
Proceedings

J ' '-I ,.
'

I - • - � • - - - I • - - - • -- - ,_ &.

Second
International

Workshop on Parsing
Tech ol gies

13-15 February 1991

� Etfi
_- - ----------------�-=, __ ==--_ �§1:::::�_i, �-=-===.::.___-==-__

::z::= - �= -E: : r== ____ _ - -����'911._•-i�-•=- = .----------- ----
-=-!'-�- «---=--

- -

-=

.., ___ ----=-

-- ----
Sheraton Cancun
Resort & Towers

(Cancun, Mexico)

WWW
T -
-- - m

I W PT '91

Proceedings of the
Second International

Workshop on Parsing Technologies

February 13-25, 1991
Cancun, Mexico

For Your Information

For additional copies of these proceedings, write:

Joan Maddamma
Carnegie Mellon University

School of Computer Science
Pittsburgh, PA 15213-3890

Price: $50.00 USA - $55.00 for overseas

Proceeding designs and production by Joan Maddamma

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover and

title page. They reflect the authors' opinions and are published as presented and without change, in the

interests of timely dissemination. Their inclusion in this publication does not necessarily constitute

endorsement by the editors and sponsors.

ii

Preface

WELCOME to the International Workshop on Parsing Technologies.

Parsing was the first topic in computational linguistics to separate itself from the relatively

incoherent background of 'ad hoe' approaches to machine translation and information

retrieval. While the emergence, in the early sixties, of general parsing algorithms that could

take account of the ambiguity and nondeterminism that are apparently endemic to natural

language was a cause for excitement, it would, I think have surprised those that experienced

it to know how vigorous the field would remain after thirty years. This is due to a number of

factors: Formal grammars and related processes have proved to be rich in mathematical

properties, a fact that is attested to abundantly by the papers in this volume. It could certainly

not have been foreseen that such a wide range of grammatical formalisms would emerge,

partly as a response to transformational grammar. Furthermore, the notions of reversible,

declarative, and psychologically plausible formalisms had yet to emerge. Statistical and

connectionist approaches to grammar could only develop against a richer set of grammatical

ideas.

All of these things have preserved the position of parsing as an exciting and continually

changing field. And they have made the task of those responsible for the program of this

conference especially difficult. I am therefore especially grateful to the program committee,

Robert Berwick, Harry Bunt, Eva Hajicova, Aravind Joshi, Ronald Kaplan, Robert Kasper,

Makoto Nagao, Masaru Tomita, and Yorick Wilks for their efforts. Masaru Tomita is, of

course, especially to be thanked for realizing the need for a series of workshops of this kind,

for arranging the first of them, and for his invaluable contributions to the planning of this one.

In fact the only person to whom we owe a greater debt is Joan Maddamma, secretary to Prof.

Tomita with whom I've developed a close working relationship: I made all the errors in the

planning of the meeting, and she fixed them all up.

I look forward to a very exciting three days. I hope you will find the papers informative, the

company stimulating, and the weather warm enough.

Martin Kay
IWPT '91 Program Chair

iii

Workshop Com1nittee

Progra111 C0111111ittee:

Martin Kay, Xerox PARC
Chairman

Robert Berwick, Massachusetts Institute of Technology

Harry Bunt, Ti/burg University

Eva Hajicova, Charles University

Aravind Joshi, University of Pennsylvania

Ronald Kaplan, Xerox PARC

Robert Kasper, University of Ohio

Masaru Tomita, Carnegie Mellon University

Makoto Nagao, Kyoto Unive,�sity

Yorick Wilks, NeM' Mexico State University

Workshop Organizers

Masaru Tomita, Carnegie Mellon University
General Chairman

Martin Kay, Xerox Corporation
Program Chairman

Joan Maddamma, Carnegie Mellon University
Coordinator/ Secretary

iv

Apollonskaya, Titiana 52

Beliaeva, Larissa N........ 52

Bianchi, Dario 59

Carpenter, Robert... 143

Chang, Shi-Kuo 235

Charles, Philippe 89

Corazza, Anna 210

Costagliola, Gennaro 235

Dasigi, Venu 11

Delmonte, Radolfo 59

DeMori, Renato 210

de Vreught, Hans 127

Dunn, Christopher 31

Ehara, Terumasa 136

Ellis, Debra S 31

Franz, Alex 143

Futrelle, Robert P. 31

Gretter, Roberto 210

Habert, Benoit................ 79

Hasida, Koiti

Herz, Jacky 200

Honig, Job 127

Kempen, Gerard 73

Kita, Kenji 136

Kitano, Hiroaki 172

Koorn, Wilco 218

AUTHOR INDEX

V

Kwon, Hyuk-Chul. 182

Magerman, David M 193

Marcus, Mitchell P. 193

Maxwell, Michael 110

Morimoto, Tsuyoshi 136

Ng, See-Kiong 154

Nijholt, Anton 117

Pescitelli, Jr., Maurice ... 31

Piotrowski, Raimund G .. 52

Pollard, Carl.. 143

Rekers, Jan 218

Rim on, Mori 200

Satta, Giorgio 210

Schabes, Yves 21

Sharman, Richard 100

Shilling, John J. 41

Sikkel, Klaas 117

Tomabechi, Hideto 164

Tomita, Masaru 154

Tsuda, Hiroshi

Vosse, Theo 73

Wittenburg, Kent... 225

Wright, Jerry 1 00

Wrigley, Ave 100

Yoon, Aesun 182

TABLE OF CONTENTS

Preface . iii

Workshop Committee . iv

Author Index . v

February 13, 1991

Wednesday - [9:00-2:00]

Session A.

Parsing without Parser .
Koiti Hasida and Hiroshi Tsuda,
Institute for New Generation Computer Technology - (JAPAN)

Parsing = Parsimonious Covering?
Venu Dasigi,
Wright State University Research Center - (USA)

The Valid Prefix Property and Left to Right Parsing of Tree-Adjoining Grammar.
Yves Schabes,
University of Pennsylvania - (USA)

Session B.

Preprocessing and Lexicon Design for Parsing Technical Text
Robert P. Futrelle, Christopher E. Dunn, Debra S. Ellis, and Maurice J. Pescitelli, Jr.,
Northeastern University - (USA)

Incremental LL(1) Parsing in Language-Based Editors .
John J. Shilling,
Georgia Institute of Technology - (USA)

Linguistic Information in the Databases as a Basis for Linguistic Parsing Algorithms.
Tatiana A. Apollonskaya, Larissa N. Beliaeva and Raimund G. Piotrowski,
Herzen Pedagogical Institute - (RUSSIA)

vi

11

21

31

41

52

Session C.

Binding Pronominals with an LFG Parser .
Radolfo Delmonte, University of Venice and
Dario Bianchi, University of Parma - (ITALY)

A Hybrid Model of Human Sentence Processing: Parsing Right-Branching, Center-Embedded
and Cross-Serial Dependencies.

Theo Vosse and Gerard Kempen,
N.I.C.I., University of Nijmegen - (NETHERLANDS)

Using Inheritance Object-Oriented Programming to Combine Syntactic Rules
and Lexical Idiosyncrasies.

Benoit Habert,
Ecole Normale Superieure de Fontenay Saint Cloud - (FRANCE)

February 14, 1991

Thursday - [9:00-2:00]

Session A.

An LR(k) Error Diagnosis and Recovery Method .
Philippe Charles,
IBM T. J. Watson Research Center - (USA)

59

73

79

89

Adaptive Probabilistic Generalized LR Parsing . 100
Jerry Wright, Ave Wrigley,
Centre for Communications Research, and
Richard Sharman,
IBM United Kingdom Scientific Centre - (UNITED KINGDOM)

Phonological Analysis and Opaque Rule Orders .
Michael Maxwell,
Summer Institute of Linguistics - (USA)

Session B.

. 110

An Efficient Connectionist Context-Free Parser. 117

Klaas Sikkel and Anton Nijholt,
University of Twente - (THE NETHERLANDS)

Slow and Fast Parallel Recognition . 127
Hans de Vreught and Job Honig,
Delft University of Technology - (THE NETHERLANDS)

Processing Unknown Words in Continuous Speech Recognition. 136
Kenji Kita, Terumasa Ehara, and Tsuyoshi Morimoto,
ATR Interpreting Telephony Research Laboratories - (JAPAN)

Session C.

The Specification and Implementation of Constraint-Based Unification Grammars. 143
Robert Carpenter, Carl Pollard, and Alex Franz,
Carnegie Mellon University - (USA)

Probabilistic LR Parsing for General Context-Free Grammars . 154
See-Kiong Ng and Masaru Tomita,
Carnegie Mellon University - (USA)

vii

Friday - February 15, 1991 - 9:00-2:00

Friday [9:00-2:00]

Session A.

Quasi-Destructive Graph Unification
Hideto Tomabechi,
ART Interpreting Telephony Research Laboratories - (JAPAN) and
Carnegie Mellon University - (USA)

. 164

Unification Algorithms for Massively Parallel Computers . 172
Hiroaki Kitano,
NEC Corporation - (JAPAN) and
Carnegie Mellon University - (USA)

Unification-Based Dependency Parsing of Governor-Final Languages. 182
Hyuk-Chul Kwon and Aesun Yoon,
Pusan National University - (KOREA)

Session B.

Pearl: A Probabilistic Chart Parser . 193
David M. Magerman,
Stanford University and
Mitchell P. Marcus,
University of Pennsylvania - (USA)

Local Syntactic Constraints . 200
Jacky Herz and Mori Rimon,
The Hebrew University of Jerusalem - (ISRAEL)

Stochastic Context-Free Grammars for Island-Driven Probabilistic Parsing 210
Anna Corazza, Roberto Gretter, Giorgio Satta,
lstituto per la Ricerca Scientifica e T ecnologica - (ITALY), and
Renato De Mori, McGill University - (CANADA)

Session C.

Substring Parsing for Arbitrary Context-Free Grammars . 218
Jan Rekers, Centre for Mathematics and Computer Science and Wilco Koorn,
University of Amsterdam - (THE NETHERLANDS)

Parsing with Relational Unification Grammars . 225
Kent Wittenburg, (Bellcore Visiting Researcher)
Microelectronics and Computer Technology Corporation - (USA)

Parsing 2-D Languages with Positional Grammars .
Gennaro Costagliola and Shi-Kuo Chang,
University of Pittsburgh - (USA)

viii

. 235

February 13, 1991

Session A

PARSING WITHOUT PARSER

HASIDA, Koiti TSUDA. Hiroshi*
Institute for New Generation Computer Technology (ICOT)

Mita Kokusai Bldg. 2 1F, 1-4-28 Mita, Minato-ku , Tok:vo 108 . JAPA�
Tel: +81 -3-3456-3069

E-mail: basida@icot. or.jp

ABSTRACT

In the domain of artificial intelligence, the pattern of information flow varies drastically from one context to another . To capture this divers ity of information flow . a natural-language processing (NLP) system should consist of modules of constraints and one general con­straint solver to process all of them; there should be no specialized procedure module such as a parser and a generator . This paper presents how to implement such a constraint-based approach to NLP. Dependency Prop­
agation (DP) is a constraint solver which transforms the program (=constraint) represented in terms of logic programs. Constraint Unification (Cui is a unification method incorporating DP. c u-Prolog is an extended Prolog which employs CU insteaq of the standard uni­fication. cu-Prolog can treat some lexical and grammatical knowledge as constraints on the structure of gram­matical categories � enabling a very straightforward im­plementation of a parser using constraint -based gram­mars. By extending DP, one can deal efficiently with phrase structures in terms of constraints . Computa­tion on category structures and phrase structures are naturally integrated in an extended DP. The computa­tion strategies to do all this are total ly attributed to a very abstract , task-independent principle: prefer com­putation using denser information. Efficient parsing is hence possible without any parser.
1 Introduction
The informat ion-processing capacity of a cogmt1ve agent is severely limited, whereas the world in which it finds itself contains a vast amount of information which might be relevant to its survival . A cogni tive agent is thus dest ined to face partiality of information. That is, information processing by a cognitive agent is limited to a very small part of the potentially relevant information. In the domain of artificial intelligence in general and natural language process ing in particular, therefore, the pattern of information flow varies very

*The order is not significant.
1

tsudafYicot . or.jp

drast ically from one context to another. This is nec­essary in order for a cognit ive agent to have chance of access to the ent ire domain of potentially relevant information across various different contexts . Due to this diversity of information flow, it is prac­tically impossible to stipulate which pieces of informa­tion to process in which order . Consider the case of comprehension of natural language sentences . for in­stance. Parts of phonological i nformation might be missing due to noise . and it may well be impossible t o predict which part would b e missing. Similarly. parts of syntactic information could be insufficient . gi,·i ng rise to syntactic ambig 1 1 i ty. Semantic informat ion a lso would be part ially abu 1 1 dant or missing due to familiar­i ty or ignorance to the topic . and so on. It is therefore utterly implaus ible to :- u ppose that all phonological in­formation is processed prior to syntact ic informat ion . or that syntact ic informat ion is processed before se­mantic information. Accordingly. i t is not at all a promising approach to AI or NLP to stipulate information flow totallv. as procedural programs do. In particular. a hierarcl1ical architecture consisting of modules of procedures fails to capture very complex. multi-direct ional . informat ion flow in the domains su'ch as :>i LP. because procedures st ipulate what is input and what is output . se,·erely restricting the global information flow across the ent i w system. This i s what happens i n the prevalent arch i t Pc­ture of NLP systems consisting of a sequence of proce­dure modules such as , say. syntactic analyzer . semant i c analyzer , pragmatic analyzer. generation planner . and surface generator. The design of AI systems should abstract awa\· i n­formation flow in accordance with its divers i tv. 1 ·T his is where constraint paradigm [1-l] comes in. Si�ce co n­straint , or declarative program, does not stipulate pro-
1 Of course , there are some aspects of cognitive process where information flow is rather restric ted . Typical examples are found i n low-level aspects of perception and motor control . Informa­tion flow may be stipulated to some adequate extent in the design of those subsystems. Nevertheless . diversity of information flow must be captured across different dimensions even in these cases . as is indicated by R. Brooks [1] ; In his robot. although informa­tion flow in each module may be regarded as uni-direc tional and there is only a little interac tion between different modules . i nput information is not restricted to flow all the way through t>vPry module before output information is tailored.

cessing order , it · does not restrict information flow· so severely as procedures do . and thus can capture the diversity of information flow.2 In the constraint paradigm. a NLP system involves modules of linguis t ic (syntactic . semantic , pragmatic , and so on .) and extralinguistic constraints . Whether there are different constraint solvers for different mod­ules of constraints is not a light question. but we strongly suspect the answer is no . If yes . the communi­cation between different modules would be too cumber­some to allow the massive interaction required in NLP. For instance. it would not be a very good idea to have a constraint solver specialized for processing syntactic in­formation. Thus we employ a radical constraint�based viewpoint : j ust one very general constraint solver deals with all the different constraints. giving rise to diverse communication across them.3 The task of NLP is hence divided into modules of constraints rather than mod­ules of procedures as has been tradi tionally done. As a matter of course, a NLP system should include no parser. In the rest of the paper. we will concentrate on pars­ing . Efficient parsing will be shown to emerge from our const raint solver. which is a general constraint trans­formation metho d employing se\·eral heuris tics derived from the following very abstract . task- independent principle:
(1) P refer computation using denser information.

That is . efficient parsing is attributed to this princi­ple. This is regarded as an impressive demonstration of the feasibility of our constraint-based approach, be­cause pars ing is almost the only subproblem of NLP where there are endorsed efficient algorithms , mainly for dealing with phrase structures. Our constraint solver. called Dependency Propaga­
tion [8 , 7] , deals with constraints in a combinatorial domain . unlike the constraint solvers embedded in most constraint logic programming (C LP) languages [2 , :J , 9] . Section 2 describes how to parse ambiguous sentences with a C LP language, caUed c u-Prolog, which embe_ds an early version of D P. Although the ambiguity treated in Section :2 concerns only the struct ures of grammat­ical categories. Section :3 applies DP itself to pars­ing phrase-structure . typically formulated in terms of context-free grammars . It will be shown that efficient pars ing procedures such as Earley 's algorithm simply emerge from general process ing strategies employed in a revised version of DP. Section -1 demonstrates that

2Constraint is not the only approach to diversity of informa­
tion flow . For instance , blac kboard arc hitecture is also regarded
as aiming at the same thing . Coroutine implemented in lan­
guages such as CON NIVER [13] is another example . The reason
why we employ constraint paradigm is twofold . F irst . it comes
with intuitive declarative semantics. Secqnd. it implements the
diversity of information flow at fint:>r-grained levels than migh t
be captured in the other approaches .

. 3Thus we consider that General Problem Solver was basically
on the r ight trac k . Its alleged failure was simply due to the
immaturity of programming tec hnologies.

both types of information. about category s t ructures and phrase structures . are processed efficiently in a naturally integrated manner by very general heuristics. Finally. Sect ion .j concludes the paper .
2 Processing Category Struc­

ture

In [18] , we introduced a symbolic CLP language cu­Prolog and showed how it applies to parsing based on JPSG (Japanese Phrase Structure Grammar) [.j] . By treating grammatical principles and ambiguity con­cerning polysemy or homonymy straightforwardly in terms of constraints . syntactic, semantic and other types of ambiguity are processed in an integrated man­ner by Constraint Un ification (CU) . CU is the unifier employed in cu-Prolog , and is roughly regarded as the standard unification plus DP. cu-Prolog deals with var­ious constraints on the structures of grammatical cat­egories . without any special programming besides the encoding of the relevant constraints .
2 . 1 Dependency Propagation For the sake of expository simplification. in this paper we restrict ourselves to Horn clauses . although DP is not actually so limited . Dependen cy triggers constraint transformation in DP. Two occurrences of the same variable in a clause constitutes a dependency when both occurrences do not occupy any vacuo·us argument place. An argument place of an atomic formula is said to be vacuous when a variable filling that argument place is never instant i ­ated by evaluating that atomic formula. For instance. the first argument place of predica te
member defined below is vacuous .

(:2) a. member (E , [E I -]) .
b. member (E , [_ I S]) : - member (E , S) .

In the following clauses . (:3) has no dependency. and (-1) has a dependency because i t is equivalent to (-S) .
(:3) : -member (a , X) .
(4) : -member (X , [a , b , c]) .
(5) : -member (X , Y) , Y= [a , b , c] .
In DP. computat ion proceeds so as to eliminate de­pendency. Note that this is a more general control schema than Earley <;!eduction (10] , which executes the body of each clause in the fixed left- to-right order. Basically, fusion replaces one or more literals \V ith another : so as to eliminate dependency. Fusion is a sort of unfold/fold transformation for logic programs (1 -5] . For example , member (X , [a , b]) is replaced by cO (X) . where cO is a new predicate defined as follows .

2

(6) cO (a) . cO (b) .

That is , two atomic formulas, member (X , Y) and Y= [a , b] 4 have been fused to one atomic formula cO (X) . The principle (1) provides us some heuristics for con­trolling fusion. For example, the elimination of de­pendency involving a variable binding, as in p (a , X) , should have higher priority than the elimination of de­pendency between two ordinary atomic formulas , as in p (X) , q (X) . We will discuss heuristics further along this line later.
2 .2 cu-Prolog A program of cu- Prolog is a set of Constraint -Added Horn Clauses (CAHCs) , A CAHC is a Horn Clause followed by constraints :

Head Body Constraint
,,..,,..__H ,_..__ __..__ : - B1 , B2 , · · · , Bn ; C1 , C2 , · · · , Cm .

The prolog part (the head plus the body) of a C AHC is processed procedurally j ust as in Prolog, whereas the const raint part is dynamically transformed with a sort of unfold/fold transformation during the execution of the former part . The following is the inference rule of cu-Prolog :
A, K;C. ,- A' : -L :D. ,

0 = mgu(A, A') , C' = dp(C0 1 D0) L0, K0; C'
A and A' are atomic formulas. K , L, C . D , and C' are s_equences o f atomic formu­las . mgu (A, A') is the most general unifier between A and A'.

dp(C) is a modular constraint that is equivalent to C . I f C i s inconsistent 1 the application of the above infer­ence rule fails because dp(C) does not exist . The following holds i f Ci and Cj share n o variable:
(7) dp(C) = dp(C i) , · . . , dp(Cn) -

For example ,
(8) dp (member (X , [a , b , c]) , member (X , [b , c , d]) , app (U , V))

returns a new constraint cO (X) , app (U , V) , where the definition of cO is
(9) cO (b) .

cO (c) .

but
(10) dp (member (X , [a , b ; c]) ,member (X , [k , l , m]))

is not defined .
4Y= [a , b] may be further regarded as a bundle of five atomic

formulas : Y= [A I Z] , A=a. Z= [B I W] , B=b and W= [] .

3

2 .3 JPSG parser in cu-Prolog In cu- Prolog . unificat ion- based grammar such as HPSG or JPSG can be implemented naturally by t reat ing t he constraints formulated in those theories almost as they are. Figure l shows an example session of the .J PSG parser when i t processes an ambiguous sentence.:; Be­low we discuss two examples of C AHC in the .JPSG parser in cu-Prolog [1 8] . The first example concerns how to pack lexical am­b iguity. The following is the lexical entry of a Japanese polysemic noun ··hasi" that means bridge . chopsticks. or edge depending on contexts .
(1 1) lexicon (hasi , [. . . sem (TYPE , OBJ)]) ;

has i_sem (TYPE , OBJ) .

and predicate has Lsem is defined as follows .
(1 2) hasi _sem (structure , bridge) .

has i _sem (tool , chopst icks) .
has i_sem (place , edge) .

Constraint has Lsem(TYPE , □BJ) represents various meanings of 1'hasi" and the ambiguity may be resolved during the parsing pro cess when other constraints are imposed . Be_cause such ambiguity is considered at one time, instead of divided into separate lexical ent ries . parsing p rocess can be efficient . In the second example, various feature principles of unification- based grammar are embedded in a phrase structure rule as constraints . The following clause shO\vs t he foot feature principle of JPSG: the foot fea­ture value of the mother unifies \Vi t h t he union of t hose of her daughters .
(1 :3) psr ([ff (MS)] , [ff (LDS)] , [ff (RD-S)]) ; union (LDS , RDS , MS) .
psr (Mother , Left J)aughter , Head) is a phrase structure rule followed by the const ra in t union{LDS , RDS , MS) which represents the foot fea t ure principle. MS .LOS, and RDS are foot features of mot her . left daughter, and right daughter respecti vely. The constraint is flexibly processed 1,vith t he const ra int transformation mechanism wit h a heurist ic . In tradit ional Prolog, t hese princip les are supposed to be implemented in t he following procedural way :

(1 4) psr ([ff (MS)] , [ff (LDS)] , [ff (RDS)]) union (LDS , RDS , MS) .
By applying t his rule. union(LDS , RDS , MS) is executed immediately and parsing process may be inefficient when variables are not well instantiated . :'-iote t hat it is pract ically impossible to s t ipulate the order to p ro cess linguistic const raints in advance .

5 cu- Prolog is implemented in C language on l: �IX 4 . 2 /38S0
This example i s on SYM �lETRY machine [19] .

_ : -p ([ken , ga , ai , suru]) .

v [Form_675 , AJN{Adj _677} , SC{SubCat_679}] : SEM_68 1--- [suff_p]
I
l --v [vs2 , SC{p [wo] }J : [love , ken , 0bj 0_415] --- [subcat_p]
I I
I 1 --p [ga] : ken--- [adj acent _p]
I I I
I I 1 --n [n] : ken--- [ken]
I I I
I I l _ _ p [ga , AJA{n [n] }] : ken--- [ga]
I I
I l __ v [vs2 , SC{p [ga] , p [wo] }J : [love , ken , 0bj 0_415] --- [ai]
I
l __ v [Form_675 , AJA{v [vs2 , SC{p [wo] }] } , AJN{Adj _677} , SC{SubCat _679}] : SEM_68 1--- [suru]

cat cat (v , Form_675 , [] , Adj _677 , SubCat_679 , SEM_68 1)
cond c7 (Form_675 , SubCat_679 , 0bj 0_415 , Adj _677 , SEM_68 1)
True .
CPU t ime = 0 . 050 sec

_ : -c7 (F , SC , _ , A , SEM) .
F = syusi SC = [cat (p , wo , [] , [] , [] , 0bj 00_30)] A = [] SEM = [love , ken , 0bj 00_30] ;
F = rentai SC = [] A = [cat (n , n , [] , [] , [] , inst (0bj 00_38 , Type3_36))]
SEM = inst (0bj 00_38 , [and , Type3_36 , [love , ken , 0bj 00_38]]) no .

CPU time = 0 . 0 1 7 sec

This is an example ru n of J PSG parser in cu- Prolog. The fi rst l i ne is a user's input . " Ken ga a i su ru" has two read ings : "Ken
loves (someone)" and "(someone) whom Ken loves . " The parser d raws a parse tree and returns i nformation (constra int) on
the st_ructu re of the top node. In th is example, the ambiguity of the sentence is captu red as the two solutions of the piece · of
constraint c7 (F , SC , _ , A , SEM) . The fi rst solut ion corresponds to " Ken loves (someone) ." and the second solution "(someone)
whom Ken loves . "

Figure 1 : Parsing an ambiguous sentence.

4

3 Processing Phrase Structure

The JPSG parser discussed in Section 2, however, can­not handle ambiguity on phrase structures because the parsing algorithm is written only in the Prolog part of CAHC. This section shows that chart parsing is natu­rally derived from a very general control strategy of an extended version of DP.
3 . 1 Context-Free Parsing by Fusion
Let us consider the following extremely simple context­free grammar.

(1 :3) p ---t a
p - pp

The parsing of string aa · · · a under th is grammar may be formulated in terms of the fol lowing constraint .6

(1 4) : - p (A0 , B) , A0= [a l A1] , · · · , An- l = [a] .
p ([a l X] , X) .
p (X , Z) : - p (X , Y) , p (Y , Z) .

Note that the double occurrence of Y in the last clause does not count as a dependency, because the sec­ond argument place of p is vacuous . Thus the only de­pendency to eliminate now is that concerning AO
• Here. we replace p (A0 , B) with p0 (A0) , creating a new predi­cate p0 •

(1 5) Po (B) , AO= [a I A 1] , • • · , An- 1 = [a I An] . Po (A 1) . po (Z) : - p (A0 , Y) , p (Y , Z) .
p (AO , Y) in the last clause is folded and we get
(1 6) po (Z) : - p0 (Y) , p (Y , Z) .

This clause has a dependency concerning Y. Then, the parsing process continues . This t ransformation process is exempt from the infi­nite loop due to left recursion. unlike DCG of the stan­dard type, because fusion includes some sort of tabu­lation technique [1 6] . If we had A0 = [b I A 1 J instead of A0 = [a l A 1] , for instance, we would have the following instead of (1 6) .

(1 7) : - po (B) , A0= [b l A1] , • · · po (Z) : - po (Y) , p (Y , Z) .
P redicate p0 lacks a finite proof, and hence is unsa.tisfi­able under the minimal interpretation. This is detected by checking each predicate once when it is first given or created. Infini te loop is avoided in j ust the same manner also in a more complex case where every input

6 Ai represents the constant l ist of length (n-i) whose ele­
ments are ''a" s .

5

symbol is a well-formed word but they are l ined up in a wrong way. In the current formulat ion . t he computational com­plexity for processing context-free languages is expo­nential as to the sentence length . vVith respect to t he above example. suppose that predicate r 1 i s s�ch that for any assignment to variable X i , there is a set of assignments to variables x0 through x i - t under which ri (X i) is equivalent to the following :

Po may be regarded as r0 . As i t t urns out . i f a definit ion clause of ri is (1 9) with j = i . then ri+l will be created by £usion of ri (Y) and p (Y , Z) . whichever literal might be unfolded. and a definition c lause of ri+l will be (1 9) with j = i + 1 .
(1 9) rJ (Z) : - rJ (Y) , p (Y , Z) .

Note that fusion of rJ (Y) or p (Y , Z) with any other lit­eral never takes place, because Y is constrained now here else and the second argument place of p is vacuous . Since (29) is (1 9) with j = 0 , it follows from foduct ion on i that ri is created during the current parsing for 0 < i < n . A similar reasoning will prove that ex­ponentially many corresponding predicates are created when the basic version of D P as described so far is ap­plied to the following context-free grammar. because there are plural predicate symbols. _
(20) P - a

p - pp
p - PQ

Q ---t a
Q - pp
Q - PQ

3 .2 Penetration
To remedy the inefficiency mention·ed above. \i.-· e rp\· ise DP by employing a different method of operat ion for constraint transformation . The new t ransforrriat ion· op­eration we introduce here is penet ration . w hich coil \·eys information across clause boundaries . For instance. consider clause (2 1) . where pwclicate p is defined by (22) .

(2 1) : - p (X , Y) , p (X , Z) , X=f (Y) , Y=g (Z) .
(22) p (f (A) , A) s (A) . p (C , a) .

The information of X=f (Y) makes X penetrate through p (X , Y) . creat ing new predicate q. as follows:
(23) : - q (X , Y) , p (X , Z) , X=f (Y) , Y=g (Z) . q (X , A) : - X =f (A) , q (A) . q (X , a) .

As indicated here, the first argument of q must always unify with X in the first clause. whereas its second ar­gument has no such restriction.

In the following discussion, a penetrated variable is written with a superscript like X1 • and called a
transclausal variable. which roughly corresponds to the global variable of programming languages such as Pas­cal and C. A t ransclausal variable may be treated as if it were a constant. Accordingly, a penetrated ar­gument place are omitted for the sake of expository simplification. For instance, (23) may be rephrased as follO\vs :
(24) q(Y) , p (X 1 , Z) , X 1 =f (Y) , Y=g (Z) .

q (A) : - X 1 =f (A) , q (A) .

q (a) .

Just as fosion. penetration has two cases : unfolding and folding. An unfolding, such as this case, introduces a new predicate, whereas a folding does not . Binding
X 1 =f (B) in the second clause unifies with X1 =f (Y) . and the resulting binding, X 1 =f (Y 1) . is shared by the first and the second clause:

(2.S) : - q (Y) , p (x1 , z) , X1 =f (Y 1) , Y1 =g (Z) . q (1 y) X 1 =f (y 1) , q (y 1) .

q (a) .

X 1 may penetrate through p (X1 , Z) as well :
(26) : - q (Y) , q (Z) , X 1 =f (Y 1) , Y1 =g (Z) . q (Y1) X 1 =f (Y1) , q(Y 1) .

q (a) .

This is a folding case of penetration. A typical pattern of penetrat ion is shown in Figure 2 . p (• , •) s in the left-hand side of the figure all ·have the same sign, and those in the right-hand side all have the opposite sign. That is , either p (• , e) s in the left are all body literals and those in the right are all head literals , or vice versa. o represents a penetrating variable. We say that this penetration is downward in the former case, and upward in the latter . The penetration to get (23) and (26)' is downward. For � :=:; i :=:; n , W� is a duplication of W i except that p (• , •) has been replaced by q (• , •) . When <I> i and \JI j are the same clause for some i and j , the situation will be more complicated in the sense that the duplication increases not only the right-hand half of the figure but also the left-hand half. The example shown in the next subsection includes some such cases. As shown in the lower part of the figure, second or later penetration of o through the first argument of p is a folding , reusing q without introducing a new pred­icate. Corresponding unfolding and folding must be in the same direction: upward or downward. Otherwise the original combinat ions of clauses are not preserved. Suppose for ins_tance ,that a is to penetrate through p (• , •) in '11 1 at the bottom stage in Figure 2. If we applied folding here. s imply r�placing this p (• , •) with a q (• , •) , the resulting configurat ion would lose the combination of <P3 and W 1 -

6

�-.. _ ,...EY
': : P (

�,..- ·-�

unfolding il
-�

, , '

- - - - - - q <... :
·.. a

··g (r: .)

�- EY
':: p (

�...- ·-�
folding il

EG< __ .. EY
· :: p (

�...- ·-�
Figure 2: Penetrat ion.

