 73363 638 75158
Himachali 3 3 0 466 0 3 466
Hindi-Urdu 1 1 54408 100 7127897 54409 7127997
Magahi 2 340 376 37587 47167 716 84754
Awadhi 2 47 1333 4942 495137 1380 500079
Punjabi 1 754 0 69595 0 754 69595
Koraku 3 177 0 15509 0 177 15509
Baiga 3 35 0 13848 0 35 13848
Nimaadi 3 157 0 14056 0 157 14056
Khadi Boli 3 42 0 4507 0 42 4507
Bhojpuri 2 131 1275 20350 177289 1406 197639
Garwali 3 128 449 33380 59288 577 92668
Chattisgarhi 3 92 378 33504 49722 470 83226
Brajbhasha 2 83 1441 8883 151156 1524 160039
Bhil 3 155 0 27326 0 155 27326
Sanskrit 3 2 248 184 95450 250 95634
Angika 3 96 6773 21419 1243727 6869 1265146
Hariyanvi 3 554 930 49122 183881 1484 233003
Kannauji 3 6 0 327 0 6 327
Bundeli 3 326 0 26928 0 326 26928
Bangla 1 12 0 838 0 12 838
Malwi 3 129 0 9626 0 129 9626
Marathi 1 5 30 1412 1915 35 3327
Kumaoni 3 9 0 1028 0 9 1028
Bhadavari 3 8 0 990 0 8 990
Nepali 1 0 4753 0 692657 4753 692657
Maithili 2 0 1552 0 218339 1552 218339
Pali 3 0 27 0 5859 27 5859
Bajjika 3 0 71 0 7414 71 7414
Sindhi 1 0 500 0 51458 500 51458

Table 3: Showing crawled corpus counts for all collected languages.
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Malwi, Bhili, and Baiga}. More distantly related
languages like Gujarati, Pali, Bangla and Sanskrit
are placed on the outer parts of the tree. However,
we would have also expected to see Khadi Boli
closer to Haryanvi, and Bajjika closer to Angika
and Bhojpuri.

sindhi- 0-5

-0.1

Figure 6: Lexical Overlap, all languages

A.3 Subword-level

See Figure 5 for a heatmap capturing pairwise sym-
metric KL-Divergence over subword distributions.
Trends are similar to those seen in overlap-based
measures; however, we see that the similarities
against Hindi are lower, suggesting lower influence
of corpus size on the measure.

B Evaluation Data

B.1 Existing resources

For some Band 1 languages (specifically, Hindi,
Nepali, and Marathi), we have WordNets from the
IndoWordNet project (Sinha et al., 2006; Debasri
et al., 2002), from which we can extract equivalents
across languages. We are not concerned, therefore,
with searching for multilingual lexical resources
for Band 1 languages. For some Band 2 languages
(Bhojpuri, Magahi, and Maithili), WordNets are
under way (Mundotiya et al., 2021) but as yet un-
available.

For Band 3, as discussed, we do not have any pre-
existing bilingual or multilingual lexical resources
in a convenient format. We therefore look for bilin-
gual lexicons in the “wild”; that is, blogs, websites,
scanned dictionaries, etc. We list all such raw ma-
terial that we found that could be potentially useful
for this purpose in Table 4. The names of these
resources are listed separately in Table 5.

We exclude a few other resources we found due
to too small a length (< 30 word pairs), or too
unstructured a format; these are unlikely to be of
much help to the NLP community.

B.2 Overview of existing resources

The listed resources cover 4 Band 2 languages and
7 Band 3 languages: this is counting “Bihari” as
the same as Bhojpuri, and Rajasthani the same as
Marwari. Note that these resources may cover more
languages; we have only listed the ones relevant
to this project in the “Languages” column. These
resources have widely different domains, content
types, and formats.

Four of the listed websites disable copying and
webpage inspection, discouraging crawling or re-
using their data; this means that 3 Band 3 languages
are once more resource-less.

Content-wise, we see that many resources have
explanations on the target side (Hindi or English),
rather than equivalents. For this project, that means
that the resource is not really ready-to-use as a
bilingual lexicon, but will require further work in
terms of extracting equivalents from the explana-
tions for the target side, or recasting it as a lexicon
of similar words on the target side, etc. R11 for Ra-
jasthani also requires transliteration for the source
side before it is useful. Finally, we note that even
the resources listed as containing equivalents in
Table 4 usually contain a mixture of equivalents,
explanations, and examples. That is, each resource
would require considerable processing, possibly
manual, to yield a relatively noiseless bilingual
lexicon.

As we discussed, for the purposes of this project,
we would like to have not only bilingual lexicons
per language with an anchor (preferably Hindi),
but also considerable intersections between the lex-
icons to allow the potential of testing multilingual
interactions beyond Hindi-lang tasks. This too,
unfortunately, is likely to be a problem when gath-
ering resources from different sources with rather
small lists, although we can hope to find some com-
mon words.

Given the above problems, including potential
extensive manual efforts to the above individual
resources usable, probable multilingual mismatch,
and low coverage of Band 3 languages despite it all,
we decided not to attempt garnering lexicons from
these different resources for individual languages
with the intention of putting them together.
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Re- Languages Anchor Content notes Format Approx.

source language length

R1 Rajasthani” Eng.” Explanations in En- | Simple list >500

glish

R2 Rajasthani Hin?, Eng" Hindi equivalents, | Webpages by initial | > 500

English explanation | letter
R3 Angika? Hin?, Eng” Explanations Each word on diff. | 102
page, disabled
copying

R4 Bundeli? Hin? Equivalents Simple listing, dis- | Few 100s

abled copying

RS Haryanvi? Hin? Equivalents Simple list < 100

R6 Chattisgarhi? Hin? Explanations Webpage per word, | < 100

disabled copying

R7 Chattisgarhi? Hin? Equivalents List, disabled copy- | Few 100s

ing

RS Kumaoni? " Hin?, Eng” | Equivalents, catego- | Simple list < 100

rized by themes

RO Brajbhasha? Hin? Equivalents/ expla- | Mixture of para- | Few 100s

nations graphs and lists,
rather disorganized

R10 Bhojpuri? Hin? Mostly equivalents, | Simple list 400

also Hindi syn-
onyms

R11 Hindi", - Cognates Swadesh list 207

Marathit,
Nepali’,
“Bihari”,
Magahi®?,

Marwari’

R12 {Bhojpuri, Gar- | Eng" Short phrase trans- | Simple list 45 phrases
wali, Hindi, lations (on avg.)
Marathi,

Nepali, Ma-
gahi, Maithili,
Sindhi } %

Table 4: Raw resources found for different languages. The superscripts ¢, ™ and ? indicate that the script used for the
language is Devanagari, Roman or IPA respectively. The lexicon length given is an approximation because some of
these formats make it difficult to get the exact number of entries.
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Figure 8: Dendrogram based on lexical overlap.

RI11 is naturally exactly what we would have
liked to find, although, again, it may require translit-
eration from IPA from most languages to be useful
(and for Hindi, from a “casual” Roman script). The
main problem, however, is that it deals with 3 Band
1 languages (for which we already have lexicons),
2 Band 2 languages, and only 1 Band 3 language,
making it a low-coverage resource for our situation.

RI2 is another interesting multilingual resource,
highly similar to the resource that we finally de-
cided to use, discussed in Section 5.2.

Note that a couple of these resources are valuable
on their own, e.g. RI0 for Bhojpuri is extensive,
simply formatted, and relatively neat and consis-
tent; it will not require too much manual work to
convert it into a usable resource for linguists. Sim-
ilarly, R1 and R2 in Rajasthani provide the raw
material for good bilingual lexicons, although they
will first require a good quality transliteration into

Devanagari for the Rajasthani side.

B.3 Collected data

Example of parallel sentence from “Languages
Home™:

English: Will you give me your pen?
Hindi: Kya tum mujhe apna pen doge?

We see that the word “pen” is code-switched in
Hindi, rather than using the Hindi word “kalam”.
However, in other languages such as Bagheli, we
see the word “kalam” used instead.?* Therefore, al-
though the word “kalam” exists in both languages,
this relationship is not obscured because the trans-

2By itself, this difference is not a bad thing given that the
purpose of this website is language learning. In Hindi, the
given parallel sentence is absolutely natural-sounding - people
do often code-switch the word “pen”. Code-switching with
English may be less common in less urban languages such
as Bagheli; thus accounting for the use of the native word
“kalam”.
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Resource

Name

R1 Rajasthani Language Dictionary | Rangrasiya

R2 Glossary of Rajasthani Language - Jatland Wiki

R3 Angika Shabdkosh

R4 Bundeli Shabdkosh

RS (Blog post) Learn Harayanvi Language
Through Hindi Language

R6 Chattisgarhi-Hindi online dictionary

R7 (Post) HS MiXX Entertainment

RS Kumaoni Boli

R9 (Blog post) Learn Brajbhasha Vocabulary

R10 (Blog post) Bhojpuri dictionary

R11 (Blog post) Swadesh Word List of Indo-
European languages

R12 Omniglot

Table 5: Resource websites: indexed according to Table 4

lator chose to use a different equivalent instead (in
this case, code-switched, but not necessarily so in
other sentences).

We report per-language statistics of the Hindi-
parallel transliterated data in Table 6.

C CI: Using semantic similarity

C.1 Training embeddings: Visualizations

We use t-SNE (Van der Maaten and Hinton, 2008)
to obtain the following visualizations; we per-
formed these for joint models of Bhojpuri, Ra-
jasthani, Hariyanvi, Magahi, and Korku (with
Hindi-Urdu). See Figure 10 for Bhojpuri (the oth-
ers are similar).

The main observations we can make for this
type of model, common to all the languages, is that
the low-resource target language words seem to be
clustered around each other, whereas Hindi words
and words belonging to both languages are better
situated according to their semantics.

For the UPSAMPLE models, we visualize the
same words for these languages; we present a rep-
resentative (Bhojpuri) plot in Figure 10 (lower fig-
ure). While it is not clear from the visualization that
the JOINT_UPSAMPLED models are less language-
wise clustered than the JOINT, the target language
words seem at least much better distributed, and we
see more meaningful collocations (both monolin-
gual in the target language, and cross-lingual) that
we did not see before, such as “we”, “our” (cross-
lingual) in the Bhojpuri. However, it is difficult to
say from such visualizations which space is better

Cognates/borrowings, Hindi-Nepali direction
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Figure 9: Recall@ K for the bilingual FASTTEXT Nepali
embeddings.

embedded.

C.2 Evaluating embeddings
C.21

See Table 7 for the evaluation for JOINT as well as
UPSAMPLE embeddings for all languages over the
cl_integ metric.

Measuring Integration: cl_integ

C.2.2 Evaluating embeddings: Nepali
WordNet

As mentioned before, we do in fact have Word-
Nets from the IndoWordNet project (Kakwani et al.,
2020) for Nepali and Marathi, from which bilin-
gual lexicons can easily be extracted. While the
Marathi dataset in our current collection is not very
representative as previously discussed, we eval-
uate the Nepali-Hindi bilingual space using the
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Language Total in  Unique in Total in  Unique in Common Frac. Frac.

corpus corpus test test  in corpus covered covered
and test in in test?
corpus’

Brajbhasha 156986 30194 299 161 93 0.12 0.65
Angika 1253545 91757 310 165 102 0.09 0.60
Maithili 218491 41434 273 147 81 0.09 0.54
Magahi 79405 16942 326 172 81 0.11 0.64
Hindi-Urdu 7100394 197355 336 171 165 0.25 0.98
Awadhi 490877 53103 281 145 109 0.05 0.82
Rajasthani 187708 34360 312 161 124 0.11 0.84
Hariyanvi 232526 27431 298 156 123 0.13 0.86
Bhil 27246 5557 319 177 68 0.12 0.48
Chattisgarhi 83073 14463 267 134 95 0.16 0.76
Nepali 688865 104687 203 118 65 0.04 0.62
Bajjika 7412 2788 317 149 55 0.13 0.53
Koraku 15508 2278 262 132 17 0.04 0.23
Malwi 9626 2883 325 163 51 0.12 0.46
Sindhi 52659 11850 250 141 55 0.09 0.51
Bhojpuri 196513 34051 303 146 110 0.16 0.83
Garwali 90234 22655 275 161 86 0.07 0.64
Marathi 3109 1685 230 130 29 0.05 0.37
Kumaoni 1013 441 250 171 16 0.10 0.16
Bundeli 26902 7991 272 147 82 0.12 0.63

Table 6: Evaluation token data statistics post-transliteration, after aligning with Hindi. ! This reports the fraction of
the corpus (token-wise) that is contained in the test, vice-versa for 2.
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Figure 10: t-SNE (Van der Maaten and Hinton, 2008) Visualization of Bhojpuri-Hindi bilingual space, JOINT (up)

and UPSAMPLE (down)
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J_12 J21 U_12 U_21
Sindhi 053 023 031 033
Rajasthani 0.78 033 062 040
Punjabi 0.58 0.19 040 0.27
Hariyanvi 0.75 030 066 0.36
KhadiBoli 099 0.18 0.76 0.13
Sanskrit 033 028 0.12 0.26
Bhil 092 024 053 034
Koraku 059 0.13 034 0.10
Baiga 097 021 073 031
Nimaadi 0.87 0.16 047 021
Malwi 0.88 0.14 045 0.13
Marathi 095 020 032 0.15
Bhadavari 1.00 0.12 0.81 0.30
Himachali 1.00 0.07 048 0.07
Garwali 0.64 025 025 0.39
Kumaoni 097 0.09 074 0.05
Kannauji 1.00 0.04 0.66 0.14
Brajbhasha  1.00 032 0.74 0.38
Bundeli 099 021 058 036
Awadhi 0.69 034 045 043
Chattisgarhi  0.86 0.29 0.51  0.36
Nepali 037 039 031 048
Pali 0.57 0.11 0.07 0.10
Bhojpuri 091 032 0.74 041
Bajjika 1.00 020 0.74 0.30
Magahi 0.84 021 044 042
Maithili 0.85 038 057 049
Angika 0.63 044 050 040

Table 7: cl_integ values reported as 0-1 measure for
both sets of embedding spaces, in both directions. 12
indicates that we consider the non-Hindi language as
source, and look for the fraction of nearby Hindi words,
21 is vice versa.

#to- integ_12integ_21 bl_12 bl_21

kens
JOINT

5000 0.43 0.37 0.30 0.21
50000 0.33 0.38 0.29 0.21
100000  0.29 0.37 0.29 0.20
500000 0.33 0.44 0.29 0.20
UPSAMPLE
500000  0.29 0.42 0.33 0.15

Table 8: Recall@50 for Nepali data splits of different
sizes against Hindi-Nepali lexicon obtained from In-
doWordNet. 12: Nepali as source, 21: Hindi as source.
We also show results for cl_integ and bilingual lexicon
tests for UPSAMPLE Nepali model

Nepali WordNet. We used the WordNet to extract
a Hindi/Urdu-Nepali bilingual lexicon, and we cal-
culated Recall@ K|, in the following way: for each
Hindi-Urdu word, we extract its K nearest neigh-
bours. If any of those are the gold target, we count
a full point for that word. Finally, we report the
total such points as a percentage of the length of
the gold bilingual lexicon.

See the results for the joint Nepali model in Fig-
ure 9.

Nepali is in the highest range of availability in
our current dataset, so we do not expect these re-
sults to be representative for other languages with
less data. We therefore also look at these results
over artificially smaller cuts of the Nepali dataset.
See Table 8. We also report these numbers for the
UPSAMPLE Nepali model (all data included) in the
same table.

C.2.3 Discussion

There are a couple of interesting things to note
about the above results. We see that cl_integ
shows high values from the LRL to Hindi direc-
tion, but not vice versa. Nepali happens to be an
outlier in this case, which is perhaps unfortunate
since it is unlikely to be representative of the other
languages, and it is the only language we can eval-
uate with more detail.

We notice in Table § that the results for the Word-
Net bilingual lexicon test seem to be stable across
different data splits. This is rather suspicious; how-
ever, a possible explanation is that the positives
accrue from frequent words anyway, possible also
present in the Hindi-Urdu data; therefore, reduc-
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ing the number of Nepali tokens does not seem to
affect this number. Note that this is not at all an
indication that the resulting embeddings are of the
same quality, simply that this metric is not able to
capture possible underlying damage.
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Abstract

Warning: This paper has contents which may
be offensive, or upsetting however this cannot
be avoided owing to the nature of the work.

With the rise of online hate speech, automatic
detection of Hate Speech, Offensive texts as
a natural language processing task is getting
popular. However, very little research has been
done to detect unintended social bias from these
toxic language datasets. This paper introduces
a new dataset ToxicBias curated from the ex-
isting dataset of Kaggle competition named
"Jigsaw Unintended Bias in Toxicity Classifica-
tion". We aim to detect social biases, their cat-
egories, and targeted groups. The dataset con-
tains instances annotated for five different bias
categories, viz., gender, race/ethnicity, religion,
political, and LGBTQ. We train transformer-
based models using our curated datasets and
report baseline performance for bias identifica-
tion, target generation, and bias implications.
Model biases and their mitigation are also dis-
cussed in detail. Our study motivates a system-
atic extraction of social bias data from toxic
language datasets. All the codes and dataset
used for experiments in this work are publicly
available'.

1 Introduction

In the age of social media and communications, it is
simpler than ever to openly express one’s opinions
on a wide range of issues. This openness results in a
flood of useful information that can assist people in
being more productive and making better decisions.
According to statista 2, the global number of active
social media users has just surpassed four billion,
accounting for more than half of the world’s popu-
lation. The user base is expected to grow steadily
over the next five years. Various studies (Plaisime

“These authors contributed equally to this work

1https ://github.com/sahoonihar/ToxicBias_
CoNLL_2022

2https ://www.statista.com/statistics/278414/
number-of-worldwide-social-network-users/

Events today in Spain show once again we
have far more to fear from the followers of
Islam than the alt right.

Prejudiced? Yes

Religion
Muslims

bias implication? Prejudice against Islam

Figure 1: An illustrative example of ToxicBias. During
the annotation process, hate speech/offensive text is
provided without context. Annotators are asked to mark
it as biased/neutral and to provide category, target, and
implication if it has biases.

et al., 2020) say that children and teenagers, who
are susceptible, make up a big share of social me-
dia users. Unfortunately, this increasing number
of social media users also leads to an increase in
toxicity (Matamoros-Ferndndez and Farkas, 2021).
Sometimes this toxicity gives birth to violence and
hate crimes. It does not just harm an individual,;
most of the time, the entire community suffers as
due to its intensity.

We have different perspectives based on race,
gender, religion, sexual orientation, and many other
factors. These perspectives sometimes lead to bi-
ases that influence how we see the world, even if we
are unaware of them. Biases like this can lead us to
make decisions that are neither intelligent nor just.
Furthermore, when these biases are expressed as
hate speech and offensive texts, it becomes painful
for specific communities. While some of these bi-
ases are implied, most explicit biases can be found
in the form of hate speech and offensive texts.

The use of hate speech incites violence and
sometimes leads to societal and political instability.
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BLM (Black Lives Matter) movement is the conse-
quence of one such bias in America. So, to address
these biases, we must first identify them. While
the concepts of Social Bias and Hate Speech may
appear to be the same, there are subtle differences.

This paper expands on the above ideas and pro-
poses a new dataset ToxicBias for detecting social
bias from toxic language datasets. The main contri-
butions can be summarized as follows:

¢ To the best of our knowledge, this is the first
study to extract social biases from toxic lan-
guage datasets in English.

* We release a curated dataset of 5409 instances
for detection of social bias, its categories, tar-
gets and bias reasoning.

* We present methods to reduce lexical overfit-
ting using counter-narrative data augmenta-
tion.

In the following section we discuss various es-
tablished works which are aligned with our work.
Section 3 provides information about our dataset,
terminology, annotation procedure, and challenges.
In section 3, we describe our tests and results, fol-
lowed by a discussion of lexical overfitting reduc-
tion via data augmentation in section 5. Section 6
discusses the conclusion and future works.

2 Related Work

Offensive Text: Unfortunately, offensive content
poses some unique challenges to researchers and
practitioners. First and foremost, determining what
constitutes abuse/offensive behaviour is difficult.
Unlike other types of malicious activity, e.g., spam
or malware, the accounts carrying out this type of
behavior are usually controlled by humans, not bots
(Founta et al., 2018).The term “offensive language’
refers to a broad range of content, including hate
speech, vulgarity, threats, cyberbully, and other
ethnic and racial insults (Kaur et al., 2021). There
is no single definition of abuse, and phrases like
"harassment," "abusive language," and "damaging
speech” are frequently used interchangeably.

Hate Speech: Hate Speech is defined as speech
that targets disadvantaged social groups in a way
that may be damaging to them. (Davidson et al.,
2017). Fortuna and Nunes (2018) defines Hate
speech as follows: "Hate speech is a language that
attacks or diminishes, that incites violence or hate
against groups, based on specific characteristics

>

such as physical appearance, religion, national or
ethnic origin, sexual orientation, gender identity
or other, and it can occur with different linguistic
styles, even in subtle forms or when humor is used".

Bias in Embedding: The initial works to explore
bias in language representations aimed at detecting
gender, race, religion biases in word representa-
tions (Bolukbasi et al., 2016; Caliskan et al., 2017,
Manzini et al., 2019). Some of recent works have
focused on bias detection from sentence represen-
tations (May et al., 2019; Kurita et al., 2019) using
BERT embedding.

In addition, there have been a lot of notable ef-
forts towards detection of data bias in hate speech
and offensive languages (Waseem and Hovy, 2016;
Davidson et al., 2019; Sap et al., 2019; Mozafari
et al., 2020). Borkan et al. (2019) has discussed the
presence of unintended bias in hate speech detec-
tion models for identity terms like islam, lesbian,
bisexual, etc. The biased association of different
marginalized groups is still a major challenge in the
models trained for toxic language detection (Kim
et al., 2020; Xia et al., 2020). This is mainly due to
the bias in annotated data which creates the wrong
associations of many lexical features with specific
labels (Dixon et al., 2018). Lack of social context
of the post creator also affect the annotation pro-
cess leading to bias against certain communities in
the dataset (Sap et al., 2019).

Social bias datasets: More recently, many datasets
(Nadeem et al., 2021; Nangia et al., 2020) have
been created to measure and detect social biases
like gender, race, profession, religion, age, etc.
However, Blodgett et al. (2021) has reported that
many of these datasets lack clear definitions and
have ambiguities and inconsistencies in annota-
tions. A similar study have been done in (Sap
et al., 2020), where dataset has both categorical
and free-text annotation and generation framework
as core model.

There have been few studies on data augmen-
tation (Nozza et al., 2019; Bartl et al., 2020) to
decrease the incorrect association of lexical charac-
teristics in these datasets. Hartvigsen et al. (2022)
proposed a prompt based framework to generate
large dataset of toxic and neutral statements to re-
duce the spurious correlation for Hate Speech de-
tection.

However, no study has been done for detect-
ing social biases from toxic languages, which is
a challenging task due to the conceptual overlap
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between hate speech and social bias. Using a thor-
ough guideline, we attempt to uncover harmful bi-
ases in toxic language datasets. The curated dataset
is discussed in length in the next section, as are the
definitions of each category label and the annota-
tion procedure.

3 ToxicBias Dataset

We develop the manually annotated ToxicBias
dataset to enable the algorithm to correctly iden-
tify social biases from a publicly available toxic-
ity dataset. Below, we define social bias and the
categories taken into account in our dataset. The
comprehensive annotation process that we use for
dataset acquisition is then covered.

3.1 Social Bias

People typically have preconceptions, stereotypes,
and discrimination against other who do not belong
to their social group. Positive and negative social
bias refers to a preference for or against persons or
groups based on their social identities (e.g., race,
gender, etc.). Only the negative biases, however,
have the capacity to harm target groups (Crawford,
2017). As a result, in our study, we focus on iden-
tifying negative biases in order to prevent harmful
repercussions on targeted groups. Members of spe-
cific social groups (e.g., Women, Muslims, and
Transgender individuals) are more likely to face
prejudice as a result of living in a culture that does
not sufficiently support fairness. In this work, we
have considered five prevalent social biases:

* Gender: Favoritism towards one gender over
other. It can be of the following types: Alpha,
Beta or Sexism (Park et al., 2018).

* Religion: Bias against individuals on the ba-
sis of religion or religious belief. e.g. Chris-
tianity, Islam, Scientology etc (Muralidhar,
2021).

* Race: Favouritism for a group of people hav-
ing common visible physical traits, common
origins, language etc. It is related to dialect,
color, appearance, regional or societal percep-
tion (Sap et al., 2019).

* LGBTQ: Prejudice towards LGBTQ commu-
nity people. It can be due to societal percep-
tion or physical appearance.

* Political: Prejudice against/towards individu-
als on the basis of their political beliefs. For
example: liberals, conservatives, etc.

Categories Targets

Political liberal, conservative, feminist, etc.
Religion christian, jew, hindu, atheist, etc.
Gender men, women

LGBTQ gay, lesbian, homosexual, etc.
Race black, white, asian, canadians, etc.

Table 1: Bias categories and corresponding targets.

For all of these categories, target terms are the
communities towards which bias is targeted.

3.2 Social Bias Vs Hate Speech

While Social Bias and Hate Speech may appear the
same at first look, they are not. The differences
between them are quite subtle. While hate speech
is always associated with negative sentiment, social
bias can also have positive sentiments. Social bias
is preconceived belief toward or against specific
social identities, whereas hate speech is an explicit
comment expressing hatred against an individual
or a group. Not all hate speech is biased, and not
all biased speech is hate speech. We will use the
following examples to demonstrate the differences:

* Some comments are merely toxic without con-
taining any social biases in them, e.g.
IM FREEEEE!!!! WORST EXPERIENCE OF
MY F**K-ING LIFE

» Toxic comments can be hate speech but not
necessarily biased, e.g.
you gotta be kidding. trump a Christian, nope,
he is the devil, he hates blacks, Hispanics,
muslims, gays, Asians, etc.

* Some comments are just biased with negating
sentiment without containing any toxicity or
hate speech in them, e.g.

All Asian people are bad drivers.

3.3 Annotation Process

The dataset we used for annotation is collected
from a Kaggle competition named "Jigsaw Unin-
tended Bias in Toxicity Classification (jig, 2019;
Research Data, 2018)". It has around two mil-
lion Wikipedia comments annotated for toxicity.
The data also has several other toxicity subtype
attributes such as severe toxicity, obscene, threat,
insult, identity_attack, and sexual_explicit.

We discovered that, with the exception of the
identity_attack column, all of the columns in this
dataset are redundant for the social bias detection

134



comment_text label category target implication

I wish gay men would just leave children alone. bias Igbtq gays gays are pedophiles

Islam, unfortunately, is a violent cult. bias religion muslims muslims are violent

Why does Netflix hate gay people? neutral - - -

Liberal women are so #king ugly! bias political, gender liberals, women prejudice against liberal women
Why are black thugs coming out here murdering locals? What bias race blacks prejudice against blacks

is the real story? Please someone..hire an investigative journalist.

Table 2: Annotation of Bias along with its category, targeted groups and implication

task. Identity_attack shows denigration of the com-
ment towards a identity. This identity could be
related to race, religion, political affiliation, gen-
der, or sexual orientation. So, we filtered out only
those comments for which identity_attack values
are greater than or equal to 0.5. We annotated this
filtered dataset for the presence of social bias. We
have considered only five bias categories for our
annotation and possible targets listed in Table 1.
We did not include other categories due to their
low presence in the original dataset. The targets
describe any social or demographic groups that is
targeted in the comment. Bias implications are an-
notated in addition to bias categories and relevant
targets. Table 2 shows a sample annotation of this
filtered dataset. The bias implications are simple
free-text reasons showing the stereotype towards
the target group.

The final dataset contains 5409 cases with multi-
ple label annotations. There are 120 distinct terms
for target annotation divided into five categories.
To check the consistency of our framework and to
categorize biases, two different annotators anno-
tated the data independently. Considering the com-
plexity of the task, we provided a detailed guideline
to each of the annotators. Following the thorough
guidelines by Singh et al. (2022), we developed a
series of questionnaires for each categories to as-
sist the annotators. Inter-annotator agreement was
assessed for the first 2500 occurrences, and a Co-
hen’s Kappa value of 64.3 was found, indicating
good agreement between annotators. The figure
2 depicts the distribution of data among multiple
categories. All the disagreements between annota-
tors were resolved by adjudication with the help of
an expert. For details about the annotators, please
refer A.2.

Out of 5409, our dataset has 4325 bias instances
( 80% of dataset) and 1084 neutral (not biased to-
wards any identity). The number of instances for
each category across train, dev., test are shown in
Table 3.

Categories train dev test total
bias 3460 346 519 4325
neutral 867 86 131 1084
race 1769 181 252 2202
religion 1257 120 196 1573
gender 293 24 41 358
1gbtq 453 41 82 576
political 172 20 26 218

Table 3: Distribution of different categories across three
splits of Train, Dev. and Test.

3.4 Annotation Challenges

Several issues were encountered while annotating
harmful datasets, which must be handled to anno-
tate and build a consistent dataset.

* Quoting someone else statements considered
biased? Example:
Trump said "Mexicans are rapists and drug
dealers".

One may argue that such statements are not
biased as they are merely quoting someone
else’s opinions that are not theirs. However,
we label them biased because quoting some-
one else’s statement is just as detrimental and
harmful.

* We believe that asking questions about an is-
sue may not lead to bias. Example:
Black idiot or white idiot. What is the differ-
ence?

One would believe that this phrase is about
idiots in general, without regard to race. As a
result, there will be no prejudice. On the other
hand, some may interpret that both blacks and
whites are referred to as fools here.

* We also encountered statements lacking con-
text. Example:
Is that the white kind? I mean since you hate
whites so much?

Now here, we do not know whether the state-
ment is talking about white colour or white
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race. We label these kinds of sentences as
neutral

Some statements were purely made as a per-
sonal attack. These instances were labeled
appropriately as biased or neutral. Example:
Trump pig latin. Oink, oink, oink, grab em by
the poo say

We label this statement as biased because
Trump here represents a certain political party
(community), unlike the below example:
settlers is a demeaning racist term.
Johnny are a white hating racist.

You

Here Johnny is not a big political leader
(name). So we mark this as neutral.

We have encountered many sarcastic instances
in the dataset and label them appropriately.
Example:

Ah yes, re-education! That’s what us nasty
white folks need.

‘We label this statement as neutral because it’s
a self-criticism sarcastically.

Yeah - - because up until now, Islamic State
really loved the US! And the West in general!
They love us so much sometimes they cut off
peoples heads to keep as a souvenir!

The above statement was labeled as biased as
it is sarcastically showing prejudice against
Islam.

Some statements are speaker dependent. Ex-
ample:

Shit still happenin and no one is hearin about
it, but niggas livin it everyday.

This statement will not be biased if said by
an African-American; however, it becomes
highly offensive and biased if stated by some-
one else.

4 Experimental Setup

In this section we will discuss about different mod-
els trained for detection of social biases and their
categories. For all our experiment, we split the
data into train, development, and test (80:8:12) set.
Since the dataset was imbalanced with respect to
bias column, we split it in stratified manner.

4.1 Metrices

We report accuracy, macro Fl-score, and AUC-
based scores in accordance with best practice.

Multiclass
Race
Religion
LGBTQ
Political
Gender

Figure 2: Distribution of bias categories in ToxicBias.
It is observed that some instances qualified for multiple
bias categories(12.22%)

These metrics would be used to assess the classi-
fier’s ability to distinguish between the bias and
neutral texts along with bias categories. AUC
stands for Area under the ROC curve. ROC curve
depicts the tradeoff between true positive rate
(TPR) and false positive rate (FPR). The AUC value
is high when the TPR is high and the FPR is low.

Borkan et al. (2019) proposed AUC-based met-
rics to quantify the unintended model bias. These
metrics compare the output distributions of in-
stances that include the specific community word
(subgroup distribution) with the rest (background
distribution). The three AUC-based bias scores are
as follows:

1. Subgroup AUC (AUC,,;): It calculates
AUC exclusively on a subset of the data for a
specified community word. A low score indi-
cates that the model struggles to differentiate
between bias and neutral comments related to
the community word.

2. Background Positive and Subgroup Neg-
ative AUC (AU Cypen): AU Chpsp uses the
biased background instances and the neutral
subgroup examples to determine AUC. A low
score indicates that the model has high false
positive rate. The model misinterprets neutral
comments mentioning the community with
biased comments missing it.

3. Background Negative and Subgroup Pos-
itive AUC (AU Cyysp): It uses the neutral
background instances and the biased subgroup
examples to determine AUC. A low score sug-
gests that the model has a high rate of false
negatives. The model misunderstands biased
comments that mention the community with
neutral ones that do not.
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Model P R F1 Acc
Logistic Regression  0.67 0.50 0.46 0.84
Baselines SVM 042 050 046 0.84
Bi-LSTM + Glove 0.59 0.58 0.58 0.78
BERT (Hierarchical) 0.62 0.66 0.64 0.86
Transformers w/o Aug BERT (Multi-task) 090 052 049 0.81
GPT2 0.62 0.66 0.62 0.71
BERT (Hierarchical) 0.86 0.86 0.86 0.88
Transformers /w Aug ~ BERT (Multi-task) 0.86 0.86 0.86 0.87
GPT2 0.81 0.86 0.84 0.81

Table 4: Performance of various models on bias detection task. We report results for baselines, and Transformer
based training. For Transformer based training, we compare performances without data augmentation and with data

augmentation. Best scores are shown in bold.

Hierarchical Multi-task
Acc P R F1 | Acc P R F1
political 0.96 048 050 049|096 0.77 0.57 0.61
gender 095 047 050 049|095 084 0.71 0.76
race 0.84 081 0.83 0.82|0.86 0.86 0.88 0.86
religion 0.82 0.82 0.82 0.82 | 093 091 0.94 0.92
1gbtq 093 0.81 0.81 0.81|094 086 0.87 0.86

Model

Table 5: Bias Category Detection Results. P, R, F1
and Acc are Precision, Recall, F1-score and Accuracy
respectively. Best scores are shown in bold.

4.2 Baseline Models

We discuss several model architectures for detec-
tion of biases and their categories. For bias detec-
tion, which is a binary class classification task, we
consider Logistic Regression (LR) with TF-IDF
as our baseline model. Our baseline model gives
84% accuracy with 0.46 F1 score. The low F1
score clearly indicates that model has very high
false positive rate and false negative rate. We also
tried Support Vector Machine (linear kernel) with
TF-IDF and LSTM (Huang et al., 2015) with Glove
300d word representation (Pennington et al., 2014).
The best model is observed to be BERT (Devlin
et al., 2019) with 0.64 F1 score. Two different
model settings were used to detect biases and their
categories. We will discuss each of them in detail
in the following sections.

4.3 Hierarchical Model

In the hierarchical model, bias detection and cat-
egory classification was done in two steps. Bias
detection, a binary class classification task, is per-
formed first. If the post has some biases, then its
categories are detected next. Since a post may con-
tain several biases, the bias category detection task
was framed as multi-label classification. Bias detec-

tion results of several models in hierarchical model
architecture is shown in Table 4. Bias category de-
tection results in the hierarchical setting are shown
in Table 5.

4.4 Multi-task Learning

In the context of classification, multi-Task Learn-
ing tries to improve the performance of numerous
classification problems by learning them together.
So instead of predicting bias and its category in two
steps, we can train a model to predict them simul-
taneously in one step. Since there can be multiple
biases in a post, we cannot use logistic regression
or SVM in a multi-label classification task. Hence
in this model architecture, we try LSTM and BERT
models only. We use LSTM with a single output
layer. The last dense layer of the LSTM comprises
six neurons, one to detect bias and the other five to
identify bias categories.

Precision (P), recall (R), F1 (macro values for
all), and accuracy (Acc) for bias detection experi-
ments in Multi-task architecture is shown in Table
4. Table 5 shows the comparison between hierar-
chical and multi-task model for category detection
task.

4.5 Generation Framework

Considering the efficacy of GPT (Radford and
Narasimhan, 2018) based model for classification,
conditional generation tasks (Sap et al., 2020), we
frame the prediction of categorical variables and
implications as generation task. The input is a
sequence of tokens as in Equationl, where w;
are the tokens corresponding to comment text and
[BOS], [SEP], [EOS] are start token, separator to-
ken and end token respectively. Two task specific
tokens ([BON], [BOFF]) were added to the token
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Ground truth | Predicted | Ground truth | Predicted
comment_text

label label category category
Quran is a holy book. neutral bias - religion
So then I was all like "I'd rather get the black plague .

. . . . neutral bias - race

and lock myself in an iron maiden than go out with you.
Do they come in men’s sizes? neutral bias - gender
What I've just shown is that this happens in every black hole. neutral bias - race

Table 6: Error analysis showing model biases from predictions of Multi-task BERT model without augmentation.

Variables BLEU-2 Rougel
Categories 61.60+£0.96 88.23£1.23
Target subgroup 52.954+2.84 77.58+4.21
Implications 3344155  39.54+1.20

Table 7: Evaluation of various generation tasks. The
standard deviations for three runs are also reported.

vocabulary which were used as wjpi,s] in the in-
put. Here, [BON], [BOFF] correspond to bias and
neutral instances respectively. As we have many
inputs with multiple bias categories and targets, we
combine them using a comma separator in the raw
text. While encoding the input we use wjcy,, Wiy,
as the token corresponding to them respectively.
Similarly, wgj, is used for representing the tokens
corresponding to implications.

x = {[BOS], w;, [SEP] wjpjys1, [SEP]

ey

For this experiment, we finetune the GPT-2 (Rad-
ford et al., 2018) model with commonly used hy-
perparameters. For training we use cross-entropy
loss as cost function. During inference, we first
calculate the normalized probability of wy;,) con-
ditioned on the initial part of input and then append
the highest probable token to the input and generate
rest of the tokens till [EOS].

We use BLEU-2 (Papineni et al., 2002) and
RougeL (Fmeasure) (Lin, 2004) as the metrics to
calculate the performance of the model for category,
target and implication of the comment text(Table 7)
and macro F1 as metric for bias evaluation(Table 4).
Performance for category generation is better than
other two variable as it has less ambiguity whereas
the low performance for implications show the vari-
ability in the annotation for implications.

We report all the hyperparameters and training
setup in appendix A.3.

4.6 Results and Discussion

From the above tables, we can infer that the BERT-
based hierarchical model outperforms Multi-task
and GPT-2 models for the bias detection task. In
addition, category identification is performed more
effectively by multi-task model. This is quite ap-
parent from the fact that in multi-task learning each
model aid each others due to shared parameters.
We also see that F1 scores for political and gender
categories are less when compared to other cate-
gories in the category detection task. One plausible
explanation might be the low frequency of such
biases in our dataset. The BLEU scores of cat-
egory and target subgroup generation are higher
than those of bias implication generation, as shown
in Table 7. The fundamental reason for this is that
the bias category and target have less distinct bi-
grams/tri-grams than the implications. We show
an error analysis for categorical prediction tasks
after training the models. We discovered that the
model predicts incorrectly for some simple sen-
tences. A few examples are also listed in the Table
6. This most likely occurred due to lexical over-
fitting/ model bias of the trained model towards
some of the identity specific terminologies. In the
next section, we discuss an approach to reduce
this unwanted behavior of the model using counter-
narrative augmentation.

S Mitigation of Model Bias

When we look at the incorrectly classified com-
ments in Table 6, we observe that they contain
community words such as ’blacks,” *Quran,” and
so on. Sometimes, due to the presence of these
community terms, our model predicts that these
comments would be biased. In essence, our initial
model is latching onto some community related
terms and hence suffers from model bias. Accord-
ing to (Zueva et al., 2020), most existing models
provide predictions with certain bias. Even if the
statement itself is not toxic, the model commonly
classifies it as toxic if it includes specific frequently
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Ground truth | Prediction (without | Prediction (with
comment_text . .

category augmentation) augmentation)
Quran is a holy book. none religion none
Islam is a peaceful religion. none religion none
Muslims are invaders. religion religion religion
Do they come in men’s sizes? none gender none
What I’ve just shown is that this happens in every black hole. none race none
I’m sick of niggers, it’s a bad neighborhood. I don’t like being

, . race race race

around them, they’re animals.

Table 8: Error analysis showing the effectiveness of counter-narrative augmentation. After training with augmented
data, the resulting model does not latch on to the community related terms.

Subgroup Count | % Bias
all comments | 5409 79.92
black 1291 79.55
jewish 269 74.34
Igbt 778 77.24
muslim 1263 87.01
female 586 76.45

Table 9: Percentage of bias comments by identity terms
such as black, jewish, Igbt, muslim, female in the Toxi-
cBias dataset.

targeted identities (such as women, blacks, or Jews).
Similarly, our model incorrectly labels comments
referencing particular identities, such as Blacks,
Muslims, and Whites, as social bias. Model biases
emerge when identity words like Blacks, Whites,
and Muslims appear more frequently in biased com-
ments than in neutral comments. If the training data
for a machine learning model is skewed towards
certain terms, the final model is likely to acquire
this bias. Table 9 shows the bias percentage in Tox-
icBias for several identities/subgroups, indicating
the imbalance for bias labels among those identi-
ties and emphasising the importance of AUC-based
metrics resilient to these data skews.

Counter-narratives: Despite enormous attempts
to build suitable legal and regulatory responses
to hate content on social media platforms, deal-
ing with hatred online remains challenging. If
hate speech is addressed with standard content
deletion or user suspension methods, censorship
may be accused. Actively addressing hate mate-
rial through counter-narratives (i.e., informed tex-
tual responses) is one potential technique that has
received little attention in the academic commu-
nity thus far. A counter-narrative (also known as
a counter-comment or counter-speech) is a reply
that provides non-negative feedback through fact-
based arguments and is often recognized as the

most effective way to deal with hate speech.

subgroup AUCg, T AUChsn T AUChne T

black 0.48 0.50 0.49
jewish 0.47 0.50 0.49
Igbt 0.81 0.83 0.82
muslim 0.82 0.82 0.82
female 0.81 0.81 0.81

Table 10: AUC based scores for subgroups on bias detec-
tion model trained without data augmentation. Higher
AUC values for each target subgroup indicate reduced
lexical overfitting/model bias for those targets.

subgroup AUCg, 1 AUChpsn T AUChnep T

black 0.86 0.78 0.97
jewish 0.91 0.93 0.91
Igbt 0.89 0.91 0.93
muslim 0.96 0.97 0.86
female 0.93 0.94 0.93

Table 11: AUC based scores on bias detection model
trained after data augmentation. Higher AUC values for
each target subgroup indicate reduced lexical overfitting/
model bias for those targets.

We use two counter-narrative datasets to reduce
the model biases: CONAN (Chung et al., 2019)
and Multi-target CONAN (Fanton, Margherita and
Bonaldi, Helena and Tekiroglu, Serra Sinem and
Guerini, Marco, 2021). These datasets provide
counter-narratives to hate speech or stereotypes
directed towards social groups such as Muslims,
Blacks, Women, Jews, and LGBT people. So they
do not contain any negative social biases towards
those groups. Combining these counter narratives
ensures that the resulting dataset will have more
neutral/positive instances mentioning those iden-
tity terms. Adding these counter narratives to our
dataset significantly decreased model biases. We
used total of 7219 counter-narratives related to
jews (593), muslim (4996), black (352), homosex-
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val_gay_or_lesbian (617), and female (661). As
illustrated in table 10, black and jewish identities
suffer from both high false positives and high false
negatives. However, after counter-narrative aug-
mentation, the resulting model appears to be ca-
pable of dealing with the problem of model bias.
Table 11 shows the reduction in model bias using
AUC-based metrics. Table 8 includes an error anal-
ysis to show how CONAN has helped reduce model
bias.

6 Conclusion and Future Work

We have demonstrated that identity attacks or hate
speech often incorporate social biases or stereo-
types. However, not all hate speech can be labeled
as social bias. Some of them are merely personal in-
sults. Filtering out such biases from hate speech is
not a trivial task. Furthermore, we have frequently
observed that detecting bias without context for
the comment or demographic information of the
comment holder makes the annotation much more
challenging. However, detecting these social bi-
ases from toxic datasets, which are available in
relatively large amounts, will be a useful starting
point for social bias research in other forms of text.

The issue of model bias is also observed during
inference. The imbalanced existence of particular
community terms (muslims, whites, etc.) might
lead to a model labeling a comment as biased. To
attenuate model biases, we used counter-narratives
and showed that they help significantly to reduce
model biases. From our study, we also observe
that biases can have directions too. So basically,
biases can occur against specific communities and
in favour of a community. We intend to detect such
biases in future work.
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8 Limitations

The most notable limitation of our work is the lack
of external context and small-sized dataset. In our

present models, we have not considered any exter-
nal context that can be useful for the categorization
task, such as the profile bio, user gender, post his-
tory, etc. Our work currently considers only five
types of social biases, not all other possible dimen-
sions of bias. We also concentrated on using only
the English language in our work, and the dataset
is oriented toward western culture. The bias anno-
tations in the dataset may not be very relevant to
people of non-western culture. Furthermore, Multi-
lingual bias is not taken into account.

References

2019. Jigsaw unintended bias in toxicity classification.

Marion Bartl, Malvina Nissim, and Albert Gatt. 2020.
Unmasking contextual stereotypes: Measuring and
mitigating BERT’s gender bias. In Proceedings of
the Second Workshop on Gender Bias in Natural
Language Processing, pages 1-16, Barcelona, Spain
(Online). Association for Computational Linguistics.