Like fusion, penetration is also triggered by depen­dency. In penetration , however 1 dependency may be transclausal . In (26) , for instance, the dependency between Y=g (Z) and q (Y) could trigger penetration . This dependency is transclausal and involves a binding
Y=g (Z) . In the case of upward penetration, the depen­dency in question involves a head literal. To control computation. we must decide which de­pendency to trigger a penetration into which direction. The general principle (1) suggests the following heuris­tic in this respect .

(27) a. A dependency encompassing argument places with greater information quantity should more readily trigger a penetration. b . The argument position with greater infor-mation quantity should be penetrated here .
(276) guarantees that the resulting structure should have more homogeneous information distribution. in­creasing the entropy of the entire system. For example, a binding in the top clause is consid­ered to have much more information than bindings in the other clauses , in the sense that the atomic formulas in the top clause should primarily hold; if they do not , then we do not care whether the atomic formulas in the other clauses hold or not . The downward penetra­tion occurring twice in the above example is motivated accordingly, because it is based on the information of X=f (Y) in the top clause .
3.3 Emergence of Chart Parsing Now we demonstrate that Earley's algorithm natu­rally emerges from penetration controlled by the above heuristic. We consider the simple C FG example (1 3) again.
(1 3) , _ _ p (A0 , ·B) , A0= [a l A 1] , · · · ; An-,l = [a l An] . p ([a I X] , X) .

p (X , Z) : - p (X , Y) � p (Y � Z) .

The following is obtained· by downwa:rd penetration of A0 through p (A0 , B) , which is u·nfolded .
(28) : - Po (B) , A0= [a l A1] , · : · , An- l = [a l An] . Po (A1) . Po (Z) : - p (AO , Y) , p (Y , Z) .

The only relevant dependency here is the one concern­ing the first argument of p (A0 , Y) in the bottom c lause. This literal is hence folded and replaced with p0 (Y) , the entire clause being transformed as follows .
(29) po (Z) : - po (Y) , p (Y , Z) .
Now we have a non-vacuous dependency concerning Y. because p0 says something substant ial about t he in­stantiation of its argument . The head p0 (A0) of the first definition c lause of p0 has transclausal variable A 0

7

as the argument . Since A0 has been introduced in the top clause. upward penet ration is applied here , so that the first definition clause of p0 is replaced by Po. 1 . . and a new definition clause is int roduced . as follovvs .
(30) Po.1 . Po (Z) po (Z) Po. 1 , p (A 1 , z) . po (Y) , p (Y , Z) .

The last clause of (28) has been replicated vvhile p0 (Y) therein has been replaced by p0 , 1 plus Y = A 1 . giving rise to the second clause in (:30) above.);°ote that p (Y) no longer imposes any res t riction on the ins tant iation of Y . The dependency concerning Y in the t hird clause here is vacuous and left untouched for the time being. A problem here. inc identally. is that another top clause as below is created .
(:3 1) : - Po.1 , 8=A 1 , A0= [a l A 1] , An- l = [a l An] .

To avoid two top clauses . we could introduce a new predicate q by which to mediate between the top clause and the locus of upward penetration:
(3 2) : - q, A0= [a l A 1] , · · · , An- l = [a l An] . q Po.1 , B0=A 1 . q : - Po (B0) .

Next . p (A 1 , Z) in the second clause of (:30) is un­folded and a new predicate p 1 is creat�d. A 1 penet rat ing downwards :
(;3;3) Po (Z) Po .1 , P1 (Z) . P 1 (A2

) . P1 (Z) : - P1 (Y) , p (Y , Z) .
Operation prnceeds similarly. yielding the clauses f�t-
�w.

. . -

(34) P 1 .2 • Pt (Z) : - P1 .2 , p2 (Z) . Po.2 : - Po. 1 , P 1 .2 · Po (Z) Po.2 , P2 (Z) . P2 (Z) : - P2 (Y) , p (Y , Z) .
Shown below is what is finally obtained .

(:3,5) : - q , A0= [a l A 1] , · · · , An- l = [a l An] . q : - po (B0) . q : - Po.i , B0=Ai . (0 < i ::; n) Pi (Z) : - Pi.J , p/Z) . (0 ::; i < j < n) Pz (Z) : - Pi (Y) , p (Y , Z) . (0 ::; i < n) Pi . i+1 . (0 ::; i < n) Pi .k : - Pi.J , PJ.k · (0 ::; i < j < k < n)

p

A
p p

AA
l J k

Figure :J : The meaning of Pi.k : - Pi.j , Pi.k .
3 .4 Computational Complexity

Part of (:3,j) amounts to a well- formed substring ta­ble. as in CYK algorithm. Earley' s algorithm [4] , chart parser. and so on. For inst ance. the existence of clause Pi.k : - Pi .; , P; .k . means that . as i llustrated in Fig. :J . the part of the given string from position i to posi­tion k has been parsed as having category P and is subdivided at position j into two parts . each having category P. Note that the computational complexity of the above process is 0(n3) in terms of both space and time. Moreover, the space complexity is reduced to 0 (n2) i f we delete the literals irrelevant to instantiation of vari­ables . which preserves the semantics of the constraints in the case of Horn programs . That is i the resulting structure would be:
(:36) : - q , A0= [a l A1] , . · · · , An- l = [a l An] . q : - Po (Bo) . q : - B0=A i • (0 < i � n) Pi (Z) Pi (Z} . (0 � i < j < n) P-i (Z) : - P_i (Y) , p (Y , Z) . (0 � i < n)

Some sort of clauses listed here might be generated more than once in general cases where the grammar is less t rivial than (1 :3) . For example . clause (37) may be derived from both (:38) and (: 39) .

(38) s (X , Z)
(39) s (X , Z)

np (X , Y) , vp (Y , Z) .

np (X , Y) , adv (Y , U) , vp (Y , Z) .

If (37) is generated twice. then of course we are able to collapse the two instances to one, so that the space complexity should be 0(n 2) . Needless to say, this col­lapsing operation is totally domain-independent in its nature. The process illustrated above corresponds best to Earley·s algorithm. Our procedure may be general­ized to employ more bottom- up control . so that the result ing process should be regarded as chart pars ing in general . including left -corner pars ing. and so on.
8

4 Integrated Processing

Section 2 treats l inguistic constraints on category struc­tures as constraint t ransformation . and Section :3 pro­cessed linguistic constraints on phrase structures . This section discusses how to handle various types of con­straints mentioned in the previous two sections . Some heuristics will be needed to determine which constraint to process earlier than the others .
4 .1 Heuristics In the following discussion , we consider two types of linguistic constraints : constraints on category struc­t ure and those on phrase structure. For simplicity. the former constraints are represented only by pred­icate c. and the latter p . Accordingly. we intro­duce two types of dependency: inter-dependency and
intra-dependency. Inter-dependency is a double oc­currence of a variable in both types of constraints , such as X in p (X) , c (X , Y) . Intra-dependency arises with non-variable arguments or a variable that occurs only in one type of constraints such as c (a , X) or Y in c (a , Y) , c (Y , b) . By applying the general heuristic (27) to this do­main . we get the following heuristic:

• E liminate intra-dependencies earlier than inter­dependencies .
• Eliminate intra-dependencies in category struc­ture earlier than those in phrase structure .
• In eliminating inter-dependencies . the literal that has the fewer OR-alternatives should be un­folded (penetrated downward) .

That i s . constraints o n category s tructures generally has more information quantity than those on phrase� structure. because the former are called by the lat ter. In the case of a dependency between two argument places of ordinary atomic formulas , moreover. pene­tration operation should take place at the one that has fewer alternatives of unfolding. because it is supposed to have more information quantity:
4 .2 Example

The following is an ambiguous context free grammar that parses ''I see a man with a telescope."
(40) VP --+ V NP

VP --+ VP PP
NP --+ NP NP
V --+ see
NP --+ a man
PP --+ with a telescope

(4 1) is a parsing program in terms of this grammar .

(4 1) p (X , Z , C) : - p (X , Y , LC) , p (Y , Z , RC) , . c (LC , RC , C) .
c (v , np , vp) .
c (np , pp , np) .
c (vp , pp , vp) .
p ([see l W] , W , v) .
p ([a , man l W] , W , np) .
p ([with , a , telescope l W] , W , pp) .

Predicate p represents phrase structure constraint and predicate c: represents constraint on category structure.7

(42) : -p (A0 , B , C) , A0= [see l A1] , A1 = [a , man l A2] ,

A2 = [with , a , telescope l A3] , A3= [] .

(42) is a question clause. This example shows that two meanings of ·'I see a man with a telescope·' are derived from this program by the constraint transfor­mation with the heuristic mentioned previously. The dependency to be processed is in terms of A 0 in (42) because LC and RC in (40) do not have depen­dencies on ,ac�ount qf vacuous argument places . Then. . apply dow�ward penetration in terms of AO to (42) . p0 (B , C) i s equivalent to p (A0 , B , C) .
(43) : -po (B , C) , (4-l) p0 (A 1 ; v) . (45) p0 (B , C) : - p (A0 , Y , LC) , p (Y , B , RC) , , c (LC , RC , C) .

The first body literal of (4,5) can be folded and we get
(46) p0 (B , Cat) : - p0 (Y , LC) , p (Y , B , RC) , c (LC , RC , Cat) .

Apply upward penetrc1:t ion to (44) . Here p0,1 is equiv­alent to p0 (A 1 , v) .
(4 7) : -po,1 . (48) Po,1 . (49) p0 (B , Cat) : -po,1 , p (A 1 , B , RC) , c (v , RC , Cat) .

Unfold the category constraint of (49) .8 7From unification-based point of view, suppose each category has the form [pQs/X] and c () represents the pos feature prin­ciple: The combination of the values of pos feature of mother , left daughter , and right daughter cate­gory is (vp , n , np) , (np , np , pp) , or (vp , vp , pp) .
8Let c0 (Cat) be c (v , RC , Cat) and you apply downward pen­etration to (49) , obtaining

po (B , Cat) : - Po, 1 , p (A 1 , B , RC 1) , co (Cat) .

However, c0 has only one definition clause :
c0 (vp) : -RC 1 =np . So c0 is reduced and you get (50) .

9

(.j0) Po (B , vp) : -po,1 , p (A 1 , B , np) . Now the remaining clauses are (43) , (47) . (48) . (46) and (.jQ) . Apply downward penetration i n terms of A 1 to (.SO) . p 1 (B) is equivalent to p (A 1 , B , np) . (-S l) p0 (B , vp) : -po, 1 , p 1 (B) . (-52) P1 (A2) . (53) p 1 (Z) : -p (A 1 , Y , np) , p (Y , Z , RC) , c (np , RC , np) . Cnfold the category structure constraint of (.j:J) . (54) p1 (Z) : -p (A 1 , Y , np) , p (Y , Z , pp) . The first body of (.j4) can be folded and we get (55) p1 (Z) : -p1 (Y) , p (Y , Z , pp) . Upward penetration in (.52) . p1 ,2=p1 (A 2) (-S6) Po (A 2 , vp) : -po, 1 , P1 .2 . (.5 7) P1 (Z) : -PI .2 , p 1 (A2 , Z , pp) . (.58) Pu • l:pward penetration m (-S6) . p0,2 is equivalent to po (A2 , vp) . (-59) Po (B , Cat) : -po,2 , p (A2 , B , RC) , c (vp , RC , Cat) _ · (60) Po.2 : -po.1 , P1 .2 · Cnfold the category rnl lstraint of (.S9) . (6 1) po (B , vp) : -p0_2 , p (A2 , B , pp) . Here. the remaining clauses are (43) . (-17) . (-! 8) . (-SS) . (60) . (-!6) . (.S l) . (.S.3) . (.S i) and (6 1) . Apply down­ward penetration of A2 in (6 1) . p2 (B) is equivalent to p (A2 , B , pp) . (6 2) po (B , vp) : -po.2 , p2 (B) . (6 :3) p2 (A3) . (64) p2 (B) : -p (A2 , Y , LC) , p (Y , B , RC) , c (LC , RC , pp) . Unfolding of the category constraint of (64:) fai ls . Fo ld (.5 7) . (6.5) p1 (Z) : -p 1 .2 , p2 (Z) . lTpward penetration in (63) . p2 ,3 1s equivalent to P2 (A3) . (66) po (A3 , vp) : -po� , P2� ­(67) P2 .3 . (68) P1 (A3) : -PI ,2 , P2.3 · Upward penetration in (66) . Po.3 = po (A3 , vp) . (69) p0 (B , Cat) : -p0,3 , p (A3 , B , RC) , c (vp , RC , Cat) . (70) Po,3 . Unfolding of the category constraint in (69) fai ls . l' p­w ard penetration in (70) . p1 ,3 = Pi (A3) . (7 1) po (A3 , vp) : -po,1 , p1 ,3 • (72) Pi (Z) : -pl ,3 , p (A3 , z , pp) . (73) p1 ,3 : -pu ,-P2.3 · (6 6) and (7 1) represent the two readings of ··see a man with a telescope. ··

5 Concluding Remarks

In this paper, we have shown that various parsing tech­niques are subsumed in a general procedure of con­straint transformation, whose control heurist ic is at­tributed to an abstract , task-independent principle (1) . Thus our conclusion is that no parser a t all is needed in natural language processing, It is both desirable. as is discussed first in the paper, and possible , as we have so far demonstrated , for an NLP system to have no particular module for parsing sentences , j ust as a car has no particular part for driving towards the east or turning to the left . Our approach will capture sentence generation as well, if we employ a more adequate control heuristic. which could also be derived from (1) . In this connec­tion, Shieber [1 2] , among others , has also proposed a computational architecture by which to unify sentence parsing and generation, but his method is primarily specific to phrase-structure synthesis . A significant merit of our approach is that , as shown above, it is not in any way restricted to parsing or generation of context-free languages. Also , no addit ional mechanism is required to extend the underlying grammatical for­malism so that grammatical categories may be com­plex feature bundles , as is the case with GPSG. LFG. HPSG, and so on. .At any rate, heuristics play the most important role in our approach. As this paper only gave a.n intuitive ration�le on some heuristics in terms of information quantity, more formal . account of them is yet to be worked out . A promising direct ion seems to be to define some sort of potential energy over constraints , which should capture information density, providing not only processing control but also preference of conclusion. In­troducing hierarchies in the constraint is regarded as along the same line.
References

[l] Brooks , R. (1 988) Intelligence witho ut Represen­tation, technical report , AI Laboratory, MIT.
[2] Colme.rauer, A . (1 98 7) A n Introduction to Prolog

III, unpublished manuscript .
[3] D incbas , M. , Simonis , H . and Van Hentenryck, P. (1 988) 'Solving a Cutting-Stock Problem in Con­straint Logic P rogramming, · Proceedings of the -5th Int ernational Conference of Logic Programming. pp. 42-58.
[4] Earley, J . (1970) ' An Efficient Context- Free Pars­ing Algorithm: Communications of A CM. Vol . 1 3 , pp . 94-1 02 .
[5] Gunj i , T . (1 986) ' Japanese Phrase Structure Grammar' , Reidel, Dordrecht , 1 986 . 10

[6] Hasida. K . (1 986) 'Conditioned Unification for Natural Language Processing, · Proceedings of th c 1 1 th COLING.

[7] Hasida, K. and Ishizaki . S . (1 987) · Dependency Propagation : A Unified Theory of Sentence Com­prehension and Generation. ' Proceedings of the 1 0th I.JC AI. pp. 664-670 .
[8] Hasida. K. (1 990) · Sentence Processing as Con­straint Transformation: Proceedings of ECA J'.90.
[9] Jaffar, J . and Lassez , J. (1 988) 'From Unification to Constraints . ' Logic Programming 087, Lecture Notes in Computer Science, No. :3 1 .5 , pp. 1-18 .

[10] Pereira, F . C . N . and Warren, D . H . D . (198 :3) 'Parsing as Deduction, · Proceedings of A CL '88, pp. 1 37-144 .
[1 1] Pollard, C . and Sag, I . A . (1 987) Information­Based Syntax and Semantics. Volume 1 , CSLI Lec­ture Notes No. 1 3 .
[1 2] Shieber, S .M. (1 988) ·A Uniform Architecture for Parsing and Generation. ' Proceedings of the 12th

COLING. pp . 6 1 -t-6 1 9 .
[1 3] Sussman. G . and McDermott. D . V . (1 972) COS­SIVER Referen N .\-fanual. �lemo 2.59 .- A I Labo­ratory. MIT.
[14] Sussman . G. and Steele. G . , .Jr. (1 980) ·Con­straints - A Language for Expressing Almost­Hierarchical Descriptions , · A rtificial Intellige n cf: . Vol. 14 .
[1 -5] Tamaki . H . and Sato . T . (1 98:3) T nfold/ Folcl Transformation of Logic Programs . ' Pmcudings of the Seco nd lntun atio nal Confert na on Logic Progra mming. pp. 1 27- 1 :38 .
[1 6] Tamaki . H. and Sato . T . (1 984) ·OLD Resolu­tion with Tabulation . ' Proceeding.s of th E Th ird Internatio nal Conff l'rnct on Log-ic Progra m m ing. pp. 84-98 .
[1 7] Tsuda. H . and Hasida. K . (1 990) · Parsi ng as Constraint Transformation - an extension of cu-Prolog' Proceedings of the Seo·ul ln f f rn a­tional Conf ere nee on Natural Languagt Proct.s.s­ing, pp. 325-331 .
(18] Tsuda, H . , Hasida, K . . and Sirai, H . (1 989) · JPSG Parser on Constraint Logic Programming. ' Proceedings of the European Chapter of A CL ·89. PP· 9.s-102.
[1 9] Tsuda. H . , Hasida, K. � Yasukawa,H . and Sirai . H . · (1 990) · cu-Prolog V2 system' , !COT TAI-9-52.

PARSING = PARSIMONIOUS COVERING?

Venu Dasigi
Department of Computer Science and Engineering

Wright State University Research Center
3 17 1 Research Boulevard

Dayton, OH 45420
(5 1 3) 259- 1 395
(5 1 3) 873-3201

CS Net: vdasigi@cs.wright.edu

ABSTRACT
Many researchers believe that certain

aspects of natural language processing, such
as word sense disambiguation and plan
recognition in stories, constitute abductive
inferences. We have been working with a
specific model of abduction, called parsi­
monious covering, applied in diagnostic
problem solving, word sense disambiguation
and logical fonn generation in some res­
tricted settings. Diagnostic parsimonious
covering has been extended into a dual­
route model to account for syntactic and
semantic aspects of natural language.

The two routes of covering are
integrated by defining "open class"
linguistic concepts, aiding each other. Toe
diagnostic model has dealt with sets, while
the extended version, where syntactic con­
siderations dictate word order, deals with
sequences of linguistic concepts. Here we
briefly describe the original model and the
extended version, and briefly characterize
the notions of covering and different cri­
teria of parsimony. -Finally we examine the
question of whether parsimonious covering
can serve as a general framework for pars­
ing.

1. Introduction
Natural languages are rife with ambi­

guity. There are lexical ambiguities; words
in isolation may be seen to have multiple
syntactic and semantic senses. There are

1 1

syntactic ambiguities; the same sequence of
words may be viewed as constituting
different structures. And finally, there are
semantic and pragmatic ambiguities, all of
which may be resolved in context. Ambi­
guity and its context-sensitive disambigua­
tion, it turns out, are two important charac- -
teristics of abductive inferences.

There have been various attempts at ·
characterizing abductive inference and its
explanatory nature [Appelt, 90; Charniak
and McDermott, 85; Hobbs, et al. , 88 ;
Josephson, 90; Konolige, 90; Pople, 73 ;
Reggia, 85; etc.] . While they differ some­
what in details, they all boil down to
accounting for some obseIVed features
using potential explanations consistently in
a "parsimonious" (often "minimal") way.
Over the past decade, a formal model for
abduction based on these ideas was
developed at Maryland; this theory is called
parsimonious covering. Toe theory ori­
ginated in the context of simple diagnostic
problems, but extended later for complex
knowledge structures involving chaining of
causal associations.

A diagnostic problem specified in
tenns of a set of obseIVed manifestations
is solved in parsimonious covering by
satisfying the coverage goal and the goal
of parsimony. Satisfying the coverage goal
requires accounting for each of the
obseIVed manifestations through the known
causal associations. Ambiguity arises here,

because the same manifestation may be
caused by any one of several candidate
disorders. Ensuring that a cover contains a
' 'parsimonious' ' set of disorders satisfies
the goal of parsimony. There could poten­
tially be a large number of covers for the
observed manifestations, but the ' 'parsi�
monious ' ' ones from among them are
expected to lead to more plausible diag­
noses. The plausible account for a manifes­
tation may be one disorder in one context
and another disorder in a different context.
Such contextual effects are to be handled
automatically by the specific criterion of
parsimony that is chosen.

For medical diagnosis, reasonable cri­
teria of parsimony are minimal cardinality,
irredundancy and relevancy [Peng, 85] .
Minimal cardinality says that the diagnosis
should contain the smallest possible number
of disorders that can cover the observed
symptoms. A cover is considered irredun­
dant (not redundant) if none of its proper
subsets is also a cover, i.e., if the cover
contains no disorder by removing which it
can still cover the observed symptoms.
Relevancy simply says that each disorder
in the cover should be capable of causing
at least one of the observed manifestations.

Consider an abstract example where
disorder d 1 can cause any of the manifesta-
tions m 1 and m2; d2 can cause any of m 1 ,
m2 and m3 ; d3 can cause m3; d4 can cause
m3 and m4; and finally, d5 can cause m4•

If the manifestations {m 1 , m2, � } were
observed, the disorder set { �} constitutes a
minimal cardinality cover; the irredundant
covers that are not minimal cardinality cov­
ers are {d1

, d3 } and {d 1
, d4 } ; and an

example of a redundant, _but relevant cover
would be { d1 , d3 , d4 } . While { d2, d5 } is
a cover that has an irrelevant disorder (d5)

in it, { �' d4 } is a non-cover, since
together the disorders in this set cannot
account for all observed manifestations.

1 2

Several natural language researchers
have been actively involved in modeling
abductive inferences that occur at higher
levels in natural language, e.g., at the prag­
matics level. Abductive unifications that are
required in perfonning motivation analysis,
for instance, might - call for making the
least number of assumptions that might
potentially prove false [Chamiak, 88] . Lit­
man uses a similar notion of unification,
called consistency unification [Litman, 85] .
Hobbs and his associates propose a method
that involves minimizing the cost of abduc­
tive inference where the cost might involve
several different components [Hobbs, et al. ,
88] . Although [Charniak and McDermott,
85] indicate that word sense disambiguation
might be viewed as abductive, nobody has
pursued this line of research. It is very
clear that there exists a strong analogy -
between diagnostic parsimonious covering
and concepts in natural language process­
ing. There are, however, important
differences as well. These similarities and
differences are summarized in Table I .
We have tried to extend parsimonious cov­
ering to address some of the idiosyncrasies
of language (contrasted to diagnosis) and
apply it to low level natural language pro­
cessing.

2. Covering and Parsimony in
Language

Linguistic concepts are viewed in par­
simonious covering to be much like disord­
ers and manifestations in diagnostic prob­
lems. However, in order to account for
word order and structural constraints in
language on the one hand and to account
for the lexical and semantic content on the
other, two aspects are attributed to each
linguistic concept These two aspects are
loosely referred to as syntactic and seman­
tic aspects, respectively. Concepts are
covered parsimoniously in these two
aspects, and the processes of covering are
called syntactic and semantic covering.

TABLE 1 : Similarities and Differences between
Dia ostic Problem Solvin and Natural Lan a e Process in
Parsimonious Covering Natural Language

Theory (Dia osis) Processing

SIMILARITIES:

symptoms
disorders
intennediate syndromes
symptoms with

multiple causes
·pathognomonic

Irianif estations·
observed manifestations

(to be explained)
causal relation

(between symptoms and disorders)
diagnostic explanation

(i .e.� a set of disorders)

DIFFERENCES:

order of entities ignored
sets of entities
only ·one ,type of knowledge
· (causa1)

The notions of . coverage . and parsi­
mony are briefly sketched here for syntac­
tic covering through an abstract example
here. · Unlike in the· case of diagnostic
covering, the covers iii syntactic covering
are sequences rather than sets. Consider the
following descriptions · ·of categories c1
through c5 in tenns of simpler categories
(or words) w0 through w 10 below
(sequences are indicated by being enclosed
between "<>"):

c l : <Wo Wi w2 W4 Ws WJ W6>

c l : <W4 wl W7 Wo>

c2: <W7 WI Ws>

C3 : <W
9

W
I O

>

c4: <W2 w6 w3>
c5: <w0 w7>

1 3

words
internal �rtions
word senses and structures
ambiguous words

unambiguo_us words

input text (sequences of words)
(to be interpreted)

lexical and semantic associations
(between words and senses) - • • , •.<

semantic interpretation_ ,- , ; '. _: : ·;.
(i .e. , a set of related assertions)

word order important
sequences of concepts
two typeS of knowledge

(s tic and semantic)
The categori�s sh9wn jn bold face

are mandatory categories, i.e., categories
that must be present for' the description to
viably apply to a context. . Semantic con-

. siderations govern whether a · catego_ry is
mandatory in a description: · Depending on
the domain, ' ' the patient blind ' ' might still
make sense (indicating that the - omitted
copula is . not mandatory), but ' ' the patient' ·
alone does not make complete sense (indi­
cating that for this type of sentences, an
adjectival complement is · - mandatory) . See
[Dasigi, 88] for discussion.

Suppose the input sequence is <w 1 ,

w2, w3>. Some valid covers (covering
sequences) are <c 1>, <c 1 , c3>, <c3, c 1>,
<c2, c4>, <c2, c3 , c4>, etc. Some non­
covers are <c2>, <c4>, <c2, c3>, <c4 , ci>,

etc. , either because they cannot account for
all the categories in the input sequence or
because they cannot account for the correct
order. Note that although <c2, c4> is a
cover, <c4, c2> is not a cover. For
instance, it makes sense to cover ' ' paint
the wall" with the sequence <Verb Noun­
Phrase>, but not by <Noun-Phrase Verb>.
Irredundant covers include <c1> and <c2,

c4>. Of these two irredundant covers, the
former is also minimal (i.e., of minimal
cardinality) and the latter is not. Insertion
of c5 into any valid cover causes it to be
a non-viable cover since the category man­
datory to c5, namely, w7 is not present in
the input sequence to be covered. Thus,
<c 1 , c5> is a non-viable cover.

· Consider the cover <c1 , c4>.
Superficially, it appears to be a redundant
cover since c1 by itself is a cover. When
the second rather than the first description
of c1 is taken into account, however, there
is no redundancy in the cover, in a certain
sense. For more concreteness, consider the
following two classic sentences that differ
in a single word:

"John painted the wall with a crack. "
' ' John painted the wall with a brush. ' '

Now, suppose there exist the usual descrip­
tions . for noun phrases (Noun-Phrase) and
prepositional phrases (Prep-Phrase).
Although in both sentences, the highlighted
words can be syntactically covered by the
irredundant cover <Noun-Phrase>, the
sequence <Noun-Phrase Prep-Phrase> is a
more appropriate cover in the second sen­
tence, and we would like to consider that
cover as irredundant, too. This characteri­
zation of irredundancy is obviously impor­
tant, and is somewhat .similar to the notion
of "relevant diagnostic . covers" defined in
the previous section.

Semantic covering interacts closely
with syntactic covering. Irredundant

1 4

syntactic covering has a very nice property,
namely, when complete sets of irredundant
syntactic covers are considered, they are
transitive across any number of layers
when more than two layers of covering
(e.g. , as in typical parse trees) are involved
[Peng and Reggia, 87; Dasigi, 88]. How­
ever, for a sequence of items, the number
of irredundant covers at the next layer
grows exponentially [Dasigi, 88]. Heuristics
are needed for focusing search in such an
ocean of covers, and semantic considera­
tions seive this role. In the space of
irredundant syntactic covers, search would
be focused on "plausible" semantic cov­
ers. 1 · Thus, the two routes of covering aid
each other by syntactic covering providing
a search space for semantic covering, and
the latter focusing further syntactic covering
at the next layer. Integration of the two­
routes of covering is facilitated by attribut­
ing both syntactic and semantic categories
to distinguished linguistic concepts, called
open class concepts? In general, if the
category that has just been postulated as a
cover happens to be an open class
category, .. it initiates semantic covering, thus
integrating both the routes· of covering.

3. Some Examples
A significant prototype was imple­

ment� to apply this algorithm in the con­
text of an interface to an expert system.
Instead of syntactic categories such as
nouns, verbs, noun-phrases, etc., semantic
categories were used in the syntactic c·over­
ing process. Semantic covering was per­
fonned using domain-specific concepts
defined in a knowledge base used by the
expert system. In an OPS5-style expe rt

1Semantic covering also involves the notions of covering
and parsimony, where parsimony considerations indicate the
plausibility of semantic covers.

2This notion is very similar to that of open class words
in languages. Non� class concepts only have syntactic as­
pect, and correspond to "syntactic sugar" in language. Sec
[Duigi, 88) for more discussion.

system language, domain-specific concepts
such as, patient, vision, blind, etc. were
classified into semantic categories such as
objects (obj), attributes (attr), values (val),
etc. Two application domains were con­
sidered; the first domain is characterized by
a sizable, prototype neurological knowledge
base and the other deals with a toy chemi­
cal spills knowledge base. Some examples
that were successfully handled by the pro­
totype interfaces are:

' 'Visual acuity is blind. ' '
' ' Visual acuity i s blind on the left. · ·
' 'Babinski on the left. Right unremark­
able. ' '
' 'The water is brown, radioactive and
oily. Its pH is basic . . . "

These examples demonstrate the use of lex­
ical information, limited ability to handle
ungrammatical sentences, interpretation of
sentences in a discourse context rather than
in isolation, etc. Note that the first few
words of the first two inputs are the same.
Their interpretations are, however,
significantly distinct in the . context of the
knowledge base that was used, illustrating
a form of non-monotonic inference in text
interpretation. All but the last input is
from the neurology domain and the last
one is from the other.

A very simple example of parsimoni­
ous covering is given below to convey the
flavor of the approach. Details are omitted
due to space considerations, and we appeal
to the reader's intuition in making sense
out of this brief example. Suffice it to say
that the category assert (and its variations)
corresponds to sentences or clauses; obj
and attr (and their variations) correspond
to noun phrases; and val (and its varia­
tions) correspond to noun phrases or adjec­
tive complements. The category asg-verb
stands for " assignment verb" (e.g. , "is") .
There are different ways an assert may be
described in terms of the other categories
mentioned so far. Often, val is a

1 5

mandatory category in describing an assert
(that is, it is unlikely that an assert makes
semantic sense if a val is not present).
Now, suppose a sentence begins with

"Vision is . . . "
and is to be covered syntactically. One
sequence of terminal categories that cover
the first two words in this sentence is
(attr, asg-verb) among others, since vision
is an attribute and the word "is" is an
instance of asg�verb. Since, this is an
embedded sequence of what is expected of
the above description of assert, the
category assert is postulated to be a non­
viable syntactic cover for the first two
words. It is a cover because the two
semantic categories occur in the description
of assert, in . the correct order. But the
cover is non-viable nevertheless, because,
not all mandatory categories in this particu­
lar description, namely, val, have occurred
yet When all expected , mandatory
categories occur, the cover will be con­
sidered viable. Further, viable · or not, the
cover is tentative because other possible
covers exist and one of the other covers
might prove to be globally more plausible.
Now, suppose the sentence ends as fol­
lows:

. .. impaired.

Then, since impaired is a domain-speci fie
value, the mandatory category is also
encountered; so ·assert is confirmed as one
of several viable syntactic covers for the
given words. To keep things simple for
the present purposes, i t is assumed that
assert turns out to be the most plausible
syntactic cover.