Su Lin Blodgett, Gilsinia Lopez, Alexandra Olteanu,
Robert Sim, and Hanna Wallach. 2021. Stereotyping
norwegian salmon: an inventory of pitfalls in fairness
benchmark datasets. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1004-1015.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016. Man is
to computer programmer as woman is to homemaker?
debiasing word embeddings.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced metrics
for measuring unintended bias with real data for text
classification.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183-186.

Yi-Ling Chung, Elizaveta Kuzmenko, Serra Sinem
Tekiroglu, and Marco Guerini. 2019. CONAN -
COunter NArratives through nichesourcing: a mul-
tilingual dataset of responses to fight online hate
speech. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2819-2829, Florence, Italy. Association for
Computational Linguistics.

Kate Crawford. 2017. The trouble with bias.

Thomas Davidson, Debasmita Bhattacharya, and In-
gmar Weber. 2019. Racial bias in hate speech
and abusive language detection datasets. CoRR,
abs/1905.12516.

140


https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/data
https://aclanthology.org/2020.gebnlp-1.1
https://aclanthology.org/2020.gebnlp-1.1
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
https://doi.org/10.48550/ARXIV.1903.04561
https://doi.org/10.48550/ARXIV.1903.04561
https://doi.org/10.48550/ARXIV.1903.04561
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://doi.org/10.18653/v1/P19-1271
https://doi.org/10.18653/v1/P19-1271
https://doi.org/10.18653/v1/P19-1271
https://doi.org/10.18653/v1/P19-1271
https://nips.cc/Conferences/2017/Schedule?showEvent=8742
http://arxiv.org/abs/1905.12516
http://arxiv.org/abs/1905.12516

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech detec-
tion and the problem of offensive language.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. 2018. Measuring and mitigat-
ing unintended bias in text classification. In Proceed-
ings of the 2018 AAAI/ACM Conference on Al, Ethics,
and Society, AIES ’18, page 67-73, New York, NY,
USA. Association for Computing Machinery.

Fanton, Margherita and Bonaldi, Helena and Tekiroglu,
Serra Sinem and Guerini, Marco. 2021. Human-in-
the-Loop for Data Collection: a Multi-Target Counter
Narrative Dataset to Fight Online Hate Speech. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys, 51:1-30.

Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large scale
crowdsourcing and characterization of twitter abusive
behavior.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
Toxigen: A large-scale machine-generated dataset for
adversarial and implicit hate speech detection.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional Istm-crf models for sequence tagging.

Simrat Kaur, Sarbjeet Singh, and Sakshi Kaushal.
2021. Abusive content detection in online user-
generated data: A survey. Procedia Computer Sci-
ence, 189:274-281. Al in Computational Linguis-
tics.

Jae Yeon Kim, Carlos Ortiz, Sarah Nam, Sarah Santiago,
and Vivek Datta. 2020. Intersectional bias in hate
speech and abusive language datasets.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in contex-
tualized word representations.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

141

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization.

Thomas Manzini, Lim Yao Chong, Alan W Black, and
Yulia Tsvetkov. 2019. Black is to criminal as cau-
casian is to police: Detecting and removing multi-
class bias in word embeddings. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 615-621, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ariadna Matamoros-Fernandez and Johan Farkas. 2021.
Racism, hate speech, and social media: A system-
atic review and critique. Television & New Media,
22(2):205-224.

Chandler May, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622628, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Marzieh Mozafari, Reza Farahbakhsh, and Noél Crespi.
2020. Hate speech detection and racial bias mitiga-
tion in social media based on BERT model. CoRR,
abs/2008.06460.

Deepa Muralidhar. 2021. Examining Religion Bias in
Al Text Generators, page 273-274. Association for
Computing Machinery, New York, NY, USA.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021.
StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 53565371, Online. Association for
Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and
Samuel R Bowman. 2020. Crows-pairs: A chal-
lenge dataset for measuring social biases in masked
language models. arXiv preprint arXiv:2010.00133.

Debora Nozza, Claudia Volpetti, and Elisabetta Fersini.
2019. Unintended bias in misogyny detection. In
IEEE/WIC/ACM International Conference on Web
Intelligence, W1 19, page 149155, New York, NY,
USA. Association for Computing Machinery.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.


http://arxiv.org/abs/1703.04009
http://arxiv.org/abs/1703.04009
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1145/3232676
https://doi.org/10.1145/3232676
http://arxiv.org/abs/1802.00393
http://arxiv.org/abs/1802.00393
http://arxiv.org/abs/1802.00393
https://doi.org/10.48550/ARXIV.2203.09509
https://doi.org/10.48550/ARXIV.2203.09509
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://doi.org/https://doi.org/10.1016/j.procs.2021.05.098
https://doi.org/https://doi.org/10.1016/j.procs.2021.05.098
http://arxiv.org/abs/2005.05921
http://arxiv.org/abs/2005.05921
http://arxiv.org/abs/1906.07337
http://arxiv.org/abs/1906.07337
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.18653/v1/N19-1062
https://doi.org/10.1177/1527476420982230
https://doi.org/10.1177/1527476420982230
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
http://arxiv.org/abs/2008.06460
http://arxiv.org/abs/2008.06460
https://doi.org/10.1145/3461702.3462469
https://doi.org/10.1145/3461702.3462469
https://doi.org/10.1145/3350546.3352512
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2799-2804, Brussels, Belgium. Association for Com-
putational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Marie Plaisime, Candace Robertson-James, Lidyvez
Mejia, Ana Nuifiez, Judith Wolf, and Serita Reels.
2020. Social media and teens: A needs assess-
ment exploring the potential role of social me-
dia in promoting health. Social Media + Society,
6(1):2056305119886025.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Civil Research Data. 2018. Civil comments.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias
in hate speech detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1668—1678, Florence, Italy. Asso-
ciation for Computational Linguistics.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. ACL.

Sandhya Singh, Prapti Roy, Nihar Sahoo, Niteesh
Mallela, Himanshu Gupta, Pushpak Bhattacharyya,
Milind Savagaonkar, Nidhi Sultan, Roshni Ramnani,
Anutosh Maitra, and Shubhashis Sengupta. 2022.
Hollywood identity bias dataset: A context oriented
bias analysis of movie dialogues. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 5274-5285, Marseille, France. Eu-
ropean Language Resources Association.

Stefanie Ullmann and Marcus Tomalin. 2020. Quar-
antining online hate speech: technical and ethical
perspectives. Ethics and Information Technology,
22(1):69-80.

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols
or hateful people? predictive features for hate speech
detection on twitter. In Proceedings of the NAACL
Student Research Workshop, pages 88-93, San Diego,
California. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. 2020.
Demoting racial bias in hate speech detection. In
Proceedings of the Eighth International Workshop
on Natural Language Processing for Social Media,
pages 7—14, Online. Association for Computational
Linguistics.

Nadezhda Zueva, Madina Kabirova, and Pavel Kalaidin.
2020. Reducing unintended identity bias in Russian
hate speech detection. In Proceedings of the Fourth
Workshop on Online Abuse and Harms, pages 65-69,
Online. Association for Computational Linguistics.

A Appendix

A.1 Ethical Considerations

Our work aims at capturing various social biases in
toxic social media posts and demonstrates the an-
notation quality on biases in one of existing dataset.
We also discuss the challenges we faced while do-
ing the annotation of the dataset, specifically due
to the absence of context for each instance in the
dataset. Also, study of social biases come with eth-
ical concerns of risks in deployment (Ullmann and
Tomalin, 2020). As these toxic posts can create
potentially harm to any user or community, it is
required to conduct this kind of research to detect
them. If done with precautions, such research can
be quite helpful in automatic flagging of toxic and
harmful online contents.

Researchers working the problem of social bias
detection on any form of text would benefit from
the dataset we have collated and from the infer-
ences we got from multiple training strategies.

A.2 Annotator Demographics and Treatment

Both the annotators were trained and selected
through extensive one-on-one discussions, and
were working voluntarily. Both of them went
through few days of initial training where they
would annotate many examples which would then
be validated by an expert and were communicated
properly about any wrong annotations during train-
ing. As there are potential negative side effects of
annotating such toxic comments, we used to have
regular discussion sessions with them to make sure
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they are not excessively exposed to the harmful
contents. Both the annotators were Asian male
and were of age between 23 to 26. The expert was
an Asian female with post-graduation degree in
sociology.

A.3 Training Details
A.3.1 BERT Training

We finetune 12 layer BERT base uncased with
batch size of 32 for two epochs. Max token
length of 128 is used. We experiment with learn-
ing rates of 2e — 5,3e — 5,4e — 5,5e — 5 with
AdamW (Loshchilov and Hutter, 2019) optimizer
and epochs of 5,10,20. We also use a dropout
layer in our model. AdamW optimizer with learn-
ing rate = 5e — 05, epsilon = 1e — 08, decay = 0.01,
clipnorm = 1.0 were used.

A.3.2 GPT-2 Training

We finetune GPT-2 with a training batch size of 1,
gradient accumulation step as 4, and 200 warm up
steps. Experiments were run with a single GeForce
RTX 2080 Ti GPU. Finetuning one GPT-2 model
took around 40 minutes for 5 epochs.

We have kept all the parameters of BERT and
GPT-2 trainable. All of our implementations uses
Huggingface’s transformer library (Wolf et al.,
2020).
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Abstract

Despite neural language models qualitatively
capturing many human linguistic behaviors, re-
cent work has demonstrated that they under-
estimate the true processing costs of ungram-
matical structures. We extend these more fine-
grained comparisons between humans and mod-
els by investigating the interaction between
Principle B and coreference processing. While
humans use Principle B to block certain struc-
tural positions from affecting their incremental
processing, we find that GPT-based language
models are influenced by ungrammatical posi-
tions. We conclude by relating the mismatch
between neural models and humans to prop-
erties of training data and suggest that certain
aspects of human processing behavior do not
directly follow from linguistic data.

1 Introduction

Neural models trained on text data alone have been
shown to qualitatively capture aspects of a large
variety of human linguistic behaviors (e.g., Gulor-
dava et al., 2018; Wilcox et al., 2019; Warstadt
et al., 2020; Hu et al., 2020; Jumelet et al., 2021).
Investigations have evaluated a range of levels of
linguistic knowledge, including: i) syntax (Marvin
and Linzen, 2018; Warstadt et al., 2019; Wilcox
et al., 2019, 2021a), ii) semantics (Pannitto and
Herbelot, 2020; Misra et al., 2020), and iii) dis-
course structure and pragmatics (Schuster et al.,
2020; Davis and van Schijndel, 2020).

Recent work has placed increased attention on
finer-grained comparisons between neural models
and humans (e.g., van Schijndel and Linzen, 2021;
Wilcox et al., 2021b; Paape and Vasishth, 2022).
The growing consensus is that neural models un-
derestimate the processing costs seen with humans,
while nonetheless capturing the broad patterns (see
Wilcox et al., 2021b). The present study adds to this
literature by comparing the incremental processing
of coreference in humans and neural models.

While coreference, more generally, is modulated
by discourse, pragmatics, and information struc-
ture (e.g., Arnold, 1998, 2001; Rohde et al., 2006;
Hartshorne, 2014; Rohde and Kehler, 2014), there
are sentential restrictions on coreference that have
immediate effects on human incremental process-
ing (e.g., Nicol, 1988; Clifton et al., 1997; Sturt,
2003; Chow et al., 2014). This study finds that, con-
trary to humans, autoregressive neural models do
not similarly restrict their behavior in coreference
processing.

In particular, the present study investigated the
interaction between the Binding Principles, articu-
lated in Chomsky (1981), and incremental process-
ing. Binding Principles account for the constrained
distribution of pronouns (and anaphora) and their
possible linguistic antecedents:

(1) Binding Principles
PRINCIPLE A An anaphor is bound in its
governing category
PRINCIPLE B A pronominal is free in its
governing category
PRINCIPLE C An R-expression is free

Roughly, Principle A excludes examples like John
thinks that Mike hates himself from meaning that
“John thinks that Mike hates John”. Conversely,
Principle B excludes examples like John thinks that
Mike hates him from meaning that “John thinks that
Mike hates Mike”. Finally, Principle C excludes
He hates John from meaning “John hates John”.
These principles are mediated by a structural rela-
tion, c-command, rather than linear order. While
the specific binding conditions have been refined
within syntactic theory (e.g., Reinhart and Reuland,
1993), we focused here on the empirical results
concerning Principle B and incremental processing,
putting aside explicit theoretical commitments.

2) Bill told Clark that Robert had deceived
him.
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In (2), despite him agreeing in gender with Bill,
Clark, and Robert, only two of these are possible
antecedents of him: Bill and Clark. Principle B
blocks the structural location occupied by Robert
from serving as an antecedent of him. In human
incremental processing, this restriction has immedi-
ate effects, preventing the gender of this embedded
subject from influencing the processing of the pro-
noun (see Chow et al., 2014). Moreover, Principle
B can restrict the prediction of nouns following
certain cataphoric pronouns — pronouns that oc-
cur before their coreferring noun phrase (Kush and
Dillon, 2021). For example, in (3), him can only
corefer with Mark and not Michael. In human in-
cremental processing, the cataphoric pronoun him
has no effect on the processing of the subject (e.g.,
Michael).

3) Before offering him a fancy pastry, Michael
politely asked Mark for help.

In what follows, we evaluate whether GPT-like
autoregressive neural models use Principle B to
restrict their incremental processing like humans.
Specifically, we investigated two broad effects of
Principle B: i) its interaction with “vanilla” pro-
nouns (as in (2)), and ii) its interaction with cat-
aphora (as in (3)).

While models appear to learn aspects of Princi-
ple B (treating apparent violations in unique ways),
we find that neural models, in contrast to humans,
do not categorically ignore structural positions
blocked by Principle B. Ultimately, the present
study suggests that, beyond underestimating the
processing costs seen in humans, models fail, at
least in some cases, to learn qualitatively similar
patterns to humans. This suggests, in turn, that
certain aspects of human parsing behavior are not
directly evidenced in linguistic data.

2 Background

In human coreference processing, a major question
is whether antecedent retrieval, triggered by the
presence of a pronoun, is restricted first by agree-
ment features (e.g., gender, number), returning pos-
sibly ungrammatical antecedents, or by structural
constraints, like Principle B, which serve as an ini-
tial filter. As an illustration consider the following
set of stimuli discussed in Chow et al. (2014):

“ a. John thought that Bill liked him.
b.  John thought that Mary liked him.

c. Jane thought that Bill liked him.
d. Jane thought that Mary liked him.

If Principle B immediately restricts the set of pos-
sible antecedents of him, then we would expect
the reading times at him to be the same for (4-a)
and (4-b), as in both cases the structurally licit an-
tecedent agrees in gender. If instead structurally
ungrammatical antecedents can influence the im-
mediate processing of him, then we would expect
that (4-a)—(4-c) would pattern together, to the ex-
clusion of (4-d), where no antecedent is given in
the linguistic context. Put another way, whether the
structurally ungrammatical antecedent influences
reading times at him is indicative of the status of
Principle B in human linguistic processing.

The bulk of work investigating these, and similar
constructions, has found that structural constraints
like Principle B do immediately influence human
incremental processing (e.g., Clifton et al., 1997;
Sturt, 2003; Chow et al., 2014; Kush and Phillips,
2014; Kush and Dillon, 2021). That is, finding that
(4-a) and (4-b) pattern together and (4-c) and (4-d)
pattern together. !

Within work in natural language processing, ex-
isting models have been claimed to capture as-
pects of Principle A (e.g., Warstadt et al., 2020;
Hu et al., 2020). Principle C has received less at-
tention, though see Mitchell et al. (2019) which
found that LSTM language models failed to obey
Principle C. Coreference, more broadly, has also
been explored, with results suggesting that mod-
els encode features of coreference resolution (e.g.,
Sorodoc et al., 2020) and the interaction of implicit
causality and pronouns (verb biases that influence
preferred antecedents for pronouns; Upadhye et al.,
2020; Davis and van Schijndel, 2021; Kementched-
jhieva et al., 2021).

The present study straightforwardly extends ex-
isting studies of neural models to Principle B.
While we cannot assess whether neural models
truly “interpret” the pronoun as coreferring with
certain antecedents (and thus fully verify whether
they have learned Principle B, or even Principle A),
we can compare the difference in model behavior
conditioned on minimally contrastive stimuli. In
fact, human online sentence comprehension stud-

"However, some other work has suggested that grammat-
ically illicit antecedents can in fact have measurable effects
(e.g., Badecker and Straub, 2002; Kennison, 2003). Such ef-
fects may be capturing later stages of processing (see Sturt,
2003). Nevertheless, the plurality of the evidence suggests
that Principle B has immediate effects on human processing.
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ies are similarly limited. Since we cannot directly
measure the content retrieved in reading a pronoun,
online reading times are taken as a proxy for the
consideration of certain antecedents.

3 Neural Models and Measures

We analyzed four autoregressive models with GPT-
like architectures: GPT-2 XL (1.5B parameters;
Radford et al., 2019), GPT-Neo (2.7B parameters;
Black et al., 2021), GPT-J (6B parameters; Wang
and Komatsuzaki, 2021), and GPT-3 (175B param-
eters; Brown et al., 2020). GPT-2 XL, GPT-Neo,
and GPT-J were accessed via HuggingFace (Wolf
et al., 2020), and GPT-3 by using OpenAI’s API.

In evaluating model performance, we used sur-
prisal (Hale, 2001; Levy, 2008):

—log Prob(word|context) (1)

Surprisal has a linear relationship with human
reading times (Smith and Levy, 2013). We follow a
growing body of work in utilizing this relationship
to compare the behavior of neural models and hu-
mans (e.g., van Schijndel and Linzen, 2021; Wilcox
et al., 2021b).3

To aid the interpretation of the results, we calcu-
lated by-item gender mismatch effects (GMMEs).
GMMEs are used in human experiments to index
the increased cost in processing incurred when en-
countering a pronoun (or a postcedent, in the case
of cataphoric pronoun processing) that was not ex-
pected (e.g., van Gompel and Liversedge, 2003;
Reali et al., 2015; Kush and Dillon, 2021). Thus,
GMMEs are a means of measuring human predic-
tions by providing evidence for mismatches be-
tween expectations and reality. We calculated two
classes of GMMEs for neural models targeting gen-
der prediction for, i) “vanilla” pronouns, and ii)
subjects after reading cataphoric pronouns.

For predictions about upcoming pronouns, con-
sider:

&) a. Fred thought Kathy hated him
b. Mike thought Kevin hated him

To calculate the GMME for (5), we took the dif-
ference between the surprisal for him in (5-a) and

2We used the version of GPT-3 called text-davinci-002.
All the stimuli, results, and scripts for recreating the statis-
tics and figures can be found at https://github.com/
forrestdavis/PrincipleB.

3For a more explicit comparison between human self-
paced reading times and neural models see Section 6.1.

the surprisal for Aim in (5-b). More generally, we
calculated a GMME by taking the difference in
the surprisal of the target (either a pronoun or the
subject noun) between minimal pairs. A positive
GMME would suggest that the model was more
surprised when the embedded subject mismatched
in gender with the pronoun; in other words, the
gender of the embedded subject influenced the sur-
prisal of the pronoun. In this case, comparing the
GMME for him and his is informative about the
status of Principle B in neural models. Humans
have been shown to exhibit no GMME dependent
on the embedded subject with him, because Princi-
ple B blocks co-indexation between these positions.
For his, however, co-indexation is possible, and a
GMME is obtained (see Chow et al., 2014).%

For predictions about upcoming antecedents af-
ter cataphoric pronouns, consider:

(6) a. While he was at work, Fred ate food.
b.  While he was at work, Keisha ate food.

For (6) we calculated a GMME by taking the dif-
ference in surprisal of Keisha in (6-b) and the sur-
prisal of Fred in (6-a). A positive GMME would
indicate that the neural model was more surprised
when the subject mismatched with the gender of
the cataphoric subject pronoun.’

4 Principle B and Pronouns

Recall, humans restrict their incremental process-
ing of coreference to just those antecedents which
are grammatically licensed (e.g., Chow et al., 2014).
That is, in sentences like Fred thought Amy hated
him, him cannot be co-indexed with the structural
position that Amy occupies, and thus, the gender of
Amy does not hinder the processing of him. In this
section, we evaluated the ability of GPT-like autore-
gressive neural models to replicate this qualitative
effect across four experimental conditions.

4.1 Stimuli

In this section, we consider four experiments:
(7) Experiments

*Because the feminine pronoun her is ambiguous between
a possessive and an object pronoun when processing left to
right (e.g., Sue loves her and Sue loves her friend) only mas-
culine pronouns were evaluated in pronoun prediction.

5 All subject nouns investigated were encoded by the neural
models as single tokens rather than being split into multiple
tokens as in Randolf mapping to ‘Rand’ + ‘olf” in GPT-J.
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a. SIMPLE SUBJECT: Single clause with
simple subject

b. COMPLEX SUBJECT: Single clause
with complex subject containing a
prepositional phrase

c.  2NP: Clause with embedding and sim-
ple subjects

d. 3NP: Clause with embedding and sim-
ple subjects and an object

Examples of each are included below:

(8) Stimuli Examples

a. SIMPLE SUBJECT: The boy meets
him.

b. COMPLEX SUBJECT: The story about
Eric hurt him.

c. 2NP: Jason hadn’t expected that
Adam was investigating him.

d. 3NP: Liam advised the nephew that
Patrick can praise him.

We used the data generation scripts and vocabu-
lary provided with the BLiMP dataset to create our
stimuli (Warstadt et al., 2020). The sentences are
all grammatical and generally semantically felici-
tous (despite certain interpretations being blocked
by Principle B). The stimuli for COMPLEX SUB-
JECT always had a subject comprised of “the X
about...”, where X ranged over inanimate nouns
like book or story.®

There were 1000 base sentences for each experi-
ment, with each sentence having exponents that var-
ied gender in all relevant positions (e.g., (8-c) has
four forms varying whether the matrix subject is Ja-
son or Amanda and whether the embedded subject
is Adam or Victoria).” The applicability of Prin-
ciple B varied by experiment. For SIMPLE SUB-
JECT, Principle B blocks co-indexation between
the subject and the object pronoun. For COMPLEX
SUBJECT, Principle B does not block co-indexation
between the lower noun (e.g., Eric in (8-b)) and
the pronoun. Principle B, however, does block
the higher nouns (e.g., the story in (8-b)) from co-
indexing with the pronoun him.® For 2NP and
3NP, Principle B blocks co-indexation between the

®The full set contained book, pamphlet, brochure, play,
movie, newspaper article, story, essay, report, documentary,
commentary, and show.

"No noun was repeated in a single sentence. That is, there
were no sentences like The man advised the nephew that the
man can praise him.