The covering category in this exam­
ple, namely assert, was designated as an
open class category. In general, i f the
category that has just been postulated as a
cover happens to be an open class
category, it initiates semantic covering
(with the standard notion of compositional­
ity), thus integrating the use of both (that

is, syntactic and semantic) aspects of
knowledge. Now, we continue the exam­
ple from the viewpoint of semantic co�er­
ing. Recall, however, that this process is
interleaved with syntactic covering, and
does not necessarily follow it. See Figure
1 .

The word ' 'vision' ' is covered, among
other things indicated above, by a concept
that has the semantic category attr.
Category attr is of open class and so not
surprisingly the concept that covers
"vision" also has a domain-specific entity,
say a12, that uniquely characterizes it. In
effect, this one linguistic concept covering
' ' vision, ' ' has two facets: the semantic
category attr and the domain-specific entity
a12. Similarly, the word "impaired" is
covered by, among others, a concept of the
semantic category val that has the unique
domain-specific entity, say v30, associated
with itself. The verb "is," however, is
covered by a concept of the category asg­
verb and since asg-verb is a not an open
class category, it does not have a
corresponding domain-specific entity.

As already explained in the course of
syntactic covering, assert is computed to
be a syntactic cover; it also turns out to
be a parsimonious syntactic cover. For
semantic covering, what needs to be
covered is the set of entities grouped under
this category, i.e., a12 and v30, by identi­
fying domain-specific associations that relate
them. Definitions of parsimony and cover­
ing in . the semantic route attempt to cap­
ture these intuitions, and the concept
characterized by the semantic category
assert and the domain-specific entity con­
stituted by

(attr=a12, val=v30)
becomes the integrated parsimonious cover
for the given sequence of words.

For the sake of completeness, we
briefly describe the salient features of
semantic covering. A detailed account and

1 6

algorithms may be found in [Dasigi, 88) .
The conceptual objects manipulated by
semantic covering are domain-specific
semantic senses. For semantic covering, the
order of the concepts being covered is no
longer important Semantic covering
involves discovering the relationships under­
lying the domain-specific entities evoked by
input words, so that a parsimonious seman­
tic cover can be synthesized for them; this
cover corresponds to the logical fonn of
the original sequence of words. There are
two types of semantic covering. The first
type of covering involves covering indivi­
dual content words by domain-specific
senses corresponding to objects, attributes,
etc. This type of covering involves only
lexical associations. Here, a domain-specific
entity semantically covers a content word if
any of the content words in the name or­
synonyms of the entity is morphologically
related to the word itself or a domain­
specific or domain-independent synonym of
the word.

The other type of semantic covering
is based on the relationships in a domain­
specific semantic network. A simple
domain-specific entity may be represented
by a single node in the semantic network,
e.g. , an attribute. Also, a non-atomic sub­
graph of the semantic network can
represent a more complex domain-speci fie
entity, e.g., an assertion that relates an
attribute and a possible value for it.
Either kind of domain-specific entity
whether represented by a single node or _ by
a subgraph in the domain-specific semantic
network - is said to be covered by any of
its supergraphs. Since any super-graph of
a domain-specific concept can cover it, for
any domain-specific concept there are
potentially a huge number of covers, some
of which are very redundant There should
be some means of controlling the number
and sizes of potential covers. Criteria of
parsimony and other constraints are used to
achieve this control.

semcat: assert

<ls-entity: (al2-v30)

semcat: attr

ds-entity: a12

semcat: asg-verb

<ls-entity: nil

semcat: val

ds-entity: v30

... ..,
wiaioa •• im,aired

Figure 1 : Interleaving of syntactic and semantic covering. 1be dashed arrows indicate other concepts
that are evoked, e.g. , other attributes named by "vision," other types of verbs that "is" evokes and
many other concepts named by ' ' impaired. ' '

A criterion of parsimony called
cohesiveness is chosen, inspired by the fact
that in order to be understandable, text
must be cohesively connected. A set of
semantic categories are designated as asser­
tionals (loosely corresponding to the notion
of a sentence or an independent clause in
English). A semantic cover corresponding
to a non-assertional category is considered
to be cohesive if it is the smallest (in
tenns of nodes) connected graph covering
the concepts in question. A semantic
cover corresponding to an assertional
category is considered to be cohesive if
either it is the smallest connected graph
covering the concepts being covered or it
is a not necessarily connected graph of
several such domain-specific entities belong­
ing to assertional categories. If there is
more than one unconnected cover for the
same concepts, the smallest connected

1 7

cover of such unconnected components is
the cohesive cover. It can be seen that
cohesiveness refers to the "size" of the
covers, and it is similar to ' ' minimal cardi­
nality," used in early versions of parsi..:
monious covering theory for diagnostic
problems. Indeed, if minimality were to be
extended to structured entities, it would be
similar to cohesiveness above. Cohesive­
ness refers to how well a cover fits into
its surrounding context, a generalization of
the notion of minimal cardinality, applied
to structured entities.

Consider two consecutive concepts
that have the same domain-specific entity
(say an object) as one of the many candi­
date covers. Since both concepts can be
covered by the same entity, the entity is a
minimal cover for both of �em together.
This example of parsimonious covering is
essentially the same as minimal covering- in

the unextended parsimonious covering
theory for diagnostic problem solving.
However, suppose the two concepts
involved cannot be covered by the same
domain-specific entity. A minimal cover in
the unextended parsimonious _covering
theory would consist of any pair of entities
(pair - because there are two words to be
covered) such that each entity in the pair
covers one concept. But when structured
entities with semantic associations among
them are considered, the entities in . the pair
must also unify, taking domain-specific
associations into account 3 · Unification of
such structures corresponds to a searc11 in
the domain-specific semantic network, say,
by marker passing [Charniak, 83] .

One important remark about semantic
covering is in order. Cohesiveness, as a
notion of parsimony for semantic covering,
is _intended to capture how plausible a
semantic cover is. But it is possible that a
cohesive �over might - tum out to be
implausible when checked for well­
formedness. Because of this possibility,
there should be means to recompute the
next most plausible (cohesive) cover.
Thus, whenever a cohesive cover is found,
all the irredundant covers must be saved so
that the space of possibilities they consti­
tute can be explored for cohesiveness if
the cohesive cover that was found · were to
be rejected later. Consider the · following
abstract example. Let x 1 , Xz, �' x4 and x5
be· the senses of one ambiguous linguistic
concept and y 1 , y2, y3 and y4 be the
senses of another concept. If these two
concepts were syntactically covered together
by an open class semantic category, _ then

3Tiris can be understood as follows: An assertion may
be viewed as a predicate assert(?v,?a,?o), where ?v, ?a and ?o
are variables such that ?v is a possible value of attribute ?a,
which in turn is an attribute of object ?o. If ooe of the consti­
tuents is covered by a specific value v 1 and the other is
covered by a specific attribute a2, the coven effectively specify
the assertions ·assert(vt?aa,?oo) and usert(?vv,a2,?ooo).
respectively. Now unification may be performed in the usual
sense.

1 8

semantic covering will be initiated. Now,
what needs to be semantically covered is
the conjunction of the following two dis­
junctions (representing 5*4 = 20 combina­
tions):

{ xl Xz �- x,. X5} and {y l Y2 Y3 Y4 }
Suppose a cohesive cover is found between
� and y 3• Then the irredundant cover
will be constituted by the following three
conjunctions of disjunctions (which
represent the remaining 19 combinations):

{ xl � x,. X5} and {y l Y2 Y ,.}
{x2 } and {Y1 Y2 Y4 }
{x1 � x4 x5 } and { y3 }

If the cohesive cover that was discovered
gets rejected, the next most cohesive cover
might be computed from these irredundant
covers.

The dual-route parsimonious covering
algorithm uses a discrete marker passing
scheme to find cohesive · semantic covers.
One problem with irredundant syntactic
covering is that typically there are too
many such covers. (The advantage, how­
ever, is that all useful infonnation is
always available.) Since there are too many
candidate syntactic covers, there exists a
need to focus search for the best ones.
Consequently, the dual-route algorithm uses
semantic criteria to select a candidate to be
covered at the next layer. Thus, the algo­
rithm incorporates notions of parsimonious
covering and best-first search to integrate
syntactic and semantic processing towards
the goal of synthesizing the final interpreta­
tion for an input text.

4. Discussion

The ability of parsimonious covering
to handle ungrammatical sentences, as
exemplified earlier, does not call for any
special (or ad hoe) handling. It is a natural
consequence of the very definition of cov­
ering itself. One could argue that a con­
ventional production rule approach may

easily be augmented to achieve the same
effect. For instance, it might be possible that a
description such as:

�ert: attr asg-verb val,

where val is mandatory, can be encoded
into the following production rules:

assert --> attr asg-verb val
I attr val
l val
I · · ·•

the number of such rules can grow
exponentially in the number of non­
mandatory categories.

The previous paragraph should not be
misconstrued as downplaying the
significance of syntax in language. Indeed,
the verb is plays a crucial role in disambi­
guating sentences such as,

"Flying planes is/are dangerous."

Our point is that omission of the copula in
such sentences still does not make them
incomprehensible. It does leave the sen­
tence ambiguous, to be sure. At present,
the semantic covering process does not
worry about number agreement between the
verb and subject, unless ambiguity arises.
The underlying assumption here is that
people try to make sense, and are not
always grammatical. 1

In summary, parsimonious covering
provides a framework to view parsing
natural language as an abductive process. A
proof of concept is provided by implement­
ing the basic ideas in an application
independent interface shell. Admittedly, the
semantic knowledge used is very restricted
in nature, at the moment appropriate onlt
to an object-oriented class of applications.
The presumed logical fonn is also,
correspondingly, of a limited generality.
Many significant linguistic issues remain to

1The majority of. test inputs used by the prototype came
from physician,• anonymous case descriptioos, where insuring
the grammaticality of sentences was, apparently, not the fint

1 9

be answered in this framework, however.
Two features of this preliminary work
(namely, use of a semantic grammar-like
descriptio1 that are closely related to the
class of ex

1

pert systems for which interfaces
could be generated, and reliance 'on the
assumption that ambiguity resulting from
ungrammaticality is resolvable in context)
make it hard to predict the generality of
the techAfque for unrestricted natural
language. It is hoped that planned exten­
sions, in the directions of using regular
syntactic categories, and incorporation of
further structure into verb definitions (con­
sequently l making the logical form much
more general), might help answer these
important questions.

Acknowledgements
The ,author acknowledges the suppott

received from the State of Ohio Research
Challenge l grant that enabled him, in part.
to prepare this paper. Past support from
Jim Reggia of the University of Maryland
is also gratefully acknowledged.

References
(1) Ap�lt, D., 90: A Theory of Abduc­

tion Based on Model preference, AAA/
Spririg Symposium on Automated

. Abduction, Stanford, March, 1990, pp.
67-71 .

(2) Chatjliak, E., 83: Passing Markers: A
Theoh' of Contextual Influence in
Lan84age Comprehension, Cognitive
Scierice, 7(3), 1983, pp. 171 - 190.

I

(3) Chamiak, E. and D. McDermou, 85 :
An Introduction to Artificial Intelli­
gence. Addison Wesley., 1 985 ,
Chapters 8 and 10.

(4) Chanriak, E. , 88: Motivation Analysis,
Abddctive Unification and Nonmono­
tonid Equality, Artificial Intelligence,
34(3), 1988, pp. 275-295.

priority.

(5) Dasigi, V., 88: Word Sense Disambi­
guation in _Descriptive Text Interpreta­
tion: A Dual-Route Parsimonious Cov­
ering ModeL Ph.D. Dissertation. TR-
2 15 1 , Department of Computer . Sci­
eace, - University of Maryland, College
Parle, MD, 1988.

(6) Hobbs, 1. , M. Stickel, P. Martin and.
D. Edwards, 88: Interpretation as
Abduction, Proc. ACL-88, 1988.

(7) Josephson, J., 90: On the "Logical
Fonn' ' of Abduction, AAA/ Spring .
Symposium on A1:4tomated Abd�tion,
Stanford, March, 1990, pp. 140-144.

(8) Konolige, K. , 90: A General Theory
of Abduction, AAA/ Spring Symposium
on Automated Abduction, Stanford,
March, 1990, pp. 62-66.

(9) Litman, - D., 85 : Plan Recognition and
Discourse Analysis: An Integrated
Approach for Understanding Dialo­
gues. Ph.D. Dissertation, TR 170,
Department of Computer Science, The
University of Rochester, Rochester,
NY 14627.

(10) Peng, Y. , 85 : A Fonnalization of Par­
simonious Covering and Probabilistic
Reasoning in Abductive Diagnostic
Inference. Ph.D. Dissertation. TR-
16 15, Department of Computer Sci­
ence, University of Maryland, College
Park, MD 20742, January, 1986.

(1 1) Peng, Y. and J. Reggia, 87: Diagnos­
tic Problem Solving with Causal
Chaining, International Journal - of
Intelligent Systems 2, 1987, pp. 265-
302.

(12) Pople, H., 73: On the Mechanization
of Abductive Logic, Advance Papers
from the 3rd IJCAI, Stanford, CA,
1973, pp. 147- 152.

(13) Reggia, J., 85 : Abductive Inference,
Proc. of IEEE Symposium on Expert
Systems in Government, Kama, K. N.,
(Ed). McLean, VA, 1985, pp. 484-

489.

20

The Valid Prefix Property and Left to Right Parsing of

Tree-Adjoining Grammar*

Yves Schabes
Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 1 9 104-6389
schabes@linc.cis.upenn.edu

Abstract

The valid prefix property (VPP) , the capability of a left to right parser to detect errors as soon as pos­sible, often goes unnoticed in parsing CFGs. Ear­ley 's parser for CFGs (Earley, 1968 ; Earley, 1970) maintains the valid prefix property and obtains an O(n3)-time worst case complexity, as good as parsers that do not maintain such as the CKY parser (Younger , 1 967 ; Kasami, 1965) . Contrary to CFGs, maintaining the valid prefix property for TAGs is costly.
In 1988, Schabes and Joshi proposed an Earley­type parser for TAGs. It maintains the valid pre­fix property at the expense of its worst case com­plexity (O(n9)-time) . To our knowledge, it is the only known polynomial time parser for TAGs that maintains the valid prefix property.
In this paper, we explain why the valid prefix property is expensive to maintain for TAGs and we introduce a predictive left to right parser for TAGs that does not maintain the valid prefix prop­erty but that achieves an 0(n6)-time worst case behavior , O(n4)-time for unambiguous grammars and linear time for a large class of grammars.
• This research was partially funded by ARO grant

DAAL03-89-C0031PRI and DARPA grant N00014-90-J-
1863. The difficulty of maintaining the valid prefix property
for TAGS was first noticed in joint work with Vijay-Shanker
in the context of deterministic parsing of tree-adjoining
grammars (Schabes and Vijay-Shanker, 1990). I am in­
debted to Vijay-Shanker for nwnerous discussions on this
topic. I am also indebted to Aravind Joshi for his sugges­
tions and for his support of this research. The discussions
I had with Mitchell Marcus greatly improved the presenta­
tion of the algorithm introduced in this paper. I would also
like to thank Bob Frank, Bernard Lang, Fernando Pereira,
Philip Resnik and Stuart Shieber for providing valuable
comments.

21

Organization of the paper

This paper discusses of two subjects : the difficulty of parsing tree-adjoining grammars (TAGs) while maintaining the valid prefix property (Sections 1 and 2) and the design of a predictive left to right parser for TAGs (Section 3) . Although the two topics are related, they can be read independently of each other .

1 Definition of the Valid Pre­
fix Property

The valid prefix property is a property of left of to right parsing algorithms which guarantees that errors in the input are detected "as soon as possi­ble" . Parsers satisfying the valid prefix property guar­antee that , as they read the input from left to right , the substrings read so far are valid prefixes of the language defined by the grammar : if the parser has read the tokens a1 • • • ak from the in­put a 1 · · · ak ak+l · · · an , then it is guaranteed that there is a string of tokens b1 · · · bm (bi may not be part of the input) with which the string a1 · · • ak can be suffixed to form a string of the language; i .e .
a 1 · · • ak bi · · · bm is a valid string of the language. 1

The valid prefix property is also sometimes re­ferred as the error detecting prop erty because it implies that errors can be detected as soon as pos­sible . However, the lack of VPP does not imply that errors are undetected .
1 The valid prefix property is independent from the on­

lin e property. An on-line left to right parser is able to
output for each new token read whether the string seen so
far is a valid string of the language.

2 The _ Valid Prefix Prop­
erty and Parsing of Tree­
Adjoining Grammar

The valid prefix property, the capability of a left to right parser to detect errors as soon as possi­b le , is often unobserved in parsing CFGs . Earley's parser for CFGs (Earley, 1968) maintains the valid prefix property and obtains a worst case complex­ity (O(n3)-time) , as good as parsers that do not maintain it , such as the CKY parser (Younger, 1967; Kasami, 1965) . This follows from the path set complexity, as we will see . Maintaining the VPP requires a parser to recog­nize the possible parse trees in a prefix order. The prefix traversal of the output tree consists of two components: a top-down component that expands a constituent to go to the next level down , and a bottom-up component that reduces a constituent to go to the next level up . When the VPP is main­tained , these two components must be constrained together . Context-free productions can be expanded in­dependently of their context , in particular , inde­pendently of the productions that subsume them. The path set (language defined as the set of paths from root to frontier of all derived trees) of CFGs is therefore a regular set .2 It follows that no addi­tional complexity is required to correctly constrain the top-down and bottom-up behavior required by the prefix traversal of the parse tree: the expan­sion and the reduction of a constituent . Contrary to CFGs, maintaining the valid prefix property for TAGs is costly.3 Two observations corroborate this statement and an explanation can be found in the path set complexity of TAG . Our first observation was that the worst case complexity of parsers for TAG that maintain the VPP is higher than the parsers that do not main­tain VPP. Vijay-Shanker and J oshi (1 985)4 pro­posed a CKY-type parser for TAG that achieves
0(n6)-"time worst case complexity.5 As the orig­inal CKY parser for CFGs, this parser does not maintain the VPP. The Earley-type parser de­veloped for TAGs (Schabes and Joshi , 1988) is bottom-up and uses top-down prediction. It main-

2 This result follows from Thatcher's work (1971) , which
defines frontier to root finite state tree automata.

3 We assume familiarity with tree-adjoining grammars.
See, for instance, the introduction by Joshi (Joshi, 1987) .

4 The parser is also reported in Vijay-Shanker (1987) .
5 However, this algorithm is not a practical parser for

TAGs because, as is well known for CFGs, the average be­
havior of CKY-type parsers is the same as the worst case
behavior.

22

tains the VPP at a cost to its worst case com­plexity (O(n9)-time in the worst case) . However, the goal of our 1988 enterprise was to build a practical parser which behaves in practice better than its worst case complexity. Other parsers for TAGs have been proposed (Lang, 1 988; Satta and Lavelli , 1990; Vijay-Shanker and Weir, 1990) .6 Al­though they achieve 0(n6) worst case time com­plexity, none of these algorithms satisfies the VPP. To our knowledge, Schabes and Joshi 's parser (1988) is the only known polynomial-time parser for TAG which satisfies the valid prefix property. It is still an open problem whether a better worst case complexity can be obtained for parsing TAGs while maintaining the valid prefix property. The second observation is in the context of de­terministic left to right parsing of TAGs(Schabes and Vijay-Shanker, 1 990) where it was for the first time explicitly noticed that VPP is problem­atic to obtain . The authors were not able to de­fine a bottom-up deterministic machine that sat­isfies the valid prefix property and which recog­nizes exactly tree-adjoining languages when used non-deterministically. Instead , they used a deter­ministic machine that does not satisfy the VPP, the bottom-up embedded push-down automaton, which recognizes exactly tree-adjoining languages when used non-deterministically. The explanation for the difficulty of maintaining the VPP can be seen in in the complexity of the path set of TAGs. Tree-adjoining grammars gen­erate some languages that are context-sensitive. The path set of a TAG is a context-free language .(_Weir , 1988) and is therefore more powerful than the path set of a CFG . Therefore in TAGs, the expansion of a branch may depend on the parent super-tree, i .e . what is above this branch. Going bottom-up , these dependencies can be captured by a stack mechanism since trees are embedded by ad­junction. However, if one would like to maintain the valid prefix property, which requires travers­ing the output tree in a prefix fashion , the depen­dencies are more complex than a context-free lan­guage and the complexity of the parsing algorithm mcreases. For example, consider the trees a , /3 and , in Figure J. When , is adjoined into /3 at the B node, and the result is adjoined into a at the A node, the resulting tree yields the string ux 'zx"vy"ty 'w (see Figure 1) .
6 1n a recent paper, Kai;en Harbusch (1990) claimed

to have defined an O (n4 log(n)) worst time general TAG
parser based on the CKY parser for CFGs. However, since
the paper does not include a proof of correctness and com­
plexity, the relationship between the parser and the set of

� "

li
!iiiiii

z
A.

t

�
\I

z
A.

t

�
�

Left to Right Recognition
u x' z x" v y" t y' w

1

1'"LYjrrr�r
Figure 1 : A bove, a sequence of adjunctions ; be­low left, bottom-up recognition of the derived tree; right, left to right recognition of the derived tree.

If this TAG derived tree is recognized purely bottom-up from leaf to root (and therefore with­out maintaining the VPP) , a stack based mech­anism suffices for keeping track . of the trees to which to algorithm needs to come back. This is illustrated by the fact that the tree domains are embedded (see bottom left tree in Figure 1) when they ._are read from leaf to root in the derived tree.
However, if this derivation is recognized from left to right while maintaining the valid prefix property, the dependencies are more complex and can no longer be captured by a stack (see bottom right tree in Figure 1) .
The context-free complexity of the path set of TAGs makes the valid prefix property costly to maintain. We suspect that the same difficulty arises for context-sensitive formalism which use operations such as adjoining or wrapping (Joshi et al. , Forthcoming 1990) .

languages i t recognizes still needs t o be determined.

23

3 A Predictive Left to Right

Parser for TAGs

I n this section , we define a new predictive left to right (Earley-style) parser for TAGs with adjoin­ing constraints (Joshi , 1987) . It is a bottom-up parser that uses some but not all the top-down in­formation given by prediction . As a consequence, the parser does not satisfy the valid prefix prop­erty : it always detects errors but not as soon as possible. However, it achieves an O(n6)-time worst case behavior , O(n4)-time for unambiguous grammars and linear time for a large class of gram­mars (for example, the language an bn e cndn is rec­ognized in linear time) . This parser as well as in the one introduced by Schabes and Joshi (1988) are practical parsers for TAGs since as is well known for CFGs, the average behavior of Earley­style parsers is superior to their worst case com­plexity. The algorithm has been modified to han­dle extensions of TAGs such as substitution , fea­ture structures for TAGs and a version of multiple component TAG (these extensions are explained in Schabes [1990]) .
3 .1 Preliminary Concepts Any tree a will be considered to be a function from tree addresses to symbols of the grammar (ter­minal and non-terminal symbols) : if x is a valid address in a , then a(x) is the label of the node at address x in the tree a . Addresses of nodes in a tree are encoded by Gorn-positions (Gorn , 1965) as defined by the following inductive defini­tion: 0 is the address of the root node , k (k E N) is the address of the Ph child of the root node, x • y (x is an address, y E N) is the address of the yth child of the node at address x . Given a tree a and an address address in a, we define Adjunct(a, address) to be the set of aux­iliary trees that can be adjoined at the node at address address in a. For TAGs with no con­straints on adjunction, Adjunct (a, address) is the set of elementary auxiliary trees whose root node is labeled by a(address) . We define a dotted tree as a tree associated with a dot above or below and either to the left or to the right of a given node . The four positions of the dot are annotated by la , lb, ra, rb (resp . left above, left below, right above, right below) : ibA;b . We write
< a, dot , pos > for a dotted tree in which the dot is at address dot and at position pos in the tree a. The tree traversal we define for parsing TAGs consists of moving a dot in an elementary tree in a manner consistent with the left to right scanning

of the yield while still being able to recognize ad­
junctions on interior nodes of the tree. The tree
traversal starts when the dot is above and to the
left of the root node and ends when the dot is
above and to the right of the root node. At any
time, there is only one dot in the dotted tree. An
example of tree traversal is shown in Figure 2 .

Figure 2 : Left, left to right tree traversal; right,
equivalent dot positions.

This traversal will en��s to scan the frontier
of an elementary tree om left to right while try­
ing to recognize pos ble adjunctions between the
above and below p sitions of the dot .

We consider to equivalent two successive (ac­
cording to the tree traversal) dot positions that do
not cross a node in the tree (see Figure 2) . For ex­
ample the following equivalences hold for the tree a pictured in Figure 2: < a, 0, lb >=< a, l , la >
, < . a, 1 , ra >=< n, 2 , la > , < a, 2, lb >=< a, 2 •
l , la > , · · · .
3 . 2 Data Structures
We now define the data structures used by the
parser . The input string is a 1 • • • an and the tree­
adjoining grammar is G = (E, NT, I, A) : E is the
finite set of terminal symbols, NT is the set of
non-terminal symbols (E n NT = 0) , I is the set
of initial trees and A is the set of auxiliary trees .

The algorithm uses one data structure: a state.7
A state s is defined as an 8-tuple, s = [a , dot , pos , i , j, k , l , sat?] where:
• a is an elementary tree, initial or auxiliary

tree : a E J U A.
• dot i s the address of the dot in the tree a.
• pos i s the position of the dot : to the left and

above, or to the left and below, or to the right
and below, or to the right and above; pos E { la, lb , rb, ra} .

7 We could have chosen to group the states into state
sets as in (Earley, 1968) but we chose not to, allowing us
to define an agenda driven parser.

24

• i , j, k , l are indices of positions in the input
string ranging over {O , • • • , n} U {- } , n being
the length of the input string and - indicating
that the index is not bound.

• sat? is a boolean; sat? E {true , nil} .
The components a, dot , pos of a state define a

dotted tree . Similarly to a dotted rule for context­
free grammars defined by Earley (1968) , a dotted
tree splits a tree into two contexts: a left context
that has been traversed and a right context that
needs to be recognized.

The additional indices i, j, k , l record the por­
tions of the input string.

The boolean sat? indicates whether an adjunc­
tion has been recognized on the node at address dot in the tree a.

In the following, we will refer to one of the
two equivalent dot positions for the dotted tree.
For example , if the dot at address dot and
at position pos in the tree a is equivalent to
the dot at address dot' at position pos' in a,
then s = [a , dot , pos , i , j, k , l , sat?] and s' = [a , dot' , pos' , i, j, k , l , sat?] refer to the same state.
We will use to our convenience s or s' to refer to
this unique state.

3 .3 Analogy b etween Dotted Trees
and Dotted Rules

There is a useful analogy between dotted TAG
trees and dotted rules. It is by no mean a formal
correspondence between TAG and a production
system but it will give an intuitive understanding
of the parser we define. It will also be used as a
notation for referring to a dotted tree .

One can interpret a TAG elementary tree as a
set of productions on pairs of trees and addresses
(i .e. nodes) . For example, the tree in Figure 2 ,
let 's call i t a, can be written as:

(a, 0) -+ (a, 1) (a , 2) (a, 3) (a, 2) -+ (a , 2 • 1) (a , 2 · 2) (a , 2 · 3)
(a, 3) -+ (a, 3 - 1) (a, 3 • 2)

Of course, the label of the node at address i in a
is associated with each pair (a, i) .8 One can then
relate a dotted tree to a dotted rule. For example,
consider the dotted tree < a, 2, ra > in which the
dot is at address 2 and at position "right above" in
the tree a (tree in Figure 2) . Note that the dotted
trees < a, 2, ra > and < a, 3 , la > are equivalent .

8 TAGs could be defined in term of such productions.
However adjunction must be defined within this production
system. This is not our goal, since we want to draw an
analogy and not to define a formal system. �

The dotted tree < a , 2 , ra > is analogous to the dotted rule :
(a, 0) -+ (a, 1) (a, 2) • (a, 3)

One can therefore put into correspondence a state defined on a dotted tree with a state defined on a dotted rule . A state s = [a , dot , pos , i , j, k , I , sat?] can also be written as the corresponding dotted rule associated with the in­dices i , j, k, I and the flag sat?:
T/o -+ 'f/1 · · • T/y • T/y+l · · · 'f/z [i , j, k , I , sat?] where TJo = (a , u) and T/p = (a, u • p) , p E [1 , z]

Here u is the ad-dress of the parent node of the dotted node when the dot is above to the left or to the right , and where u = dot when the dot is below to the left or to the right .
3.4 Invariant of the Algorithm The algorithm collects states into a set C called a chart. The algorithm maintains an invariant that is satisfied for all states in the chart C. The cor­rectness of the algorithm is a corollary of this in­variant . The invariant is pictured in Figure 3 in terms of dotted trees. We informally describe it equivalently in terms of dotted rules . A state of the form:
'f/0 --+ 'f/1 · · · TJy • T/y+1 · · · TJz [i , j, k , l , sat?] with TJo = (a, u) and T/p = (a, u . p)

is in the chart if and only if the elementary tree a derives a tree such that :
(1) 'f/1 · · · 'f/y ⇒ €{!)' · a1
(2) (a , f) ⇒ ai+ l · · · ak

where / is the address of the foot node of a. (2) only applies when the foot node of a (if there is one) is subsumed by one of the nodes 'f/i . . . T/y When the pos = rb, the dot is at the end the dotted rule and if sat? = t the boundaries ai • • • a1 include the string introduced by an adjunction on the dotted tree .9 sat? = t indicates that an adjunction was rec­ognized on the dotted node (node at address dot in a) . No more adjunction must be attempted on this node. 10
9The algorithm will set sat? to t only when pos = rb.

1 0 The derivations in TAG disallow more than one auxil­
iary tree adjoined on the same node.

25

a .

X

• · · a a . .
.

a1 j ,'\ k+l
I \

I \
I \

I \

'- - - _ _ _ ,
aj+l ... ak

Figure 3 : Invariant .
3 . 5 The Recognizer The algorithm is a bottom-up parser that uses top-down information. It is a general recognizer for TAGs with adjunction constraints. Unlike the CKY-type algorithm for TAGs , it requires no con­dition on the grammar: the elementary trees (ini­t ial or auxiliary) need not to be binary and they may have the empty string as frontier. The al­gorithm given below is off-line : it needs to know the length n of the input string before starting any computation. However it can very easily be modified to an on-line algorithm by the use of an end-marker in the input string. Initially, the chart C consists of all states of the form [a , 0 , la , 0, -, - , 0, nil] , with a an initial tree. These initial states correspond to d�ed initial trees with the dot above and to the left of the root node (at address O) . Depending on the existing states in the chart C, new states are added to the chart by four proces­sors until no more states can be added to the chart . The processors are : the Predictor, the Completor, the Adjunctor and the Scanner. If, in the final chart , there is a state corresponding to an initial tree completely recognized, i .e . witli the dot to the right and above the root node which spans the in­put form position O to n (i .e. a state of the form [a , 0, ra , 0, - , - , n , �) , the input is recognized . The recognizer r6rT�Gs follows:
Let G = ("E, NT, I, A) be a TAG . Let a1 • · • an be the input string .
program recognizer
begin

C = { [a , 0 , la , 0 , - , - , 0 , nil] I a E J }

Apply one of the four processes on each
stat e in the C until no more states
can be added to the C :

1 . Scanner
2 . Predictor
3 . Completor
4 . Adjunctor

If there is a state of the form [a , 0 , ra, 0 , - , - , n , nil] in C with a E J
then return acceptance
otherwise return rej ection .

end .

The initialization step
C= { [a , 0 , la, 0, - , -, 0, nil] la E J }

puts all initial trees with the dot to the left and
above the root node. The four processes are ex­
plained one by one in the four next sections .

3 .5. 1 Scanner

The Scanner is a bottom-up processor that scans
the input string. It applies when the dot is to
the left and above a terminal symbol. It consists
of two cases: one when the terminal is not the
empty string, and the other when it is .

[ij,k,l,nil] [iJ,k,l+l ,nil]

D
[iJ,k,l,nil] [iJ,k,l,nil]

Figure 4 : Scanner.

Scanner (s ee Figure 4) :
It applies to a stat e of the form

·s = [a , dot , la , i , j, k , l , nil] such that a(dot) E
� u {l} .