8 Additionally, all higher nouns were inanimate, again
blocking the applicability of him.
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Figure 1: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by two condi-
tions: i) SIMPLE SUBJECT, and ii) COMPLEX SUBJECT
(e.g., (BilllThe book about Bill) worried him). Error
bars are 95% confidence intervals.

embedded subject (e.g., Adam in (8-c) and Patrick
in (8-d)) and the pronoun, but not the matrix subject
(e.g., Jason in (8-c) and Liam in (8-d)) or matrix
object for 3NP (e.g., the nephew in (8-d)). If neural
models patterned like humans, then we should find
no GMME when Principle B blocks co-indexation,
and positive GMMEs elsewhere.

4.2 Simple Sentences and Pronoun Prediction

First, we investigated the influence on pronoun
prediction that subjects had in single clause con-
structions (the SIMPLE SUBJECT and COMPLEX
SUBJECT experiments; see (8-a) and (8-b) above
for the relevant contrasts).

Results grouped by model, condition, and pro-
noun are given in Figure 1. Statistical analyses
were conducted via linear-mixed effects models.’

Starting with the results for possessive pronouns,
we found that all models showed a positive GMME.
That is, models expected possessive pronouns to
agree in gender with the subject, both in simple
sentences (e.g., Fred worried his. . . ) and sentences
with complex subjects (e.g., The book about Fred
worried his. . .).

For object pronouns, GMME differed by subject
type. For complex subjects, where co-indexation
between the object pronoun and the lower noun
(e.g., Fred in The book about Fred) is possible,

We used lmer (version 1.1.30; Bates et al., 2015) and
ImerTest (version 3.1.3; Kuznetsova et al., 2017) in R. Models
were fit to predict the surprisal of the pronoun him or his with
a main effect of condition (i.e. whether the noun matched the
gender of the pronoun) with by-item random intercepts.
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Gender Mismatch Effect by Model and Position
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Figure 2: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by whether 1)
the matrix subject, or ii) the embedded subject agrees in
gender (e.g., (BilllHannah) thinks that (Mark|Sue) hates
him). Error bars are 95% confidence intervals.

models again exhibited a positive GMME, suggest-
ing that agreement between the object pronoun and
the lower noun was expected. For simple subjects,
where co-indexation between the subject and the
pronoun is not possible (e.g., him cannot refer to
Fred in Fred worried him), a negative GMME was
obtained. That is, despite the subject not being
a possible coreferent for the object pronoun, the
gender of the subject (negatively) influenced the
surprisal of the object pronoun.

4.3 Multiple NPs

We found evidence that, in cases where co-
indexation is blocked by Principle B, models ex-
pected pronouns to mismatch with the gender of
the antecedent. While suggesting that models con-
sider antecedents that humans do not, it nonetheless
suggests models capture aspects of the ungrammat-
icality of violations of Principle B. In this section,
we evaluated models on more complex sentences
containing two or three noun phrase antecedents
(the 2NP and 3NP experiments; see examples (8-c)
and (8-d) in Section 4.1 for the relevant contrasts).

Results for the 2NP case are given in Figure 2
(with results for the 3NP case given in Figure 7 in
Appendix A). Statistical analyses were conducted
via linear-mixed effects models.' Starting with

"Models were fit to predict the surprisal of the pronoun
him or his with an interaction between the matrix subject
gender (i.e. whether it matched with the pronoun) and the
embedded subject gender, in the two noun phrase case, or
the matrix subject gender, the matrix object gender, and the
embedded subject gender (e.g., FredlMary told Mark|Karen

the results for possessive pronouns, in both condi-
tions, all models exhibited a positive GMME in all
positions (e.g., matrix subject, embedded subject).
That is, models predicted that possessive pronouns
would agree with the antecedent nouns.

For object pronouns, we again found a mismatch
in the direction of the GMME conditioned on the
structural position of the relevant antecedent. When
co-indexation is grammatically licensed (e.g., him
can refer to Bill in Bill knows that Mary loves him),
a positive GMME was obtained for all models. In
cases where Principle B blocks co-indexation, all
models exhibited a negative GMME instead. As in
Section 4, this suggests that grammatically unavail-
able antecedents influenced the surprisal of object
pronouns contrary to the results obtained in human
incremental processing.

4.4 Interim Discussion

Broadly, the above experiments demonstrated that
neural models exhibited GMMEs when pronouns
mismatched in gender with preceding nouns. For
the possessive pronoun his, this amounted to pos-
itive GMMESs across-the-board. That is, mis-
matches in gender between his and any antecedent
increased the surprisal of Ais. For the object pro-
noun him, the GMME interacted with Principle
B. Positive GMMEs were obtained when gram-
matically licit antecedents mismatched in gender,
suggesting models predicted him to agree with
these antecedents. However, when Principle B
blocked the structural position from permitting co-
indexation between the antecedent and the object
pronoun, a negative GMME was obtained. That is,
models expected him to mismatch in gender with
grammatically unavailable antecedents.

As evidenced by the COMPLEX SUBJECT exper-
iment, this negative GMME is not merely a dispref-
erence for local agreement with object pronouns.
For sentences like The book about Fred surprised
him, the more recent noun in linear order agrees in
gender with him, but we found a positive GMME.
Rather, neural models appear to have learned, at
least some, aspects of Principle B (in so far as cer-
tain structural positions are marked). However, the
negative GMME was unexpected given the findings
in the literature surrounding incremental process-
ing of such constructions in English. Ultimately,
neural models appear to use information in predic-
tion that the human parser does not.

that Frank|Sue hated him), in the three noun phrase case, and
with by-item random intercepts.
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5 Principle B and Cataphora

The above section explored the role Principle B
plays in pronoun prediction for GPT-like neural
models, finding a qualitative mismatch between
the incremental processing of neural models and
humans. Recent work in psycholinguistics has also
demonstrated that Principle B can restrict the pre-
diction of subjects following cataphoric object pro-
nouns (Kush and Dillon, 2021).

) a. While baking him some cookies,

Nicholas chatted with Mark.

b.  While an employee baked him some
cookies, Nicholas happily chatted with

Mark.

In (9), him is a cataphoric pronoun — the noun
phrase it corefers with comes later in the sentence.
While him can be co-indexed with Nicholas in
(9-b) (meaning Nicholas had some cookies baked
for him), him cannot be co-indexed with Nicholas
in (9-a).!' Principle B excludes this latter co-
indexation.'” Kush and Dillon (2021) found that
humans exhibited a GMME at the subject (e.g.,
Nicholas) only in cases where co-indexation be-
tween the catphoric him and the subject was pos-
sible (e.g., (9-b)). As with “vanilla” pronouns, it
seems, then, that Principle B immediately restricts
the human parser, such that grammatically unavail-
able structural positions are ignored.

In the following section, we evaluated whether
neural models patterned like humans in this re-
spect. That is, whether models exhibited a GMME
only in cases where Principle B did not block co-
indexation. First, we also verified that the neural
models could use cataphoric pronouns to restrict
the prediction of subjects more generally.

5.1 Stimuli

In this section, we consider two experiments:

(10) Experiments

a. SUBJECT CATAPHORA: Sentences
with a cataphoric subject pronoun

b. OBJECT CATAPHORA: Sentences
with a cataphoric object pronoun

A natural interpretation of (9-a) is that Nicholas was bak-
ing cookies for Mark while chatting with Mark

20bligatory control of the PRO in the adjunct is also im-
plicated by this construction. We abstract from the relevant
syntactic analysis here, and instead focus on the empirical find-
ings from human experiments (for full discussion see Kush
and Dillon, 2021, and references therein).

Gender Mismatch Effect for Object Cataphora
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Figure 3: GMME for subject following a cataphoric
object pronoun (him) for each neural model by whether
Principle B applies (e.g., (While driving him|While
someone drove him), (BilllSue)). Stimuli adapted from
Kush and Dillon (2021). Error bars are 95% confidence
intervals.

Examples of each are included below.

(1D Stimuli Examples

a. SUBJECT CATAPHORA: When he
was off work, Richard. ..

b. OBJECT CATAPHORA: While driv-
ing him to school on Friday,

Thomas. ..

For SUBJECT CATAPHORA, we used the 32 stim-
uli from Experiment 1 in van Gompel and Liv-
ersedge (2003). The gender of the cataphoric pro-
noun and the matrix subject (e.g., ke and Richard in
(11-a)) were manipulated resulting in male and fe-
male versions of each. Moreover, for each stimulus
in van Gompel and Liversedge (2003), we evalu-
ated models on ten unique subjects per gender.

For OBJECT CATAPHORA, we drew on the 24
stimuli from Experiment 2 in Kush and Dillon
(2021), which were already balanced for gender
(i.e. 12 with him). As with SUBJECT CATAPHORA,
the experiment manipulated the gender match be-
tween the cataphoric pronoun and the subject noun.
Additionally, Kush and Dillon (2021) manipulated
whether Principle B applied to the construction.
For instance, Principle B applies in (11-b), block-
ing him from co-indexing with Thomas. However,
a minimal different string, While a parent drove
him to School on Friday, Thomas. . ., does not im-
plicate Principle B. We again evaluated models on
ten unique subject nouns per sentence.

In this section, Principle B was only relevant for
Object Cataphora, with Subject Cataphora serving
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as a baseline to ensure that models can, in fact,
use cataphoric pronouns to predict the gender of
upcoming subjects.

5.2 Simple Subject Cataphora

We turn first to the ability of neural models to mod-
ulate their predictions of upcoming subjects by the
presence of cataphoric subject pronouns (see (11-a)
for a relevant example). Results are given in Fig-
ure 8 of Appendix A, and statistical analyses were
conducted via linear-mixed effects models.'> All
models exhibited a positive GMME, suggesting
that models use cataphoric pronouns to constrain
upcoming predictions about the gender of nouns.

5.3 Cataphora and Principle B

Given that neural models can use cataphoric pro-
nouns in prediction, we evaluated whether models
capture the interaction of cataphoric processing and
Principle B (see Section 5.1 for discussion of the
relevant contrast). Results are given by model and
experimental condition in Figure 3. Statistical sig-
nificance was determined via linear-mixed effects
models.'

Recall, that humans exhibit a GMME only in the
case that Principle B does not block coreference
between the cataphoric pronoun and the subject
(e.g., him cannot be co-indexed with Fred in While
driving him to the store, Fred...). If neural models
capture this aspect of human incremental process-
ing, a GMME should be obtained only in cases
where Principle B is not active. We found, how-
ever, that not all models captured this distinction.

GPT-3 and GPT-J demonstrated no significant
GMME in cases where Principle B blocked coref-
erence, in line with humans. GPT-2 XL and GPT-
Neo, on the other hand, had a positive GMME
suggesting that models used the gender of the cat-
aphoric pronoun to predict the gender of the subject.
That is, the models predicted that the gender of the
subject would agree with the cataphoric pronoun,
despite co-indexation being ungrammatical for hu-
mans. When Principle B was not implicated, all
models showed a positive GMME suggesting that,

BModels were fit to predict the surprisal of the subject noun
with a main effect of contrast (whether the cataphoric pronoun
agreed with the subject) and by-item and by-gender (he or she)
random intercepts.

“Models were fit to predict the surprisal of the subject
noun with an interaction of the gender agreement of the cat-
aphoric pronoun (i.e. whether the pronoun and subject agreed
in gender) and the presence of Principle B (i.e. whether co-

indexation was possible between the cataphoric pronoun and
the subject) with by-item random intercepts.
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Figure 4: Mean GMME for subject following a cat-
aphoric object pronoun (him) for humans (reported in
Experiment 2 of Kush and Dillon (2021)), GPT-Neo,
and GPT-J. Predicted reading times (in milliseconds) for
the neural models were obtained by fitting the self-paced
reading times for the fillers following the methodology
outlined in van Schijndel and Linzen (2021).

as with subject cataphora, object cataphora can re-
strict the prediction of subjects.

6 General Discussion

This study investigated whether autoregressive neu-
ral models displayed similar incremental corefer-
ence processing to humans. Specifically, we ex-
amined the interaction between Principle B and
coreference processing with two broad case stud-
ies: 1) “vanilla” pronouns (where the antecedent
precedes the pronoun), and ii) cataphoric pronouns
(where the pronoun precedes its coreferring noun
phrase). For the first case study, we found that the
pronoun predictions of all models were influenced
by structural positions deemed ungrammatical by
Principle B, inconsistent with the incremental pro-
cessing behavior of humans. For the second case
study, we found that two of the four models (GPT-J
and GPT-3), displayed human-like processing be-
havior in predicting subjects after cataphoric object
pronouns (e.g., him), specifically with Principle
B blocking the influence of the pronoun on the
prediction of the later subject.

Three questions remain concerning the behavior
of neural models: 1) how closely do models pre-
dict the observed processing cost in human studies,
2) why do GPT-J and GPT-3, and not the other
models, pattern like humans in cataphoric process-
ing, and 3) why do models consider ungrammatical
antecedents in their incremental processing of pro-
nouns.
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Gender Mismatch Effect by Model Size and Experiment
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Figure 5: Absolute value of the GMME by model size (in millions of paramters) across four experiments: i) SIMPLE
SUBJECTS (Section 4.2), ii) 2NP, iii) 3NP (Section 4.3), and iv) OBJECT CATAPHORA (Section 5.3).

6.1 Finer Comparison Between Model and
Human Behavior

Following the methodology outlined in van Schijn-
del and Linzen (2021), we can directly compare the
GMME observed in humans and in neural models.
In what follows, we report on comparisons between
the GMME observed for humans in Experiment
2 of Kush and Dillon (2021) and the predicted
GMME in milliseconds from GPT-Neo (which was
demonstrated to have non-human like behavior)
and GPT-J (which did have qualitatively similar
behavior to humans). To foreshadow the results,
we found that both models greatly underestimate
the processing cost observed in humans, even in
cases of qualitative overlap.

We fit a linear-mixed effects model with read-
ing times from the filler items in Kush and Dillon
(2021) as the dependent variable, and, as fixed ef-
fects, the surprisal of the current word, the surprisal
of each of the preceding three words, word length
(of the current word and preceding three words),
and frequency (of the current word and the preced-
ing three words). Additional, we included fixed
effects for the interaction between word length and
frequency and by-participant random intercepts. '3
The predicted reading times (in milliseconds) at
the subject (i.e. where we expect a GMME) were
determined for GPT-Neo and GPT-J by applying
the significant coefficients for the surprisal terms
of their statistical model (as in van Schijndel and

I5That is, we fit the model (excluding the entropy and en-
tropy reduction terms) given in Equation 1 of van Schijndel
and Linzen (2021).

Linzen (2021)). For both models, the surprisal of
the current word and the preceding two words were
significant.'6

Figure 4 gives the GMME for humans and the
predicted GMME for the two neural models. As is
visually apparent, neural models greatly underesti-
mate the processing cost. For example, the GMME
reported for humans in the condition without an
interaction with Principle B was 63 milliseconds,
while GPT-Neo predicted an average of around 5.7
milliseconds and GPT-J an average of around 4.7
milliseconds. Similar results have been obtained
in prior work for non-pronominal constructions,
suggesting a broader inability for surprisal mea-
sures from neural models to capture the processing
cost of grammatical violations (van Schijndel and
Linzen, 2021; Wilcox et al., 2021b; Paape and Va-
sishth, 2022).

6.2 Model Behavior and Scale

With regards to the second remaining question,
GPT-J and GPT-3 differ from the other models in
one obvious way: they are the two largest models
we investigated. Scaling laws suggest that larger
models will outperform smaller models (e.g., Ka-
plan et al., 2020; Wei et al., 2022). Figure 5 plots
the absolute value of the GMME:s for four of the
experiments investigated in this paper, including
additional results from smaller versions of GPT-2

1%1n particular, for GPT-Neo, the coefficients were 1.857
ms/bit for the current word, 1.802 ms/bit for the preceding
word, and 1.987 ms/bit for the word two time steps in the past.
Similarly, for GPT-J, the coefficients were 1.929 ms/bit, 2.037
ms/bit, and 1.980 ms/bit.
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Gendered Antecedents for Pronouns by Position
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Figure 6: Proportion of each gender preceding pro-
nouns in three positions: i) when there is exactly one
antecedent, and when there is at leat two antecedents,
ii) the first antecedent, and iii) the last antecedent. Data
from the Pile (Gao et al., 2020) which is the training
data for GPT-J and GPT-Neo.

and GPT-Neo for a larger range of model sizes.
Generally, the GMME increases with model size
(though GPT-3 is at times an outlier). However, for
the experiment with cataphoric processing, we see
that the GMME decreases with scale, suggesting
that larger models learn to ignore ungrammatical
positions in cataphoric pronouns, while simultane-
ously considering ungrammatical positions more
strongly with “vanilla” pronouns.

6.3 Model Behavior and Training Data

Turning to the final remaining question (why mod-
els consider ungrammatical antecedents), the SIM-
PLE SUBJECT experiments are an instructive case
study. Sentences like Bill adores him are not
ungrammatical, only the interpretation that “Bill
adores Bill” is blocked. Suppose the world is such
the following two schema are produced at equal
rates:

(12) a. Bill adores [MALE NOUN]
b. Bill adores [FEMALE NOUN]

(12-a) has two possible pronominal exponents, Bill
adores him and Bill adores himself, while (12-b)
has just one, Bill adores her. Suppose further, that
the first exponent of (12-a) is twice as likely as the
second. The resultant set of productions will be
50% Bill adores her, 33% Bill adores him, and 17%
Bill adores himself.'’ Models trained on data of

"That is, we are, for expository purposes, assuming the
world consists of only structures drawn from the set {Bill

this sort would presumably come to favor pronouns
that mismatch with the subject.

In fact, the training data for GPT-J and GPT-Neo
(which is publicly available) bears resemblance
to this. We took the Pile (Gao et al., 2020) and
extracted all sentences with pronouns. These sen-
tences were then parsed and chunked into noun
phrases using Spacy and gender was assigned by
checking for their inclusion in the male and female
nouns in the BLiMP vocabulary.!® The results are
compiled in Figure 6. As is visually apparent, the
data is highly indicative of a gender mismatch in
the case just discussed, and skewed, to a lesser de-
gree, towards a gender mismatch in more complex
cases implicated by Principle B (e.g., 3NP stimuli).

The Binding Principles, in other words, distort
the surface distribution of pronouns such that the
models ultimately favor mismatches in gender in
just those positions where co-indexation is impos-
sible. Moreover, we see in the scaling figure dis-
cussed above (Figure 5), that smaller models show
no, or weaker, GMMESs. Given the findings that
large models have a higher capacity to memorize
training data (e.g., Carlini et al., 2022; McCoy et al.,
2021), we may take the GMME in the SIMPLE
SUBJECT experiment to be a case of models over-
fiting their training data.

6.4 Conclusion

The present study argues that autoregressive mod-
els do not (uniformly) process pronouns like hu-
mans. We showed that models fail to capture the
qualitative patterns of human incremental coref-
erence processing, in addition to underestimating
processing costs in constructions already noted in
the literature (see van Schijndel and Linzen, 2021;
Wilcox et al., 2021b). Models appear to learn only
aspects of Principle B that have predictable reflexes
in training data.'® Therefore, models can mimic hu-
mans without a full human-like system. Ultimately,
this work provides evidence suggesting that certain
aspects of human parsing behavior do not directly
follow from linguistic data. We leave bridging the
gap to future work.

adores him, Bill adores her, Bill adores himself} with Bill
adores herself excluded. This is to highlight how Principle B
restricts the possible strings in such a way that mismatch is
more common.

8We used the small pretrained English model from Spacy.

For a fuller discussion of mismatches between neural
models and humans, as well as what these results may mean
for a linguistic theory, see Davis (2022).
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Figure 7: GMME for object pronoun (him) and posses-
sive pronoun (his) for each neural model by whether
i) the matrix subject, ii) the matrix object, or iii) the
embedded subject agrees in gender (e.g., (BilllHannah)
told (AaronlAmy) that (Mark|Sue) hates him). Error bars
are 95% confidence intervals.

A Appendix
Additional Figures

Results for the 3NP case are given in Figure 7. For
the possessive pronoun his, we found a positive
GMME for all positions, suggesting that models
expected his to match the gender of any of the pre-
ceding antecedents. For the object pronoun him,
a positive GMME was obtained when grammati-
cally available antecedents (i.e. those not blocked
by Principle B) mismatched in gender. A nega-
tive GMME was found for the grammatically un-
available antecedent (i.e. the embedded subject),
suggesting models expected him to mismatch with
antecedents in that structural position.

Results for subject cataphora are given in Fig-
ure 8. All models exhibited a positive GMME
when the subject mismatched in gender with the
cataphoric subject pronoun, suggesting that models
use cataphoric subject prnouns to constrain their
predictions of upcoming subjects.

Limitations

There are three main limitations: 1) whether mod-
els truly “interpret” the correct coreference rela-
tions, 2) our reliance on stereotypical gender, 3) we
only investigated English.

The first was noted in Section 2. It applies to any
investigation of coreference in neural models, in-
cluding existing investigations of Principle A (e.g.,
Warstadt et al., 2020). While probing has been used
to investigate model representations (e.g., Ettinger

Gender Mismatch Effect for Subject Cataphora
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Figure 8: GMME for subject following a cataphoric
subject pronoun, (e.g., he), for each neural model (e.g.,
While he was working, (BilllSue). . .). Stimuli adapted
from van Gompel and Liversedge (2003). Error bars are
95% confidence intervals.

et al., 2016; Voita and Titov, 2020), which may be
suggestive of something like co-indexation, we do
not take models to be interpreting language, that
is comprehending the meaning of sentences in a
human-like fashion (see the discussion in Bender
and Koller, 2020). At present, techniques are lim-
ited, and thus, we set aside the issue of whether
models interpret pronouns in a human-like fashion,
and instead, focus on comparing model behavior to
humans, which has proved fruitful in other domains
(e.g., Linzen et al., 2016). Future work might con-
sider analyses of the attention mechanisms to dig
deeper into what information models are using.

The second limitation has been noted in related
literature (e.g., Warstadt et al., 2020). We rely
on stereotypical associations between nouns and
pronouns, which does not cleanly map on to the
real world (e.g., for example, we do not consider
singular they). In using the vocabulary items al-
ready actively manipulated in the literature, we
can, nonetheless, make meaningful comparisons to
existing work.

The final limitations is driven, primarily, by the
existing resources in the field. There exist many
pre-trained models for English, and less so for other
languages (for discussion of the broader English
bias in NLP, see Bender, 2009). Additional, the
bulk of psycholinguistic work is focused on En-
glish, making comparisons between neural models
and humans beyond English, challenging. Thus,
the generalizability of the present study is limited
to just those pronominal systems that are English-
like.
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Abstract

We introduce a constraint-based parser for Min-
imalist Grammars (MG), implemented as a
working computer program, that falls within the
long established “Parsing as Deduction” frame-
work. The parser takes as input an MG lexicon
and a (partially specified) pairing of sound with
meaning — i.e. a word sequence paired with a
semantic representation — and, using an axiom-
atized logic, declaratively deduces syntactic
derivations (i.e. parse trees) that comport with
the specified interface conditions. The parser
is built on the first axiomatization of MGs to
use Satisfiability Modulo Theories (SMT), en-
coding in a constraint-based way the princi-
ples of minimalist syntax. The parser operates
via a novel solution method: it assembles an
SMT model of an MG derivation, translates the
inputs into SMT formulae that constrain the
model, and then solves the model using the Z3
SMT-solver, a high-performance automatic the-
orem prover; as the SMT-model has finite size
(being bounded by the inputs), it is decidable
and thus solvable in finite time. The output
derivation is then recovered from the model so-
lution. To demonstrate this, we run the parser
on several representative inputs and examine
how the output derivations differ when the in-
puts are partially vs. fully specified. We con-
clude by discussing the parser’s extensibility
and how a linguist can use it to automatically
identify: (i) dependencies between input inter-
face conditions and principles of syntax, and
(i1) contradictions or redundancies between the
model axioms encoding principles of syntax.

1 Introduction

Minimalist theories of syntax consider the Human
Language Faculty (HLF) as a computational sys-
tem capable of deriving from a finite lexicon and a
single combinatorial operation, an unbounded set
of hierarchical syntactic structures, pairing sounds
(typically word sequences) with meaning repre-
sentations (Chomsky, 1995). (In more technical

language, the HLF pairs Phonological Forms [PF],
where a PF is an encoding of information relevant
to how a brain-internal structured expression gets
pronounced, signed, etc, with Logical Forms [LF],
where an LF is a structured semantic representation,
e.g. predicate-argument structure.) This study in-
troduces a novel computational model for the HLF,
implemented as a working computer program,’ that
takes the form of a constraint-based parser for Min-
imalist Grammars (MG), grounded in the (first)
axiomatization of minimalist syntax using Satisfi-
ability Modulo Theories (SMT).?> Working within
the “Parsing as Deduction” framework (Pereira
and Warren, 1983), the parser is a logic program
that uses an automatic theorem prover to answer
the question: can a given lexicon yield a syntactic
structure that encodes a given LF and/or PF?

More specifically, the parser takes as input an
MG lexicon and a (partial) specification of LF and
PF interface conditions (i.e. constraints over the
LF and PF encoded in a syntactic structure), and
it outputs the set of MG derivations (i.e. syntac-
tic structures) that the (input) lexicon can gener-
ate and that satisfy the (input) interface conditions.
The parser operates by first constructing an SMT
model of a lexicon and an SMT model of deriva-
tion, with the two models linked by shared free
variables to form an SMT model of a minimal-
ist parser. Next, the parser converts the inputs
into constraints, expressed as SMT-formulae, that
augment the SMT model and serve to constrain
the space of model solutions. Finally, the parser
obtains its output by using the Z3 SMT-solver,?
a (modern) high-performance automatic theorem

'The program’s source code is available at https://
github.com/indurks/mgsmt.

2SMT is a propositional logic that may be extended with
background theories — e.g. the theories of uninterpreted func-
tions, bit-vectors and arithmetic (Dutertre and de Moura, 2006;
Ranise and Tinelli, 2006; Nieuwenhuis and Oliveras, 2006;
Nieuwenhuis et al., 2006; Moura and Bjgrner, 2009).

3See (Moura and Bjgrner, 2008; Bjgrner, 2011).
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prover, to check whether the SMT model is satis-
fiable — if it is, the SMT-solver enumerates valid
model-interpretations from which the parser recov-
ers the (output) set of minimalist derivations.

Notably, this model of HLF is declarative, and
so encompasses both semantic parsing and natural
language generation. E.g. one can use the parser to
generate language by: (i) inputting a lexicon and
LF constraints; (ii) ordering the parser to “solve for
syntax” and recover a derivation from the model-
solution; and (iii) obtaining the (output) generated
PF from the recovered derivation. (Here the inputs
are known quantities and the derivation is an un-
known quantity being solved for.) Moreover, our
model for HLF can be used to run experiments in
which the input interface conditions are partially
specified and the SMT-solver is instructed to iden-
tify dependencies between the principles of syntax
(encoded in the parser) and the features in the input
lexicon — in this way, one can determine whether
(and how) the syntactic principles and the lexicon
do not adequately constrain a derivation to compen-
sate for the absent (LF or PF) interface conditions.

The remainder of this study is organized as fol-
lows. First, §2 reviews key principles of minimalist
syntax and how they are modeled using MGs. Next,
§3 reviews related prior work within the Parsing
as Deduction framework, which this study seeks to
extend, and that motivates our approach. Then, §4,
§5 and §6 present the three key contributions of this
study: §4 details the deductive parsing procedure,
showing how the Z3 SMT-solver can be used to
identify satisfiable interpretations of an SMT model
of a minimalist parser; §5 details the SMT model
of the minimalist parser, its underlying axiomati-
zation of minimalist syntax, and how the model
is constrained by user specified inputs; §6 details
application of the parser to a representative set of
example inputs and analyzes the output derivations,
showing how the parser functions even when the in-
put interface conditions are only partially specified.
Finally, §7 discusses how: (i) the SMT model of the
parser may be extended, and (ii) the parser can help
linguists identify dependencies and contradictions
between the model axioms encoding principles of
syntax and the logical constraints derived from the
input interface conditions.

2 Background: Minimalist Grammars

We opted to model minimalist syntax using the
Minimalist Grammar (MG) formalism (Stabler,

e/Cquestion:<=x+p-C

A

I

has+&/Cquestion::<=X+p.C [hu\‘/T::quwx
A
e

Figure 1: The parser outputs an MG derivation of “What
has the man eaten?” that satisfies the LF & PF interface
conditions in I (of Table 2). The derivation was recov-
ered from the model interpretation in Table 3, and each
node is labeled with the index of a row in Table 3. The
depicted structure is a multi-dominance tree, with nodes
{1,5,12,7,17,3,4,15,18,2,13,14,6,9,22} making
up the derivation tree from which this multi-dominance
tree was derived. Lexical and derived nodes are de-
noted by regular and rounded rectangles respectively.
Constituents with the same head have the same color.
Dashed and dotted arrows indicate phrasal and head
movement respectively; a dashed border indicates that a
node is the target of phrasal-movement, with the (raised)
lower structure being copied to the target position.

1996) because MGs have been extensively char-
acterized formally and appear to be sufficiently
expressive for modeling the syntactic structures
prescribed by contemporary theories of minimal-
ist syntax.* The MG formalism (and minimalist
syntax more generally) centers on: (i) a lexicon con-
sisting of a finite set of lexical items (i.e. syntactic
atoms), each pairing a word with a finite sequence
of syntactic features, and (ii) Merge, a recursive, bi-
nary structure-building operation. Syntactic struc-
tures are derived from a multi-set of lexical items
via repeated application of Merge, which has two
(logically-disjoint) sub-cases, external merge (EM)
and internal merge (IM),” that serve to model two
basic facts of natural language, combination and
displacement (respectively).®

“See (Michaelis, 1998; Michaelis et al., 2000; Michaelis,
2001; Graf, 2011, 2013; Kobele, 2011).

SEM merges two disjoint structures, whereas IM merges a
structure with one of its sub-structures.

SCombination forms syntactic structures by (recursively)
pairing separate structures; it is used to associate predicates
with their arguments (i.e. the assignment of thematic roles
like “Agent” and “Patient,” also known as #-roles). Displace-
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To illustrate the MG formalism, let us see how
the MG derivation (i.e. syntactic structure) for the
sentence “What has the man eaten?”, shown in
Fig. 1, is built bottom-up using the lexical items
listed in Table 1. First, the lexical items for the
determiner “the” and the nominal “man” are com-
bined, via the application of external merge, to
form the determiner phrase “the man”; note that
this instance of constituent selection is allowed be-
cause the term “the” has a selector feature, =y,
that matches the selectee feature, ~y, on the term
“man”.” Then, the lexical items for the (lexical) verb
“eaten” is first (externally) merged with its comple-
ment, the (internal) argument “what” to form a
VP, which is then (externally) merged with a covert
light-verb, e/v, with the resulting vP then merged
with the external argument, “the man”, to form a
(double) VP-shell structure in accordance with the
Hale-Keyser model of predicate-argument structure
(Hale and Keyser, 1993, 2002). Next, the VP-shell
structure is merged with a tense marker, the auxil-
iary verb “has”, to form a TP. After this, per the
VP Internal Subject Hypothesis (Radford, 2009),
the internal argument, “the man” is moved, via ap-
plication of internal merge, from its initial location
(within the VP-shell) to the subject-position of the
TP; note that this instance of movement is licensed
by the licensor feature, +q, on “has” matching
the licensee feature, —q, on “the man”. The TP
is then (externally) merged with a (covert) com-
plementizer, ¢/C, to form a cp? Finally, the inter-
nal argument “what” is raised (via internal merge)
from the VP-shell to the specifier position of the
CP, at which point the derivation is complete.’

In summary, to parse a sentence, a multi-set of
lexical items is selected from the lexicon and (re-
cursively) merged together to yield a derivation in

ment, driven by syntactic movement, enables a phrase to be
interpreted at both its (final) surfaced position as well as other
positions within a syntactic structure — e.g., given the expres-
sion “You, I love.”, “You” is the object of “love” and normally
appears in Object position, but here it is displaced to the front
of the sentence (where it is pronounced).

"Selector, selectee, licensor and licensee features are des-
ignated by a prefixed =, ~, +, and — respectively.

8The extended projection, C—T—v—V, forms the spine
of each clause (Grimshaw, 2005; Adger and Svenonius, 2011).

N.b. head-movement — i.e. the incorporation of a lower
(lexical) head into the head it merges with — is applied when
the completed derivation is sent to the PF-interface for exter-
nalization. Head-movement occurs twice in this derivation:
(1) the V-to-v head-movement utilized in the Hale-Keyser
model of predicate-argument structure; (ii) the 7-to-C' head-
movement utilized in raising the auxiliary verb (as when form-
ing a polar-interrogative from a declarative).

which the terminal expression has only the special
feature C' remaining (because all of the selectional
and licensing features have been consumed); if the
ordering of the phonological forms in the result-
ing structure aligns with the order of the words in
the sentence being parsed,!? then the structure is
considered to be a valid parse of the sentence.'!

3 Related Work: Parsing as Deduction

We have developed an MG parser within the Pars-
ing as Deduction framework, which was first de-
scribed by Pereira and Warren (1983), who showed
how an axiomatization of a context-free grammar
could be combined with a logical deduction engine
to formulate a chart parser as a logic program. As
Pereira notes, key advantages of this framework
include: (i) a connection between the deductions
that yield a syntactic structure and the inferences
needed to extract a semantic interpretation from
said structure; (ii) the ability to handle filler-gap
dependencies without altering the basic design of
a chart parser. The Parsing as Deduction frame-
work has since been employed to construct parsers
for a variety of grammatical formalisms, including
lexicalized context-free grammars, tree adjoining
grammars, combinatory categorical grammars, and
dependency grammars.'? Notably, this framework
has been used to develop parsers that model Gov-
ernment and Binding (GB) theory (a predecessor
of minimalist syntax) by encoding principles of
syntax within a system of axioms that mirrors the
modular structure of GB theory (Chomsky, 1981;
Johnson, 1989; Fong, 1991).

Normally, these parsers employ Prolog, the de-
facto language for Constraint Logic Programming
(CLP).!13 However, we leverage recent advances in
the performance of automated theorem provers for
SMT, which enhances CLP by enabling us to focus
entirely on formulating (declarative) model axioms
while the computer is free to decide how best to
deduce a model solution (De Moura and Bjgrner,

1°E.g. using Specifier-Head-Complement linearization to
model Subject-Verb-Object (SVO) ordering (Kayne, 1994).

""See Appendix-B for further commentary on MGs, includ-
ing a presentation of an algebraic formulation of MGs based
on (Stabler and Keenan, 2003).

"2See (Shieber et al., 1995; Duchier, 1999; Tang and
Mooney, 2001; Debusmann et al., 2004; Estratat and
Henocque, 2004; Duchier et al., 2010; Lierler and Schiiller,
2012; Schiiller, 2013). See (Schabes and Waters, 1993; Joshi
and Schabes, 1997; Steedman and Baldridge, 2011) for details
of these grammatical formalisms.

3See (Jaffar and Lassez, 1987; Apt, 1990; Jaffar and Maher,
1994; Koller and Niehren, 2002).
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L. e/CQues. i+ <=z, +p,C  19. he :: ~y, —q

2. has :: =z, +q, ~x 20. resigned :: ~x

3. the :: =y, ~y, —q 21. known :: =y, ~x

4. man :: ~y 22. everyone :: ~y, —q, —p
5. ¢lv i <=z, =y, ~x 23. who :: =z, +p, ~y

6. eaten :: =y, ~x 24. loved :: =y, ~x

7. what :: ~y, —p 25. €/Cpeer. 2 =z, C

8. elv . <=x, ~x 26. knows :: =y, ~x

9. €/Cques. i+ <=z, C 27. john :: ~y, —q

10. was :: =z, +q, ~x 28. given :: =y, ~x

11. she :: ~y, —q 29. €lT :: =z, +q, ~x

12. given :: =y, =y, ~x 30. money :: ~y, —q, —p
13. money :: ~y 31. that :: =z, +p, ~y
14. will :: =z, +q, ~x 32. stolen :: =y, ~x

15. who :: ~y, —q, —p 33. fears :: =y, ~x

16. her :: ~y 34. money :: ~y, —q

17. tell :: =y, =y, ~x 35. €/Cques. :: =z, +p, C'
18. that :: =z, ~y 36. a:: =y, ~y, —q

Table 1: An MG lexicon that the parser may take as
input. Each lexical item consists of: (i) a phonological
form that is either overt or covert (¢); (ii) (optional) a
categorical feature (e.g. entries 1 & 5); (iii) a sequence
of syntactic features. The lexicon includes entries for
auxiliary verbs (e.g. 2, 10 & 14), determiners (e.g. 3),
nominals (e.g. 4, 11, 22, 27 & 30), tense markers (e.g.
2, 14, & 29), complementizers (e.g. 1, 9, 18 & 25),
relative pronouns (e.g. 23), Wh-words (e.g. 7 & 15),
intransitive verbs (e.g. 20), transitive verbs (e.g. 6, 26
& 32), and ditransitive verbs (e.g. 12 & 17).

2011). Hence, we extend prior work within the
Parsing as Deduction framework by: (i) developing
a (declarative) constraint-based minimalist parser,
thereby advancing (linguistically) beyond earlier
GB-based parsers; (ii) formulating an MG parser
as a finite (and thus decidable) SMT-model that is
solved using an SMT-solver (instead of Prolog).'*

4 The Parsing Procedure

This section details the parsing procedure and illus-
trates it with a worked out example.

INPUT. The procedure takes as input: (i) an MG
lexicon, £; (ii) a pairing of LF and PF interface con-
ditions, I, to be parsed; (iii) parameters, p, bound-
ing the size of the SMT model (to be built).

INITIALIZATION. The procedure initializes the
SMT-solver with an empty stack of constraints, S.

CONSTRUCTING THE SMT MODEL. The SMT

model of the parser is constructed as follows. First,

the procedure instantiates the SMT model of the

lexicon (detailed in §5) and constrains it with the

input lexicon — this is carried out by:

(a) initializing an SMT model of a lexicon, m.,
with size bound by p, and pushing m, onto S;

14See (Harkema, 2001; Niyogi and Berwick, 2005; Stanoje-
vié, 2016; Torr et al., 2019) for earlier MG (chart) parsers.

(b) constructing an SMT-formula, ¢;, that restricts
interpretations (i.e. model solutions) of m, to
align with £, and then pushing ¢; onto S;

Next, the procedure instantiates an SMT model of

a derivation (detailed in §5) and then constrains it

with the (input) interface conditions — this involves:

(a) initializing an SMT model of a derivation, mg,
with size bound by p, and pushing m4 onto S;

(b) translating I into an SMT-formula, c;, that con-
strains my (detailed in §5) such that any deriva-
tion recovered from an interpretation of my
must respect I, and pushing ¢y onto S.

Finally, the procedure “connects” the SMT model

of the derivation to the SMT model of the lexicon —

this is achieved by first creating an SMT-formula,
my, that connects my with m; by constraining in-
terpretations of the free variables that appear in

both mg and m;, and then pushing m;, onto the S.

CHECKING THE SMT MODEL. The procedure
uses the SMT-solver’s model-checking routine (i.e.
decision procedure) to determine whether there ex-
ists a satisfiable interpretation of the model (i.e. the
conjunction of the SMT-formulae in S) — if one ex-
ists, the procedure recovers it from the solver, and
then (automatically) reconstructs an MG derivation
from the (recovered) model interpretation. The
procedure then pushes onto S a constraint (i.e. an
SMT-formula) that prohibits the interpretation of
my from being equivalent to any previously re-
covered (satisfiable) model interpretations;'> this
model-checking process is then run again to try and
recover a (new) alternative MG derivation — this
process is repeated until the solver cannot identify
a (new) satisfiable model interpretation (because
all model-solutions have already been identified).

OUTPUT. The procedure outputs the set of MG
derivations that were reconstructed from the re-
covered (satisfiable) model interpretations — each
(output) derivation accords with the (input) inter-
face conditions, I, and can be generated from the
(input) lexicon, L.

Finally, we illustrate the parsing procedure with
a worked out example. Consider the procedure tak-
ing as input the lexicon in Table 1 and the interface
conditions (for the sentence “What has the man
eaten?”) listed in entry I; of Table 2: after con-
structing the SMT model and constraining it with
the input lexicon and interface conditions (detailed

15This further constrains the SMT model so that the solver
cannot yield a model interpretation that encodes an MG deriva-
tion that the parser has already identified.
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in §5), the procedure invokes the SMT-solver’s
model-checking (i.e. decision) routine to obtain
the satisfiable model-interpretation presented in Ta-
ble 3 (see also Appendix-Table 4); the procedure
then recovers the output derivation shown in Fig. 1,
which accords with I, from the satisfiable model-
interpretation.

5 Specification of the SMT Model

This section details the SMT models of the MG
derivation and MG lexicon - these models make up
the heart of the parser introduced in this study.'6
These models consist of: (i) uninterpreted (i.e. free)
finite sorts that represent model-objects such as
words, syntactic features, categories, nodes in a
derivation tree, etc; (ii) uninterpreted (free) func-
tions that establish relationships between model-
objects by mapping members of one or more sorts
to another sort; (iii) model axioms — i.e. SMT-
formulae — that constrain the valuation an SMT-
solver may assign to each uninterpreted function.!”
(See Fig. 2 for a summary of the sorts and functions
that make up the model.) Crucially, since the model
of the parser has finite size (being bounded by the
input parameter, p), we can explicitly quantify all
of the SMT formulae in the model, thereby yielding
a decidable model that is solvable in finite time.
We turn first to the SMT model of the lexicon.
When constructing this model, the parsing proce-
dure scans the input lexicon and instantiates several
finite sorts: X, that models the set of PFs; FF, that
models the set of feature-labels (e.g. {z,y,p, ¢});
and the lexicon node sort, (1, that models the syn-
tactic features appearing in the input lexicon.'® The
lexicon node sort is organized into disjoint subsets
referred to as lexicon node sequences, with each
subset corresponding to one of the distinct lexical
feature sequences appearing in the input lexicon.'”
Among the uninterpreted functions in the lexicon
model, one plays an especially critical role: the

167 complete, formal definition of these SMT models, in-
cluding all model axioms, may be found in Ch. 2 of (In-
durkhya, 2021a); see Appendix A for notes on reproducibility.

17 All model axioms are written using propositional logic
extended with (quantifier-free) theories of: (i) uninterpreted
functions, (ii) Pseudo-Boolean constraints, and (iii) arithmetic.

N.b. the sorts modeling the (fixed) sets of syntactic cat-
egories (e.g. N or V) and feature-types (e.g. + or =) are
pre-defined and do not depend on the input lexicon.

9E.g. the input lexicon in Table 1 has 29 distinct PFs, 4
distinct feature-labels, and 18 distinct lexical feature sequence,
with each sequence having at most 3 features; therefore, the
cardinality of the instantiated sorts X, F and 2 is 29, 4 and
18 %3 = 54 (respectively).

successor function, 1, which maps a € Q to b € (),
where a corresponds to a node within a lexicon
node sequence, and b corresponds to the subse-
quent node in that same lexicon node sequence;>"
the valuation of ¢ is hard-coded by the parsing al-
gorithm after {2 has been divided into lexicon node
sequences.?! The binary (uninterpreted) predicate,

Aqgq, associates each lexical feature sequence with

one or more (overt or covert) PFs, and these associ-

ations are hard-coded by the parsing procedure.??

(E.g. Fig. 3 shows a lexicon node sequence and the

lexical feature sequence it models.)

Next we turn to the SMT model of the deriva-
tion, which is composed of a finite sort, N, that
models the nodes in the derivation. The derivation
takes the form of a multi-dominance tree*® that is
formed by augmenting the derivation tree with ad-
ditional edges corresponding to the movement of
phrases via internal merge (see Fig. 1). Members of
N are sub-divided into derivation node sequences,
with each sequence corresponding to the projection
of a lexical head within the derivation;>* an impor-
tant exception to this is a single member of N, L,
that serves as a null-value target for uninterpreted
functions. The model’s uninterpretable functions
include:

(a) A unary function, p, that maps each node in a
derivation node sequence to its successor node
(in that sequence).

(b) A unary function, h, that maps each z € N to
the head (i.e. beginning) of the derivation node
sequence to which x belongs; a derivation node
x € Nis a head if and only if h(h(x)) = h(z).

(c) A binary function, M, that models Merge:
given x,y € N, M(x,y) is the product of

1f a lexicon node x € € corresponds to the terminal node
in a lexicon node sequence, then ¢ (z) = .

*'E.g. if, as in Fig. 3, Lo, L14, Lo, L5 € € forms a lexicon
node sequence that models the lexical feature sequence for
entry 3 in Table 1, [the :: =y, ~y, —q], then the following
constraint would be added to the SMT model of the lexicon:
((Lo)=L1a) A (¢p(L1a)=Lo) A (¢p(Lo)=Ls).

2Encoding the SMT model of the lexicon with a repre-
sentation that factors apart PFs and lexical feature sequences
reduces the size of the model because lexical feature sequences
are not duplicated, which in turn improves the performance of
the SMT-solver. (E.g. in Table 1, the PFs for entries 24 and
28 will both map to the same lexicon node sequence.)

BMulti-dominance and derived trees are closely related
(Kobele et al., 2007; Morawietz, 2008; Graf, 2013). Appendix-
C details, and Appendix-Fig. 6 shows, how the derivation node
sequences are organized so as to form a multi-dominance tree.