• Cas e 1 : a(dot) = a1+ 1
The state s = [a , dot , ra , i , j, k , l + l , nil] is
added to C .

• Cas e 2 : a(dot) = f. (empty string)
The state s [a , dot , ra, i , j, k , l , nil] is
added to C .

3 .5 .2 Predictor

The Predictor constitutes the top-down processor
of the parser . It predicts new states accordingly

26

to the left context that has been been read.
The Predictor creates new states from a given

state. It consists of three steps which are not ap­
plicable all simultaneously. Step 1 applies when
the dot is to the left and above a non-terminal
symbol . All auxiliary trees adjoinable at the dot­
ted node are predicted. Step 2 also applies when
the dot is to the left and above a non-terminal
symbol. If there is no obligatory adjoining con­
straint on the dotted node, the algorithm tries to
recognize the tree without any adjunction by mov­
ing the dot below the dotted node. Step 3 applies
when the dot is to the left and below the foot node
of an auxiliary tree . �algorithm then consider�

; all nodes on which the auxiliary tree could have
been adjoined and tries to recognize the subtree
below each o _. -7

It is in Step 3 of the predictor that the VPP
is violated since not all nodes that are predicted
are compatible with the left context seen so far.
The ones that are not compatible will be pruned
in a later point in the algorithm (by the Comple­
tor) . Ruling them out during this step requires
more complex data-structures and increases the
complexity of the algorithm (Schabes and Joshi,
1988) .

Predictor (see Figure 5) :

• Step 1 applies to a stat e of the
form s = [a , dot , la , i , j, k , l , nil] such that a(dot) E NT .
If the condit ions are satisfied , the
states
{ [,B , 0 , la , l , - , - , 1 , nil] l,B E Adjunct(a , dot) }
are added to C .

• Step 2 applies t o a stat e of the
form s = [a , dot , la , i , j, k , l , nil] such that a(dot) E NT and the node at address dot in a has no obligatory adj oining
constraint .

If the conditiens are satisfied , the
state [a , dot , lb(i , j) , z ,/nil] is added to � c .

• Step 3 applies t o a��e of the
form s = [a , dot , lb, i� 1 , nil] such that
such that a E A , and such that dot is
the address of the foot node of a .
I f the condit ions are satisfied , for
all elementary trees 6 E J U A and for
all addresses dot' in 6 such that
a E Adjunct (6, dot') , the state [6{p)lb, l , - , - , l , nil] is added to C .

(1)

(2)

(3)

•
(1)

A
� [ij,k,l,nil] [I,-,- ,l,nil]

(2)

[ij,k,l,nil] [I,- ,- ,I ,nil]

A (3)
[l,-,- ,1,nil]

Predictor .
3.5 .3 C ompletor The Completor is a bottom-up processor that com­bines two states to form another state that spans a bigger portion of the input. It consists of three possibly non-exclusive steps that apply when the dot is at position rb (right below) . Step 1 considers that the next token comes from the part to the right of the foot node of an auxiliary tree adjoined on the dotted node. Steps 2 and 3 try to further recognize the same tree and concatenate boundaries of two states .

&
A A

+
�

__.
6

Ii j Jc.I .nil] [i,-,-,i,nil] [i,i,l,l,nil]

B B B

6 + 6 __. 6
[ij)c,l,sat?J [h,-,-,i,nil] [hJ)c,l,nil]

& + 6 __. 6 '

-
[ij)c,l,sat?J [hj,k,i,nil] [hj)c,l,nil]

Figure 6 : Completor.

27

Completor (s ee Figure 6) : • Step 1 combines a stat e of the form s1 [a, dot , rb, i , j,- k, 1, nil] such that a(dot) E NT , with a state s2 = [,B , dot' , lb , i , - , - , i , nil] such that /3 E Adjunct (a, dot) and such that dot' is the address of the foot node of (3 . It adds the state [,B, dot' , rb, i, i , l , l , nil] to C . • Step 2 combines a stat e of · the form s1 = [a , dot , rb, i , j, k , 1, sat?] such that a(dot) E NT, and s . t . the node at address dot in a subsumes the foot node of a , with a state s2 [a , dot , la , h , - , - , i , nil] . It adds the stat e [a , dot , ra, h, j, k , 1 , nil] to C . • Step 3 combines a stat e of the form s1 = [a , dot , rb, i , j, k , l , sat?] such that a(dot) E NT and s . t . the node at address dot in a does not subsume the foot node of a with a state s2 = [a , dot , la , h , j, k , i , nil] . It adds the stat e [a , dot , ra, h, j, k, 1, nil] to C .

3.5.4 Adjunctor The Adjunctor is a bottom-up processor that com­bines two states by adjunction to form a state that spans a bigger portion of the input . It consists of a single step .
A•

& & 6
+ ---►

[ij .k.l,nil] [j,m,n,k,nil] [i,m,n,k,true]

Figure 7: Adjui:ictor .
Adjunctor (see Figure 7) :

It combines combines a stat e of the form s1 = [/3, 0, r , i, j, k , 1, nil] and a state s2 = [a , dot , rb, j, m, n , k , nil] such that /3 E Adjunct(a, dot) . It adds the stat e [a , dot , rb , i , m, n , k , true] to C .

3 .6 An Example We giv� an example that illustrates how the rec­ognizer works. The grammar used for the exam­ple (see Figure 8) generates the language L = {an bnecn dn l n � 0} . The grammar consists of an initial tree a and an auxiliary tree /3. There is a

null adjoining constraint on the root node and the foot node of /3.

The input string given to the recognizer is:
aabbeccdd. The corresponding chart is shown in Figure 9. For purpose of explanation, we have preceded each state with a number that uniquely identifies the state and we followed the state with the operation(s) that caused it t9 be placed into the chart . We used the following abbreviations:
init for the initialization step , pred(k) for the Pre­dictor applied to the state numbered by k, sc(k) for the Scanner applied to the state numbered by k,
compl(k+l) for the combination with the Comple­tor of the states numbered by k and I and adj(k+l) for the combination with the Adjunctor of the states numbered by k and I . With this conven­tion , one can trace step by step the building of the chart . For example, 3 1 . [/3, dot : 2, rb , l , 4, 5, 8, t] adj(30+24) stands for the state [/3, dot : 2 , rb , 1 , 4 , 5 , 8 , t] uniquely identified by the number 3 1 which was placed into the chart by combining with the Ad­junctor the states identified by the numbers 30 and 24. The input is recognized since
[a , 0 , right , above , 0, -, - , 9 , nil] is in the chart C .

3 . 7 Implementation

The algorithm described in Section 3 .5 can be • implemented to follow an arbitrary search space strategy by using a priority function that ranks the states to be processed . The ranking function can also be defined to obtain a left to right behav­ior as in (Earley, 1 968) . Such a function may also very well be of statistical nature as for example in (Magerman and Marcus, 1 991) . In order to bound the worst case complexity as stated in the next section , arrays must be used to implement efficiently the different processors. Due to the lack of space, we do not include the details of such implementation in this paper but they are found in (Schabes , 1991) .

28

3.8 Correctness and Complexity

The algorithm is a general parser for TAGs with constraints on adjunction that takes in worst case O(IG l2 Nn6) time and O(IGINn4) space , n being the length of the input string, IG I the number of elementary trees in the grammar and N the maxi­mum number of nodes in an elementary tree . The worst case complexity comes from the Adjunctor processor. An intuition of the validity of this re­sult can be obtained by observing that that this processor (see Section 3 .5.4) may be called at most IG l2 N n6 time since there are at most n6 instances of the indices (i , j, k , l , m, n) and at most IG l2N pairs of dotted trees to combine (a, /3, dot) . When it is used with unambiguous tree-adjoining gram­mars , the algorithm takes at most O(IGl 2 Nn4)­time1 1 and linear time on a large class of gram­mars . The proof of correctness consists in the proof of the invariant stated in Section 3 .4 . Due to the lack of space, the details of the proofs of correctness and complexity are not given in this paper , but they are found in Schabes (1991) .
3.9 The Parser

The algorithm that we described in section :3 .5 is a recognizer . However, if we include pointers from a state to the other states (to a pair of states for the Completor and the Adjunctor or to a state for the Scanner and the Predictor) which caused it to be placed in the chart (in a similar manner to that shown in Figure 9) , the recognizer can be modi­fied to record all parse trees of the input string. The representation is similar to a shared forest . The worst case time complexity for the parser is the same as for the recognizer (O(IGl2 Nn6)-time) but the worst case space complexity increases to O(IG l2 Nn6)-space.
3 .10 Extensions

The algorithm has been modified to handle exten­sions of TAGs such as substitution (Schabes et al . , 1 988) , unification based TAGs (Vijay-Shanker and Joshi, 1 988 ; Vijay-Shanker, 1 99 1) and a version of multiple component TAG (see Schabes, 1 990 , for details on how to modify the parser to . handle these extensions) . It can also take advantage of lexicalized TAGs (Schabes and Joshi, 1 989) .
1 1 This is a new upper-bound of the complexity of unam-

biguous TAG.

I Input read States if:i the chart
a
a
aa aa aab aab aabb

1. [a , dot : 0 , la , 0 , - , -, 0, nil] init 3. [a , dot : 1 , la , 0 , - , - , 0 , nil] pred{l) 5. [,8, dot : 2 , la , 0 , - , - , 1 , nil] sc(4) _z__t,a.,_ .daL :-2. l , la ,-l , - ,_ :- , 1 , nil] pred{5) 9. [,8, dot : 2 , la , 1 , - , - , 2 , nil] sc{8} 11 . [,B, dot : , la 2, - , - , 2 , nil] pred{9) �,4.a · 2,-,- , 3.,-ni]�_£@ __

2. [,8, dot : 0, la , 0, - , - , 0, nil] pred{l) ,{. [.8, dot '. 1 , la , 0 , - , - , 0, n�l] p_red(g)_ (§) [,B, dot . 0 , la , 1 , - , - , 1 , nil] pred{5) -1:.._ [P, dot �) , [a , 1 , - , - , 1 , nil] pred{6) __ 10. [.8, dot : O , /a·,-2 , - ,-.:_ �· 2 , nil] pred(9} 12. [.8, dot : 1 , la , 2 , - - , 2 , nil] pred{10) � 1I.£r,B; aor :-2 .2 , lb, 3 , - , - , 3_ , nil] reir 13
aabb aabbe aabbe aabbec aabbec aabbecc aabbeccd aabbeccd aabbeccdd aabbeccdd

15. [,B, (� la, 3 ,: - , - , 3 , n�l] pred(14)
1 7. �' la , 3, -:-. -=.d .,_nz lJ. s_E{15)_ 19. [,B, do��- 1,�-., -==- ,-� , ni/]. P-�d{l 8) __ j 21. [a , dot : 0, rb, 4, - , - , 5, nil] sc{20} .-, , . ··�

16. ra;ilot : 1 , �3 , - , - , 3 , nil] pred(14) � .[�, dot : 2 .2 lb 4, -_, - 4,m/] pm/{1 7) � [a, dot : 1 , la , 4 , - , - , 4, nil] pred{18}
WJµ� �9..L =...�.�.t r_b.1.. i1i&i . , nil comp_{_#l + 18 l 23. [,B, dot : 2.3 , la , 3, 4, 5 , 5 , �ii) compl{_!2 ' 1J 24. [,B, dot : 2, rb, 3, 4 , 5 , 6, nil] sc{23} ·- 25. [.8, dot : 2.2 , rb, 3 , 3 , 6 , 6 , nil] compl{24+14) 26. [,B, dot : 2.3 , la , 2, 3 , 6 , 6 , nil] compl{25+13) 27. [,B, dot : : 2, rb, 2; 3 , 6 , 7, nil] sc{26) 29. [,B, dot : 0 , rb, 1 , 3 , 6 , 8 , nil] sc{28) 31. [,B, dot : 2, rb , 1 , 4 , 5 , 8 , t] adj{30+24) 33. [,B, dot : 0 , rb , 0 , 4 , 5 , 9 , nil] sc{32) 35. [a , dot : 0, rb, 0 , - , - , 9 , t] adj 34+21)
28. [,B, dot : 3, la, 1 , 3, 6, 7, nil] compl{26+9) 30. [,B, dot : 0 , ra , 1 , 3 , 6 , 8 , nil] compl{28+6) 32. [,B, dot : 3 , la , 0 , 4 , 5 , 8 , nil) compl{31+5) 34. [,B, dot : 0 , ra, 0 , 4 , 5 , 9 , nil] compl{33+2) 36. [a , dot : 0, ra , 0, - , - , 9 , nil] compl{35+1)

Figure 9: States constituting the chart for the input: o a 1 a 2 b 3 b 4 e s c 6 c 1 d s d 9

4 Conclusion

We have shown that maintaining the valid prefix property for TAG parsing is costly because of the context-freeness of the path set of TAG derived trees . In 1988, Schabes and Joshi introduced an Earley-style parser that satisfies the VPP how­ever at a cost to its complexity (0(n9)-time in the worst case but linear on some gr:ammars) . To our knowledge, it is the only known polynomial­time parser for TAG which satisfies the valid prefix property. We have introduced a predictive left to right parser for TAGs which does not maintain the valid prefix property but takes at most 0(n6)-time in the worst case, 0(n4)-time for unambiguous gram­mars, and can behave linearly on some classes of grammars . The parser which we introduced is a practical parser since it often behaves better than its worst case complexity. It has been extended to handle extensions of TAGs such as unification based TAG and a restricted version of multiple component TAGs. This predictive left to right parser can be adapted to other grammatical formalisms w�akly equivalent to tree-adjoining languages (Joshi et al . , Forthcoming 1990) such as linear index gram­mar, head grammars and a version of combinatory categorial grammars.

29

Bibliography

Jay C. Earley. 1 968 . An Efficient Context-Free Parsing Algorithm. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA. . .,
Jay C . Earley. 1 970. An efficient context-free parsing algorithm. Commun. A CM, 13(2) :94-102.
Saul Gorn. 1965. Explicit definitions and linguis­tic dominoes . In John Hart and Satoru Takasu, editors , Systems and Computer Science. Univer­sity of Toronto Press , Toronto, Canada.
Karen Harbusch . . 1990. An efficient parsing al­gorithm for Tree Adjoining Grammars. In 28th Meeting of the Association for Computational Linguistics (A GL '90 }, Pittsburgh.
Aravind K . Joshi , K. Vijay-Shanker, and David Weir . Forthcoming, 1 990. The convergence of mildly context-sensitive grammatical for­malisms. In Peter Sells , Stuart Shieber , and Tom Wasow, editors , Foundational Issues in Natual Language Processing. MIT Press , Cam­bridge MA.
Aravind K. Joshi . 1 987. An Introduction to Tree Adjoining Grammars. In A. Manaster-Ramer, editor , Mathematics of Language. John Ben­jamins , Amsterdam.

T. Kasami. 1965 . An efficient recognition and syn­tax algorithm for context-free languages. Tech­nical Report AF-CRL-65-758, Air Force Cam­bridge Research Laboratory, Bedford , MA.
Bernard Lang. 1 988. The. systematic construc­tions of Earley parsers : Application to the pro­duction of 0(n6) Earley parsers for Thee Adjoin­ing Grammars. Unpublished manuscript, De­cember 30 .
M. David Magerman and Mitchell P . Marcus. 199 1 . Pearl , a probabilistic chart parser. In

Proceedings of .the Second International Work­
shop on· Parsing Technologies, Cancun , Mexico, February.

Giorgio Satta and Alberto Lavelli. 1990 . A head­driven bidirectional recognizer for lexicalized TAGs. Unpublished manuscript .
Yves Schabes and Aravind K . Joshi. 1988. An Earley-type parsing algorithm for Thee Adjoin­ing Grammars . In 26th Meeting of the Associ­

ation for Computational Linguistics (AGL '88), Buffalo, June.
Yves Schabes and Aravind K . Joshi. 1989. The relevance of lexicalization to parsing. In Pro­

ceedings of the International Workshop on Pars­
ing Technologies, Pittsburgh, August. To also appear under the title· Parsing with Lexicalized
Tree adjoining Grammar in Current Issues m
Parsing Technologies, MIT Press .

Yves Schabes and K . Vijay-Shanker. 1990. Deter­ministic left to right parsing of Thee Adjoining Languages. In 28th Meeting of the Association
for Computationar Linguistics (A CL '90 }, Pitts­burgh.

Yves Schabes, Anne Abeille, and Aravind K. Joshi. 1988. Parsing strategies with 'lexical­ized' grammars: Application to tree adjoining grammars. In Proceedings of the 12th Interna­
tional Conference on Computational Linguistics
{COLING '88}, Budapest , Hungary, August .

Yves Schabes . 1990 . Mathematical and Computa­
tional A spects of Lexicalized Grammars. Ph.D. -thesis , University of Pennsylvania, Philadelphia, PA, August . Available as technical report (MS­CIS-90-48, LINC LAB l 79) from the Depart­ment of Computer Science .

Yves Schabes . 199 1 . A predictive left to right parser for tree-adjoining grammars. Techni­cal report , Department of Computer and In-

30

formation Science , University of Pennsylvania, Philadelphia. In preparation.
J . W. Thatcher. 197 1 . Characterizing derivations trees of context free grammars through a gener­alization of finite automata theory. Journal of

Computer and System Sciences, 5:365-396 .
K . Vijay-Shanker and Aravind K . Joshi. 1985 . Some computational properties of Thee Adjoin­ing Grammars. In 23rd Meeting of the Associ­

ation for Computational Linguistics, pages 82-93, Chicago, Illinois, July.
K. Vijay-Shanker and Aravind K. Joshi. i988 . Feature structure based tree adjoining gram­mars. In Proceedings of the 12th Interna­

tional Conference on Computational Linguistics
(COLING'88}, Budapest, August .

K . Vijay-Shanker and David J . Weir. 1990 . Pars­ing constrained grammar formalisms. In prepa­ration .
K . Vijay-Shanker. 1987. A Study of Tree . Ad­

joining Grammars. Ph.D. thesis, Department · of Computer and Information Science , Univer­sity of Pennsylvania.
K. Vijay-Shanker . 1991 . An unification based ap­proach to Thee Adjoining Grammars . ' In prepa-ration .
David J . Weir. 1988. Characterizing Mildly

Context-Sensitive Grammar Formalisms. Ph.D. thesis, Department of Computer and Informa­tion Science , University of Pennsylvania.
D. H. Younger. 1967. Recognition and parsing of context-free languages in time n3 • Information

and Control, 10(2) : 189-208.

February 1 3 , 1 991

Session B

Preprocessing and lexicon design for
parsing technical -text1

Robert P. Futrelle, Christopher E. Dunn, Debra S. Ellis and Maurice J. Pescitelli, Jr.

Biological Knowledge Laboratory
College of Computer Science 161CN

Northeastem University
360 Huntington Avenue

Boston, MA 02115

Internet: futrelle, chris, ellisds and mjp
all @corwin.ccs.northeastern.edu

Phone: (617) 437-2076 FAX: (617) 437-5121

ABSTRACT

Technical documents with complex structures
and orthography present special difficulties for
current parsing technology. These include
technical notation such as subscripts,
superscripts and numeric and algebraic
expressions as well as Greek letters, italics,
small capitals, brackets and punctuation
marks. Structural elements such as
references to figures, tables and bibliographic
items also cause problems. We first hand-code
documents in Standard Generalized Markup
Language (SGML) to specify the document's
logical structure (paragraphs, sentences, etc.)
and capture significant orthography. Next, a
regular expression analyzer produced by LEX
is used to tokenize the SGML text. Then a
token-based phrasal lexicon is used to identify
the lon_gest token sequences in the input that
represent single lexical items. This lookup is
efficient because limits on lookahead are
precomputed for every item. After this, the
Alvey Tools parser with specialized
subgrammars is used to discover items such as
floating-point numbers. The product of these

1 This work was supported by the Division of
Instrumentation and Resources of the
National Science Foundation, grant number
DIR-88-14522.

31

preprocessing stages i s a text that is
acceptable to a full natural language parser.
This work is directed towards automating the
building of knowledge bases from research
articles in the field of bacterial chemotaxis, but
the techniques should be of wide applicability.

1. INTRODUCTION

The Biological Knowledge Laboratory focuses
on the analysis of research articles in the field
of bacterial chemotaxis (Futrelle, 1989, 1990b).
We are building a corpus consisting of the 1000
or so articles that make up the published
record of the field since its inception in 1965.
As the corpus is built we are attempting to use
syntactic and semantic analysis to convert the
corpus to a knowledge base. But the texts are
complex -- they have a superstructure that
includes title, authors, abstract, sections,
paragraphs, bibliography, etc . They also
contain sub- and superscripts, italics, Greek
letters, formulas, and references to figures,
tables, and bibliographic items. Another major
component of technical documents that has
been ignored is graphics, which requires its
own analysis ; we have a separate project
devoted to graphical analysi s and
understanding (Futrelle, 1990a).

In this paper we describe procedures we have
implemented and resources we have developed
for preprocessing these complex documents.
The preprocessing produces text which retains
all important details of the- original but is in a
form ·that a conventional natural language
parser can use without major modifications.

The preprocessing software runs in part under
Unix (for LEX) and in part under Symbolics
Genera 8.0 using their Statice database system
for the lexicon. · The Alvey Natural Language
Toolkit (Briscoe, et al, 1'987) is used for the
subgrammar analysis. We have used Alvey on
the Symbolics, Suns and on Mac II' s. The
systems described here are sentence-oriented,
leaving to other software the task of organizing
the structures above the sentence level.

Most research on natural language processing
is restricted to text which does not contain
complex orthography or has had it stripped
away. This has prevented the application of
computational linguistics to most technical
documents and technical documents are a_
huge and important repository of knowledge.
Though our contribution is primarily a
technical one, 'it is one that is sorely needed if
progress is to be made.

2. THE PROBLEMS AND THEIR
SOLUTION

To appreciate the type of problems that arise
in text analysis, consider the various uses of a
punctuation mark, the period. In the sentence,
"Bacteria swim." · the item "swim." that
includes the period is not a word, it is the word
"swim" followed by end-sentence punctuation.
On the other hand, the period in "etc." is not
(necessarily) a sentence end marker. The
period in "7 .3", however, is an integral part of
the number. The comma is normally used to
mark phrases and clauses, but it is used as an
integral part of the number "32,768" or the
chemical name "2,6-diaminohexanoic acid" (the
essential amino acid, lysine). Superscripts can
play the role of an isotopic indicator, "3H" for
tritium, or a footnote2 .

2 . . . or a bibliographic reference, as in, "Smith
found this effect earlier7."

32

We have found a way to deal with all of these
problems. The documents are first encoded
(marked up) as they are entered by a trained
editor/typist using an editor which supports
the Standard Generalized Markup Language
(SGML) (Bryan, 1988; van Herwijnen, 1990).
The complex items in the marked-up text are
then broken into their constituent tokens and
selectively reassembled so that every token or
contiguous sequence of tokens is resolved in
some way. The resolution of a token sequence
is done by first looking for the sequence in a
phrasal lexicon. If found, the sequence is
replaced by its lexical item. If a token
sequence is not in the lexicon, an attempt is
made to parse it using spe cialized
subgrammars. If this fails, the item is flagged
for analysis by a human editor or
lexicographer to see if it is an error or a new
lexical item.

The word "salt" is a single token entry in the
lexicon. The sequence, "sodium chloride" is a
two token entry. The item "CO2" which is
represented by seven tokens is found as a
single item-in the lexicon. But it is not
appropriate to represent most numbers in the
lexicon , because they form an essentially
unbounded class3. For example, the number
"3.4x10-8 " (made up of 17 tokens) is not in the
lexicon. It is analyzed by a subgrammar and
found to be a legally formed number in
scientific notation. The number is replaced by
a structure which includes the lexical_ item
"$nurn$", a noun which the natural language
parser can deal with. Mer pr_eprocessing, the
text is passed on to a full natural language
parser for syntactic and semantic (logical form)
analysis. Currently, we use the GPSG-based
parser from the Alvey toolkit for both
subgrammar analysis and full natural
language parsing (Briscoe, et al, 1987; Ritchie,
et al, 1987).

3. THE PROCESSING SEQUENCE

The processing sequence is outlined in
Figure 1. Each stage can produce a file as
output that can be the input to the next stage,
so the analyses do not have to be synchronous.
The preprocessing stages are stages 1-6.

3 Certain numbers such as cell strain
designators or the familiar "Boeing 7 4 7" would
be in the lexicon.

Stage 0: Obtain selected articles from primary biological literature, 1960-1990
Form 0: word complex-orthographic-item word word floating-point-number punctuation
Stage 1 : SGML encoding (tagging) while typing in article using SGML-based editor
Form 1: sentence-start-tag word tagged-complex-item word word tagged-number
Stage 2: Tokenization using regular-expression analyzer generated by LEX
Form 2: SGML-symbol string complex-item-token . . . tokens-for-number SGML-symbol ·
Stage 3: Lexicon lookup in token-based phrasal lexicon
Form 3: found-item found-item found-item not-founds found-item not-founds
Stage 4: Subgrammar analysis using Alvey syntactic and semantic tools
Form 4: found-item found-item found-item analyzed-structure not-found
Stage 5: Editor and lexicographer at the workbench resolve any remaining unknowns
Form 5: found-item found-item found�item analyzed-structure added-to-lexicon
Stage 6: Natural language parsing using Alvey GPSG-based tools
Form 6: Parse trees and logical form structures
Stage 7: Building knowledge frames

Figure 1. Schematic view of the successive stages of corpus processing. "Form n" lists typical items
in the stream of text which result from the processing in Stage n and are the input to Stage n+ 1 .
There i s not an absolutely tight correspondence between the items in successive forms in ·this figure,
due to the complexity of the analysis. The underlined stages denote the preprocessing stages which
are currently implemented and explained in some detail in this paper.

STAGE 0: Obtaining Selected Articles -
In many cases, these articles are only available
in bound journals. The originals are scanned
for diagram entry, but the typing (with
simultaneous markup) i s done from
photocopies when necessary.

STAGE 1: SGML Markup - M arkup
languages such as SGML allow us to add
markup to a text of a document to specify its
logical structure. Thus, in SGML, one would
specify, using tags, that certain words formed
a section heading without committing to
stylistic details such as font, font size, or the
positioning of the heading with respect to the
margin. For example, the text that begins the
subsection you are reading would be encoded
in SGML as:

(1) <SSl><ST> STAGE 1 : SGML
Markup <IST> <P>< U.S>Markup
languages such as SGML add
<El>markup<IEl> to a text of a
document to specify its structure.
<IU.S>

33

In (1) the SGML tags enclosed by braces have
the following meanings:

(la) <SSl> = subsection start-tag
<ST> = section title start-tag
<IST> = end of section title
<P> = paragraph start tag
<El> = emphasis start tag
<!El> = emphasis end
<U.S> = sentence start tag
<IU.S> = sentence end tag

The SGML encoding of (l) is, in turn,

(2) <SSl><ST>STAGEl:
SGML Markup - . . .
</ U .S>

which shows that we can satisfy Becker 's
Criterion (Becker, 1975) that states that any
technique that claims to be useful and
generally applicable should be able to analyze
the very text which explains the technique!

In (2) items such as "&It;" are SGML entities ;
this one denoting the reserved character, "<"
(less than). The tags used here are drawn

from the American Association of Publishers'
(AAP) set, the Electronic Manuscript Standard
(EMS): with the addition of our own. user­
defined tags such as the sentence tags, <U.S>
and <IU.S>. SGML is an ISO standard
(#8879). SGML specifies a system in which
tags and entities can be defined and used so
that an arbitrarily complex text can be
translated to a standard form which uses only
the ASCII character set so it can be
disseminated widely and dealt with uniformly
by a variety of systems.

The encoding (markup) of the text is . done
using an SGML editor that makes the process
efficient and checks that the text complies with
our SGML syntax specifications, e .g. , no
sentence-start tag can be entered until the
previous sentence-end tag has been entered.
The particular system we use is Author/Editor
(Softquad, Toronto, Canada) running on Mac
II's .

The example sentence - Here is the example
sentence we will use to illustrate our
preprocessing strategy. It is first presented as
it might appear in a research article source,
but laid out for easy comparison with the
SGML form which follows:

(3a)

(3b)

(3c)

(3d)

Cells were suspended in medium
containing

3.05x10-2 µM

L-[methyl _3HJ-methionine,

a-methylaspartate

(3e) and AIBU8.

Here is the SGML encoding of the example
sentence:

(4a) <U.S>Cells were suspended in medium
containing

(4b) 3.05×10<SUP>
−2<1SUP>µM

(4c) <SCP>L<ISCP>-[<IT>methyl<IIT>-
<SUP>3<ISUP>H]-methionine,

(4d) <GK>a<IGK>-methylaspartate

(4e) and AIBU <RB>8<1RB>.<IU.S>

The "µ ;" entity stands for the Greek
letter mu. "<SCP>" indicates small caps,
"<IT>" indicates italics and "<RB>" is a
bibliographic reference tag. Note that small
caps and italics are encoded because they are
standard typographical conventions used in
chemical names; otherwise the appearance of
items is not encoded.

STAGE 2: Tokenization - We use an
analyzer generated by LEX (Aho, Sethi and
Ullman 1986) to tokenize the input. It uses a
regular expression grammar to identify the
primitive elements of the SGML encoded text.
The six classes of tokens produced by this
stage are shown in Table 1. Note that "token"
as we use it here includes a parenthesized pair
(for numbers), not just a contiguous sequence
of non-blank characters.

Table 1. The input and output forms for the tokenization stage, Stage 2.

Input Class Output Format Example Output

ASCII text strings string - "Cells"
numbers (num string) (num "05")
special characters (string) (".") (",") ("(")
SGML tag symbol <U.S>
SGML entity symbol l µ I
no-white-space nws nws

34

For each class , the original ASCII
representation has been preserved, either by
including the string itself or using a Lisp
symbol whose print representation is the
ASCII representation. As an example, the
outputs from tokenizing (4a) and (4b) are the 7
token sequence (5a) and the 20 token sequence
(5b):

(5a)<U.S> "Cells" "were" "suspended" "in"
"medium" "containing"

(5b) (num "3") nws (".") nws (num "05") nws
I × I nws (num "10") nws
<SUP> nws I − I nws
(num "2") nws <!SUP> I µ I
nws "M"

The white spaces in the original text have been
complemented to yield the nws symbol to
indicate that the tokenized elements were
originally abutted. This is necessary for
disambiguation of complex sequences, and it
makes normal prose easier to read at this
stage.

Stage 3: Lexicon Lookup - At this point, a
lexicon is consulted for each sequence of tokens
contained in a title, section heading, sentence,
etc. For our example, the token sequence
generated from the full sentence (4) is handed
to the lexicon lookup routine as the 73 token
list,

(6) ("Cells" "were" "suspended" . . . <GK>
nws "a" nws <IGK> nws ("-") nws
"methylaspartate" . . . (num "8") nws
<IRB> nws ("."))

(notice our ellipsis). The lexicon lookup stage
attempts to match sequences of tokens from
the input to items found in the lexicon. The
lexicon is an extended phrasal lexicon, in
which each lexical entry is a sequence of one or
more tokens. Five typical lexical items are

"cells"
"sodium chloride"
"<GK>a<IGK>-methylaspartate"
"<GK>"

35

Note that in the lexicon, the nws (no-white­
space) tokens are removed by concatenation
for both storage and lookup. A lexical item L
(one or more tokens) is a prefix if there are
longer items in the lexicon (more tokens) with
the same initial items as L. The first token of
all items in the lexicon is listed as a separate
entry. But some of these and some multiple
token entries never function as independent
stand-alone items and are noted as such in the
lexicon. For example the SGML tag tokens
"<GK>" and "<lT>"indicating that Greek and
italicized characters follow never function as
separate items.

To efficiently and reliably find multi-token
items, certain information is precomputed and
stored in the lexicon. For example, the items
"sodium", "chloride" , "sodium chloride",
"sodium bromide" "sodium iodide" might all
appear in the lexicon. When "sodium chloride"
appears in the source text, it is that two-item
entry that we want identified, not the two
separate words. To assure that this happens
the prefix list ((3 2)) is computed and attached
to "sodium". This says that there are 3 items
of length 2 that begin with "sodium", so the
next item in the source, "chloride" is attached
and the two-word item is found and returned
by the lexicon lookup. Prefix lists can be
complex, forming trees rooted at the initial
item. The prefix lists prevent the search for a
single item from continuing to the end of the
sentence, because they put explicit bounds on
the lengths of all items that could possibly
match, given any prefix.

The output from the lexicon lookup stage for
(6) is the list

(7a)

(7b)

"Cells" "were" "suspended" "in"
"medium" "containing"

(?? ((num "3") nws))

(?? (nws (num "05") nws I × I
nws (num "10") nws <SUP> nws
I − I nws (num "2") nws
<!SUP>))

"µM"

(7c) "<SCP>L<ISCP>-[<IT>methyk/IT>­
<SUP>3<1SUP>H]-methionine" ","

(7d) "<GK>a<IGK>-methylaspartate"

(7e) "and" "AIBU"

(?? (<RB> nws (num "8")
nws <IRB> nws))

".")

There are three unknown item sequences here,
shown broken out in (7b) and (7e) as (??)
forms. The first two are parts of the number .
3 . 05x i o- 2 . The third is a bibliographic
reference. The "." in the number in (7b) and
the "." at the end of the sentence in (7e) are
recognized since "." is a stand-alone item.
<SUP> it is a prefix for entries such as
"³H-ethanol" but it is not
stand-alone, so it is included in the unknown
in (7b). Note that the strings which are the
lexicon identifiers for complex items such as
the chemical name in (7d) retain their original
SGML markup, without the no-white-space
symbols introduced by tokenization. In an
interactive system, these items could be
presented on a screen by interpreting the
markup according to a style specification and
producing the indicated orthography, e .g. ,
a-methylaspartate.

Stage 4: Sub grammar analysis - Th e
reaso.n that the three unknown items were
unrecognized in the previous step is that they
were parts of lexical items that belong to two
of the unbounded classes of lexemes. The job
of the subgrammar is to analyze this type of
unknown which can include numbers, number
ranges, simple ratios, references and page
numbers. Each class has an associated
structure for representing its instances. In our
previous example we had two unknown token
sequences and one lexical item, which when
taken together correspond to the number
3.05x10-2 :

36

(8) (?? ((num "3") nws))

(?? (nws (num "05") nws I × I
nws (num " 10") nws <SUP> nws
I − I nws (num "2") nws
<!SUP>))

We have written a context-free grammar to
recognize this token stream as a number in
scientific notation and place a structure in the
output stream of the general form

(9) ("num" SGML-string
Lisp-num-form)

For our example (8) this would result in:

(10) ("num"
"3.05×10<SUP>−
2<ISUP>" 3.05E-2)

The number structure consists of three fields.
The first, "num", is a lexical item, the noun
which represents all numbers. The parser for
doing the later syntactic analysis of this
sentence will access the feature-value list
associated this noun. The second field
contains the SGML encoding of the number.
This can be used for displaying the number on
the screen. The third field contains a Lisp­
readable form of the number.

Another structure recognized by subgrammar
analysis is the bibliographic reference, (7 e).

· The structure produced by the analysis has the
form:

(11) ("$bibref$" SGML-string
List-of-contents)

When the token sequence from (7e) is
recursively analyzed, the result is

(12) ("$bibref$"
"<RB>8<1RB>"
(("num" "8" 8)))

In this example, the bibliographic reference
structure contains a number structure. In
general, any sequence of lexical items,
structures and unrecognized token streams

can be placed in the List-of-contents for
bibliographic references.

Subgrammar analysis of expressions such as
(8) involves first creating a stream without the
"??" tokens and without the actual integers
("3", "05", " 10" and "2") and with the "ordinary"
words replaced by simple placeholders, e.g. ,
"$word$". Critical elements such as nws,
<SUP> I − I , etc. are retained.

Once this simplified stream is available, the
parse is done according to the subgrammar
specialized for numbers, bibliographic
references, etc . But the output of the
subgrammar analysis must produce a new
stream which includes forms such as in (10)
and (12) as well as all of the original words. To
do this we take advantage of the compositional
semantics built into the Alvey parser. The
semantic attachment facilities in Alvey allow
references to daughter nodes by number and
the inclusion of simple lambda forms. But in
addition, arbitrary lisp forms can be included.
We define semantic rules with lisp forms
included. The Alvey semantics then works
compositionally by walking up the parse tree.
This allows the semantic interpretation to
generate the Common - Lisp source code for a
translator · of the original stream, e.g. , of
(7a-e). When this translator is applied to the
original stream, all "??" items which parse are
replaced by forms such as (10) and (12) and all
words such as "Cells" "were", etc. are simply
copied to the output. All "??II items that
remain are either ill-formed or are items not
yet in the lexicon . Note that a separate
translator is built for each sentence. But the
construction is simple and deterministic and
therefore rapid. Lisp's ability to treat code as
data is what we're exploiting here.

The syntactic role of some of the special forms
found by the subgrammar is subtle. Thus, in

(13) "This was discovered by Smith when
he was working at the MBL19."

the bibliographic reference does not act like
any familiar syntactic constituent. But in the
following form the reference functions as a
noun,

(14) "Commonsense knowledge is discussed
in (Davis, 1990)."

37

In the full natural language parsing (Stage 6)
there · will be additional categories and
grammar rules to allow such structures to be
treated properly.

When the translator generated by the
semantic interpretation of the subgrammar
parse is applied to (7a-e), the final form which
results is

(15a) ("Cells" "were" "suspended""in"
"medium" "containing"

(15b) ("num"
"3.05×10<SUP>minus;2
<!SUP>" 3.05E-2)

"µM"

(15c) "<SCP>L</SCP>-[<IT>methyk/IT>:­
<SUP>3<ISUP>H]-methionine" ","

(15d) "<GK>a<IGK>-methylaspartate"

(15e) "and" "AIBU"
("$bibref$" "<RB>8<1RB>"

(("num" "8" 8))) ".")

This preserves all of the details of the original
text. Every form is an item or contains an
item that can be found in the lexicon and one
that will allow a proper screen display (cf. (16) .
below). Lisp forms of numbers and citation
information are also available.

The subgrammars are s imple and
deterministic so the parses are fast compared
to the later full natural language parses.

Stage 5: The Lexicographer's Workbench
Natural language parsing cannot be done until
all items are resolved by the lexicon, so
unknown items are passed on to the editor and
the lexicographer (humans). Errors in the
original source and errors in our own re-en try
can be caught at this stage. What remain are
items that need to be added to the lexicon.
These additions are made using the
Lexicographer's Workbench which is currently
under development. In the Workbench a
collection of analytical tools and heuristic
procedures are used to tentatively classify new
items which are then presented to the
lexicographer for simple approval or more
rarely for special treatment. Morphological

analysis is useful, e .g. , certain classes of
enzyme names have the suffixes "tasell or
"ase" as in "phosphatase" or "nuclease". This
means that new words can be analyzed and
suggestions made as to their classificati_on.
Alvey has a sophisticated morphological
analysis package which we are experimenting
with in which the rules are user . definable
(Ritchie, et al 1987).

One difficult task is the identification of new
phrasal items, a difficulty emphasized by
Amsler (Amsler, 1989). For example, consider
the case in which . "sodium", "chloride",
"bromide" and "sodium chloride" are in the
lexicon but "sodium bromide" is not. If
"sodium bromide" appeared in the input it
would not even be flagged as an unknown.
.Nevertheless, we would want the Workbench
to be provided with the heuristic that chemical
name sequences are most likely chemical
names themselves . Thus the workbench
would make the decision itself and insert
"sodium bromide" in the lexicon with the
proper feature/value specs. This decision
would, as all others, be subject to review by the
lexicographer or application field specialist.

Stage 6: Natural · language parsing -
When the lexical items are extracted from (15),
the result is

(16a) ("Cells" "w�re" '"'suspended" "in"
"medium" "containing"

(16b) "num" "µM"

(16c) "<SCP>L<ISCP>-[<IT>methyk/IT>­
<SUP>3<1SUP>H]-methionine" ","

(16d) "<GK>a<IGK>-methylaspartate"

(16e) "and" "AIBU" "$bibref$" ".")

This is the input to the natural language
parser. The grammar furnished with the
Alvey tools is large and covers a wide variety
of constructions. Nevertheless, it will take
further extensions to get acceptable coverage
of the scientific prose in our corpus. This is
work in progress. A semantics for this large
grammar is under development (C. Grover,
personal communication). In addition, a more
efficient, LR(1) parser is being built to improve

38

the performance over the chart parser
currently available in the Alvey Toolkit
(J. Carroll, personal communication).

Stage 7: Building Knowledge Frames -
We have studied papers in our corpus in an
effort to identify all of the major semantic
constructions. One type deals with the
experimental details themselves such as the
techniques used and the results seen. The
other deals with scientific argumentation -
how models are used to suggest experiments
and how results reinforce or weaken various
hypotheses that might explain them. Our
goal is to design knowledge frames for the
different semantic structures we have found.
Then the logical forms produced by parsing
would be used as input to a system which
generates instances of the appropriate
knowledge frames representing the sentences.
(This is also work in progress.) Furthermore,
these knowledge frames can be connected
together into superstructures representing
coherent arguments for or against a given
proposition. Taken together, these frame
instances and their connecting frames compose
the knowledge base which would underlie our
"Scientist's Assistant" system, a system for
answering both general and specific queries
about the contents and arguments that are to
be found in our corpus.

4. DISCUSSION

Because of the complexities of technical text
notation and the availability of a
comprehensive standard, we decided to use
SGML for text markup. Then we designed a
token-based phrasal lexicon for resolving the
complex items generated by the markup. This
lexicon is robust because it handles everything
from simple words to complex multi-word
chemical names containing Greek letters,
commas, superscripts and more. In addition,
our subgrammar analysis handles unbounded
class items that cannot be accommodated in
the lexicon such as numbers in scientific
notation and bibliographic references.

The work closest to ours is the preprocessing
done for the LOB corpus (Booth, 1987).
Unfortunately, the SGML standard was not
available to that project at the time, so they
had to invent their own orthographic coding

schemes and a pre-editing phase similar to
ours to break the text into taggable units.
There are many differences between the
projects. One of these is in the design of the
lexicon. The LOB group decided to develop a
compact lexicon which includes only the base
forms. Possessives or contracted forms such as
"Smith's" or "it's" are not included. Because
secondary storage is rapidly becoming less
expensive and because modem database and
file structure designs allow very rapid access
to large lexicons we have opted for a very "flat"
lexicon in which e v e ry variant form
encountered in the corpus is stored as a
separate entry. This includes �apitalized
words appearing at the beginning of sentences,
etc. We add the variants of the base forms to
the lexicon only when they are found in our
corpus. Our own statistical analysis of large
corpora such as the Brown Corpus show that
the inclusion of these variant forms will
probably add no more than 50% to the lexicon
size over a lexicon that has only the base
forms.

If we had only included base forms then other
difficulties would crop up in attempting to map
between found entities and the base forms.
We avoid these difficulties by including the
variant forms and flagging them to indicate
their usage restrictions. We would flag
"There" as a form only expected as a sentence
initial (and fully equivalent to "there") whereas
"DNA" would only be expected in fully
capitalized form.

Another major activity in text encoding is the
Text Encoding Initiative or TEI (Sperberg­
McQueen and Burnard, 1990). They have been
focusing on text in the humanities so they have
been concerned with a different set of
problems such as encoding verse, stage
directions, foreign language quotations, etc.
Neither the TEI not the LOB groups seemed to
have directly faced the issues of how to
interface the marked up text with the
available parsing technology as we have.

SGML allows the user to design their own set
of tags, entities and rules so we had to make
some design deci �ions. Our design is
constructed pragmatically to make it usable by
an editor/typist who is not a scientist. For
instance, we have used a special tag "<RB>"
for a bibliographic reference which might be

39

represented by a superscript or by the
conventional "(Shepard, 1978)" . And we have
opted to use the simple superscript tag
"<SUP>" for both algebraic exponents as in
"3.05x10-2" and isotope indicators as in "3H".
The subgrammar and lexicon l ookup,
respectively, resolve these latter two items.
This allows the typist to encode source text
primarily on the basis of its appearance, rather
than its semantic (scientific) content.

We are constantly asked why we do not use
OCR techniques (optical character recognition)
or go directly to publishers for electronic
versions of the papers in our corpus. Again,
these are pragmatic decisions, peculiar to this
point in time. Because OCR error rates are
still relatively high, especially for technical
text, and because OCR systems do little or no
markup , we can produc e accurate
transcriptions and markup more cost­
effectively by having a skilled typist/editor
rekey the text. Most of our corpus (covering 30
years) does not exist anywhere in electronic
form, and the wide variety of proprietary
schemes used by printing firms for electronic
typesetting is a nightmare to untangle.

In the future, technical word processing
systems will be developed that will allow
scientist authors to enter their text with the
proper logical tagging but without the system
obtruding on their work. The systems we are
developing will be able to take advantage of
such electronic documents as they become
available.

Many authors -have argued cogently and at
length that multi -word items, idioms,
punctuation and other complexities of real text
require a comprehensive approach (Becker,
1975; Besemer and Jacobs, 1987; Amsler,
1989; Nunberg, 1988, 1990). The methods
described here can serve as a foundation for
any comprehensive system•that must deal with
the lexical, syntactic and semantic aspects of
real-world technical text.

ACKNOWLEDGEMENTS

We thank John Carroll and Claire Grover for
discussions of the Alvey tools, including the
semantic component.

REFERENCES

Aho, A. ; Sethi, R. and Ullman, J·. 1986.
Compilers ; Principles, Techniques, and
Tools. Addison-Wesley Publishing Company,
Inc., Reading, MA

Amsler, Robert A 1989. Research Toward the
Development of a Lexical Knowledge Base
for Natural · Language Processing. . .

Proceedings of the Twelfth Annual
International ACMSIGIR Conference on
Research and Development in Information
Retrieval. Cambridge, MA : 24�-249.

Becker, J,.D. 1975. The Phrasal Lexicon. In
Proceedi�gs Interdisciplinary Workshop on
Theoretical Issues in Natural Language
Processing. Cambridge MA : 70 - 73.

Besemer, David J. and Jacobs, Paul S. 1987.
FLUSH: A Flexible Lexicon Design. In

. Proceedings of the 25th Annual Meeting of
the Associat ion for - Computational
Linguistics . . Stanford University, Stanford,
CA : 186 - 192.

Boo.th, Barbara 1987. Text input and pre­
processing: Dealing with orthographic form
of texts. In The Computational Analysis of
English. A Corpus-Based Approach.
(Longman, London).

Briscoe, E . ; Grover, C. ; Boguraev, B. and
Carroll , J. 1987 A Formalism and
Environment for the Development of a Large
Grammar of English. Proceedings of the 10th
International Joint Conference on Artificial
Intelligence,. Milan, Italy: 703-708.

Bryan, M. 1988. SGML: An Author's Guide to
the Standard Generalized Mark up
Language. Addison-Wesley Publishing
Company, Inc. , Reading, Massachusetts.

Futrelle, R. P. 1989. An Introduction to the
Biological Knowledge Laboratory. Technical

40

Report NU-CCS-89-15. CqUege of Computer
Science, Northeastern University.

Futrelle, R.P. 1990a. Strategies for Diagram
Understanding Object/Spatial Data
Structures, Animate Vision, and Generalized
Equivalence. Proceedings of the 10th
International Conference on Pattern Recognition.
Atlantic City, NJ: 403-408.

Futrelle, R. P. 1990b Current Activities in the
Biological Knowledge Laboratory (BKL).
Technical Report NU-CCS-90-20. College of
Computer Science, Northeastern University.

Nunberg, Goeffrey 1988, 1990. The Linguistics
of Punctuation. Technical Report P88-00142.
XEROX System Sciences Laboratory, Palo
Alto Research Center, Pal Alto, CA (U.
Chicago Press, 1990, to appear).

Ritchie, Graeme D. ; Pulman, Stephen G. ;
Black, Alan W. and Russell, Graham J.
1987. A Computational Framework - for
Lexical Description. Co mp u t a t i o n a l
Linguistics, Vol. 13, No. 3-4: 290-307.

Sperberg-McQueen, C. M. and Burnard, Lou,
editors. 1990. Guidelines For· th�
Encoding a n d In t erchange of
Machine-Readable Texts. Document
Number: TEI Pl . Draft: Version
1 .0. The Association for Computers
and the Humanities; The Association
for Computational Linguistics ; The
Asso c i ati on for Liter ary and
Linguistic Computing.

van Herwijnen, Eric 1990. Practical SGML.
Kl u w e r Ac a d e m i c Pub l i s h e r s ,
Dordrecht, The Netherlands.

INCREMENTAL LL (l) PARSING IN LANGUAGE-BASED
EDITORS

John J . Shilling
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

shilling@cc .gatech .edu

ABSTRACT

This paper introduces an efficient incremental LL(l)
parsing algorithm for use in language-based editors that
use the structure recognition approach. It features very
fine grained analysis and a unique approach to parse
control and error recovery. It also presents incomplete
LL(l) grammars as a way of dealing with the complex­
ity of full language grammars and as a mechanism for
providing structured editor support for task languages
that are only partially structured. The semantics of in­
complete grammars are presented and it is shown how
incomplete LL(l) grammars can be transformed into
complete LL(l) grammars. The algorithms presented
have been implemented in the fred language-based edi­
tor

INTRODUCTION

This paper introduces an efficient incremental LL(l)
parsing algorithm for use in language-based editors that
use the structure recognition approach. It is motivated
by a style of interaction that parses the user input at
intervals of very small granularity. A second motivation
for the algorithm is the problem of changes internal to
the editing buffer. Because incremental analysis can oc­
cur after each keystroke, an unrestricted parser will at­
tempt to include too much into its focus before a change
is complete causing the editor to detect erroneous states
that will become irrelevant as the user completes the
change. The parsing algorithms presented in this paper
use the user focus as a guide in restricting parsing. The
algorithm presented has been implemented in the fred
language-based editor [Shi83, Shi85] .

Incomplete LL(1) grammars are introduced as a way
of dealing with the complexity of full language gram­
mars and as a mechanism for providing structured ed­
itor support for task languages that are only partially
structured. Incomplete grammars were introduced by
Orailoglu [Ora83) for the fred editor [Shi85, Shi86) as a
method of dealing with the complexity of full language

41

grammars. Incomplete grammars allow incremental re­
finement of language grammars and also allow gram­
mars to be defined for languages that are not LL(l) .
Defining an incomplete grammar for a non-LL(l) lan­
guage allows the editor to give structured support for
the LL(l) subset of the language rather than disallowing
the language completely. Another useful application of
incomplete grammars is in providing structured support
for tasks whose languages are only partially structured.
An example of this is a grammar that facilitates struc­
tured support for editing LaTeX documents. A LaTeX
documents contains structured elements but much of
the document can be treated as unstructured text.

This paper introduces incomplete LL(l) grammars
and characterizes their parsing semantics. It then shows
how the grammars can be translated into conventional
LL(l) grammars, eliminating the need for specialized
parsing algorithms.

INCREMENTAL LL(l) PARSING

The goal of incremental parsing is to re-establish a cor­
rect structuralization of the user's editing buffer after
changes have been made. The approach taken must
differ from straightforward once-only top-down parsing
because a once-only parser never needs to reverse deci­
sions after they are made. In incremental parsing de­
cisions are unmade and sections of the parse tree are
deleted, transformed, and grafted into new locations.
At the same time, the amount of parsing actually done
must be limited if the algorithms are going to provide
real-time response to a user. The algorithms must first
establish the scope of modifications and efficiently re­
structure the parse tree within this scope.

The parsing method described in this paper is more
fine grained than previous methods. The goal is to re­
structure the editing buffer after each text-modifying
keystroke of a user. The challenge is that it is often not
possible to achieve a complete, correct structuralization
because the user is in the process of making a change
that is not yet complete. On the other hand, the user

while (TRUE)
<user change>
<retokenization>
<preparation of Parse Tree (Sweep)>
<incremental parse>

_ <semantic update>

Figure 1: Change-Up date Loop

should be notified at the earliest possible moment if an
error is made. The solution to this conflict is to imple­
ment what is called follow-the-cursor parsing with soft
templates. As a user makes changes the method will
parse only up to (and including) the token that con­
tains the cursor. This keeps it from trying to parse past
the cursor when a user has not yet completed a change.
Unsatisfied elements of a production are indicated to
the user as soft templates. Soft templates visually show
the user what . is missing in the -parse tree. They are
templates in that they should a valid production at the
point they appear but they are soft because they do not
constrain the user in any way. Further text is brought
into consideration through cursor movement. The in­
cremental LL(l) parsing algorithms presented here are
a generalization of the table driven LL(1) parsing al­
gorithms presented by Lewis, Rosenkrantz , and Sterns
[PLRS76] and use Select, Nullable and Follows tables.

THE CHANGE-UPDATE LOOP

As a user changes a program the editor executes the
loop illustrated in figure 1 to achieve a correct restruc­
turalization. The localized region of change must be
retokenized , the tree prepared, and the new tree state
incrementally parsed. The data structures of the non­
incremental algorithm are extended to facilitate incre­
mental parsing. The parsing queue is modified to handle
both tokens and non-terminals so that subtrees from the
parse tree do not always have to be broken down into to­
kens as they are moved to the parse queue. This means
that the parsing tables must be expanded to take ac­
count of non-terminals. We now assume that both the
Select table and the Follows table cross reference non­
terminals with both tokens and non-terminals.-

TOKENIZATION

We will regard the tokenization phase as a black box
process that produces a series of tokens from the local­
ized region of change. It is assumed that incremental
tokenization produces a queue of tokens and two mark­
ers in the parse tree denoted the Lexical Left Boundary
and the Lexical Right Boundary. These markers point
out the region along the frontier of the parse tree (in­
clusive) that has become invalid as a result of the new

42

tokenization.

TREE PREPARATION • SWEEP

The next step in the change-update loop is the tree
preparation process called Sweep. This is the process
that breaks down the affected region of the parse tree
and prepares the tree for the parsing algorithm. Two
nodes of the parse tree have special meaning in this
process. They are called the Common Ancestor and the
Royal Node and are defined as follows:

• The Common Ancestor is the lowest node in the
parse tree that is an ancestor of both the Lexical
Left Boundary and the Lexical Right Boundary.

• The Royal Node is the highest node in the parse
tree such that the Lexical Left Boundary is the first
token of the production1 • If there is no such node
then the Royal Node is the Lexical Left Boundary.

Two basic ideas drive the tree preparation. The first
is that the region of the tree defined by Lexical Left ·
Boundary, Lexical Right Boundary and Common An­
cestor is invalidated because the tokens along its frontier
have been recalculated. The second is that the subtree
of the parse tree rooted at Royal Node is suspect be­
cause it was instantiated on the basis of a token that
has been altered.

Figure 2 shows the Sweep algorithm. It begins by
identifying the Common Ancestor and the Royal Node
and then cleans the region modified by the lexical to­
kenization. This is a wedge in the parse tree that is
bounded by the path from the Lexical Left Boundary
to the Common Ancestor to the Lexical Right Bound­
ary. All nodes on the interior of the modified region are
deleted except the direct sons of the nodes along the
boundary.

The algorithm must now decide what to do about the
Royal Node. We distinguish two cases in dealing with
the Royal Node based on the relationship between the
Royal Node and the Common Ancestor. If the Royal
Node is a descendent of the Common Ancestor then
there is no conflict because there are no tokens in the
subtree rooted at Royal Node. If Royal Node is the
same as, or an ancestor of the Common Ancestor then
the subtree rooted at the leftmost son of Common An­
cestor is clipped. This will in general leave parts of the
parse tree intact that may not be valid with the new
tokenization .

Before exiting, the the Sweep algorithm pushes the
current parse pointer back to the left in the parse tree

1 We will ignore non-significant nodes such as error nodes and
(usually) white space in this presentation

Sweep(LexLeftBound, LexRightBound):

CommonAncestor = CommonAncestor(LexLeftBound, LexRightBound) ;
Royallode = Royallode (LexLeftBound) ;

CleanRegion(LexLeftBound, LexRightBound , CommonAncestor) ;

if (Royallode in subtree of CommonAnceator)
DeleteSubtree(Royallode) ;

else
DeleteSubtree(LeftmostSon(CommonAncestor)) ;

endif

BackUp(Parse Position) ;

Figure 2: Sweep

as far as it can until it hits a token. The first non­
terminal to the right of that token becomes the location
of the current parsing position.

INCREMENTAL PARSING

We now enter the actual incremental parsing algo­
rithm. The idea of the algorithm is similar to straight­
forward LL(l) parsing with several major differences.
The incremental algorithm must decide how to handle
the situations when it advances to a satisfied token ele­
ment but has a non-empty parsing queue and conversely
when it empties the parsing · queue but has unsatisfied
productions in the parse tree. The second situation is
handled in follow-the-cursor parsing by essentially doing
nothing. We do not want to remove any further tokens
from the parse tree so the algorithm simply leaves unsat­
isfied productions in the tree and displays them to the
user as soft templates. In the first situation the algo­
rithm needs to open up space in the parse tree to accom­
modate the elements of the parsing queue. This is done
by invoking a conflict resolution algorithm described be­
low. Following the description of the conflict resolution
algorithm we will present two algorithms that together
accomplish the incremental parsing desired. The first
is the inner parsing algorithm that does most of the
work and the second is the outer parsing algorithm that
provides high level control.

CONFLICT RESOLUTION

In our parsing algorithm we will need to resolve a con­
flict if the element at the front of the parse queue cannot
be parsed at the current parse position. The conflict can
exist because there is already a token at Parse Position
as described above or it can exist simply because the
Queue Element does not fit into the terminal or non­
terminal symbol at the Parse Position. The general al-

gorithm would have grafted such an element as an error.
That is not satisfactory here for two reasons. The first is
that there are now non-terminal rooted subtrees on the
Parse Queue as well as tokens. A subtree may not be
parsable at this point but the tokens along its frontier
may be. The second reason is that the algorithm does .
not have the guarantee that the subtree rooted at _Parse .
Position is properly prepared to be parsed because it
may not have deleted the entire subtree rooted at Royal
Node in the Sweep algorithm.

The goal is to parse the elements of the parse· queue by
disrupting as small a region of the parse tree as possible.
There is a conflict here because we want to parse the
tokens in the parsing queue but we would like to keep
the tokens that are on the tree intact if possible. Our
solution to this is to give priority to the parsing of tokens
before the cursor. This may mean dislocating tokens on
the parse tree. If tokens are displaced, they are grafted
to the tree as error nodes rather than moving them to
the parsing queue.

43

We first present some definitions.

• As a generalization of the previous definition we
define Royal Node is defined to be the highest
node in the tree that has Parse Position as the first
leaf of its frontier. If no such node exists then Royal
Node is defined to be the node at Parse Position.

• Decision Node is defined to be the lowest node on
the path from Parse Position to Royal Node that
has the element at the front of the Parse Queue in
its first set. If no such node exists then Decision
Node is defined to be NULL.

• List Node is defined to be a node on the path from·
the Decision Node to the Royal Node (inclusive)

that is a list structured production. If no such node
exists then List Node is defined to be NULL.

• Nullable Node is defined to be a node along the
path from the Parse Position to the Royal Node
that is nullable and has the element at the front of
the Parse Queue in its follow set. If no such node
exists then Nullable Node is defined to be NULL.

The Royal Node is the highest point in the parse tree
where the token at Parse Position (or the token that
previously was the first token of Parse Position) caused
a decision to be made. The Decision Node, if it exists ,
is the lowest production along the path from Parse Po­
sition to Royal Node that the front of the Parse Queue
can belong to. If the Decision Node exists then we can
try to find a List Node. List Node is a place in the
parse tree where a list production can be found. This
makes it a place where we can wedge in a new produc­
tion without tearing down any existing parse tree. At
most one list node can be found because if there were
two or more _ then there would be an ambiguous parse.
Finally, Nullable Node is a node that can be nulled while
still allowing the element at the front of the Parse Queue
to be correctly parsed.

The algorithm for resolving the conflict is presented in
figure 3. It first finds the four nodes described ·above. If
List Node exists then the list production is expanded by
an additional element using the GraftNewList subrou­
tine. In the StealProduction subroutine the tokens in
the subtree rooted at the node of the first parameter
are grafted to the right as error nodes. The (tokenless)
subtree rooted at the node is then deleted leaving an
open non-terminal that is either nullable or has the el­
ement at the front of the parse queue in its first set .
The final chance to avoid grafting an error token is if
there is a non-terminal subtree at the front of the parse
queue. In this case the nonterminal is removed and
replaced with its children in the Reduce subroutine.
This process continues until the algorithm has freed up
a non-terminal in the parse tree or has emptied the parse
queue.

INNER PARSING ALGORITHM

Figure 4 shows the inner parsing algorithm. This al­
gorithm iterates through its parsing decisions until it
runs out of tokens and/or runs out of open parse tree.

If the front of the parse queue and the predicted parse
tree element at the current parsing position agree then
the queue element is simply grafted onto the tree at the
current position. The parse queue is then popped and
the parse position advanced. It may be that there is
not an exact match but that the queue element is in the
select set of Parse Position. In that case the production

44

Outer Parse

while (IOT Empty(ParseQueue)) do
InnerPar1e (Par1eP01ition , ParseQueue) ;

if ((Satisfied(ParsePosition))
AID (IOT Empty(ParseQueue))) then

ResolveConflict (ParsePosition) ;
endif

endwhile

BrrorRecovery() ;

Figure 5: Outer Parse for Follow-the-Cursor Parsing

indicated is instantiated (there can be only one by LL(l)
restrictions) and the Parse Position is advanced to the
first element of the new production.

If neither of the above cases hold then the element at
the front of the parse queue does not fit at the current
position. The algorithm checks to see if there is a non­
terminal subtree at the front of the parse queue that
can be reduced. If this is not the case then it checks
to see if Parse Position is nullable with Queue Element
as a correct follow. If this is the case then the non­
terminal at Parse Position is nulled and Parse Position
advances. If none of the above cases holds then the
conflict resolution algorithm is invoked.

OUTER PARSING ALGORITHM

The outer parsing algorithm provides high level con­
trol over the inner parsing algorithm. It resolves con­
flicts when Parse Position is advanced to a token and
Parse Queue is not empty or Parse Queue is empty but
Parse Position is a non-satisfied production element.
The former case is handled by the conflict resolution
algorithm. The latter case is allowed as a legal state in
follow-the-cursor parsing because tokens to the right of
the cursor are not taken to satisfy the parse position.

At the end of the normal parsing loop an error recov­
ery algorithm is called. The Error Recovery algorithm
is the only algorithm that is allowed to parse past the
cursor. In follow-the-cursor parsing it is sometimes nec­
essary to invoke the Steal Production process that grafts
tokens as errors to the right of the current parse posi­
tion. It is also possible that a token has been inserted
which will resolve an error in the syntax of the user
buffer if they were included in the parse. The idea of
the Error Recovery algorithm is to probe into the error
tokens directly past the cursor to see if these tokens can
be parsed correctly.