% Derivation node sequences are inspired by the closely
related notion of “slices” (of a derivation tree) employed in
Graf (2013). See Appendix-Fig. 6 for an illustration of how N
is organized into derivation node sequences.
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Finite Sorts Model Diagram Uninterpretable Functions
Lexicon Model Derivation Model
Derivation Nodes
() Lexicon Nodes K k: QT p:N—> N
IF' Feature Labels 0T d:NxN—B
[hpP’H}O H—*QQU I''Q—-B M:NxN—N
T Feature Types M Ay Ages ' Ba: Q2 —>C P:-N—- N
Q: Categories \\ZL """" f Ag:XExQ—B|H: N> N
. N Bn:N—€
> Phonological Forms \Q:/ & NxN-B
IB Boolean (True/False) L:NxN—->B
AN N> X
p:N—=Q

Figure 2: Arrangement of the uninterpreted functions and (finite) sorts that make up, and connect together, the SMT

model of a derivation and the SMT model of a lexicon.

h p,P D, L v

Lexicon
Node
Sequence

Derivation
Node
Sequence

(eIl -~ C10s]]

T
PF Node Sort (i.e. Phonological Forms)

Pa
[E[aE[oE[njE]a

Category Sort

Figure 3: Model diagram showing how uninterpreted
functions form commutative diagrams that connect the
SMT model of the derivation to the SMT model of the
lexicon — here they connect one of the derivation node
sequences (from Fig. 1) to one of the lexicon node se-
quences (for entries 3 & 36 in Table 1). N.b. the lexicon
node sequence maps to two PFs, and the derivation node
sequence corresponds to one of those two PFs.

merging = with g.%

(d) A unary function, P, that models the move-
ment of phrases by mapping a node in the
derivation tree to the location it is raised to.

(e) A unary function, H, that models head-
movement by mapping a lexical head to the
lexical head that it incorporates with.

(f) Two binary predicates, d and d*, that encode
the dominance relations making up the deriva-
tion (a multi-dominance tree), with d encoding
dominance as imposed by p, and d* encoding
the dominance relations in the derived tree —i.e.
the tree produced after all syntactic movement
is completed (see Appendix-C for details).

21f ¢ and y are not externally merged, then M (x,y) = L;
this illustrates one of the ways in which _L is utilized.

(g) A unary function, Oy, that associates each term
in the derivation with a category (in €).

(h) A binary function, £, encoding (linear) prece-
dence (in accordance with the derived tree).

We restrict (satisfiable) interpretations of the SMT

model by constraining it with additional axioms

that encode various principles of minimalist syn-

tax,® including axioms requiring:

(a) Vz,y € N, M(z,y) = M(y, ) (symmetry).

(b) no self-merging: Vo € N, M(z,z) = L.

(c) no term is the target of multiple merges:
Va,y,z €N,z #y — M(z,y) # M(z,2).

(d) every non-lexical (i.e. non-leaf) node in the
derivation tree is in the range of M.

(e) Yz € N, h(P(x)) = h(x).

(f) Vx,y € N, if x and y are lexical heads related
by head-movement (i.e. (h(x) = ) A (h(y) =
y) A (H(x) = y)), then the maximal projection
of x is merged with y (viaEM) -i.e. 3z € Ns.t.
(h(2) = z) Nd(z, 2) A (M(M(H(2), 2)) = y).

(g) the root node of the derivation tree is a (maxi-
mal) projection of a complementizer head (C'),
and the functional heads in a clause are orga-
nized as an extended projection of the form
C+T<+v+V (Adger and Svenonius, 2011).

(h) ifaphrase, z € N, undergoes IM with a (lower)
phrase, y € N, so that P(y) is the sister of x
(i.e. M(P(x),y) # L), then M(z,P(y)) =
p(z) and h(M(z, P(y))) = h(z) # h(y).

Notably, the expressive power of SMT, particularly

the composition of uninterpretable functions, al-

lows the model to consist of a few dozen axioms,

which we found to be manageable to reason about.

E.g. the Theory of Bare-Phrase Structure (Chomsky,
1995), the Inclusivess Principle (Chomsky, 2001), the No
Tampering Condition (Chomsky, 2005, 2013), the Projection
Principle (Chomsky, 1986) and the Principle of Economy of
Derivation (Collins, 2001).
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Next the parsing procedure translates each of
the (input) interface conditions (ICs) into SMT-
formulae that constrain the SMT model of the
derivation. LF ICs stipulating (subject-predicate)
agreement and the assignment of #-roles (i.e. se-
mantic roles) to arguments are translated into
model constraints (i.e. SMT-formulae) that require
specific local hierarchical relations be established
by Merge,”’ and the sentence type (i.e. declara-
tive vs. interrogative) is translated into model con-
straints that dictate which type of complementizer,
Cyues. or Cgee., heads the sentence. PF ICs are
translated into constraints that require the Subject-
Verb-Object (SVO) ordering of the derived tree, in
which all phrasal-movement and head-movement
has taken place, match the linear order of words in
the input sentence.?® Notably, the SMT-formulae
encoding LF constraints are entirely separate from
the SMT-formulae encoding PF constraints.

Finally, the SMT models of the lexicon and the
derivation are connected by an uninterpreted func-
tion, u, that maps each derivation node sequence to
a lexicon node sequence, subject to the constraints:
(i) o p = 1) o u, which lines up each projection in
the derivation with a lexical feature sequences (for
a lexical entry) in the lexicon; (ii) Bn o 4 = fn,
which ensures that each lexical head in a derivation
has the same category as the lexical entry it orig-
inates from. (Fig. 3 depicts these constraints and
others as commutative diagrams.) There are also
model-axioms that further restrict 1 by requiring
that pairs of nodes merged via EM or IM map to
selectional or licensing features (respectively).

6 Parsing with Partially Specified Inputs

We validated the parsing procedure, and in partic-
ular the SMT-models it constructs, by using it to
parse each pair of interface conditions in Table 2
using the lexicon in Table 1. Notably, this lexi-
con was designed so that, for each (LF, PF) pairing
of interface conditions in Table 2, the lexicon can
yield a derivation that satisfies the (input) interface

Y Specifically, per the Uniformity of 0-Assignment Hypoth-
esis (Baker, 1988; Adger, 2003), internal (object or oblique)
arguments are assigned a 6-role by establishing a local rela-
tionship (via EM) with the projection of a lexical verb, while
external arguments are assigned a 6-role (e.g. AGENT) by
establishing a local relationship with the light-verb within a
VP-shell structure. Likewise, subject-predicate agreement
requires a local relationship (established via IM) between a
raised subject and the tense marker it agrees with.

BFollowing (Kayne, 1994), SVO ordering of the derived
tree is obtained by requiring that specifiers precede their head,
and that heads precede their complement.

I; Interface Conditions

I, PF: what has the man/N eaten/V?
LF:  Ocuen[s: the man, o: what|, Anas[s: the man|
I PF: was she/N given/V money/N?
LF:  Ogen[o: money, i: she], Awas[s: she]
I3 PF:  who will tell/V her/N that he/N has resigned/V?
LF: Oenl[s: who,o: that he has resigned,s: her],
Ayin[s: Who), Oresigned[s: he], Anas[s: he]

I, PF: she/N has known/V everyone/N who was loved /V.
LF: Owown[s: she,o: everyone who was loved|,
Anas[s: she], Oiovea0: everyone], Awas[s: everyone]
Is PF: she/Nknows/V that john/N has given/V money/N.

LF:  Ounows[s: she,o: that john has given
Ogiven[s: john, o: money], Aps[s: john]
Is PF: john/N has given/V money/N that was stolen/V.
LF:  Ogiven[s: john, 0: money that was stolen], Anas[s: john],
Ostolen [0: moONeEy], Ayas[s: money]
I PF: john/N fears/V everyone/N who knows/V her/N.
LF:  Ofeas[s: john,o: everyone who knows her],
Oknows|$: everyone, o: her]
Is PF: john/N fears/V that money/N was stolen/V.
LF:  Ofeas[s: john,o: that money  was
Osolen[0: money], Ayas[s: money]

money],

stolen],

Table 2: Corpus of Paired (LF and PF) Interface Con-
ditions (ICs). PF ICs provide surface order data, and
some words are associated with a specified category
(denoted by a slash followed by the category). LF ICs
include relations for agreement (.A), predicate-argument
structure (6), and sentence-type (either declarative or
interrogative as denoted by end-punctuation). N.b. LF
ICs only encode hierarchical/structural relations — i.e.
the values filling the slots consist of sets of tokens, not
sequences of tokens. A predicate associates with one

or more arguments: “‘s:” denotes an external argument,

and “0:” and “i:” denote an internal argument serving
as a direct or indirect object (respectively). Entries with
an embedded clause — e.g. I3 & I — can have (separate)
LF ICs stipulated for each clause.

conditions (ICs) and that matches the derivation
prescribed by contemporary theories of minimalist
syntax?® — among these are derivations (in both
active and passive voice) for declaratives, polar-
interrogatives, wh-questions, relative clauses, and
embedded sentences. Moreover, the (prescribed)
derivations involve covert complementizers (C),
tense-markers (1), and light-verbs (v), as well as
various forms of movement including: wh-raising,
subject-raising, T-to-C' head-movement, and V'-to-
v head-movement (in VP-shells). The validation
process succeeded, demonstrating that the parser,
using the lexicon in Table 1, can yield (and in-
ternally model) the prescribed derivation for each
entry in Table 2. E.g. see Fig. 7 & 8 for derivations,
output by the parser, with an embedded sentence
(for I5) and a relative clause (for I7), respectively.

We also measured, for each IC in Table 2, the

PSee (Adger, 2003; Hornstein et al., 2005; Hornstein and
Pietroski, 2009; Collins and Stabler, 2016; Radford, 2016).
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Node fn h p P H u (You) Ay
Do Do Do Do Do Ls Ls

D1 D Dy Dis Di9g Do Ls7 Ls what
D2 T Dz D14 Do D6 L32 Lge has
D3 D Ds Dis Doy Dy Ly Lya the
D4 N D4 D15 Do Do Ls L5 man
Ds Vv Ds Dis Dy D7 Lg L33 eaten
Dg Cques. Ds D9 Do Do Lo L7 €

D7 \4 D7 Diz Do Do L1z La €

Ds Do Do Do Do Ls Ls

Dy Cques De D2z Do Do L7 Loy

D1o Do Do Do Do Ls Ls

D11 Do Do Do Do Ls Ls

D2V Ds Diz Do Do L33 Ls

Dz T D> D9 Do Do L2y Ls

Dy T Dy Dis Do Do Lzs L2

Dis D D3 Dis Dx Do Lis Lo

D1 7 \Y% D7 D]g Do Do L4 L35
Dg v D7 D1y Dy Do L3s Ls
Dy D Dy D2 Do Do L3 Ls
Dao Dy Dy Do Do Ls Ls
D21 D D3 D13 Do Do Lo LS
D2y Cques. Ds Do Do Do L2z Ls

Table 3: Model interpretation for the derivation in Fig. 1.
Each D; is a member of the derivation node sort, N.
Valuations, recovered from the model interpretation, are
listed for several of the uninterpreted functions (e.g.
h(D15)=D3 and p(Dg)=Ds5) that make up: (i) the
derivation model —i.e. h (head), p (parent), P (phrasal
movement), H (head movement), Ay, and Sy; (ii) the
lexicon model — i.e. ¥ (successor) and y (bus). Not all
members of N are used in the derivation (e.g. Dy1); the
bottom nodes, DyeN and L€(), serve as target nodes
reserved for uninterpreted functions to map unused D;
to — c.g. h(Dll):p(Dll):DOa and /L(Dll):Lo.

runtime of the parser - i.e. the time the Z3 SMT-
solver takes to check (i.e. solve) the constructed
SMT model.>® We found that I; and I» each took
less than 12 seconds to parse, I3-Ig each took be-
tween 3 and 6 minutes to parse, and 7 and Ig took
31 and 41 minutes to parse (respectively). These
differences in runtime are not unexpected when we
observe that: (i) I; and I have fewer tokens and no
embedding structure (as compared to I3-1g); (ii) I7
and Ig require more instances of head-movement,
empty categories and phrasal movement, so that the
checked model is (substantively) larger than those
of I;-Is. Moreover, we found in practice that there
is a tradeoff between: (i) writing succinct, compre-
hensible model-axioms that make extensive use of
compositions of uninterpretable functions, and (ii)
the runtime of the Z3 SMT-solver. We believe navi-
gating this tradeoff is an important avenue of future
work for this parser, and that it is worth exploring
the use of other higher-order theories supported
by Z3, such as the theory of algebraic datatypes

39See Table 5 in the appendix for detailed results.

(Bjgrner and Nachmanson, 2020), for modeling
minimalist derivations and lexicons.

We next applied the parser to inputs in which
either the LF or PF interface conditions are spec-
ified (but not both). We did this for each entry in
Table 2, and present the analysis for /1 below.

If the input is limited to the PF ICs in I, the
parser can output a derivation (see Fig. 4) in which
“the man” is the internal argument (as it merges
with “eaten”) and “what” is the external argument
(as it merges with the light-verb, v). This alter-
native derivation is possible because the external
and internal arguments are selected using the same
feature, =y, and swapping where the two argu-
ments merge into the VP-shell structure compels
the axiom encoding the Uniformity of 0-Assignment
Hypothesis to assign semantic roles (to the argu-
ments) that yield an incorrect reading of “What
has the man eaten?” One solution is to refine the
(selection) labels of nominal phrases (NP) to en-
code f-roles; however, the model must be updated
to propagate NP-labels to determiners (and com-
plementizers and relative pronouns), or else the
lexicon will grow untenably by multiplying out the
determiners for each distinct selection label.

Conversely, if the input is instead limited to the
LF ICs in Iy, then the parser can output a deriva-
tion (see Fig. 5) where the auxiliary verb “has” is
not raised because T-to-C' head-movement is com-
pelled by PF ICs (and not by LF ICs); consequently,
the surfaced form, “What the man has eaten?”, is
ungrammatical. One solution is to add axioms that
model Economy Conditions (Collins, 2001), so that
T'-to-C' head-movement may be omitted if doing
so leaves the surfaced form unchanged.

7 Conclusion

We have introduced an MG parser that is a com-
putational model of HLF and is grounded in an
SMT-model encoding a novel axiomatization of
minimalist syntax. The parser uses the Z3 SMT-
solver, an automatic theorem prover, to answer the
question: can the input lexicon yield a derivation
that satisfies the input LF and PF interface con-
ditions? In this way, parsing is translated into an
(SMT) decision problem, with model solutions cor-
responding to the derivations output by the parser.

We demonstrated that the parser, implemented
within the Parsing as Deduction framework, can op-
erate on partially specified interface conditions.?!

3'More generally, we note that the flexibility of the parser’s
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€/Cquestion:<=x+p'C

{ what/Di~y--p | (ﬂcqueslioni<=x'+}’-cj
n
/

'

haS+ﬂCques(ign::<=X,+p,C‘ [haﬂ::x.+q-~xj

eaten+e/V:i<=X,=y ~X
\ v

(eawnN =y~

Figure 4: A derivation yielded by the parser, using the
lexicon in Table 1, when only the PF interface condi-
tions in entry I; (in Table 2) were input to the parser. In
contrast with the (prescribed) derivation shown in Fig. 1,
this derivation has the originating locations of the two
arguments of the (lexical) verb “eaten” swapped; hence,
although this derivation will be (correctly) externalized
as “What has the man eaten?”, the derivation encodes
an (incorrect) semantic interpretation in which the pred-
icate “eaten” takes “the man” as its internal (object)
argument, and “what” as its external (subject) argument
(akin to the expression “What has eaten the man?”).

This flexibility of the parser can be leveraged to
observe when: (i) output derivations do not accord
with the prescriptions of modern theories of min-
imalist syntax — inspecting these derivations can
yield clues about how interface conditions and lin-
guistic constraints cooperate to rule out derivations
prohibited by the theory; (ii) the parser fails to
output any derivation despite the theory prescrib-

design enables it to operate on partially specified inputs, with
the SMT-solver in effect solving for the unspecified inputs (in
addition to the derivation itself). E.g. if we specify the LF and
PF interface conditions, but not the lexicon, then the parser
will constrain the SMT model of the derivation using the in-
terface conditions, but will not constrain the SMT model of
the lexicon since no input lexicon was specified — then when
the SMT-solver obtains a satisfiable interpretation of the SMT
model of the parser, we can (automatically) recover from the
interpretation of the lexicon model an MG lexicon that yields
a derivation that satisfies the specified interface conditions.
Moreover, if we augment the parser by connecting multiple
SMT models of derivations, each constrained by a different
pairing of interface conditions, to a single SMT model of a
lexicon, then the composite SMT model can be used to infer
an MG that can, for each pair of interface conditions, yield a
derivation that satisfies that pairing — notably, this approach
aligns with earlier work that used logic grammars to infer a
lexicon (Rayner et al., 1988). See (Indurkhya, 2020) and (In-
durkhya, 2022) for detailed discussions of how augmenting the
parser in this manner can yield instantaneous and incremental
(respectively) computational models of language acquisition.

&/Cquestion:=x+p"C

:\wha!lD:~y-rpIE [E/Cqueslion:"'ﬂ’vc)

slcquesuon::=x,+p.C| [has/l"::x&qwxj

has/T:=x-+q,~x

elvi<=xmy~x

(o)
N eaten/Vz=y ~X what/D::~y ,-p
N
N

the/D::=y ~y.-q | man/N::~y eaten+&/v:i<=X =y, ~X

Figure 5: A derivation yielded by the parser, using the
lexicon in Table 1, when only the LF interface condi-
tions in entry /; (in Table 2) were input to the parser. In
contrast with the (prescribed) derivation shown in Fig. 1,
this derivation does not raise the auxiliary verb, “has”,
via T-to-C head-movement; consequently, although this
derivation accords with the LF interface conditions stip-
ulated in I; (as it uses entry 36 in Table 1, which codes
for an interrogative), it is externalized (i.e. surfaced)
as the (un-grammatical) expression “What the man has
eaten?”

ing a licit derivation — then the SMT-solver can
identify the minimal subset of model-axioms that
are mutually incompatible (Lynce and Silva, 2004;
Guthmann et al., 2016), thus identifying conflicts
between the axioms of minimalist syntax and the
constraints derived from the interface conditions.
Finally, a key advantage of this parser is that
it enables a division of labor: the SMT-solver is
tasked with carrying out the logical deductions
needed to find a model solution, leaving the lin-
guist free to: (i) extend the parser, with the modu-
lar design of the SMT-model enabling related sets
of axioms to be modified without impacting the
remainder of the model;? (ii) investigate how prin-
ciples of syntax cooperate to constrain the space of
derivations, and identify redundant principles that
may be dropped to yield a simpler theory of syntax.
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A Reproducibility

We ran the computer programs detailed in this
study on a MacBook Pro (Retina, 15-inch, Late
2013) with a 2.3 GHz Intel Core i7 processor,
and 16GB of 1600MHz DDR3 RAM. We used
Python v3.7.9 and v4.8.6 of the Z3 SMT-solver.
The complete program source code for the parser,
including the (python) source code for the SMT
models, is available at ht tps://github.com/
indurks/mgsmt.

B Minimalist Grammar

This section provides additional details about the
Minimalist Grammar formalism used in the present
study. Notably, MGs are mildly-context sensitive
(Michaelis, 1998) and are sufficiently expressive
for modeling natural language in so far as they
can model the syntactic constraints that appear
in contemporary syntax (e.g. they can produce
structures encoding cross-serial dependencies) —
specifically, the syntactic constraints underlying
HLF can be modeled by Monadic Second Order
(MSO) logic (Rogers and Nordlinger, 1998), and
MSO-expressible constraints over an MG deriva-
tion tree can be encoded within an MG lexicon
(Graf, 2013).%3

We now turn to reviewing the algebraic formu-
lation of MGs presented in Stabler and Keenan
(2003) — we encourage the reader to consult Fig. 1
and Table 1 to ground this formal presentation.
A minimalist grammar, G, is defined by a tu-
ple, (3, Sel, Lic, Lex,M), and we will now de-
fine each member of this tuple in turn. First, X is
a finite, non-empty set of phonological forms — a
phonological form is either overt (i.e. a pronounced
word) or covert (i.e. unpronounced), and we let €
denote a covert phonological form. Next, Sel and

3Notably, MGs are sufficiently expressive for modeling
syntactic derivations that are systematically related by struc-
tural transformations. E.g. a declarative is (structurally) re-
lated to its corresponding polar-interrogative by way of the
rule for aux-raising (i.e. T-to-C movement as modeled in
contemporary minimalist syntax) in which the top most (i.e.
root) complementizer triggers head-movement of the (hierar-
chically) closest tense-marker — we would thus expect that the
syntactic structure assigned (by an MG parser) to a declarative
could be transformed into a polar-interrogative by replacing
lexical item 25 with lexical item 9 (in Table 1), and would also
expect that running an MG parser on the polar-interrogative
would yield the same derivation as obtained by applying aux-
raising to the derivation of the declarative. This capability
of MGs and their parsers stands in contrast with state-of-the-
art UD parsers that have difficulty acquiring and encoding
knowledge of the aux-raising rule (Indurkhya and Berwick,
2021).

Lic are defined as non-empty (disjoint) finite sets
of feature labels for selection and licensing respec-
tively.>* We then define F, the set of syntactic
features, as the union of:

(1) the singleton set containing the special fea-
ture C', which marks the end of the derivation
process;

(>i1) the set of selectional features, formed by pre-
fixing members of Sel with = or ~ to indi-
cate if the feature is a selector or a selectee
(respectively); furthermore, a < or > prefixed
before a selector prefix —i.e. “<=" or “>=" —
indicates that the selector triggers left or right
head-movement respectively.>

(iii) the set of licensing features, formed by prefix-
ing members of Lic with 4+ or — to indicate
if the feature is a licensor or a licensee (re-
spectively).

Turning to the lexicon, Lex, we first define the
set of chains as H = ¥* x Types x F™*, where
the set T'ypes = {::,:} designates whether a chain
is lexical or derived (from lexical chains) respec-
tively.>® We can then define Lex as a non-empty
finite set of lexical chains. Finally, the set of ex-
pressions, £ = H™, may be recursively combined
together via the binary structure building operation
Merge, denoted by M, to produce another expres-
sion. Merge has two disjoint subcases:

(1) external merge (EM), which models combi-
nation, requires that both arguments of merge
are disjoint from one another;

(i) internal merge (IM), which models displace-
ment, requires that one of the arguments is a
constituent of the other.

Both sub-cases of Merge are driven by feature-
checking, with M determining whether two ex-
pressions may be paired together based on their
features; note that the syntactic features are unin-
terpretable, and Merge deletes the pairs of features
that check one another.

Let us now formally detail the subcases of M.

34The feature system used here is based on checking theory
as detailed in Chomsky (1995).