An outline of the error recovery algorithm is presented

ResolveConfilct(ParsePosition)

while ((IDT Empty(ParaeQueue)) AID IsToken(ParsePosition)) do
Royallode = FindRoyal(ParsePosition) ;
Deciaionlode = FindDecision(ParsePosition , Royallode , QueueElement)
Listlode = FindList(Decisionlode , Royallode) ;
lullablelode = Findlullable (ParsePosition , Royallode , QueueElement) ;

if (Liatlode ! = IULL) then
ParsePosition = GraftlevList (Listlode , ParsePosition) ;

elseif (Decisionlode ! = IULL) then
ParsePosition = StealProduction(Decisionlode , ParsePosition) ;

elseif (lullablelode ! = IULL) then
ParsePosition = StealProduction(lullablelode , ParsePosition) ;

elaeif (Islonterm(QueueElement)) then
Reduce (ParseQueue) ;

else
GraftError(ParsePoaition) ;

endif
endwhile

Figure 3: Conflict Resolution Algorithm

Inner Parse(ParsePosition, ParseQueue)

while ((IDT Empty(ParseQueue)) AID (IDT Satisfied(ParsePosition))) do
QueueElement = Front (ParseQueue) ;
if (QueueElement matches ParsePosition) then

Graft (QueueElement , ParsePosition) ;
Pop(ParseQueue) ;
Advance (ParaePoaition) ;

elaeif (Select [ParsePoaition, QueueElement] ! = ERROR) then
Instantiate (ParaePosition , Select [ParsePosition, QueueElement]) ;
Advance(ParsePosition) ;

elseit (QueueElement not a terminal) then
Reduce (ParseQueue) ;

elseif (lullable (ParsePosition) AID (Follows (ParsePosition , QueueElement)) then
lullProduction(ParsePosition) ;
Advance (ParsePosition) ;

else
ResolveConflict (ParsePosition , ParseQueue) ;

endif
endwhile

Figure 4: Inner Parsing Algorithm

45

Error Recovery

< Set Consistent Parse >
while (we have an error token) do

it (token is parsable) then

else

< Parse Token >
it (Completed Structure)

< Update Consistent Parse >
endit

break ;
endit

endwhile

<Back up to last Consistent Parse>

Figure 6: Error Recovery

in 6. The algorithm begins by saving the current parse
tree status, called the initial consistent parse. Each er­
ror token is then considered in turn. If the error token
can be parsed correctly then that is done. If parsing
the token completes a production in the parse tree then
the consistent parse is updated to be the current parse
state. The loop terminates when it runs out of error
tokens or it encounters an error token that cannot be
parsed correctly. It then backs up the state of the parse
tree to the last consistent parse and exits.

INCOMPLETE GRAMMARS

Incomplete grammars presented here introduce two new
non-terminal classes, unstructuretP and pre/erred non­
terminals , into language description grammars. Pre­
ferred non-terminals are the left-hand-sides of a spe­
cial production class called preferred productions. In­
tuitively, the unstructured non-terminal class allows the
language designer to have a production that escapes the
structuralization process. A preferred production is a
way of finding structure within the lack of structure of
the unstructured non-terminal.

A conventional LL(1) grammar can be described as a
tuple [PLRS76]

G = (S, T, N, P)

where

S is the start symbol of G, S E N .

T is a finite set of terminal symbols.

2 Qrailoglu refers to this non-tenninal class as Unknown,.

46

N is a finite set of non-terminal symbols.

P is a set of production rules.

An incomplete LL(l) grammar is described as a tuple

G = (S, T, N, U , P, .Pu)

where S, T, N, and P have their conventional meaning
and

U is a distinguished set of non-terminal symbols de­
noted unstn1ctured, U e N.

Pu is a distinguished set of production rules denoted
preferred productions, Pu E P. ·

An unstructured non-terminal can occur at any point
in the right-hand-side of a production rule. For the
purpose of constructing the select sets of normal non­
terminals (non-terminals that are not unstructured non­
terminals) each occurrence of an unstructured non­
terminal is treated as a unique, distinguished terminal
symbol 11 , 11 <t T. Thus a non-terminal's select set will
contain an entry for each terminal symbol in its first
set and an entry for any unstructured element that it
can be derived from it. This is similar to the way that
non-terminals are treated in incremental parsing. For
parsing purposes we do not construct the first set of an
unstructured element but we do construct the follow set
of an unstructured element in the .normal way. We do
not construct the first sets for unstructured elements
because their first sets vary at parse-time, depending
on the shape of the parse tree. Intuitively, the run-time
first sets vary because we want the unstructured ele­
ment to act as a wild card non-terminal and accept any
token that is not otherwise accepted at the point that
the unstructured element occurs.

Consider, for example, the grammar:

A a
C

B b
C

C Unstructured

If we are currently focussed at non-ter�al A, we
want any token except "a" to lead into production C.
If we are focussed at non-terminal B , then we want any
token but ''h" to be accepted by C. Thus, the meaning
of the same unstructured element (and by side-effect ,

C) will changed at run-time depending on the current
parsing context when it is encountered.

A preferred production is a production that can find
structure within an unstructured non-terminal. Its first
set is calculated as for normal productions rules. Be­
cause the preferred production can be followed by the
resumption of the unstructured non-terminal then the
follow set should be anything that does not cause con­
flict with the preferred production. Thus if p E Pu , y
= left-hand-side{p) ,

Follow(y) Can-Legally-Follow(y)

where Can-Legally-Follow is a relation that generates
the set of all tokens that can follow a non-terminal with­
out causing a parsing conflict with that non-terminal.

TRANSFORMATIONS

Orailoglu devised specialized algorithms to parse
based on incomplete grammars. This section will show
how to transform an incomplete grammar into a com­
plete grammar that can be parsed with conventional
LL{l) algorithms. The obstacle to the traditional pars­
ing of incomplete grammars has been that the first set
of an unstructured element effectively changes at run­
time depending on the state of the parse tree where the
unstructured element is introduced. It will be shown
that the decisions in Orailoglu 's implementation which
are made at run-time, can be predicted at the time the
incomplete grammar is analyzed . This allows the in­
complete grammar to be transformed into a complete
grammar that recognizes the same language.

A simple example is presented to show the flavor of
the material that will follow. Consider the incomplete
grammar:

A a c
b e
U (an unstructured element)

The token set of the grammar is {a, b, c , ERROR}.
The intent of the grammar writer is clearly that a lead­
ing token of a will invoke the first right-hand-side, a
leading token of b will invoke the second right-hand-side,
and any other token will invoke the third right-hand-side
because of the unstructured element. Thus the first set
of the unstructured element is effectively {c , ERROR}
and as a result the first set of non-terminal A is the
entire token set.

Now consider the grammar:

47

A

C

b B
c C

C
D

B

D

b
D

d
u

The token set of this grammar is {b, c, d, ERROR} .
The intent of the unstructured element in the grammar
varies with the shape of the parse tree. If the current
non-terminal is B then any token in the set { c, ERROR}
will derive the unstructured element in D but if the non­
terminal is C then any token in the set {b, ERROR} will
derive the unstructured element. The thing to note is
that this can be predicted at the time that the grammar
is analyzed.

The above grammar can be transformed into the
grammar:

A

C

u,

u,

b B
c C

C

D

u, (u,,)*

b
C

ERROR

B

D

u,,

b
D

d
u,

b
C

d
ERROR

This grammar has the same token set as the previous
grammar. The only difference is that three new produc-·
tions are introduced to represent the structure of the
incomplete element. The first production gives the con­
ceptual structure of the incomplete element. The second
production represents tokens that can occur first in the
unstructured element and the third production repre-. '
sents what may follow the first element as the body of
the unstructured element. Notice that Ut contains any
token that is not otherwise in the first set of D. This
causes the grammar to be ambiguous because the token
b is in the first set of both alternatives of non-terminal B
and the token c is in the first set of both alternatives to
non-terminal C. The key to the transformation method
is to resolve the conflict in each case in favor of the al­
ternative that does not derive the unstructured element.
With this method of resolving the parsing ambiguity,
the transformed grammar recognizes exactly the same
language as the untransformed grammar.

The above example illustrates the spirit of the trans­
formation method on a very simple grammar. The re­
mainder of this section will show that the method can
be applied to any incomplete grammar of the form de­
scribed by Orailoglu [Ora83]

For parse table calculations each unstructured non­
terminal is recognized as a separate production but
is treated s,9inewhat differently when checking LL(l)
grammar restrictions. Although they are technically
different elements, unstructured elements must satisfy
some restrictions as if they were the same terminal.
Two distinct unstructured elements cannot both occur
in first set of a production or in the follow set of a pro­
duction. There are also restrictions to avoid ambiguity.
An incomplete element cannot be followed by another .
incomplete element, and incomplete elements can nei­
ther start nor end preferred productions. If a token is
both in the first set of a preferred production and the
follow set of an unstructured element then the conflict
will be resolved in favor of the follow set. · No token may
appear in the first set of more than one preferred pro­
d uction because this would cause a grammar ambiguity.

An unstructured element may be legally derived at
run-time if all of the following conditions apply:

• The current parsing position is a non-terminal that
can derive the unstructured element in the gram­
mar

• The current parse queue element is a token that is
not in the select set of the current non-terminal.

• The current non-terminal is not nullable with the
input token in its follow set3 •

If all of the . above conditions apply then the tree is ex­
panded to derive the unstructured element and the al­
gorithm enters unstructured parsing mode. While in
unstructured mode the parser accepts any token as part
of the incomplete element until it receives a member of
the follow set of the incomplete element or a member
of the first set of a preferred production. If a member
of the follow set is encountered then the incomplete ele­
ment is closed. If a member of the first set of a preferred
production is encountered then the preferred production
is instantiated and parsed normally, and unstructured
parsing is resumed when it completes.

The transformation approach will be to replace each
unstructured element U by a non-terminal Ut which is
the left-hand-side of a production rule of the_ form

3This slight variation from Orailoglu's implementation is in­
troduced to give a more consistent treatment of W1Structured
elements.

48

UI U, (Ub)*

where U, derives tokens and preferred non-terminals
that may start the unstructured element and Ub derives
the set of tokens and non-terminals that may be in the
body of the unstructured element.

The production rule for Ub is the easier of the two to
calculate. The first step is to calculate the follow set
of U in the normal manner. This calculation is already
performed by the existing algorithms. This tells what
not to include in the token set derivable from Ub , Let
the set of preferred non-terminals be denoted P = P1 ,

, Pn and let

F = T - follow(U) - first(p1) - . . . - first(pn)

Then the production rule for Ub is

Ub ft

Pn

where ti , . . . , .t-t are . the elements of F .

This production correctly parses the internal part of
the incomplete element because it derives all the pre­
ferred productions and all tokens not in the first set · of
a preferred production or in its follow set . If there is a
conflict between the first set of some Pi and the follow
set of U then, as before, the conflict is resolved in favor
of the follow set.

The calculation of how unstructured elements can be
derived involves not only calculation of the production
rule for U, but also the rules for resolving conflicts that
arise in the select tables of the grammar. An unstruc­
tured element occurs in the right-hand-side of a produc­
tion of the form

A w U x
rhs2

where w and x may each be empty and where n # 1 .
Thus the simplest production rule containing an un­
structured element is of the form

A U

The first step in calculating a production rule for U,
is determining whether w is nullable. Let F be the set
of tokens that can occur in the first set of U. If w is not

nullable then set F to the entire token set. Any pars­
ing conflicts with w will be resolved in the parse table
construction phase. If w is nullable then F must be cal­
culated so that it does not cause a parsing conflict with
w or with any other right-hand-side of the production
rule. Thus, the lead-in to U can be

F = T - first(w) - first(rhs2) - . . . - first(rhs0) .

The set F is the select set of U for parsing purposes.
This will keep members of the first set of a preferred
production that are· not in F from interfering with cal­
culation of the select table. The set of tokens that can
lead directly to U is then

F - first(p1) - . . . - first(pn) = t1 ; . . . , t;

and the production rule U, is

u, t1

' ·

t;
Pt

Pn

where some of the Pi may not be derivable because
no member of their first set is a member of F. The is
allowable because the · first set of U has already been
calculated.

Using F as the first set for U, guarantees that the pro­
duction Ul will not cause a parsing conflict with the first
sets of the right-hand-sides of the production in which
it occurs, but . it may still cause a conflict in produc­
tions that c_an derive A. The key to the transformation
method is to . always resolve the ambiguity against the
alternative that derives the unstructured element. The
first step of this is to calculate the select table and follow
sets in the usual manner , using the designated first sets
for the transformed elements. Next comes the grammar
validity check.

If there is a first-first conflict in the grammar then
check to see if one of the alternatives derives a trans­
formed unstructured element. If so, resolve the conflict
by selecting the other alternative. If there is a first­
follow conflict caused by the first set of an unstructured
element in the follow set, remove the cqnflicting token
from the first set of the. following non-terminal that de­
rives the unstructured element. If there is a first-follow
conflict caused by an unstructured element in the first
set of a non-terminal, then remove the token from the
first set of the non-terminal that derives the unstruc­
tured element. The first-first conflicts should be re­
solved before the first-follow conflicts so that the prob­
lem of multiple conflicts does not arise. Note that all
of these conflicts do not occur in the parse table con-

49

struction for a parser that treats incomplete grammars
specially because the unstructured elements are treated
essentially as distinguished unique tokens in the gram­
mar analysis.

The purpose of the above conflict resolution strategy
is to make the decisions when the parse tables are built
that the parser would make at run-time in a parser for
incomplete grammars. To see that this is true, first con­
sider the production U, in the case where w in the gram­
mar above is non-nullable. In an unstructured parser
the incomplete element will be· encountered and instan­
tiated when w completes, i.e. , when the parser encoun­
ters a legal follow of w. This is exactly what ·happens
in the transformed grammar.

· · - ·

Suppose that w is .nullable. Then �he unstructured
element can be derived directly by A and indirectly by
productions that derive A. Assu�e that the current non­
terminal is A. The unstructured element ,wiµ be _dii:e�t,ly
derived if the current token is not in the first set �of. w or
the first set of any other right-hand-side of A, and if A
is not nullable with the current t�ken in the .follo.w set .
The same action is taken in the transformed grammar
because Ul does not have any me�bers of the first set
of w or the other right-hand-sid�s in its first set.

Now assume that the current non-terminal is not A
but one that can derive A. In the unstructured parser,
the unstructured element in A can be derived if the
current token is not in the first set of the current non­
terminal and if the· current non-terminal is not nullable
with the token in its follow sets. These are exactly the
conditions under which u, can be derived in' the trans­
formed grammar. Tokens that would not derive the
unstructured element above will not do so in the trans­
formed grammar because of the inanne·r in which pars­
ing conflicts are resolved in the select_ table. The·tokens
that are left are those that do not cause conflfots and
they derive the unstructur_ed element.

The last point to establish is the validity of the gram­
mar model in which the incomplete element was intro­
duced. The model is valid because only · one unstruc­
tured element needs to be concentrated oii at a time.
This is true because

• A non-terminal cannot have two separate unstruc-
tured elements in its first set .

· · ·

• An unstructured element cannot have an unstruc­
tured element in its follow set.

• A preferred production cannot start or end with an
unstructured element.

It has been shown that an incomplete grammar may
be transformed into an equivalent complete grammar. Is

there any advantage in doing so? The grammar trans­
formation introduces new productions and thus causes
the parsing tables to increase in size. This will in turn
cause the run-time parse tree data structured to grow
in size. The transformed grammar will introduce ap­
proximately one extra parse tree node for each token
that is parsed as part of an unstructured element . The
transformation process also significantly increases the
complexity of the grammar analysis process. The real
advantage of the algorithm is that it allows the incom­
plete grammar to be parsed by a conventional LL(l)
parser._ This is an advantage because it makes the gram­
mars more easily adapted to other parsers and because
it reduces the complexity of the parsing algorithm.

PREVIOUS WORK

Syntax-directed editors such as the Cornell Synthesizer
[RI'84, TR81] allow phrases to be entered as text below
some level in the syntax. Textual input is parsed by a
stand alone bottom-up parser that begins with the non­
terminal represented by the current placeholder. The
parsed text must be able to be grafted onto the parse
tree as a complete, correct subtree.

Carlo Ghezzi and Dino Mandrioli have developed ·a
bottom up parsing algorithm with is based on the use of
grammars that are both LR and RL [GM79b , GM79a].
The authors also have published .;an algorithm that is
more complex but operates on a more general class of
LR grammars [GM80] . The BABEL editor [Hor81] is
based on the Ghezzi and Mandrioli symmetric algo­
rithm. Programs are not permitted to be incomplete ,
and it is not possible to place unexpanded placehold­
ers in the tree . Kirslis [CK84, ·Kir85] has extended the
Ghezzi and Mandrioli LR(0) algorithm to LR(l) , has
modified the parsing algorithm to handle comments and
introduced explicit error handling routines.

An editor dubbed SRE for Syntax Recognizing Ed­
itor' has. been developed at the University of Toronto
[BHZ85] . This editor provides flexible error handling
·by dividing the parser function into two levels . A low­
level parser guarantees that the user's program consists
of a sequence of syntactically correct lines. A high-level
parser guarantees that the syntactically legal lines form
a syntactically legal program. Only low-level syntac­
tic correctness is enforced while text is being entered.
Syntax errors within lines are pointed our immediately
and the user is forced to correct them before proceed­
ing. Syntax errors between lines are only pointed out
when the user requests a high-level parse. Morris and
Schwartz [MS81] published a LL(l) parsing algorithm
that maintains a sequence of syntactically correct parse
trees.

50

Orailoglu implemented an LL(l) incremental parsing
algorithm as part of the the restructuring programmable
display editor (RPDE, now called Fred) at the Univer­
sity of Illinois [Ora83, Shi85] . The algorithm maintains
a single parse tree but allows multiple errors with unre­
stricted parsing by invoking a simple context (and his­
tory) sensitive error recovery algorithm. The key dis­
advantage of the algorithm is that it lacks an effective
means of limiting parsing and tends to parse forward
too far, recovering from errors along the way, when
changes are made to the internal structure of a program.
Orailoglu [Ora83] provided the original implementation
of incomplete grammars.

CONCLUSION

This paper presents an incremental LL(l) parsing al­
gorithm that is suitable for use in language-based edi­
tors and that has been implemented in Fred, structured,
screen-based editor. A keystroke intensive mode of user
interaction motivates the follow-the-cursor style of pars­
ing in which parsing is normally halted at the cursor,
leaving suspensions in the parse tree that are indicated
to the user as soft-templates. Algorithms for tree prepa­
ration, incremental parsing, and error recovery are pre­
sented. The algorithms implement a style of user inter­
action that is both efficient and convenient. It is efficient
because the editor only needs to perform limited parsing
after changes. It is convenient because the user is able
to enjoy the benefit of structuralization while retaining
complete freedom of program entry.

Incomplete LL(1) grammars are presented as a way
of dealing with the complexity of full language gram­
mars and as a mechanism for providing structured editor
support for task languages that are only partially struc­
tured. Orailoglu devised specialized algorithms for pars­
ing based on incomplete grammars. This work shows
how the grammars can be translated into conventional
LL(l) grammars, eliminating the need for specialized
parsing algorithms.

References

[BHZ85] Frank J. Budinski, Richard C. Holt , and
Safwat B . . Zaky. Si'e - a syntax recogniz­
ing editor. Software-Practice and Experience,
15(5) :489-497, May 1985.

[CK84) Roy H. Campbell and Peter A Kirslis. The
saga project: A system for software devel­
opment. In Peter Henderson, editor , Pro­
ceedings of the A CM SIGSOFT/SIGPLAN
Software Engineering Symposium on Prac­
tical Software Development Environments,
April 1984. (Released as ACM SOFTWARE

ENGINEERING Notes 9(3) and ACM SIG­
PLAN Notices 19(5) .) .

[GM79a] C. Ghezzi and D. Mandrioli. Augmenting
parsers to support incrementality. Journal
of the A CM, 27(3) :564-579, July 1979.

[GM79b] C. Ghezzi and D. Mandrioli. Incremental
parsing. A CM Transactions on Program­
ming Languages and Systems, 1(1) :58-70,
July 1979.

(GM80] C. Ghezzi and D. Mandrioli. Augmenting
parsers to support incrementality. Journal
of the A CM, 27(3) , July 1980.

[Hor81] M.R. Horton. Design of a Multi-Language
$ditor with Static Error Detection Capabil­
ities. PhD thesis, University of California,
Berkeley, July 1981 . ERL Technical Reprot
81/53.

[Kir85] Peter A. Kirslis. The SA GA Editor: A
Language-Oriented Editor Based on Incre­
mental LR(J) Parser. PhD thesis, Depart­
ment of Computer Science, University of Illi­
nois at Urbana-Champaign, December 1985.

(MS81] J. Morris and M. Schwartz. The design of a
language-directed editor for block structured
languages. SIGPLAN Notices, 16(6) :28-
33, June 1981 . Proceedings of ACM SIG­
PLAN /SIGOA Symposium on Text Manipu­
lation, Portland.

[Ora83] A. Orailoglu. Software Design Issues in the
Implementation of Structured Editors. PhD
thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign,
1983.

[PLRS76] II P.M. Lewis, J. Rosenkrantz, and R.E.
Stearns. Compiler Design Theory. Addison­
Wesley, 1976.

[RI'84] Thomas Reps and. Tim Teitelbaum. The
synthesizer· generator. In Peter Hen­
derson, editor, Pro·ceedings of the A CM
SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software· Develop­
ment Environments, April 1984. (Released as
ACM SOFTWARE ENGINEERING Notes
9(3) and ACM SIGPLAN Notices 19(5) .) .

[Shi83] John J . Shilling. Improvements to a struc­
tured, screen oriented editor. Technical Re­
port Report No. UIUCDCS-R-83-1 155, De­
partment of Computer Science, University
of Illinois at Urbana-Champaign, December
1983.

51

[Shi85] John J . Shilling. Fred: A program devel­
opment tool. In Proceedings of SOFTFAIR
II (San Francisco, California, December 3-51
1985}, December 1985.

(Shi86] John J . Shilling. Automated Reference Li­
brarians for Program Libraries and Their In­
teraction with Language Based Editors. PhD
thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign,
July 1986.

[TR81] T. Teitelbaum and T. Reps. The cornell
program synthesizer: A syntax-directed pro­
gramming environment . Communications of
the A CM, 24(9) , September 1981 .

Linguistic Information in the Databases us a Basis

for Linauistic Parsing Alaorithms .

Apollonskaya Tatiana A .

Bel iaeva Larissa N .

Piotrowski Raimund_ G .

Applied Linguistics Department

Berzen Pedagoaical Institute

Hoika emb . 48

19 1 1 86 Leninarad USSR

The focus ·of thi s paper is investigation of l inguistic data base
design in oonjuaation with parsing algorithms . The structure of
l ingui stic data base in natural language processing systems , the
structure of lexicon items and the structure and the volume of
linguistic information in automatic dictionary is t.he base for
l inguistic parsins oraanization .

52

The avalanche- like f low of documents in natural Languages
(NL) cal ls for a reliable cybernetic. means to conduct its intel­
lectual processing and formalized catalogi zation and classifica­
tion . The most effective instrument helpina to achieve these tasks
is Linguistic Automaton (LA) . LA is an all-round complex of hard- ,
soft- , l ingua- , and partly tutorware . ·

During recent years , the linguistic research activity at Lenin­
grad Speech Statistics Group (SpStGr) on natural lanauaae processinl
was . concentrated on the pursuit of two objectives :

first , the lexico-semantical , morpholoaical and pragmatical problems
of automatical dictionary (AD)

and second , the construction of parsing programs .
At the same time , it had long been asserted that semantic and

pragmatic information contained in AD and in LDB must be used to resolve
many of the lexical and arammatical ambiguiti�s . that occur in the - text .
The adequate resolution of ambiguities is often critical to the - MT
process , since often ambtauities which occur . in eource lanauaae cannot
be maintained in target l anguage .

The creation of such a complex needs , on one hand , exten-
si.ve theoretical investigations · in the f ield of systemic l inauis­
tics and consideration of possible practical contributions · in such
diverse natural language processing (NLP) areas as machine transla­
tion information retrieval , indexing , automatic abetracting etc . On
the other hand , all these systems need special parsina algorithms
and special structure of automatic dictionary (AD) .

The conjugation of AD structure and parsing hierarchy i s the
focus of this paper . This conjugation is hindered by a series of
antinomies , the principal of which are two paradoxes :

1 . The lineari zation paradox consi sts of non-additivity of text
undestanding while human text processina . The process of text
undestandina i s surnultaneous with text reception . When model l ing
thi s process on computer , mental sumultaneous-associative proceeses
are success! v·ely l inearized during parsing .

2 . The static and dynamic paradox consists of the necessity to model
the dynamical ly and constantly enriching procese of text generation
and reception durina the human intellectual activity with the help of
previou�ly f ixed procedures on the basis of a static model of
averaged professional competence , stated in LDB .

As a matter of f act , the creation of NLP system ie a process of
gradual -overcoming these paradoxes . The success of such a- process is
determined by :
- the correctness of the elaborated models of professional competence ;
- the database organization model and the professional competence model

level ;
- the level of the model of language competence , and correspondingly ,
- the level of linguistic alaorithms and program elaboration ;
- the optimum of parsing realization ;
- the level of computer development .

Thus , when designing NLP system it i s necessary to conjugate th�
three previously established models in a united technological
structure which al lows to minimize the influence of the described
paradoxes on the NLP rezult .

The basis of this conjugation is both the organisation of data
processing (pars ing) and the organisation in LDB .

53

The LDB organization: · must answer to the next requirement), :
, 1) ·the data , which are '•inserted in ·the LDB , and t�e data

_ de.scriptions must· be : st·ructurized in accordance with· th�
procedures , which are realized in a epecif.ic NLP system ;

•
0 2) the , 'LDB 'must · 'be· organized - optimal ly ·conc-er.nin·a the problems ,

. whit)h_ the ·spe'cif:ic -Nl,P system i s· tuned on �· .- · : ·. _ ·_- · _ -

The · o--ptinium l.DB - oraanizati-'on requi�es a modular design- .,rhich - - _
constets · ill' realiz�t:'ion' of 'LOB as ·a set of · nonrilidly-linked modules .

.. Th-i s· modularity- al low-s to arranlie �a LDB as . modules· are ready and
e l imfna:tes the , data dupl icati'on . Besid-e!i . it al lowis · the'· etE ?p;.;.)>y_-step
sol�ing 1 of NLP :problems' . · · · · · , · · ' , .· · .J · · ' '."- · · ·
.::.: '° Beetde!S , we must o-�ient the --�structure of the system· 21!{ ft · 1 25· -fS:rid
the structure- of /. the ·-l i-nauwar·e ;_·on system pragmat'fc!i{ which· iderri'ands to
investigate · · - · .- ' ·- · · ·

-- -
:

· · ·< · _ _ · ·- , _ , · ' :
- the ;specialis-t ., ... needs (- exp·rese-·inf ormation , signirl .:trafi!!lation ,

high-quality post-edited,. translation) ; · ·�·· _._ · · ·-..:,
·

- the detail s of'· information f low (document : t,y'j:>e!J /vof.uine ',of· ' dQcu­
ment and -'document · f low , sour·c"e lanauaae type!i , possibiI1:ty · of, pr_e:�· :, · :_ - -
inter� ·and: post-editing) , - , - - -- - · · · 0 - • , . :.• . _ · . - - - r �:: · ·:- _

- the pecul iarities of terminology and syntax _of a special ·ciomaln .
The organi !sation of LNP !lYf!te·m implie!l the systemic . princfple· ;;that

determines conditions of · ' - - · · ·
,�- the description of lexicon and morpholoay of sourc� and target : ·-

languages , - � · - _ · ·, · ·
- the description of source arid target languaaes syntaxis ;
- the interface between LOB and software . ·
In accordance with this we can establi sh the main principles of

HT system des hrn . They are a!l follows :
1 . The principle of modular and hierarchical organi sation . '

· - 2 . The principle of '!leparation of baste and problem-or.iented
modules of l inaua- and software .

3 . The principle of - the transfer as the translation process basis .
The main ,- feature of our LA de!lip -approach is a tend to separate

the aroup!l of interconnected processes in a compl icated ATP process
as a whole . This separation is to be done eo that -their interaction
both g•ive certain system stability for different input data and
al low to preeserve- open modular etructure . _

At - the same time these principal points in NLP 9ystem development
inevitably lead to dimention crisis . That ' s why in the eleborated
system the hierarchy of translation levels is clearly def ined . The
developme·nt of · the hierarchy etructure _of the sy!!t·em is realized
in a descending l ine , " f rom top to bottom" . Thi!I point - of view impl ies
the ' fol l6winci ·

- the exact analysis levels def i�ition and the levels hierarchy
ascertainment ;

,.

- the volume · and- aoal-s def inition , ·that means' the definition
of the aoal of eaoh analys is ·level ' from above , the · def inition.
of > information; volume - of a word entry and o-f information_:

- di stribtition in word �r�as ;
·the · a"1ailabil ity of· an open modular syetem . ·' ·- ·· ·

· -'' · In :'acctirdance"' with this · ·the procedure: of trans lat!
°
qn i s_ - devtd�� _ _ _

into subprocesses- flevel:s) each having its own · f\i'nctlonal' .value . ·
The . i:reeults of developine.nt ·of each level form the ·basis for · pro·cess :h1g
on a higher l evel . Thus a phrase level , a - sentence level , a· - fun�tional
component level , · a functional unit' level , a lexical unit ley� (- :�re ·
separated . Each · l ever · 1s connected with the tran.elation proce!i�L
Translation i s regarded here as a multi - level process , each of 'i tfr
procedures translates a component of the speci'al level :

54

It means that the source structures of each l�vel - are
transformed into output structures which may be modified on a higher
level in accordance whith the structur�l . features of thie higher
level .

Thus the translation process is simulated in the sy!$tem in ques­
t :ton as a composition of lexical . and semantic-syntactic translation
prooess . During the lexical translation process the , identifiE;:ation of
text and dictionary units and- the extraction of dictionary informa­
t.i'on from the lexicon blocks are carried out .. Durina eemantic-·s:vntact1o
process the interlang.uage structure tran�fer which · uses the whole
informat:l.on received on. the lexical t�an�lation phase and· J.0-in$ qp
grammar and semantic LDB b locks is carri�d out .. This tranafer procese
ls sj,m\;llated a!I an aggregate of verticaly conjuaated sub�yste•• • the
hierarchy of the components which are extraoted from the text .

The Linguist • � aim. in this conception of translation process
is to def ine· all the levels of tran$lation· and analysis. , to
formulate the set of charac-teristics which are necessary :for the
source structure modification into the . taraet structure . of the
definite level and to definite the specification of . the next : . . hiaher
levels ..

Proceeding from the stated idea of the NLP system design l�t • s
analyse the structure of AD and the reciprocal correlation of arammar
a.nd dictionary on each of the determined levels in the analysis and
translation of the .Predicate of the sentence .

During the verb entry elaboration it is neoessary to choose
t:he most important , key structural elements (which determines the
d i etionary volume) , and to state a set of rules for the singled out
l inguistic elements functioning (which determines the arammar
volume and the principles of parsing) .

For a multi language ATP system the choice of AD item is determined
both by word- and formbuilding principles different in specific
l anguagee as wel l as by the representation features of ·semantic text
l tems . Besides that the choice of a basic dictionary item i s determined
b.}r the tasks of · NLP system and the LDB universality level .

In the Soviet NLP systems the Russian lanauage i s used as a metalan­
guage for souroe text definition as wel l ae the taraet language . The
un ity of the target language enables to unify its definition for all
Nl,P systems from foreian languaaes into Russian and to unify the
pt·o�edures of morpholoaical synt.h�sis of a Rueeian wordf orms .

When we design MT system for translation from the Russian the
procedures of the morpholoaical analysis are unified as w&l l . In any
cas� machine morphology definition of the Russ ian language constitutes
a separate module and is used in all versions of the system .

S ILOD-MULTIS AD includes · source word dictionaries , which are
.organized as dictionaries of word usages and d!;ctionaries of stems ,
source phrase dictionariee , taraet stems def initions . and machine
morphology f o·r different lanauages .

Any AD that characterizes a specific. language includes a unive,rsal
structure set of dictionary items and machine morpholoa . All the source
language ADs have the same function and a united scheme oraanisation .

Thi� scheme allows to unify such procedures of the source languaae
text processing as a selection of mini.mum text unite , th�
morphological analysi� , the identification of the text with AD items·,
the organization of the dictionary information f ile .
Any lexical unit (LU) in AD acquires a desc�iption on the
morphological , syntactic , semantic and functional level s as an
appropriate characteristic set .

The basic version of the !SY!ltem includes dictionary items (DI) ,
which consist of the fol lowing charact-eristics :

-the head LU as it is : a stem , a word or a phrase ;

55

-the lexical and syntactic code (LSC) , which depends on the
typological features of the source language , its grammar and
parsing algorithms wpich are real ized in the system in question ;

-the tr·anslation , which is stored as references to the
corresponding target language items (etems and lexical and
grammatical characteristics) .
For analytical languages the most expedient is the introduction of

separate word. forms , as it al lows to increase the speed of the system
while the growth of the dictionary volume is negligible . For
synthetical languages machine stems are the head LU in the DI and the
input AD is filled up with machine morphology .

In order to reduce the memory volume for AD location we resort to
the arti f icial morphology transformation , i . e . to the insertion of the
agglutinative morphology . The essence of the latter cons ists in the
process of the selection in any word usaKe a machine stem and an aff ix
" sticking"to it .

The concept of the inserting of machine affix allows to elaborate
the Russian machine grammar , formed as a set of paradigms - machine
affix chains . Each typical paradigm correlates with the grammatical
characteristics of stems and the word formation mode . The link between
a machine stem and a paradigm is realized with the help of a special
code , which characterizes al l the word forms which can be generated
from the stem in question .

The use of this machine morphology allows to reali ze the wordform
generation proceduress in accordance with the lexical and grammatical
characteristics which are formed in the course of MT , and to make. thi s
procedure a universal one for any language pair .

Accordingly , the elaborated Russian stem dictionary perniits to
identify automatically the text words with dictionary items and to
ascribe their morphological characteristics accurately to case
homonyms . The result of morphological analysis , which is received
with the help of LDB and special lexical and morphological analysis
algorithms , i s a �ource for parsing and transferring alaorithms for
Russian-Engli sh MT .

A two-layer system of lexical and semantic coding is real ized in the
LOB of SILOD-MULTIS system . The upper level of this coding is
constituted by 30-element LSC which i s formed in DI immediately .
LSC formation. is created in accordance with the - coding tables
elaborated for every source system l anguages . This information can be
formed on-line .

The levels discussed above specify the lexical and grammatical
description of LU in LDB . The syntactic definition covers- the
functional LU ch�racteristics which determine their potential
capacities to accomplish a specific role in syntactical sentence
$tructure . The semantic definition which constitutes in a distinct ,
internal level i s concerned with the transfer from the linguistic
phenomena proper to the extralinaui stic ones . The formation . of thi s
def inition is based o n the structural investigation o f the domain ,
that is to be manifested .

Let ' s consider the structure of information on the example of verb
entry of French-Russian MT system , which is the base for parsing
system .

On the l exical level of the analysis the predicat.e equal to
the morphological verb-form is development . In · the French-Russ ian
MT system the verb i s presented in two ways : as word-forms for
the irregular and suppletive verbs (avoir , etre , aller , vouloir)
and as machine-stems with their standard paradigm .

Each source standard paradigm includes information sufficient to
establish a l ink with ·a def inite stem and a corresponding word entry
(item) . The analysis procedure is performed according to the

56

morphological tree .
On the functional unit level a verb and nominal seaments are

t dentif ied . The structures of this level include verb segments
�qual to the complex verb , - tense of the pronominal verbs and of the
vArbs in active and passive forms . The procedure i s performed on
the information contained. in various positione of theverb entry- :

-- the information of the _ verbs belonging to the auxiliary class
are contained in the LSC . Thi s information i s necessary for the
di scrimi nation of the _complex verb tenses . Position Six of the
LSC of the verbs .. aller " , "venir" contains the information
necessary for " Immediate "_ tenses identif ication ;

- the passive form identification footholds on Position Eiaht
(transitivity notes) , but for its translation the corresponding
rules 9f Pos ition Eleven are to be used . Thi s position contains
the information of the possibi lity of the shortened passive
participle form usage (" est ouvert" - opened) , the pronounal
form usage (" est prepare . . - - is prepaired) , the active form usaae
(" est 9uivi " - follows) .

The pronounal form i s tran9lated according to the information
of Position Twelve of the verb entry . The compound nominal ·
p�erlicate identification and tran9lation is performed on the basis
ol : Position Fourteen . ·

As to· the des igning of the grammar rules which· direct
the analysis and translation of- . impereonal construction it i s
pre�cribed by_ the information o f Position Fift�en .

. The inner verb class relations are of f ixed character .
Thi � makes it po!Ssible to present a ·verb segment as a f rame
i.ncludina all verb-connected elements · (the objective pronouns ,
the. negative and l imiting partycles) and verb elements (the
auxi liary verbs and the participles of a conjugated·. verb) .
During the analysie on the . functional segment level the
procedure of homonymy el imination i s ·real ized .

'fhe re!lult ' of the procedure on thie · level i s a chain of source
and target functional segment . Together with this the taraet
fun,jtional eepent (a verb group) gets a certain set · of indications
necessary for -the next level - the sentence level analysis .

'rhe peculiarity of verb elemente analysi s i9 their immediate
functioning on the sentence level , as to the nominal groups , they
hav«3 an add! tional staae - the stage of functioning components
formation . · This i s explained by the divers ity in the interrelations
of the nominal group elements .

Thus up to the beaining of the eentence level analy!S is the structure
of the v�rb functional sepent i s known , the waye of the given verb
structure presentation are defined ; the verb elements homonymy is
e l iminated . The designed output structure gets the total set of
indications necessary for it9 analysi s on th� sentence level .

This set i s compi led of the activ� form· verb entry inf-ormation :
- the indication of the � obligatory direct object according to

Pos ition·- Eight ; · -• -

- the indication of the. pqss ible information distribution according
· to Pos ition Six ;

- the indication of the �ossible object or adverbi�l modifier
according to Position Nine .

Thi s set i s . also compiled of the information a9cribed to the
pronominal verbs (the -type of government) ; according .to Pos ition
Thi rteen , . and to the passive form verbs according to Poeition Ten ;
and the · indications f.ormed in the translation process on the
preceding levels of the analysis (tense , number , per,9on and
others) of the compound verb conetructions in all mentioned forms .

By the sentence level analysis stage a number of " refusal s " ,

57

g0t on the previous leve l s , are piled because of various cause�
(ambiguity of the structure in a bi l ingual situation , unel iminated
homonymy , impossibil ity of the analysi s on the preceding stages of
n number of constructions (inf initive , passive , impersonal ,
pronominal) requiring the subject-object 'transfoormations for a
r �orrect translation) . Thus it is pos!Sible to pass over to the
choice of the translational structure of the whole sentence only
8ft9r the functional of the nominal and verb groups as sentence
m�mhere is def ined .

Whi le choosing the translational equivalent on the sentence
l �vel some diff iculties arise in the case of the input and output
::; t ructures inadequacy .

Then it is possible to resort to the subject�object
t . ransformations . The subject-object transformations may be realized
r� lther with the help of the sentence members rearrangement or by
I. he case forms of the target structure change or by the conversives
s�arch .

The conversives search practically leads to the inorease of
I . he number of the verb translational equivalents . Hore pr_oductive
i s the way of subject-object transformations , connected not with
the sentence members rearrangement but with the case relations
r�hange in the output structure . The resul te of the sentence level
0. l aboration is the obtaining of the output sentence structure .

On the phrase level the translation of the whole · complex
s�ntence is performed . Here the subordinate clause translation is
nor�ected . In particular the testing of the cor�ecit choice of the
(�:on .iunctione and relative pronouns , introducing the subordinate
c lauses . Thus for a correct choice of the translational. equivalent
,yf a..n homonymous form " que" (what , so that , which) it i s necessary
Lo resort to Position Eight of the word entry information . The
i. nformation contained in it gives an opportunity to
('hoose the core et form (indicative or subjunctive) for the
�rnbordinate clause verb translation . The same process takes place
•;1hen translatin,: the subordinate clause with "clout" . The correct
1�!hoice of the translational equivalentfor the whole subordinate
c l ause is realized only with the orientation to te indication
of Position Nine of the main clause verb .

thus the chosen point of view on the MT system elaboration
makes it possible to realize the whole volume of the research goals .
I n this circumstance that i s an indipeneable facil ity for the
des igning of the interaction of grammar and dictionary on �ach of
the system levels .

Hence thi s conception creates the necessary faciolities for the
deve lopment of the eystems forecasting the analysis of newly
� rising situations on the basis of the once elaborated situations .

W . J . Hutchins . Machine Translation : Past , Present , Future . Chichester :
El l is Horwood , 1 986 ; 382p .

Ju . Kondratieva , R . Piotrowski , S . Sokolova . Organization of the
Russian-Engl ish MT-al8orithm . SCCAC Newsletter , No 4 , Bowl ing Green ,
1 988 , p . 2 1 .

N . Maruyama ; H . Horohashi , S . Umeda , E . Sumita . A Japanese sentence
ana.lyzer . - In : IBM Journal of Research and Development , Vol . 32 , No 2 ,
March 1 988 , pp . 238-250 . -

S . Nirenburg(ed) . Machine Traslation : Theoretical and Methodological
I ssues . Cambridge : Cambridge University Press , 1 987 . -350p .

SILOD . A Russian-Engl ish Translation Support . New-Delhi : Elorg­
Computronics India , 1988 . - 16p .

58

February 13, 1991

Session C

BINDING PRONOMINALS
WITH AN LFG PARSER

Rodolfo Delmonte0

Dario Bianchi *
0 University of Venice - Department of Linguistics - Ca'
Garzoni Moro - San Marco 34 17 - 30124 VENICE(It)
*University of Parma - Department of Physics - Viale

delle Scienze - 43100 PARMA(It)
0E-mail: delmonte@IVEUNCC.bitnet

0V AX:MG9VEVB3@icineca
0Phone: 39-41-5298459/5204477/5287683

°FAX: 39-41-521 1559
Abstract

This paper describes an implemented algorithm for
handling pronominal reference and anaphoric control
within an LFG framework. At first there is a brief
description of the grammar implemented in Prolog
usin� XGs(extraposition grammars) introduced by
Pereua(198 1 ; 1983) . Then the algorithm mapping
binding equations is discussed at length. In particular
the algorithm makes use of f-command together with
the obviation principle, rather than c-command which is
shown to be insufficient to explain the facts of binding
of both Engl ish and I talian . Previous
work(Ingria,1989;Hobbs, 1978) was based on English
and the classes of pronominals to account for were two:
personal and possessive pronouns and anaphors -
reflexives and reciprocals. In Italian, and in other
languages of the world, the classes are many more. We
dealt with four: a.pronouns - personal and independent
pronouns, epithets, �possessive pronouns ; b.clitic
pronouns and Morphologically Unexpressed PRO/pros;
c.long distance anaphors; short distance anaphors .
Binding of anaphors and coreference of pronouns is
extensively shown to depend on structural properties of
f-structures, on thematic roles and grammatical
functions associated with the antecedents or controller
on definiteness of NPs and mood of clausal f-structures:
The algorithm uses feature matrixes to tell pronominal
classes apart and scores to determine the ranking of
candidates for antecedenthood, as well as for restricting
the behaviour of proforms and anaphors.

1. The parser
A parser is presented which works on Italian and

German, and binds pronominals within their utterance
leaving unsolved the reference of free pronouns. It is
divided into two main modules, the grammar and the
binding algorithm. The grammar is equipped with a
lexicon containing a list of fully specified inflected word
forms where each entry is followed by its lemma and a
list of morphological features, organized in the form of
attribute-value pairs . Once the word has been
recognized, lemmata are recovered by the parser in order
to make available the lexical restrictions associated to
each predicate. Predicates are provided for all lexical
�ategori�, noun, ':erb and adjective and their description
1s a lexical form m the sense of LFG. It is composed
both of functional and semantic specifications for each
argument of the predicate: semantic selection is operated

59

by means both of thematic role and inherent features.
Moreover, in order to select appropriately adjuncts at
each level of constituency semantic classes are added to
more traditional syntactic ones like transitive,
inaccusative, reflexive and so on. Semantic classes are
meant to capture aspectual restrictions which are crucial
in deciding for the appropriateness and adequacy of
adjuncts, so that inappropriate ones are attached at a
higher level.

Grammatical functions are used to build f­
structures and processing pronominals. They are crucial
in defining lexical control: as in Bresnan (1982), all
predicative or open functions are assigned lexically or
structurally a controller. Lexical control is directly
encoded in each predicate-argument structure.

Structural information is essential for the
assignment of functions such as TOPIC and FOCUS.
Questions and relatives, (Clitic) Left Dislocation and
Topicalization are computed with the Left Extraposition
formalism presented by Pereira(1 98 1 ; 1 983) .
Procedurally speaking, the grammar i s implemented
using definite clauses . In particular, Extraposition
Grammars allows for an adequate implementation of
Long Distance Dependencies: restrictions · on which path
a certain fronted element may traverse in order to bind
its empty variable are very easily described by allowing
the prolog variable associated to the element in question
- a wh- word or a relative pronoun - to be instantiated in
a certain c-structure configuration . Structural
information is then translated into functional schemata
which are a mapping of annotated c-structures: syntactic
constituenty is now erased and only functional attribute­
value pairs appear; also lexical terminal categories are
erased in favour of referential features for NP's
determiners, as well as temporal and modal features.
Some lexical elements disappear, as happens with
complementizers which are done away with and
substituted by the functional attribute SCOMP or
COMP i.e. , complement clause.

From a theoretical point of view, using Prolog
and XGs as procedural formalism we stuck on to LFG
very closely (see Shieber(l 985) ; Pereira &
Shieber(l984); Pereira(l985))even though we don't use
functional equations: in particular the Fusion
mechanism can be performed straightforwardly and the
Uniqueness Condition respected thanks to Prolog's
unification mechanism. It differs from LFG's algorithm
basically for dismissing functional equations: however,

functional schemata can encode any kind of information
in _particular annotated f-structures, keeping a clear
record of all structural relations intervening between
constituents. In particular, long distance dependencies
are treated using XGs, since they can easily encode
paths from a controller to its controllee, as well as
restrictions to prevent "island violations" . In this case,
we don't rewrite an empty category by means of a
rewriting rule, as in LFG, rather, we activate a
procedure as in Pereira(1983): moreover, the bindee or
controllee to be bound by its controller or binder is
assigned semantic and functional features by its
predicate so that semantic compatibility can be checked
when required, or else . features transmitted to the
controller once binding has taken place: Italian is a
highly structurally ambiguous or undeteTQ1ined language
(see Delmonte, 1985), so that semantic or thematic
checking seems necessary at this level.

2. Theoretical ·Background
Italian has three reflexive elements, one of which

is 'a possessive anaphoric pronoun, "proprio", than a
short distance reflexive pronoun, "se stesso", and a long
distance one "se" . The short distance reflexive "se
stesso" has a distribution that · is somewhat similar to
the English reflexive "himself' , though there are
differences between the two. It may corefere with a
coargument and its antecedent must appear in the same
minimal finite domain. On the contrary; with the long
distance reflexive "se" the antecedent must be a subject:
however it must be "governed" by a preposition, i.e. it
must be contained in an OBLique or. an ADJtinct PP.
As to the long distance possessive anaphoric pronoun
"proprio", it is subject oriented and clause bound, but in
lack of an adequate antecedent it may look out of its
clause (complement or adjunct or coordinate) for its
antecedent. In addition, there is the multivalued elite
"si" which may be assigned the following functions
"passivizing" , "reflexive", "impersonal or arbitrary": its
behaviour is determined strictly by the verb predicate to
which it is bound. None of the reflexive elements may
be used as SUBJects.

Italian has also four pronominal elements, one of
which a possessive pronoun, "suo", than a Null Subject
pronoun which ' behaves very clo�ely to the English
personal pronouns; finally a set of lexical independent
pronouns which are used for contrastive or emphatic
aims. All these pronouns look for their antecedent
outside their minimal containing clause. As to the
possessive "suo" , it behaves quite differently from the
corresponding English "his". "His" can be bound by an
OBJect coargument, when it is contained in the
SUBJect NP as for instance in "His daughter loves
John". This is not allowed in Italian, the SUBJect being
a strong domain for reference. The same applies to
"proprio", which being a possessive anaphoric pronoun
is sensitive to the grammatical function it is contained
in. However, there is one exception, and this is the case
constituted by psychic verbs, whose SUBJect is
characterized by a thematic role which is very low in the
hierarchy of theta-roles: it is an (emotional) Theme, as
for instance in "La propria salute preoccupa
ognuno/Gianni". Coreference between "proprio" and

60

"ognuno" is allowed, but is banned with "Gianni" as
antecedent. Clearly this does not apply to the
corresponding ''La sua salute preoccupa ognuno/Gianni"
where no such coreference is allowed.

As Dalrymple(1990) comments, "constraints on
anaphoric binding are lexically associated with each
anaphoric element. In fact generalizations have been
noted that deal specifically with the lexical form of the
anaphoric element: elements of a particular
morphological form are usually or always associated
with particular sets of anaphoric binding
constraints"(ibid.,2). It is interesting to note that such
functional notions like "subject", "tense" and "predicate"
are essential in defining these constraints, they all
"denote some syntactically or semantically 'complete'
entity" (ibid.3) . As Dalrymple comments, " In a
complete, consistent f-structure, a PRED denotes a
syntactically saturated argument structure; presence of a
SUBJ entails a predication involving some property and
the subject; and presence of TENSE indicates an event
that has been spatiotemporally anchored. The 'complete'
entities are the relevant domain for binding
conditions"(ibid.3) . · . ·

The grammatical function of the antecedent is part
of the antecedent constraints: an anaphor must be bound
or may be bound to a SUBJ ect. Also the domain in
which an anaphor must find its antecedent is always
constrained relatively to either the syntactic predicate of
the the anaphoric element is an argument, the minimal
domain with a subject containing the anaphor, or the
minimal tensed domain containing the anaphor. These
can be regarded as domain constraints. Moreover, we
may think of two kinds of binding constraints: positive
and negative constraints. In line with Binding Theory of
Chomsky(l981), 'reflexive' is an element which· must
be bound or must have an antecedent within some
syntactically definable domain. On the c.ontrary,
'pronominal' is an element that must be free, or be
noncoreferent with elements · in some syntactically
definable domain.

However if we look at 11proprio" , we see that it
must be bound in its minimal tensed domain, but in
case no suitable antecedent is available locally, it may
look outside and be assigned an antecedent or even

· receive arbitrary reading at certain semantic conditions,
definable in terms of tense, subject, aspect. As
Dalrymple suggests, there may a typology of
constraints rather than a typology of anaphoric
elements(ibid.,4). In previous works(Hobbs, 1978;
Ingria, 1989) only syntactic constituency and c­
command was considered, but recent work in linguistics
has clearly proven this approach to be insufficient. In
particular, both Chomsky's(198 1) and Manzini's(1983)
theory wrongly predict the grammaticality of sentences
such as,
1) *I persuaded/told the boysi that[S 1 each other'si
pictures were on sale.
Ii) The boysi thought that each other's picturesi were
on sale.
were the reciprocal anaphor each other lacking an
accessible subject in its Domain Governing
Category(we will not enter into a discussion of
Chomsky's binding principles nor in Manzini's

modifications - see Giorgi(1984)), its Sentence (S l) is
predicted to corefer freely, hence the object NP of the
matrix clause is treated as a possible antecedent on a par
with the subject in 1 i. Since it is wrong to say that
anaphors can corefer freely, what is needed is a theory of
Long Distance Anaphor, which is able to explains how
the anaphor is still subject to a number of binding
constraints.

Here crucially, the terms long-distance and short­
distance are not used in the way in which Ingria does,
and do not apply to pronouns: in particular personal
pronouns, cannot be treated as long-distance
anaphors(see, ibid.263) since they can pick up an
antecedent in any domain whatsoever, outside their
minimal domain, the clause in which they are
contained - including their matrix clause and the
discourse. On the contrary possessive anaphors and
reflexive anaphors which count as long-distance
anaphors must be bound by an antecedent before leaving
their matrix clause - in other words they cannot be
bound by a discourse-level antecedent. This applies to
lexical personal pronouns as well as to morphologically
unexpressed personal pronouns like PRO/pro which can
be bound in a superordinate clause or in the discourse.
However reflexives in constructions involving picture
noun phrases allow non-local antecedents, and rather
than being subject to syntactic constraints they seem to
obey discourse constraints as Pollard and Sag(1989)
discuss in their work.

In the same way it is possible to explain why in
the example 2) below, with an experiencing verb, the
anaphor contained in the subject NP can be bound by
the object which does not c-command it, showing that
this notion is not sufficient in itself to tell it apart from
3) where the same structural conditions do not apply:
2) Each other's picturesi pleased the boysi.
3) *Each other's wivesi murdered the meni
In other words each other seems to behave like a long
distance anaphor, i .e. a possessive pronoun like proprio
in Italian, with some exceptions. The lack of c­
command is clearly shown in case a quantifier appears
as experiencer,
2i. La propriai salute preoccupa ognunoi/One's health
worries everyone
In the same way the two Italian anaphors se, which
must always be governed by a preposition and se stesso
which can also be governed by a verb, seem to behave:
se is differentiated from se stesso by the fact that it can
look for a subject in a superordinate clause and by being
subject-oriented, i.e. [+SUBJECTIVE] . On the contrary
se stesso can be bound also by other grammatical
functions and is strictly local. Proprio, being a mixture
of both, can be bound by other grammatical functions
besides the subject, and can look for a binder in a
superordinate clause.

In addition, with psychic and experiencing verbs
the anaphor contained in the theme/subject can be bound
by the experiencer/object - the same does not apply to
the pair agent/subject & theme/object of transitive
verbs. In other words, candidates for antecedenthood
must be selected in accordance with their status as
grammatical function and thematic role. The same
applies whenever the experiencer is the subject of

61

raising verbs - when better antecedents lack - like
seem/sembrare.
12)a. ?*La propriai salute preoccupa MarcoJselfs health
worries Mark

b. La propriai salute preoccupa ognunoi/Self s health
worries everybody

c. La malattia della propriai moglie preoccupa molto
Marcoi/The illness of selfs wife worries Mark a lot

d. *La propriaj moglie odia Ginoi/ *La figlia della
propriai moglie odia Ginoi
13)a. Hisi wife hates Johni

b. *His fatheri hates/worries everybodyi
As these examples clearly show, quantifier status is a
very important parameter to assess the status of
candidates for antecedenthood. Also, language dependent
differences are clearly visible from the paradigm: Italian ·
possesses a wider range of pronominals and anaphors
and allows binding of a possessive within the same
clause as embedding becomes more deeply embedded.
However deep embedding does not rescue 12d: thematic
relations are the relevant criterion in this case. In the
corresponding English examples, binding is performed
at reversed conditions: not by a quantifier is the only
requirement

Belletti and Rizzi(1988) propose for these kind of
examples and for others that Principle A of the Binding
Principles be an "anywhere" principle (ibid.,3 14), in the
sense that it can apply at D-structure, where the subject
NP is contained withing the VP, thus justifying the fact
that the anaphor contained in the Subject is bound
before it moves to its S-structure position. Obviously,
this is also relevant for sentences like
14) Which picture of himselfi do you think [that Billi
likes e best]?
where Move-a has destroyed the well-formed binding
configuration by extracting (the constituent containing)
an anaphor from the c-domain of its antecedent. In a
framework like LFG, however, no such "anywhere"
principle could be made to work since categories which
must be bound are only visible at one level of
representation. In particular, syntactic variable are
visible at c-structure and this is where they must be
bound by their controller; lexical anaphors are only
visible at f-structure where they must be given an
antecedent in their nuclear f-structure. For an example
like 14 above, there is a variable binding operation that
takes P,lace at c-structure level between the FOCus wh­
phrase and the empty element in the embedded clause;
when we get to the next levet of representation, the
anaphor contained in the FOCus is part of a syntactic
chain, i.e. is included in a non-argument function, the
discourse function FOCUS , and is bound to an
argument function the OBJECT of the predicate "LIKE"
which also assigns it its theta-role. Since the argument
function is the place in which the FOCus will be
interpreted, they bear the same index they can be bound
under f-command, as we shall see.

3. F-command, operator binding
and backward pronominalization

As we said, in order to perform binding procedures,
all functional structures are transferred into a tree with

arcs and nodes, where arcs contain grammatical
function. Arcs also relate each function to its mother
node, allowing in this way to compute all functions
contained in an upper function: this is the crucial
notion for the definition of f-command dominia(see
Bresnan,1982).

The algorithm uses f-command rather than c­
command and obviation to prevent clitics and lexical
pronouns to look for antecedents in the same f-structure
in which they are contained. Formally it is expressed as
follows:
F-command
For any occurrences of the functions a, � in an f­
structure F, a f-commands � iff a does not contain �
and every f-structure of F that contains a contains � .
It is worth while reminding that f-structures coincide
with lexical forms, i.e. a predicate-argument structure
paired with a grammatical function assignment; in other
words an fname PRED whose fvalue is a lexical form.
Usually clause nuclei are the domain of lexical
subcategorization, in the sense that they make available
to each lexical form the grammatical functions that are
subcategorized by that form (see Bresnan, 1982:304). In
case also nouns are subcategorized for, the same
requirement of coherence and completeness may be
applied. Not all nouns however take arguments(see
Grimshaw, in publication). As a consequence, " . . . an f­
structure is locally coherent iff all of the
subcategorizable functions that it contains are
subcategorized by its PRED; an f-structure is then
(globally) coherent iff it and all of its subsidiary f­
structures are locally coherent. Similarly, an f-structure
is locally complete fff it contains values for all of the
functions subcategorized by its PRED; and an f­
structure is then (globally) complete iff it and all of its
subsidiary f-structures are locally complete."(ibid,.305)
In this sense f-structure is a notion absolutely parallel
to Chomsky's(l 986) Complete Functional Complex,
with the difference that in LFG grammatical functions
are all made available in the lexical form - in particular
the SUBJect -, whereas in a CFC this must be
stipulated.
As for obviation, it applies to big PROs, to little pros,
and · to lexical pronouns: it is expressed as follows and
has been incorporated in our feature system:
Obviation Principle
If P is the pronominal SUBJ of an obviative clause C,
and · A is a potential antecedent of P and is the SUBJ of
the minimal clause nucleus that properly contains C, P
is or is not bound to A according to whether P is + or -
U, respectively.
Two things must be noted: first, the principle predicts
that disjoint reference applies only with subject and not
with nonsubject antecedents in the matrix . To
distinguish reflexive pronouns which are subject-bound
clause internally, in a later paper(Simpson,Bresnan,
1 983), the principle has been substituted by the
presence of a lexical feature [+SUBJECTIVE] .
However, the conditions that must be met to bind "long
anaphors" - that is reflexive pronouns which can be
bound from a higher clause, and not necessarily by a
subject - include mode consideration [±UNREAL] , as
well as the notion of f-command. In particular, the f-

62

structure which contains the Antecedent may be the
same of the one containing the Pronominal, or else be
the one containing it.

A more elaborate framework results from Bresnan
et al.(1985) where pronouns which must obey the
Coargument Disjointness Condition (i.e. they may not
be bound to an argument of the same predicate) are
obviative and are marked [±NUCLEAR] , thus meaning
that they may or may not appear in the same syntactic
nucleus as their antecedent - an ADJunct is never part of
the nucleus so that a pronoun is allowed,
16a. John wrapped a blanket around him.

b. John wrapped a blanket around himself.
The English reflexive pronoun "himself" is
[+NUCLEAR] and must find an antecedent within the
same nucleus containing the pronominal and a
subjective function; while "him" is [-NUCLEAR]. The
ADJunct "around himself" however lacks a subjective
function and the anaphor must look for an antecedent in
the closer higher domain. However, English pronoun
"him" is not obviative like the corresponding Italian
one,and this fact, when added to the presence of two sets
of anaphoric pronominals, gives the rather different
distribution in the corresponding Italian sentences:
16i. Ginoi ha visto un serpentej vicino a luik/* if* j
(John has seen a snake near him)

ii. Ginoi ha visto un serpentej vicino a sei/*j (John
has seen a snake near "se")

iii. Ginoi ha visto un serpentej vicino a se stessoj/* i
(John has seen a snake near himself)
Thus, the relevant domain for anaphors and pronouns
contained in nominal f-structures is not the f-structures
directly containing them: this is due to their functional
nature and not simply to structural reasons . As to
reciprocals, reflexives and possessives anaphors are all
assigned SUBJECT function thus counting as possible
candidates for antecedenthood: but a conflict is raised
here by the referential nature of anaphors · which is
marked as nonreferential in their feature matrix, hence
unable to become antecedents of themselves. This
conflicting result works as a filter for anaphors at the
structural level, erasing their ranking as candidates for
antecedenthood but raising them out of their subordinate
f-structure into the upper one: in this way, anaphors
cannot be bound within their minimal f-domain but
must be bound in the upper one, pronouns are left free
to corefer.

At clause level, reflexive pronouns look for binders
in the same f-structure in which they are contained: . as
we said, two kinds of anaphors must be taken care of:
long anaphors like "se", and short anaphors like "se
stesso" . Only short anaphors can be bound by non­
subjects and only long anaphors can be bound in an
upper clause if no suitable binder appears in the local
minimal one. The possessive anaphor "proprio" on the
contrary partakes of features belonging to both short and
long anaphors: it can use both a short and a long
distance strategy; it is not SUBJective. We have
established then that the lexical feature [-SUBJCTV]
distinguishes short anaphors from long anaphors, which
are marked [+SUBJCTV] . Summarizing, we have two
sets of reflexive pronouns,
a. non-subjective reflexive pronouns[-SUBJCTV] "se"

b. subjective reflexive pronouns [+SUBJCTV] "se
stesso"
In addition, long distance anaphors like the possessive
"proprio" , non specified as to SUBJectivity, behaves
both as a long and a short anaphor, according to the
domain in which it can be bound, and is posaitively
marked for [+pro, +ana] .
3.1 Our Proposal
Our proposal takes into account the facts of Italian in
particular but also those of English, Norwegian and
other languages as discussed by En�(l 989) or
Dalrymple(1990). Binding is expressed by coindexation
of a controller a. and a controllee �. just like coreference
between antecedent and pronoun, in a domain F - a
complex f-structure, at the following conditions:
1 . � is an f-structure [+anaph] and is bound in its F­
domain
2. � is an f-structure [+pron] and is not bound in its F­
domain
The first part of the formulation accounts for the fact
that an anaphor is in complementary distribution with a
pronoun, i.e. that in the domain in which the anaphor
must be bound the pronoun must be free, or not be
bound. Now, the smaller domain, is an f-structure with
a SUBJect, be it an open or a closed f-structure.
Obviation could be used to tell pronouns or
pronominals obviative in a certain domain, an obviative
proposition, that is a clause nucleus; however either
formulations of obviation do not account for the
behaviour of NPs. No mention seems required for
referential expressions at this level, where no mention
is made about the antecedent.
3 . F is an F-domain iff

a. f-commands � in F and I is licensed
The second part of the formulation, says that the
structure in which the antecedent and the anaphor must
be bound is the one containing a SUBJ ect function -
this is derived from the licensing condition: in an NP
the F containing the head, in a clause, the F containing
the SUBJ ect of the clause, in an ADJ unct the one
containing the PRO, in an open function, the open
function itself. 4. F-command:

A function a f-commands a function � in F iff
a. a. is not contained in � , and � is not directly

contained in a., � = SUBJect
b. every f-structure of F that contains a. contains �
bl . � may contain a. in F iff a. is in a weak RD
c. a function � is directly contained in a function a. if

� is a subsidiary f-structure of a function a.
{ the subject is not accessible to itself - the remaining
arguments/adjuncts of the head Noun may be bound by
the subject; as well as the i-within-i reformulated}
In a., ·the antecedent/binder cannot be contained in the f­
structure of its bindee, in other words, the relation is
asymmetric; also the bin dee cannot be directly contained
in the f-structure of the antecedent but it must constitute
a separate f-structure. This is trivial, but requires the
formulation of a notion, "directly contained", which
divides f-structures contained in complements and
adjuncts of a head from their governors.
The b. clause only applies when the bindee is contained
in the same F that contains the binder, but the binder is

63

down in a separate f-structure which is open. However,
for the licensing conditions on F given below, obliques
are not regarded as possible F-domains.
5. Licensing conditions for an Indexing I of a. with �

a.: 1 . i. must be lexically free;
· ii. it is the SUBJect

iii. it is in a strong RD
iv. its 8 -role is superior in the following

hierarchy:
agent > benefactive > recipient/experiencer/goal >

instrumental >theme/patient > locative
(iii . differentiates between an ADJunct PP and a
predicative one, in the sense that the anaphor contained
in an adjunct PP is bound to the SUBJ ect of the higher
strong RD, whereas an anaphor contained in an open PP
is bound locally to the closer function).