Snstances of head-movement include: (i) the V-to-v head-
movement utilized in the Hale-Keyser model of predicate-
argument structure (Hale and Keyser, 1993, 2002); (ii) T-to-C
head-movement (Pesetsky and Torrego, 2001) that is utilized
in fronting an auxiliary verb (e.g. when forming a polar-
interrogative from a declarative).

3 Lexical chains serve to track the sequence of movement
operations that the (maximal) projection (of a lexical head)
may undergo in the course of a derivation; in particular, they
track terms in the derivation that have not yet finished moving
(and thus need to be accessible to the Internal Merge operation.
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Let s,t € ¥*, f € Sel, g € Lic, vy € F* and
d € F*. Furthermore, let aq,...,ap € H for
0 < k,andlet ¢,...,.; € H for 0 < [. We then
define EM as the union of the following three (dis-
joint) functions, { EM;, EM,, EMs}, that involve
feature selection:

=f, t-~fl,t1...
[s::=f,7] [t-~fl.e...u EM,
[st:v], t1...u
[s:=f, 7] ar..ak [t-~fl . EMs
[ts:v], a1...ak,t1...4
[S':f,’Y],OéL-.ak [t'Nf,(S], L1...0] EMs

[s:7], c1...ak, [t: 6], t1...1
The separation of the phonological form and the
syntactic features by the symbol - designates that
the chain could either be lexical or derived. IM is
defined as the union of the two disjoint functions,
{IM, IM,}, that employ feature licensing:

[s:4g, 7], a1...06-1, [t: —g], qig1...08
[ts:v], a1...vim1, Qig1...0p

M,

[s:49g, 7], 1...cci1, [t: —g, ], Qig1...ap

[s:v], 1...ai—1, [t: 0], Qig1...a
Furthermore, IM; and I My are restricted by the
Shortest Move Constraint (SMC): if a licensor, «,
binds to a licensee, 3, it must be the case that 3 is
the only licensee to which « can bind. The SMC
ensures that the licensor will always select the (hi-
erarchically) nearest licensee, as at every step in the
derivation, there can only be one possible licensee
that can be licensed; this has the consequence of
making IM deterministic (with respect to which
licensee a licensor will license), so that a deriva-
tion can be determined entirely from knowledge of
the order in which the various lexical heads (and
projections thereof) are externally merged with one
another.

Finally, we define a derivation as a sequence of
expressions produced by recursively applying M to
a group of chains; a derivation is deemed to be com-
plete if there remains a single expression that has no
chains and that has one feature, C' (which serves to
indicate the termination point of the derivation).?’

M2

%7 As defined here, an MG either can or cannot generate a
given derivation. However, we can compute a relative like-
lihood for a given derivation to be generated by an MG by
determining for each of the merge operations involving (con-
stituent) selection (i.e. the c-selection that drives external
merge), the degree to which the heads of the two merged
projections tend to associate with one another — this pair-
wise associativity between phonological forms (correspond-
ing to the two heads) can be computed by various methods,
e.g. using a similarity metric to compute distance between
the word embedding vectors for the two phonological forms,
or using model-based collaborative filtering may be used to
compute the associativity between predicates and arguments
(Indurkhya, 2021b).

SSEE5884888585855854 8844
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D | 0OODOOD DOOO OB @
ol I
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Table 4: Model interpretation of two binary uninter-
preted functions, d and d*, for the derivation in Fig. 1.
Given an entry at row D; and column D;: + indicates
that the node D; dominates the node D; with respect to
the derived tree but not the derivation tree; () indicates
that D; dominates D; with respect to the derivation tree
but not the derived tree; @ indicates that D; dominates
D; with respect to both the derivation tree and the de-
rived tree; and - indicates that D; does not dominate
D; (with respect to either the derivation tree or the de-
rived tree). E.g. D1 dominates D15 with respect to the
derivation tree but not the derived tree: notice in Table 3
that while p(D15) = D;s, there is no k € [0, 22] such
that P(Dy) = Dss. Conversely, D21 dominates D15
with respect to the derived tree but not the derivation
tree: notice in Table 3 that P(D15) = Doy, but there is
no k € [0,22] such that p(Dy) = Da;. The derivation’s
root node, D95, dominates each of the other nodes in
the derivation with respect to both the derivation tree
and the derived tree. Finally, Dy, Do, ..., D7, which
are leaf nodes (i.e. lexical heads) in the derivation, do
not dominate any other nodes in the derivation, and for
that reason rows D1 ... Dy are not shown as they would
be entirely filled by - .

Assuming a Subject-Verb-Object word-ordering,
the surface form associated with a complete deriva-
tion may be read out by recursively applying (top-
down) a Specifier-Head-Complement linearization
of each projection.

C Multi-dominance and Derived Trees

This section details how a minimalist derivation
takes the form of a multi-dominance tree —i.e. the
(bare) phrase structures that linguists are familiar

3%1n a projection of a lexical head, the complement is the
first term the lexical head merges with, and the specifier is
the subsequent term that the projection (of the head) merges
with — e.g. in XBar-theoretic terms, given the two rules:
XP — Spec, X', and X' — X, Comp, the projection of the
lexical head X will be linearized so that the surface ordering
is Spec, X, Comp.
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Figure 6: An illustration of how the members of the derivation node sort, N, are arranged into derivation node
sequences, with each sequence being associated with either an overt or covert phonological form. Each derivation
node sequence is depicted as a column, with the first node in the sequence at the bottom and the last node in the
sequence at the top. Note that the derivation node sequences shown here may be arranged so as to form the derivation
(tree) shown in Fig. 1. Nodes that actively play a role in the derivation are depicted as white boxes, and active nodes
that are in the same column have the same (lexical) head - e.g. the root node is D25, and since D52 has the same
head as Dy and Dg, it is displayed here above the covert node-sequence associated with the (covert) phonological
form ec,,,., . (Note that the root node is not a member of any derivation node sequence, and is treated as a special
case in the axioms.) Boxes with dashed boundaries correspond to inactive members of N that do not participate
in the derivation (i.e. they do not appear in the derivation in Fig. 1). Boxes with solid boundaries are projections,
whereas greyed out boxes are part of a lexical chain (i.e. the sequence of movement operations that a maximal
projection may participate in). Importantly, the derivation node sequences together form an index over N, and this
index enables us to write model axioms that can explicitly reference the members of a derivation node sequence —
i.e. the axioms that constrain uninterpreted functions operating over N can explicitly reference each individual step
in the projection (and potential subsequent chain) of the lexical head associated with a given phonological form.

with.?°

A multi-dominance tree is a super-position of
the derivation tree — i.e. the tree made up of the
external and internal merge operations that work to-
gether to combine a multi-set of lexical items drawn
from the lexicon — and the derived tree, which is
the tree that remains after a minimalist derivation
has been generated and all movement operations
have been applied. Each MG derivation tree is as-
sociated with a multi-dominance tree, which can
be generated from the derivation tree by appending,
for each occurrence of IM in the derivation tree, a
node at the destination of the movement operation,
and then establishing a dominance relation (via d*)
between the destination node and the node at the
source of movement.*’

¥Relatedly, see Pgs. 12-24 of Graf (2013) for a discussion
of “augmented derivation trees.”

“OThis is closely related to the two-step approach that in-
volves first lifting information implicitly encoded within a
derivation tree (i.e. the information encoded in the structure
of the multi-dominance tree) so as to to make the information
explicit, and then reconstructing the (derived) phrase structure
tree that linguists are more familiar with. See Pgs. 35-50 of
Graf (2013) for a discussion of the two-step approach of (i)

We observe that, for both the derivation and
multi-dominance trees, each node is associated
with a (lexical) head; then, since two nodes that
are merged together cannot have the same head,
we can identify which of two merged constituents
projects by examining the head of the node that
corresponds to the product of merge.*!

* The derivation tree can be recovered from the
multi-dominance tree by deleting each occur-
rence of movement (i.e. deleting the node at
the raised location).

* The derived tree may be recovered from the
multi-dominance tree by removing, for each
node x in the multi-dominance tree that serves
as a source of movement, the dominance rela-
tion (with respect to the derived tree) between

lifting an MG derivation to its associated the multi-dominance
tree and then (ii) reconstructing the “derived tree”’; see also
(Kobele et al., 2007). See Morawietz (2008) (Pgs. 131-182)
for a review of the two-step approach as applied to multiple
context-free grammars (MCFGs), and note that MGs may be
translated into MCFGs (Michaelis et al., 2000).

“IN.b. the derivation and multi-dominance trees do not
explicitly encode (linear) precedence relations between the
lexical heads entering into the derivation.
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z and its parent —i.e.:
d*(p(z), z) = False

Importantly, the multi-dominance tree can be
viewed as a super-position of the derivation tree
and the derived tree, and it is the multi-dominance
tree associated with an MG derivation that serves
as the domain of discourse in the SMT model of
the derivation. Hence, whenever the present study
refers to a derivation tree or a derived tree, the
reader should understand that they are components
of a multi-dominance tree.

Each lexical item that appears in a derivation
has a (bottom-up) trajectory through the associated
multi-dominance tree:

(i) the lexical item, starting as a lexical head,
is first projected zero or more times — this
process is driven by either external merge via
(c-)selection or internal merge via licensing;

(i1) the (maximal) projection of the lexical item is
then either the terminal point of the derivation
(marked by the presence of the special symbol
C) or is selected by some other lexical head
(this is driven by the presence of a selectee
feature);

(iii) finally, the lexical item is raised, via inter-
nal merge, zero or more times to form a
movement-chain, with each movement op-
eration forming a link in the chain.

Importantly, there are two key points to take away

from this observation:

(a) Each node in the multi-dominance tree asso-
ciates with a lexical item in the derivation (i.e.
the lexical item that is the head of that node)
and the nodes associated with a lexical head
may be arranged as a sequence in the order
in which they appear in the multi-dominance
tree (starting from the bottom); for this reason,
we refer to such a sequence as a “derivation
node sequence” and observe that the multi-
dominance tree associated with an MG deriva-
tion is a structural arrangement of derivation
node sequences (Stabler, 2013).

(b) Given the multi-dominance tree that is associ-
ated with an MG derivation, we can recover
the multiset of lexical items from which the
multi-domimance tree is derived (except for
the labels of the syntactic features); this can be
seen by observing that each node in a deriva-
tion node sequence is associated with exactly
one type of syntactic feature — i.e. selector,

IC Triall Trial2 Trial3 Median
I 11.7 10.5 13.9 11.7
I 3.2 3.3 4.0 33
I3 323.8 208.9 346.0 323.8
n 267.1  296.2  281.1 281.1
I 222.6 2255 178.5 222.6
I 261.8 312.0 2614 261.8
I; 12133 2065.6 1857.2 1857.2
Is 24451 1851.7 32759 2445.1

Table 5: Runtime performance, measured in seconds,
of the parser (i.e. the time Z3 takes to check the con-
structed SMT-model of the parser).

selectee, licensor, licensee, or the special sym-
bol C' — and noting that the feature-type of
a node can be determined by the position of
that node within the multi-domimance tree, so
that given a derivation node sequence associ-
ated with a lexical entry, the corresponding
sequence of syntactic feature-types (present in
that lexical entry) can be obtained the path that
the derivation node sequence takes through the
multi-dominance tree.
(See Fig. 6 for an illustration of the derivation node
sequences that are assembled to form the derivation
presented in Fig. 1.) Consequently, an SMT model
of a minimalist derivation can be constructed by:
(i) modeling the derivation node sequences that
Jorm the associated multi-dominance tree, and (ii)
constraining the topology of the multi-domimance
tree by using the model axioms to restrict how
the derivation node sequences may be assembled
together.

D Limitations

This section briefly comments on two limitations
of the parser introduced in this study.

One limitation of the parser is that it has only
been tested on (Modern Standard) English, which
has Subject-Verb-Object (SVO) ordering; however,
we believe that the parser can be readily adapted to
languages with Subject-Object-Verb (SOV) order-
ing (e.g. French or Japanese) by replacing a small
number of the constraints (derived from PF inter-
face conditions) that encode SVO-ordering by ap-
plying Specifier-Head-Complement linearization to
the derived tree: namely, these constraints for SVO-
ordering could be replaced with constraints that
enforce SOV-ordering based on applying Specifier-
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Complement-Head linearization (see the relevant
footnote in §7). Moreover, it would be interest-
ing to investigate whether the SMT model of the
parser could be augmented with a (boolean) vari-
able that serves as a switch, controlling whether
the constraints for SVO or SOV are used; notably,
such a switch could either be hard-coded by the
user (to enforce which ordering the parser should
use), or left un-valued, in which case the parser
could use either (SVO or SOV) ordering, so long as
the surfaced word-sequence (yielded by the output
derivation) aligns with the input word-sequence (so
that the input PF interface conditions are satisfied).

Another limitation of the parser is that it is pri-
marily focused on modeling syntax, and does not
explicitly model morphological inflection. We be-
lieve that, in future work, this limitation could be
overcome (in part) by: (i) augmenting the SMT
model of the lexicon to store the root of each (overt)
phonological form and encoding morphological at-
tributes within the labels of the syntactic features;
(i1) updating the constraints (i.e. SMT-formulae)
derived from the PF interface conditions to inflect
each root form when comparing it against the rel-
evant surface form (i.e. the inflected word listed
in the input PF interface conditions) - this inflec-
tion would be realized by the constraints inspecting
the morphological attributes encoded in the feature
label associated with that root form.

We believe that both of these (current) limita-
tions point to productive avenues for further re-
search involving extending the parser presented in
this study.
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€/Cdeclarative:=x"C

€/Cdeclarative::=x.C
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i~ N
I\ she/N:~y--q i

' G”::“q’g
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.
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)
\
\

/

e/T=x,+q,~X (s/v:<=x,=y-~xj

she/N::~y -q

(a/v:<=x~=y ,~xj

knows+e/v:i<=X =y ,~X

(knowsN :=y'~x)
>

knows/V::=y ~x

(that/cdeclarative:XWY)

that/Cdeclarative:: =X~y

[has/T ::x,+q-~xj

{l john/N:~y--q :I [has/T :=x<+q,~x]
A v
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|

1

1

\

\

\ | has/T:=x,+q,~x (e/v:<=x,=y~~x)

john/N::~y,-q

[a/v:<=x-=y,~x)

given+e/vii<=x,=y,~X

[givenN :=y~~)a
\ 3

given/V:=y,~x money/N::~y
Figure 7: A derivation for the sentence: “She knows that John has given money.” This derivation was output by the
parser when it was applied to entry 5 in Table 2, using the lexicon in Table 1, and matches the derivation prescribed
embedded sentence —i.e. “John has given money”.

by contemporary theories of minimalist syntax. This demonstrates the parser’s capacity to model an input with an
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(fea:sN =y ~X

3
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X 4
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1
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\
\
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e/Tu=x4q,~X

(E/V: <=X. ,=y‘~x)

everyone/N::~y,-q,—p‘ [sjv:<=x-=y,~xj

‘ knows+g/v::<=Xx =y ~X

(o)

v

‘ knows/V:i=y ~x

her/N::~y
Figure 8: A derivation for the sentence: “John fears everyone who knows her.” This derivation was output by the

parser when it was applied to entry I7 in Table 2, using the lexicon in Table 1, and matches the derivation prescribed
by contemporary theories of minimalist syntax. This demonstrates the parser’s capacity to model an input with a
relative clause —i.e. “everyone who knows her”.
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Abstract

Language models are often trained on text
alone, without additional grounding. There is
debate as to how much of natural language se-
mantics can be inferred from such a procedure.
We prove that entailment judgments between
sentences can be extracted from an ideal lan-
guage model that has perfectly learned its target
distribution, assuming the training sentences
are generated by Gricean agents, i.e., agents
who follow fundamental principles of commu-
nication from the linguistic theory of pragmat-
ics. We also show entailment judgments can
be decoded from the predictions of a language
model trained on such Gricean data. Our results
reveal a pathway for understanding the seman-
tic information encoded in unlabeled linguistic
data and a potential framework for extracting
semantics from language models.

1 Introduction

Recent advances in building computational models
of language have been powered by distributional
semantics: the idea that a text span’s surrounding
context encodes its meaning (Firth, 1957). In par-
ticular, large pretrained language models (LMs;
Peters et al., 2018; Devlin et al., 2019; Brown et al.,
2020) have become an integral part of NLP sys-
tems: the representations that emerge from training
to predict missing words in a text are empirically
useful for natural language understanding tasks.
Despite this empirical progress, Bender and
Koller (2020) argue LMs cannot learn to under-
stand the semantics of sentences. This is because
of a mismatch between the LM training objective—
predicting missing words in text (“form”)—and
Bender and Koller’s conception of meaning as the
relation of a sentence to the external world. Thus
Bender and Koller claim “that the language model-
ing task, because it only uses form as training data,
cannot in principle lead to learning of meaning.”
In this paper, we argue meaning can be learned
from form because the communicative goals of hu-

man authors encode semantic information in unla-
beled text. We show how this semantic information
can be extracted to resolve semantic relations be-
tween sentences (e.g., whether one sentence entails
another): in this inferentialist sense, ideal LMs en-
code the meaning of sentences. This argument has
been raised speculatively by others (Michael, 2020;
Potts, 2020; Bommasani et al., 2021), but we will
rigorously justify it here with formal results.

To give the simplest (and least general) illustra-
tion of our argument, we first assume training data
is generated by overly idealized uniformly truthful
speakers: agents who decide what to say by picking
sentences they consider true uniformly at random. !
This very coarsely captures human authors’ goal of
being informative (rather than misleading) to their
listeners (Grice, 1975). In Theorem 1, we prove a
sentence x entails sentence y if and only if, after
uttering x, a uniformly truthful speaker is just as
likely to say y as to repeat x. Thus, entailment
semantics can be extracted from probabilistic lan-
guages generated by uniformly truthful speakers.

Uniformly truthful speakers are not a realistic
model of humans: while humans favor true sen-
tences to false ones (Grice, 1975), not all true sen-
tences are equally likely to be produced. It is a
common principle in linguistic theories of pragmat-
ics that human speakers choose their utterances in
order to balance two competing objectives: (a) con-
veying information to their listener and (b) brevity
(Levinson et al., 1983; Grice, 1975). We define a
class of Gricean speakers who optimize for these
objectives, and prove in Theorem 2 that = entails y
if and only if a simple equation holds in terms of
text probabilities produced by such speakers. Thus,
entailment semantics can be decoded from proba-
bilistic languages generated by Gricean speakers.

!Studying the ability of LMs to understand programming
language semantics, Merrill et al. (2021) make a similar as-
sumption that programmers are more likely to write true asser-
tion statements than false ones.
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The previous results assume access to a lan-
guage’s ideal likelihood function, but, in practice,
one only ever receives a corpus sampled from the
language. Moving to the corpus setting, we analyze
how much data allows approximately computing
our derived entailment test using probabilities esti-
mated from sentence frequencies in a corpus. We
find that the corpus size needed to guarantee the
entailment test holds approximately is inversely
related to the likelihood of the sentences. We es-
timate that approximating the entailment test be-
tween 4-word sentences using corpus frequencies
is possible with ~ 10! sentences, about the size
of the GPT-3 training data (Brown et al., 2020).
On the other hand, approximating the entailment
test for 10-word sentences should be possible with
~ 1017 sentences, or ~ 107 GPT-3 corpora. Thus,
extracting entailment judgments using corpus fre-
quencies requires an infeasible amount of data—
even by modern NLP standards.

To overcome this limitation, one might hope to
use probabilities estimated by LMs to extract en-
tailment judgments between longer sentences that
are rare even in a large corpus. With synthetic data
generated by Gricean speakers, we find that entail-
ment can be decoded from n-gram LM predictions
to some extent. However, we speculate that current
neural LMs may not score the probability of rare
text well enough to enable decoding entailment
judgments between natural language sentences.

In summary, our main contribution is to show a
correspondence between the semantics of text and
its likelihood, assuming the likelihood function
matches models of human text production from lin-
guistic theory. Determining whether a sentence in a
probabilistic language entails another sentence can
be reduced to modeling the probabilities of strings
in the language. In practice, entailment judgments
between very short sentences can be extracted from
corpus frequencies, but this becomes infeasible for
slightly longer sentences. LMs can in principle be
used to extrapolate the likelihood of longer strings,
but we hypothesize current LMs are not well-suited
for doing so well enough to enable extracting en-
tailment from natural language. Our theory demon-
strates a formal sense in which unlabeled text data
encodes linguistic meaning and makes quantitative
predictions for (a) how to extract semantics from
text corpora and (b) how much data this requires.

2 Definitions

2.1 Sentences and Worlds

Let X be a finite set of sentences, and YV a count-
able? set of possible world states. A sentence x is
a string whose denotation [z] is a proposition, i.e.,
a set of world states (C W) where zx is true. Fol-
lowing standard conventions in formal semantics
(cf. Heim and Kratzer, 1998), the set [x] can be
equivalently viewed as a function mapping a world
state w to {0, 1} that indicates whether x is true in
w, which we will write as [x] (w). We imagine w
to encode a partial description of the world, much
like the concept of a situation in formal semantics
(Kratzer, 2021). For simplicity, we assume an in-
dividual’s subjective belief state can be modeled
as the unique, maximal w that fully describes the
facts which they believe to be true.

Example z = John has at least two cats.
Let W = {wo, w1, wa, ws} be the set of possible
worlds, where w,, denotes the state in which John
has n cats. Then [z]] = {w2, w3}, because John
has at least two cats in these worlds. Furthermore,
it holds that [z]|(w2) = 1, but [z](w;) = 0.

2.2 Speakers and Texts

We refer to a sequence of sentences z € A'* as a
text.> The meaning of a text is the set of worlds
consistent with all its sentences, i.e.,

K
[z] = (=]

We will imagine that a text z € X is produced by
iteratively sampling z; € X U {$} from a speaker
model p(z; | z<¢,w). p(z¢ | z<4, w) represents the
probability of saying sentence z; with belief state
w after having said z1---2;_1. Let$ & X be a
special end of sequence token satisfying [$] = W.
We refer to any text ending with $ as complete.
Given a world w, an incomplete text z € X™* or
complete text z € X'*$ has conditional probability

B
p(z | w) =[] p(z | 2, w).
t=1

The conditional probability of an incomplete text
represents the probability of observing z as the

2Qur results extend to uncountable sets of world states if
entailment is relaxed to hold almost surely (cf. §B). Alterna-
tively, our results apply as-is if we assume a countable set of
equivalence classes over uncountably many worlds.

3Where X'* denotes the Kleene star closure of X'.
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prefix of a text written by a human with beliefs
w. In contrast, the probability of a complete text
represents the probability that a speaker produces
z and no further text. The conditional distribution
p(z | w) cannot be observed directly by a LM,
since w is a latent variable missing from the train-
ing data. Rather, a LM has access to texts that have
been generated by speakers across many possible
belief states. Mathematically, this can be expressed
by saying a LM’s target distribution is a marginal
distribution over z € X'* U X*$ according to some
prior distribution over worlds p(w):

p(z)= E

oy P[]

Hp(zt | z<t,w)] .
t=1

The prior p(w) represents the probability that a
speaker contributing to the corpus will have belief
state w—we make no assumptions about its form
besides that p(w) > 0 for all w € W, and, for ev-
ery sentence, there is some world state that makes
that sentence true. In contrast to p(z), which corre-
sponds to the expected corpus frequency of z, we
denote by p([[z]) the probability that z is true.*

= E
wrp(w)

Example Let z be the 2-sentence text:’

z1 = We swung our swords.

zo = That was ever so long ago.

Let p be the distribution of all possible English
web texts. The marginal probability p(z) can be de-
composed across many possible worlds. One such
world w; might be the world where the speaker is
the semi-legendary Viking hero Ragnar Lodbrék
(in modern English translation); another world ws
might be the perspective of a Reddit user reviewing
a coffee maker. Each of these worlds corresponds
to one term in a sum over all worlds. We expect
p(z | wy) to be higher than p(z | ws) since it
is more likely for a medieval literary character to
utter z than a modern product reviewer. Finally,
p(z | wy) can be factored as

p(Zl \ wl)p(ZQ \ Zlywl)-

In contrast to p(z), which counts all contexts where
z is the beginning of a longer text, p(z$) measures
the frequency of z; 2, followed by nothing else.

“The notation explicitly represents the probability mass
assigned to the set of worlds where z is true.

Text taken from the Wikipedia page for the skaldic poem
Krdkumdl, written in Ragnar’s voice.

2.3 Distributional and Semantic Relations

Distributional Relations A distributional rela-
tion d is a relation over sentences x and y defined
in terms of likelihood of different texts under some
distribution p. Let dp(z,y) be the value of the
distributional relation d between sentences x, i ac-
cording to distribution p. If we train an LM on
texts sampled from a target distribution p, the LM
estimates a predictive distribution p. Thus, any LM
parameterizes dp: an instantiation of the distribu-
tional relation d with respect to the probabilities
learned by the LM. If the LM perfectly approxi-
mates p(x) for all z, then d; = d,, by construction.

Example Define the distributional relation d
(with respect to some distribution p) such that
dy (z,y) <= plx) > p(y). dj(z,y) says x
is more likely than y according to p. If p represents
LM predictions trained on the target distribution
p, than d; (x,y) says whether the LM predicts a
sentence x is more likely than another sentence .

Semantic Relations In contrast, a semantic rela-
tion between x and y is a relation defined in terms
of their denotations [x] and [y]]. We will focus on
the key semantic relation of entailment:

Definition 1 For two sentences x,y € X, x entails
y if and only if [z] C [y].

It is not clear prima facie if LMs can represent
entailment relations. However, it could be that a
semantic relation s can somehow equivalently be
written as a distributional relation d,. If so, a LM
that perfectly approximates p could be understood
to encode s, since s can be extracted from p via dj.

Formally, we can ask if a semantic relation can
be alternatively expressed as a distributional rela-
tion by analyzing if there exists an isomorphism
between a semantic relation s([z], [y]) and some
distributional relation d,(x, y):

Definition 2 (Isomorphism) A semantic relation
s is isomorphic to a distributional relation d under
speaker p if and only if, for all x,y € X,

s([2], [y]) = dp(z,y).

If Definition 2 holds under a speaker model p,
then predicting whether s holds between two sen-
tences is reducible to perfectly modeling the prob-
abilities of texts generated by p. Our goal going
forward will be to derive distributional relations
isomorphic to entailment assuming p models the
goals of humans when they produce text.
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3 Uniformly Truthful Speakers

We start by illustrating our research question and
technical approach assuming an overly simple
model of humans as uniformly truthful speakers.
A uniformly truthful speaker chooses a sentence
to produce by selecting one of the true sentences
that holds in their belief state uniformly at ran-
dom. This very coarsely captures the property of
natural language pragmatics that subjectively true
sentences tend to be more likely than false ones,
although it does not account for many other factors
that influence human speech patterns in complex
ways (Grice, 1975).° Let n(w) be the number of
sentences true in world w. We can formally define
a uniformly truthful speaker as follows:

Definition 3 A speaker p is uniformly truthful if,
for all sentences » € X' U {$},

)
Pl w) = = (w)

In other words, p uniformly spreads probability
mass across all sentences that are true in world w.
We will show that, if the corpus consists of text
written by uniformly truthful speakers, entailment
can be decided by a distributional relation. The
following lemma will be a core technical tool in
our analysis. Informally, it is useful because it es-
tablishes a correspondence between relations over
sets of worlds and probabilities.

_ [al(w)

n(w)

Lemma 1 Let 15 be the indicator function for set
S. For sets A, B such that A C B C W, and
c: W — Ry, A= Bifand only if

S 1)) = 3 Ls(w)e(w).

weWw weW

Proof. We will prove that B C A by contradiction.
Assume there exists w € B such that w ¢ A. Then
the right sum contains the positive term ¢(w), while
the left sum does not. Because all terms in the right
sum are positive, the left sum must contain at least
one term c(w’) that the right sum does not. Thus,
w' € Abutw ¢ B. But this has violated our
assumption that A C B. O

We now use Lemma 1 to derive a simple distri-
butional relation that is isomorphic to entailment.

LMs sometimes generate objectively false statements (Lin
et al., 2022), presumably due to the occurrence of such facts in
their training data. This is actually consistent with a uniform
truthfulness assumption, which only requires that speakers
only produce sentences they believe are true, not sentences
that are actually true in some objective sense.

Theorem 1 If p is a uniformly truthful speaker,
then entailment is isomorphic to a distributional
relation. Specifically, for all sentences x,y € X,

[] € [¥] < p(zy) = p(z).
Proof. dy(z,y) holds if and only if

p(zy) = p(xx)

n(w)? wl n(w)?
s eto]

An expectation in a countable space is a sum
weighted by probability masses. So, by Lemma 1,
this holds iff [x] = [xy] = [=]N[y]. We conclude
p(zy) = p(xx) if and only if [z] C [y]. O

A similar proof suffices to show that the follow-
ing isomorphism also holds:

Corollary 1.1 If p is a uniformly truthful speaker,
the following isomorphism holds for all x,y € X:

[z] € [y] <= p(zy) = p(z$).

3.1 Discussion

Uniformly truthful speakers resemble humans in
that they mimic the tendency of humans to tell the
truth about what they believe. However, they are
clearly too simple to account for human speech
patterns. Most crucially, humans generally aim to
produce informative speech, rather than sampling
true sentences at random. More fundamentally,
natural language has a countably infinite number
of possible sentences, so a uniform distribution
over all true sentences is not even mathematically
well-defined. These limitations motivate our more
involved analysis of Gricean speakers, which will
adapt the technical tools used in this section.

4 Gricean Speakers

In this section, we will define a new class of speak-
ers who pick sentences in order to be informative
to their listener, while also trying to be concise.
To do this, we will draw on information theory to
formalize what it means for a speaker to be infor-
mative. We will then derive a distributional relation
that is isomorphic to entailment for Gricean speak-
ers, which is a generalization of the relation for
uniformly truthful speakers from §3.
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4.1 Definition

Information The first step towards formalizing
Gricean speakers is to define a notion of the se-
mantic information contained in a sentence. We
formalize a listener /(w | z) as the inverse of a
speaker: Given a text z € X'*, a listener produces
a distribution over possible world states. Then, in a
given world w we can define the information that a
text conveys to the listener as the reduction in the
number of bits needed to transmit w to ¢ after they
have read z compared to before they have read z.

Definition 4 The information content of a text z €
X* U X*$ to alistener £(w | z) is’

Ii(z;w) =logb(w | z) — log (w).

In other words, the information content of a text
is the reduction in £’s code length for the world
after having read the text compared to beforehand.
We can naturally extend Definition 4 to measure
the conditional information conveyed by sentence
y given that x has already been produced:

Definition 5 The information content of y € A™* U
X*§ given x € X' to alistener £(w | z) is

Ly | ;w) = Ip(zy; w) — To(z; w)
=logl(w | xy) — log {(w | x).

Informative Speaker We now define a Gricean
speaker in terms of I,. Our definition general-
izes the rational speech acts model (Goodman
and Frank, 2016), but makes weaker assumptions
about the listener and allows a dynamic semantics
where later sentences can condition on previous
ones (Lewis, 1979; Kamp, 1981; Heim, 1982). We
define an utterance’s utility as a convex combi-
nation of its information content and its cost to
produce, operationalizing the Gricean idea that
speakers pick utterances by weighing their in-
formativeness against their cost. The cost func-
tion ¢ : A* U X*$ — R can be any measure
of sentence complexity (e.g., length) satisfying
c(zy) = c(x) + c(y) for z,y € X* U X*$3

Definition 6 A speaker p is Gricean if there exists
alistener /(w | z), some o > 0, and a cost function
c such that, for all z € X* U X*$:

p(z | w) x exp (aly(z;w) — c(z)) .

"For convenience, we let log 0 = —oo and oo — 0o = 0.

8This is satisfied when c(z) is the length of z, but also for
other options like the corpus frequency of x (Goodman and
Frank, 2016) or the depth of the syntactic tree of x.

Further, ¢ must satisfy the following for all z € X*,
ye XU{$},andw e W,

Ly | z;w) =0 = [a](w) = [y](w).

In other words, the speaker must be trying to
convey information about the state of the world to
some listener who fully absorbs the semantic in-
formation in all sentences they have already heard:
clarifying already established information will not
benefit the listener. We can formalize this by deriv-
ing p(y | z,w) forx € X* andy € X U {3}:

plry | w)
p(z | w)
o exp (ade(y |z w) — c(y)) .

p(y ‘ x,w) =

Notably, the probability of y given = depends on the
conditional information of y given x, which means
only information conveyed by y that is nonredun-
dant with z will make y more likely.’

4.2 Results

Proofs are in §C. Under a Gricean speaker, the cost
of an utterance can be expressed:

Lemma 2 For any Gricean speaker p and x € X,

p(z$)
p(zz)

_ exp(e(w))
o (e(9)

Corollary 2.1 Under a Gricean speaker, for all
z € X, c(x) =logp(x$) — logp(zz) + c(9).

Corollary 2.1 says that a sentence is costly to
the extent that it is unlikely to be repeated twice,
giving an intuitive characterization of this quantity
in terms of text probabilities. Now, we will use this
characterization of cost to derive a distributional
relation that is isomorphic to entailment.

Theorem 2 Under any Gricean speaker p, en-
tailment is isomorphic to a distributional relation.
Specifically, for all sentences r,y € X,

pley) _ plyy)

p(x8)  p(y$)

If we allow our decision rule to depend on the
cost function c in addition to probabilities, we can
simplify Theorem 2 as follows:

[z] € [y] <=

°From a technical perspective, the exp in Definition 6
is justified by the fact that probabilities decompose multi-
plicatively, i.e., p(zy | w) = p(z | w)p(y | =, w), but the
information content and cost of text should decompose ad-
ditively across different sentences. Applying basic exponent
rules shows that Definition 6 satisfies this desideratum.

180



Corollary 2.1 Under any Gricean speaker p, for
all sentences x,y € X, [z] C [y] if and only if

log p(2$) — log p(zy) = c(y) — c(8).

If we imagine c¢(y) — ¢($) = 0 for a uniformly
truthful speaker, we see the equation in Theorem 2
is a generalization of the equation in Theorem 1.

4.3 Discussion

Gricean speakers are a general enough model of
humans speakers to capture the basic pragmatic
principles influencing speech production. Thus, it
is notable that Theorem 2 establishes a closed-form
distributional relation isomorphic to entailment.
One conceptual limitation of Gricean speakers
is that their simulated listener must fully consume
information, such that redundantly conveying the
same information twice will not lead to any infor-
mation gain the second time. This contrasts with
real speech, where potential interpretation errors by
the listener incentivize the speaker to be somewhat
redundant (Degen et al., 2019). Mathematically,
this would violate the axiom of Definition 6 that

L(y | z;w) = 0 <= [a](w) = [y](w).

Extending Theorem 2 to speakers who use redun-
dancy to account for noise and interpretation errors
is an interesting direction for future work.

Another interesting extension would be formal-
izing speakers who aim to be informative regarding
some question under discussion, rather than be-
ing generally informative about w (cf. Goodman
and Lassiter, 2015). This could encompass both
“what” questions that aim to clarify some aspect of
the world, and “why” questions that aim to convey
explanations for established facts.

5 Decoding Entailment from Empirical
Text Frequencies

We have so far shown that entailment judgments
can be extracted from the sentence probabilities
in the ideal distribution p(z). What happens if,
more practically, we estimate the probability of a
sentence by its frequency in a large corpus sampled
from p(z)? We prove this method enables feasible
extraction of entailment judgments between very
short sentences, but the corpus size may become
intractably large for longer sentences.

Imagine we have a finite corpus of iid sentences
{Z;}?_,, each sampled from p(z). Let p(z) be the

empirical frequency of a text z in the corpus, i.e., if
7(z, 2') returns whether text z is a prefix of text 2/,
n

ZTI‘(Z,ZZ').

=1

S

p(z) =

Since p(z) encodes entailment via our extrac-
tion rules, p(z) will encode entailment between
sentences if p(z) is close to p(z). A naive notion
of closeness is to guarantee, for all €, there exists
some number of texts n such that, with high prob-
ability, [p(z) — p(z)| < e. But this notion is not
strict enough: if p(z) is small, this difference will
also be small, even if p(z) is not a good approxima-
tion of p(z) on a relative scale. Instead, we want to
guarantee that p(z)/p(z) converges to 1, or, equiv-
alently, that their difference as log probabilities
converges to 0. This ensures that convergence will
still be meaningful for low-probability sentences,
which most sentences are in natural language.

Under this standard, rarer sentences take more
samples to approximate. Define the sentence com-
plexity 8,(z) = ﬁ. We bound the approximation

error in terms of £,(2).1°

Lemma 3 Forz € X* U X*$ and § > 0, it holds
with probability at least 1 — 6 — (1 — p(2))" that

£p(2)
on

To make this bound non-vacuous, n must be
large enough to counteract £,(z) and bring (1 —
p(2))™ close to 0. Thus, good approximation re-
quires fewer samples for more common sentences.
To get a more concrete view of the number of sam-
ples required to extract entailment judgments from
an LM, we analyze &,(z) for Gricean speakers.!!

Recall that we write ¢(z) for the cost that a
Gricean speaker assigns to producing a sentence z.
For Gricean speakers, &,(z) is related to ¢(z) as
well as the probability z is true.

llog p(z) —log p(z)| <

Theorem 3 Assume that p(z | w) is a Gricean
speaker with respect to listener { and [z](w) =
1 <= Ii(z;w) > 0. Let gp(x,y) = log gggg -

log B¥4). . Let g = 1 — min{p(xy), p(yy)}. Then,

forall z,y € X such that [xy](p) > O, for all
& > 0, it holds with probability at least 1 — § — 4q™
that |gy(x,y) — gp(x,y)| is at most

g, [exp(max{c(zy), clyy)}) 1
\ p([zy]) on’

1°Omitted proofs from §5 are in §D.
18D also analyzes uniformly truthful speakers.
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Figure 1: Estimated number of training sentences for
guaranteeing g, closely approximates g,, where p is
estimated using empirical text frequencies.

Theorem 3 says we can use text frequencies to
decode entailment between sentences x, y from a
Gricean corpus, but the number of training sen-
tences to guarantee this grows exponentially with
the cost of x and y. Thus, we probably cannot
expect to extract entailment judgments from text
frequencies except between very short sentences.

We make this more quantitative in Figure 1,
where we estimate the number of training sentences
needed to ensure g, and g are close on sentences of
length < k as a function of k. The main assumption
behind this calculation is that a sentence’s proba-
bility vanishes exponentially in its length, where
the exponential base is the perplexity of the lan-
guage. §E documents the underlying assumptions
in more detail. Figure 1 predicts g, and g; can be
made close for length-4 sentences using ~ 10'°
training sentences: about as much data as GPT-3
was trained on. In contrast, handling (still short)
sentences of length 10 can be done with ~ 107
training sentences, or ~ 107 GPT-3 corpora. Thus,
relying solely on corpus frequencies is likely not
a feasible way to extract entailment relations from
text generated by Gricean speakers.

6 Decoding Entailment from LMs

We have just analyzed how many samples are nec-
essary to decode entailment relations from the text
frequencies in a finite corpus. As shown by Theo-
rem 3, this approach will require intractably many
samples for sentences of nontrivial length because
longer strings will appear infrequently (if at all)
in the corpus. In order to estimate the probability
of rare, longer, strings what if we use an LM to
estimate p(z) instead of text frequencies? Perhaps
a smoothed LM should allow us to extrapolate p(z)
well enough for long sentences to extract entail-

ment judgments between them. In this section, we
briefly discuss some limitations of this approach.
It is tempting to take low LM perplexity as evi-
dence that an LM estimates sentence probabilities
well enough to approximately satisfy the isomor-
phism in Theorem 2. After all, low test perplexity
implies that p(z) is, on average, a good approxima-
tion of p(z): if the perplexity is bounded below e,
then the KL divergence KL(p, p) is bounded below
log €. € decreases with the amount of training data
n at a rate between Q(1/4/n) and Q(1/n) (Wang
etal., 2013; Li and Liu, 2021). Thus, with enough
data, p(z) will closely approximate p(z) for an
average sentence z in the training distribution.
But low error on an average z does not establish
entailment can be decoded from p because dj, as
derived in Theorem 2, depends on the text z = yy,
which is very unlikely in natural language.'? Poorly
estimating p(yy) has little impact on KL(p, p), so
LMs trained to minimize KL(p, p) have no reason
to estimate p(yy) well unless they are imbued with
strong inductive biases. Thus, we expect that LMs
trained with a standard cross-entropy loss may not
produce reliable entailment judgments because they
poorly estimate the probability of key valid (but un-
likely) texts.!> However, we find in the next section
that they do succeed in the easier setting of small
artificial languages and fully Gricean speakers.

7 Experiments: Extracting Semantics
from Simulated Gricean Corpora

We test empirically whether we can extract entail-
ment judgments from LMs trained on unlabelled
text.'* Natural language corpora are unlikely to ad-
here exactly to our idealized assumptions about the
speakers generating texts, so we generate the train-
ing corpora from a simulated Gricean speaker (see
§4). To make learning semantics more tractable
with limited computation, we set JV| = 3 and
restrict the vocabulary & to 7 utterances, each de-
noting one of the 7 non-empty subsets of V. Each
sentence in the training corpus is generated by sam-
pling utterances from a Gricean speaker, condi-
tioned on a uniformly sampled world state and the

124y is unlikely to be produced by a Gricean speaker be-
cause the second y conveys no information.

BFuture work should more carefully analyze how much
data is required to extract complex entailment relations from
LM predictions (rather than corpus frequencies). This is be-
yond the scope of the current project.

Yhttps://github.com/viking-sudo-rm/
formal-1language-understanding
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previously generated utterance, until the tautologi-
cal utterance is generated. The semantic value of a
sentence is taken to be the conjunction over all of
its utterances. We set the rationality parameter o
and the cost function heuristically (details in §G).

We generate training sets varying in size from
2 texts to 10M texts, and train two types of mod-
els on each: a simple empirical text frequency as
described in Section 5, and a trigram model im-
plemented using NLTK (Bird, 2006). Then for
all sentence pairs (x, y), where z and y have 6 ut-
terances or fewer and each denotes a non-empty
proposition, we compute g;(x,y) from §5. The-
orem 2 shows that, under the true distribution p,
gp(z,y) = 0if and only if z entails y.

The results are plotted in Figure 2. We arrive at
the following conclusions:

Entailment relations can be extracted with
greater-than-chance performance from LM pre-
dictions. The value of g5(x,y) is much closer to
0 on average for entailed pairs than for non-entailed
pairs. This is predicted by Theorem 2.

The size of the corpus needed to extract entail-
ment grows predictably with sentence length.
For entailed pairs, the average value of g;(x,y) for
shorter sentences approaches 0 more quickly with
a large training corpus. This is in line with the
predictions of Theorem 4.

Model inductive bias impacts the ease of extract-
ing entailment. Entailed and non-entailed pairs
are better distinguished by the trigram model than
the text frequency model. Specifically, g;(x,y) is
closer to O for the trigram model for a given amount
of data, and the trigram model’s predictions are less
sensitive to sentence length.

8 Generality of Extracting Semantics

Our main result that entailment judgments can be
extracted from an ideal LM assumes the corpus
was produced by Gricean speakers. While prag-
matic theory supports this assumption, real human
speakers are undoubtedly more complex. What if
we relax the assumption that speakers are Gricean?
In Theorem 6 in §F, we show that any semantic
relation is isomorphic to some distributional rela-
tion as long as, for any pair of possible semantics,
there is some text whose probability distinguishes
between the two candidate semantics.

We take it to be uncontroversial that semantics
influences speech production, so we interpret Theo-

102 X¢y xcy
Sentence
10! length
= 4
x 100 6
> —7
107! — 9
— 10
1072 T T T T — 12
103 10° 103 10°
Training sentences Training sentences
(a) p(x) given by text frequency model.
107 X¢y Xcy
e ———————— Sentence
10! length
= 4
ffa 100 6
o — 7
1071 — 9
— 10
1072 T T T T — 12
103 10° 103 10°

Training sentences Training sentences

(b) p(x) given by trigram model.
Figure .2: Plot of g;(z,y) = log ’;Egg; - log ’;E%g as
a function of the number of sentences in the training
corpus and the length |zy|. Given the true distribution
P, gp(x,y) = 0 iff z entails y. We exclude pairs z,y
where both zy and yy are absent from the training data.

rem 6 to say all semantic relations are fully encoded
in ideal LMs. In contrast to Theorem 2, however,
this result is nonconstructive, so we do not know
which algorithm to use to decide entailment be-
tween two sentences, even though one exists. Fur-
ther, without further assumptions about the speaker,
we cannot guarantee the extraction relation is effi-
ciently computable or even computable at all.

9 Conclusion

Given a general, linguistically motivated model of
human text production, we proved that entailment
judgments can be decoded from the likelihood func-
tion for texts because of semantic artifacts created
by human authors. We also showed empirically that
entailment could be extracted n-gram LMs trained
on simple formal languages. Thus, we have given
one explanation for why distributional information
encodes semantic information (Firth, 1957) and
how semantic relations are, in principle, extractable
from LMs. It is an open question whether entail-
ment judgments might be extractable from current
large LMs, but we hypothesize that the complexity
of natural language makes this substantially more
challenging than with our synthetic experiments,
and that the loss function and inductive biases of
current neural LMs are not well suited for doing so
without an infeasible amount of data.
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A natural next step for future work is to test
this hypothesis empirically by measuring whether
entailment judgments can be extracted from large
LMs using our theory. Similarly, it would be inter-
esting to think about how LMs could be modified
so that they can better pick up on the semantic
information encoded in their training distribution.
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