2. otherwise,
A. a function � is free in the discourse if F is a

weak RD,
B. a function � is coreferent/cospecified in the

discourse if � is in a strong RD.
6. A function is lexically free iff,

- it is argumental
A function is lexically bound iff,
- it is 0 - empty, existentially bound argument
- it is an expletive (no PRED, but FORM)
- it is a quasi-argument

7. A R(eferential)-D(omain) is an f-structure specified
for referential energy:

i. it is strong iff a. it is a closed function;
b. it is referentially transparent

ii. it is weak iff a. it is an open function;
b. it is referentially opaque.

iii. Referential energy :
a. for clause nuclei(where a SUBJect is

obligatory) is expressed by atomic attribute-value pairs:
TENSE=[±REF] {past tense individuates a specific
reference time} , MODE [±REAL] {real mode is assertive
and implies the truth of the proposition-at least on part
of the speaker} , CLASS[±IMPLIC] { implicative verbs
imply the truth of their complements and may be
interpreted referentially - also factivity is included} ,
ASPECT [±PERF] {perfective aspect implies the
existence in the world of the object predicated by the
verb};

b. for NP heads of relative predicative. adjuncts
CARD= [±DEF/0], INDIV [±SPEC] , [±ref].

c. transparency obtains whenever the features have
positive value.

4. The algorithm for anaphoric
control

Two structuress are built from the outpu_t of the
grammar: annotated c-structures, i.e. a directed graph
which can be traversed primarily · through syntactic
constituents; and a list of the functional schemata
associated with semantic forms - in other words, all
PRED expressions with a list of semantic attribute­
value pairs, i .e. the f-structure mapped from the
previous structure, where pronominal binding is·
computed. The algorithm applies to a completely parsed
structure which is a graph translating the annotated c-

structure of LFG into the f-structure. The algorithm
uses the notions of domains used in LFG as well as
functional information as to the grammatical function
associated with a certain constituent, and its thematic
role. The definition of domains is based crucially on the
notion of f-structure and governors are derived from
grammatical function and thematic role, as we shall
describe in details below.
When a pronoun is encountered, the algorithm moves
up to the left of its minimal domain, the closest f­
s tructure containing it and stops in the first
superordinate f-structure; on the contrary, with
anaphors, the search is to the left within the same f­
struGture containing it, unless it is contained in a
SUBJect. It is worthwhile reminding that at f-structure
level the VP node disappears and an OBJect NP appears
at the same level of a SUBJect NP. F-structures
contained in a nominal f-structure behave differently due
to their grammatical function as discussed below.

In line with Bresnan et al(l 985) and contrary to the
proposal contained in Dalrymple(1990) we use
functional features as lexically specified properties of
individual anaphoric elements. These features both
account for and translate lexical category, in this way
directly triggering the binding algorithm that fires a
certain procedure whenever a [+anaph] feature 1s met in
the referential table associated to a certain f-structure.
Features al·so serve to restrict the type of possible
antecedents in terms of reference to the SUBJect; to set
up a hierarchy for antecedenthood in which possible
antecedents are ranked acc;_ording to their associated
grammatical function ancf thei;natic role; to unify
morphological features checking for agreement in
person and number, and selectional restrictions imposed
by inherent semantic features; to tell ·ap�t quantifiers
and quantified NPs which cannot be used as antecedents­
in backward pronominalization. A complete list of
features is given below.

Whenever an antecedent is found - selected by the
presence of the feature [+ref] - its ranking is checked as
well as its features for agreement: the interaction with
binding principles determines the possibility for an
OBJect referential expression to act as binder of long
distance anaphors. In other words, binding works by
default according to the.principle "bind anaphors as soori
as possible" . On the contrary pronominal coreference
imposes the algorithm to pick up a certain referential
expres·sion as possible candidate and to reject other
referential expressions owing to their ranking in the
hierarchy. Only one antecedent is selected for . [+ana] .
elements; with [+pro] more than one antecedent is
selected according to the rules and to the antecedents
available.
Whenever a pronoun is left unbound the algorithm adds
an instruction "resolve(x)" , which is used to trigger the
anaphoric binding algorithm at discourse level(see
Bianchi & Delmonte, 1989). The remaining pronouns
and anaphors are assigned a couple of indexes: their own
and the one of their antecedent and binder. Following
recent work by En�(l989) who discusses a pronominal
system for natural languages made up of seven classes,
we built one made up of four classes for Italian -
Chomsky's system based on two classes, anaphors and

64

pronouns is insufficient. To be added to these four
classes - which include anaphors and nouns(common,
proper) - there is one class for pleonastic lexically
unexpressed pronouns constituted by a verbal agreement
in Italian, deprived. of deictic import. Pronouns can be
lexically, specified or not, this being expressed by a
feature · introduce in Bresnan (l982) , [±MU]
(Morphologically Unexpressed). Thus, big PRO's
resulting from tense specification which can be subject
to anaphoric control - in LFG PROs are structurally or
lexically functionally controlled - are differentiated from
little pro's by the fact that the former are marked [+ana] ,

· and the latter are marked [-ana]. These are differentiated
from clitics and independent lexical_pronouns by the fact
of being [+MU], whereas the latter are [-MU]. Besides,
clitics are marked [+ana] , whereas tonic personal
pronouns are [-ana] . Epithets contain a deictic or a
determiner feature specification. Pronominal quantifiers
are marked [+pro] [±PART]. We give below a complete
classification in features of all pronominal and nominal
expressions as computed by the system, as a translation
of lexical category together with features from SPEC,
and NUMB�.
Table_ 2. C lass ification of p ronouns
anaphors and referential expressions 1 .PROs[+ref,+pro,+ana,-def,+ MU]
2.pros[+ref,+pro,-ana,+def,+MU]
3 .clitics[+ref, +pro, +ana, +def,-MU]
4.lexical pronouns[+ref,+pro,-ana,+def,-MU]
5.epithets[+ref,+pro,-ana,±def,-MU]
6.common nouns[+ref,-pro,-ana, +class,±def ,±sing]
?.partitive nouns[+ref, -pro, -ana, +class, +part, ±def,
±sing]
8.proper nouns[+ref,-pro,-ana,-class,±sing]
9 .quantified NPs[+ref,-pro,�ana,±def ,±part,±sing]
10. pron. quantifiers[+ref,+pro,-ana,±def,±part, ±sing]
I I .null det nouns[+ref,-pro,ana, +class, Odef, ±sing]
12. long anaphors [-ref,+pron,+ana,+SUBJCTVJ
13. short anaphors [-ref,-pron,+ana, -SUBJCTV]
Other features will be attributed to nouns by their
determiner: in particular articles are translated into
[±DEF] , numbers into [±CARD] , quantifiers into
[±PART]. The lack of determiner or the null determiner
is marked by the presence of the feature [O DEF]. The
feature [±PART] is also assigned when a prepositional
marker "di" is used to indicate an indefinite or ;i definite
unspecified quantity (corresponding to the English
"some, a (little) bit of'. This information is recorded
under a different functional node, the one named
SPECifier, and are listed here only for convenience.
In addition, common nouns are differentiated from
proper nouns by the feature +CLASS for the former and
-CLASS for the latter, indicating that common nouns
are used to denote classes or properties of individuals,
as opposed to proper nouns which should pick out
individuals. Moreover, common nouns are specified in
reference by definiteness, whereas proper nouns use
definiteness only redundantly - in Italian a proper noun
may be preceded by a definite article. When a noun is
recognized as proper, this feature is discarded. Proper
nouns are assigned a higher score than common nouns,
as candidates for antecedenthood. Cardinality is marked

by Number, which adds the information that a Singular,
Definite, Specific noun phrase is to be interpreted as a
unary set of the class of objects or individuals denoted
by the noun, i.e. there is only one mem�r. referred to
by the noun phrase in universe of discourse that we
want to pick up. Plural noun phrases are treated
differently, i.e. as quantified NPs.

5. The Basic Algorithm
We list here below the basic algorithm in its

Prolog formulation: as we said previous it applies on f­
structures which are compiled as a directed graph, and
accessed by an algorithm with performs graph search.
The complete algorithm is made up of about 4000 lines
of program in Prolog.
F-structure
f_structure(Index,F _R,Node) :­

node(Node):F _R:index:Index.
F-command
f_command(Alpha,Alpha_Funct,Beta,Level) : ­

f-structure(Beta,F ,N), F=subj/_,
node(Nl):Fl :node(N), Fl = subj/_,
node(N2):F2:node(Nl),
f_c(N2,F2,Alpha,Alpha_Funct,O,Level_x),
Level is Level_x + 2.

f_command(Alpha,Alpha_Funct,Beta,Level) : ­
f-structure(Beta,F ,N), F=subj/_,
node(Nl):Fl :node(N), Fl \ subj/_,
f_c(Nl ,Fl ,Alpha,Alpha_Funct,O,Level_x),
Level is Level x + 1. · f_command(Alpha,Alpha_Funct,Beta,Level) : -

. f-structure(Beta,F ,N),
FI \::: subj/_,

f_c(N,F,Alpha,Alpha_Funct,O,Level_x).
f_c(N,F,Alpha,Alpha_Funct,0,0) :­

node(N):Alpha_Funct:index:Alpha,
Alpha_Funct \::: F.

f_c(N,F,Alpha,Alpha_Funct,Lev ,Lev) :- Lev > 0,
node(N):Alpha_Functindex:Alpha.

f _c(N ,F ,Alpha,Alpha_Funct,Lev ,Level):-
node(Nl):Fl :node(N),Lev 1 is Lev + 1,

f_c(Nl ,Fl ,Alpha,Alpha_Funct,Lev 1 ,Level).
And this is how the main algorithm is triggered by the
presence of a certain feature in the referential table
associated to a certain f-structure node:
resolve_anaphoric(Net,Index,WeightedList) :-

node(Node):index:Index,
node(Node):ref_tab:List,
member(+ana,List),

bagof (Outref ,refer(Node,List,Outret),Listret),
maplist(scoring,Listref,WeightedList).

resolve_pronoun(Net,lndex,WeightedList) :­
node(Node):index:Index,
node(Node):ref_tab:List,
member(+pro,List),

bagof (Outref ,refer(Node,List,Outret),Listret), · maplist(scoring,Listref,WeightedList).
Now, consider how "se stesso" is bound:
refer(Node,[-ref ,-pro,+ana,+me] ,Ante/N) :­

node(Node):index:Ind,

65

f-command(Ante,F _ante,Ind,N),N = 0,
F _ante = subj/_,
! .

refer(Node,[-ref,-pro,+ana,+me],Ante/N) :­
node(Node):index:Ind,
f-command(Ante,F _ante,Ind,N),N = 1 .

Two examples are shown here: the first i s a simple
case of a possessive anaphor contained in a SUBJect NP
of a psychic verb: f-command is used to raise the
"proprio" out of the SUBJect f-structure and the
presence of an OBJect Experiences triggers binding. In
the second example the long-distance anaphor "proprio"
is contained in the SUBJect NP of a sentential
complement: only the SUBJect of the higher clause is ·
chosen as antecedent; the nuclear NP OBJect is discarded
from the list of possible candidates because it is an
Unaffected Theme (in case it were an Experiencer it
would have been included).
EXAMPLE 1 . La salute della propria moglie preoccupa
Mario (the health of "propria" wife worries Mario)
f-structure
Net ex33
index:f2
pred:preoccupare mode:ind
tense: simple/pres
sem_catpsych/emot
subj/causer_emotref_tab: [+ref,-pro,-ana,+class]

index:np34
pred:salute
sem_catstate
gen:fem
num:sing
spec:def:+
subj/posses:ref_tab: [+ref,-pro,-ana,+class]

index:np35
pred:moglie
sem_cat:human
gen:fem
num:sing
spec:def:+

subj/posses:ref_tab: [-ref, +pro, +ana,-mu]
index:np36
pred:proprio
gen:fem
num:sing

obj/experiencer:ref_tab: [+ref,-pro,-arui,-class]
index:np37
pred:mario
sem_cat:human
gen:mas
num:sing
spec:def:0

OUTPUT OF THE ANAPHORIC BINDER
Net index: ex33
TO RESOLVE: np36
CONTROLLED: nil
PRONOMINALS: np36[-ref,+pro,+ana,-mu]
F-COMMAND: np37/2
Possible antecedent/s of np36: [np37/101]

EXAMPLE 2: lui ritiene che la propria sorella ami
Gino (he believes that "propria" sister loves John)
f-structure
Net ex42
index:f2
pred:ritenere
mode:indic
ten_se:simple/pres
sem_cat:attitude
subj/agent:ref_tab: [+ref,+pro,-ana,-mu]

index:np4
pred:lui
sem_cat:human
pers:3
gen:mas
num:sing
case:[nom]
spec: def:+

obj/prop:index: f 4
pred:amare
mode:subjunct
tense:simple/pres
sem_cat:state/emot
subj/experiencer:ref_tab: [+ref ,-pro,-ana, +class]

index:npl l
pred:sorella
sem_cathuman
gen:fem
num:sing
spe.c:def:+

subj/posses:ref_tab: [-ref ,+pro,+ana,-mu]
index:np12
pred:proprio
gen:fem
num:sing

obj/theme_unaff:ref_tab: [+ref,-pro,-ana,-class]
index:np13
pred:gino
sem_cathuman
gen:mas
num:sing

spec.:def:0
OUPUT OF THE ANAPHORIC BINDER
Net index: ex42
TO RESOLVE: np12,np4
CONTROLLED: nil
PRONOMINALS: [np4/[+ref,+pro,-ana,-mu],np 12/[­
ref,+pro,+ana,-mu]]
EXTERNAL(ex42,np4)
Possible Antecedent/s of np4: none
Possible Antecedent/s of np12: [np4/30]

6. More complex structures
6.1 Assigning Antecedents to Obviative
Pronouns

Obviative pronouns in Italian can be subdivided
into three different kinds: clitics, null Subject pronoun,
lexical pronouns. Clitics are to be differentiated from
lexical pronouns by two basic properties: they are
unstressed and they can be bound in the syntax by a
TOPic function. In case they are unbound at c-structure,
they can be assigned an antecedent at f-structure. Lexical
pronouns are always stressed, and can never be long-

66

distance bound in the syntax. However, they can be used
in doubling a local NP, as follows,
20) II presidente ha promosso un candidato che lui, da
semplice commissario, aveva bocciato.

/ The president passed a candidate which he, as a
mere commissioner, had failed.

Lexical pronouns can also be used accross
sentences or within the text, for contrastive or emphatic
aims(see Bresnan & Mchombo(1987) on Chichewa).
Finally, the Nufl Subject is lexically empty and
behaves very closely to clitic pronouns: it can be bound
in the syntax or be unbound and be assigned an
antecedent at f-structure. Obviously, it cannot be
stressed nor be used for emphatic, contrastive use nor
for doubling. Being lexically empty makes it somewhat
different from clitics in relation to the binding domain:
it can be bound from within a complement clause or an
adjunct clause by a lexical pronoun, but not by a
common or proper Noun.
21) a. pro Ha detto che lui non verra. / pro said that he
will not come.

b. pro Ha detto che Mario non verra.
c. pro Ha parlato di guerra perche lui ama le armi. /

He has told about war because he likes weapons.
d. pro Ha parlato di guerra perche Mario ama le armi.

Only the a.- c. examples allow for coreferentiality
between little pro and the lexical pronoun in the COMP
- the lexical pronoun being also free to look for an
external antecedent in the discourse. The same -would
happen in case a clitic was introduced in place of the
lexical pronoun,
22) pro Ha parlato di guerra perche Mario lo conosce. /
He told about war because Mario knows him.
If we front the adjunct clause, both the lexical pronoun
and the clitic are available as antecedents of little pro;
and also the common or proper Noun is available, since
it f-commands it. However, the lexical pronoun is only
available if a list of referents is intended and not to
continue the discourse topic.
22) a. Poiche pro ama le armi, lui ha parlato di guerra.

b. Poiche pro ama le armi, la polizia lo controlla. /
Since pro loves weapons, the police controls him.

c. Poiche pro ama le armi, Mario ha parlato di
guerra.
It is a well known fact that adjunct clauses can be
attached to a lower level, within a complement clause or
they can be fronted therein, as in the following
examples:
23) a. Gino ha detto che Maria verra all'incontro dopo
PRO aver parlato a Tom. / John said that Mary will
come to the meeting after having talked to Tom.

b. Dopo PRO aver parlato a Tom, Gino ha detto che
Maria verra all'incontro. / After having talked to Tom,
John said that Mary will come to the meeting.
The difference between a. and b. lies both in semantic
interpretation and in the availability of antecedents for
big PRO. As to semantic interpretation, the adjunct
clause modifies the complement predicate in the a.
example, and the matrix predicate in the b. example. As
to binding of big PRO Mary will be the antecedent in a

- example and John in the b. -- example. The skeletal f­
structures for the two examples captures the different
behaviour of f-command in a straightforward way:

23a. SUBJECT: Pred: Gino
PRED: DIRE <SUBJ, COMP>
SCOMP: Pred: VENIRE <OBJ> SUBJ

OBJ: Pred: Maria
SUBJ: expletive pro
ADJUNCT: Pred: Dopo

SCOMP: Pred: P ARLARE <SUBJ ,OBLgoal>
SUBJ: PRO
OBL: Pred: Tom

23b. ADJUNCT: Pred: Dopo
SCOMP: Pred: PARLARE <SUBJ,OBLgoal>

SUBJ: PRO
OBL: Pred: Tom

SUBJECT: Pred: Gino
PRED: DIRE <SUBJ, COMP>
SCOMP: Pred: VENIRE <OBJ> SUBJ

OBJ: Pred: Maria
SUBJ: expletive pro

In the a. example only Mary can be reached by f­
command from the position of big PRO; in the b.
example on the contrary, only John can be reached. The
same behaviour can be predicted for little pro in tensed
clauses. However, note the contrast with corresponding
English complex sentences:
24) a. John beats her because he hates Mary

b. Gino la picchia perche egli/pro odia Maria
c. Gino la picchia perche Maria odia il gatto / John

beats her because Mary hates the cat
As usual we indicate with italics purported coreference
between the two items; now, whereas · in the English
example coreference between her in the matrix and Mary
in the subordinate is possible, no such thing may apply
to the corresponding Italian version, the b. example.
Only the c. example allows it because the NP coreferent
with the clitic pronoun is a SUBJect. Now, why the
SUBJect should be privileged over the OBJect NP as
possible antecedent for pronouns contained in a preposed
subordinate clause? This is only explained in a theory of
anaphora in discourse, and in particular by the fact that
SUBJ ects are naturally used as topic of discourse or else
some non canonical constituent order must be
introduced in the sentence. For instance, in
25) a. Dopo che pro e arrivato, Maria ha sgridato Franco
/ After pro arrived, Mary scolded Frank

b. Dopo che pro e arrivato, e stato sgridato Franco
c. Dopo che pro e arrivato, Maria lo ha sgridato

coreference for little pro is only allowed in c.: the
passive form with a postposed SUBJect does not permit
the NP to be used as coreference, being computed as a
FOCus. Being a FOCus requires a new topic of
discourse to be set up and the previous references to be
discarded.This is clearly shown by the specular structure
in,
26) a. Dopo che e arrivato Gino, pro si e seduto. / After
has arrived John, self sat down.

b. Dopo che Gino e arrivato, pro si e seduto. / After
John has arrived, self sat down.

c. Dopo che pro e arrivato, Gino si e seduto. / After
pro has arrived, John sat down.
where coreference in a. between Gino and pro is blocked
because Gino is a focussed constituent and ARRIV ARE
has a lexical form with a focussed OBJect at lexical
level(see Bresnan and Kanerva) . When the

67

OBJect/fheme is used as a SUBJect/fheme, however,
coreference between the proper noun and the pro is
possible, as shown by b.; the same applies to pro in the
preposed adjunct clause and the proper noun as SUBJect
of the main clause.
In order to cope with these facts, the algorithm must
compute Obviation and from the obviative clausal
structure see whether it can access another clausal
structure at the same level or at a level below the one in
which it is contained. This is done in our parser by a
special procedure called "contains",
contains (indexl,index2) :-

node(nodel):index:indexl,
node(nodel):path(Bo):index:index2,
node(node2):index:index2.

contains(indexl ,index2) :­
node(nodel):index:indexl,
node(nodel):path(Bo):index2,
node(node2):index:index2.

Here below we list the program predicate which takes
care of little pros and possible antecedents contained in
another clause:
refer(Net,Ind,[+ref,+pro,-ana,-me] ,Ante/N):-

node(node):index: Ind,
node(node):cat:features,
node(node):num:nuinber,
find_gender(node,Gen),
f_command(NAnte,F _ante,Ind,N),N > 0,
f_structure(NAnte,F _ante,N_ante),
not contains(NAnte,Ind),
node(N_ante):F _sup:node(N2),
node(N2):F/R:index:Ante,
not node(N2):pathU:Ind,
write(Ante/N),nl,
node(N2):F/R:cat:Cat,
features(Cat,features),
node(N2):F/R:gen:Gen_ante,

((Gen_ante = Gen) ; (Gen = nil} ; (Gen_ante = nil)),
node(N2):F/R:num:Num_Ante,
number = Num_Ante,
node(N2):F/R:ref_tab:List,
poss_ante(lnd,Ante,List),

non_referred_in(Ind,Ante).
6.2 Arbitrary or Generic Reading

All [+ana] marked pronouns do not possess
intrinsic reference, being also marked [-ref] and two
consequences ensue: they must be bound in their
sentence and cannot look for antecedents in the
discourse, unless there are additional conditions
intervening, i.e. tense must be specific and not generic,
and so on; they can be assigned ARBITRARY
interpretation, when a controller is lacking, and a series
of semantic conditions are met as to tense specification.
Since ARBITRARY interpretation is a - generic
quantification on events this can be produced with
untensed propositions or tensed ones, but with no
deictic or definite import as shown by:
20)a. I think that [prop[+arbitrary]killing onself is
foolish]

b. I think that [prop[+definite]killing onself has
been foolish
Possessives pronouns are obviative according to
whether they are contained in a predicative or open

function. A further argument may be raised for Arbitrary
PROs which in LFG are introduced each time the clause
does not contain a controller because being a closed
function it does not need one: we quote here
Bresnan(l 982,345) example, in Italian,
24) E' difficile andarsene./It is difficult to leave
where the infinitive "to leave" may be analysed as an
extraposed COMP bound to the SUBJect. The PRO
generated as SUBJect of the predicate "LEA VE" receives
[arbitrary] interpretation. In general, reflexive pronouns
lacking the ability to refer independently receive their
reference from their binders: in case no binder is
available reflexive pronouns are assigned arbitrary or
generic reference. This may be detected both from
structural cues and from properties associated with the
predicate of the matrix clause. In 24 the copulative
sentence is a typical case in question: the adjective
"difficult" may or may not .select a binder for the
infinitive · which should appear with the preposition
" for" , thus turning the PRO from arbitrary to
controlled,
24i. E' difficile per Gino andarsene/It is difficult for
John to leave.
A similar case may be raised for anaphoric pronouns,
whenever they are contained in a subject NP, as
follows,
25) La propriaarb liberta e una cosa importante/One's
freedom is an important thing
The sentence contains a generic statement absolutely
parallel to . the reading of 24 ; the same happens
whenever the anaphoric pronoun is contained in the
subject position of a closed function like a sentential
complement,
26) Martai pensa che la propriai/arb liberta sia una cosa
importante/ Martha thinks that one's freedom be an
important thing
in a parallel way to the·behaviour of PRO
26i) Mary thinks that [PRO to behave oneself is
important.
We may note at this point the fact that English
possessive pronouns behave in a different way from
Italian ones: in particular "his" may be bound by a
quantifier through PRO, and it may be taken to corefer
to a non c-commanding NP, differently from what
happens in Italian,
27) *La suai salute preoccupa ognunoi
28) PRO Knowing hisi father pleases every · boyi -:t
Conoscere proprioi/suox padre fa piacere a ognii ragazzo
29) Risi mother loves Johni -:t Suax madre ama Ginoi
In particular, "his" seems to possess the ability to be
bound by quantifiers like "proprio" does: in 28 the
Italian version becomes analogous to the English one if
we substitute "proprio" to "suo". In other words, Italian
has two separate lexical pronouns for bound and
unbound reference whereas English has only one and the
conditions on binding are simply structural whereas in
Italian they are both structural and lexical.The
peculiarity of long-distance anaphors emerges from the
dependency of binding on the presence of a feature at
sentence level, the one related to the mood of the
subordinate clause. In particular,- as also detected in
other languages (cf. Zaenen, 1983) the choice of
Indicative vs. Subjunctive Mood is relevant for the

68

binding possibilities of anaphors contained in the
clause. The presence of the Indicative, in the most
embedded clause, the one containing the long-distance
anaphor seems to block binding from the matrix clause,
as shown in:
30) Ginoi pensa che tu sia convinto che la propriaif* arb
famiglia sia la cosa piu importante.
3 1) Ginoi pensa che tu sei convinto che la propria*ilarb
famiglia e la cosa piu importante. /John thinks that you
be/are convinced that self s family be/is the most
important thing.
where we changed subjunctive in 30 to indicative in 3 1 :
only 30 allows binding, hence bound reference, and
disallows arbitrary reference; on the contrary 3 1 only
allows arbitrary reference i.e. no reference at all. As
discussed at length in Zaenen(1983) the choice of the
mood is bound by the matrix verb which permits only
certain kind of referential acts to be realized by the
complement clause. Being lexical, this information can
be easily transmitted in features to the c-structure and
percolated according to the usual LFG conventions(see
Gi_orgi,1984, for a lexical typology of the governing
verbs).
The same applies to derived nominals like "suspicion"
which can be the head of a , sentential complement,
inducing long-distance binding or preventing according
to the presence of [+BOUND]. feature,
32) Ginoj ritiene che ii sospetto di Carloj che la
propriaijj sorella .sia un assassino abbia determinato la
sua condanna.
33) Ginoi ritiene che l 'affermazione di Carloj che la
propria*i/j sorella e un assassino abbia determinato la
sua condanna.

/ John believes that the Karl's suspicion that self s -
sister be/is a murdered had detenilined his/her trial.
6.3 Quantifiers and quantified · NP's as
antecedents

As a first approach to the problem of quantifiers,
the algorithm takes care of precedence whenever a
quantifed NP is indicated as po_ssible antecedent for a
pronoun. Quantified antecedents are individuated by the
presence of the feature ±part in SPEC, as follows,
34) quantified(Ante) :� node(N):index:Ante,

node(N):spec:part:_�
This predicate is used for quantified antecedents in. a
simple declarative with psychic verbs: as discussed
above� binding of a possessive long distance anaphor
can take place from a quantified ·antecedent contained at
clause level.

However, when we want to deal with quantifiers
and quantified NPs as possible antecedents of little pros·,
clitics or independent pronouns a different procedure
must be called in, and is the following one,
35) a. non_quantif(Ante) :- node(N):index:Ante,

not node(N):spec:part:_, ! .
b. non_quantif(Ante) :- node(N):ihdex:Ante,

node(N):spec:part:X�
(X = '-'),
node(N):spec:def: '+'.

This procedure is integrated into the predicate for
referring clitics, in particular as follows,
36) refer(Net,lnd,[+ref,+pro,+ana,+me],Ante/N):-

node(node):index:Ind,
node(node):catfeatures,
node(node):num:number,
node(node):gen:gender,
find_gender(node,Gen),
f_command(NAnte,F _ante,Ind,N),N > 0,
f _structure(N Ante,F _ante,N_ante),
not contains(NAnte,Ind),
node(N_ante):F _sup:node(N2),
node(N2):F/R:index:Ante,
non_quantif(Ante) ,
not node(N2):pathU:Ind,
node(N2):F/R:cat:Cat,
f eatures(Cat,f eatures),
node(N2):F/R:gen:Gen_ante,
node(N2):F/R:num:Num_Ante,
number = Num_Ante,
node(N2):F/R:ref_tab:List,
poss_ante(lnd,Ante,List),

non_referred_in(Ind,Ante).
In this way we can account for lack of coreference
between a clitic pronoun contained in a fronted
subordinate clause and a quantified NP contained in the
main clause, as in the a. example
37)a. When I insulted him, every student went out of
the room.

b. When I insulted him, John went out of the room.
as opposed to the b. example, where coreference is
allowed as usual. Here below we show the f-structure
and the anaphoric binding processing results of the two
sentences:
Net ex28
index: f1
main: index:f5

pred:go_out
mood:indic
tense:past/simple
cat:extensional
aspect:accomplishment
subj/agent:ref_tab: [+ref,-pro,-ana,+class]

index:np6
pred:student
gen:mas num:sing
pers:3rd
spec:def:0

part:­
quant:every

oblique/locative:ref_tab:[+ref,-pro,-ana,+class]
index:np7
pred:room
gen:mas
num:sing
pers:third
spec:def:+

adj:pred:when
subordinate_clause:index:B

pred:insult
mood:indic
tense:past/simple
cat: evaluative
aspect:achievement
subj/agent:ref_tab: [+ref,+pro,-ana, +me]

69

index:np4
pred:I
gen:nonspec
num:sing
pers:first
spec:def:+

obj/theme_affectref_tab: [+ref,+pro,-ana, +me]
index:np5
pred:him
gen:mas
num:sing
pers:first
case:acc
spec:def:+

OUPUT OF THE ANAPHORIC BINDER
Net index: ex.28
TO RESOLVE: np5
CONTROLLED: nil
PRONOMINALS:[np5/[+ref,+pro,-ana,-mu]]
EX1ERNAL(ex28,np4)
Possible Antecedent/s of np4: none
Net ex29
index: fl
main: index:f5

pred:go_out
mood:indic
tense:past/simple
cat:extensional
aspect:accomplishment
subj/agentref_tab: [+ref,-pro,-ana,-class]

index:np6
pred:John
gen:mas
num:sing
pers:3rd
spec:def:+

oblique/locative:ref_tab: [+ref,-pro,-ana,+class]
index:np7
pred:room
gen:mas
num:sing
pers:third
spec:def:+

adj:pred:when
subordinate_clause:index:B

pred:insult
mood:indic
tense:past/simple
cat:evaluative
aspect achievement
subj/agent:ref_tab: [+ref,+pro,-ana,+me]

index:np4
pred:I
gen:nonspec
num:sing
pers:first
spec:def:+

obj/theme_affect:ref _tab: [+ref, +pro,-ana, +me]
index:np5
pred:him
gen:mas
num:sing
pers:first

case:acc
spec:def:+

OUPUT OF THE ANAPHORIC BINDER
Net index: ex29
TO RESOLVE: np5
CONTROLLED: nil
PRONOMINALS: [np5/[+ref,+pro,-ana,-mu]]
EXTERNAL(ex29 ,np4)
Possible Antecedent/s of np4: [np6/13 l]

This notion of binding relevant for long-distance
anaphors is also important for quantifiers as discussed in
another work(Delmonte, 1989), in particular the fact
that pronouns embedded in an Indicative or [-BOUND]
clause need referential antecedents and not arbitrary or
generic ones, as shown by the pair
34) A woman requires/demands that many/every men be
in love with her, *and John knows her.
35) A woman believes that many men like her, and
John knows her.
in 34, in English as in Italian, the indefinite "a woman"
is computed as generic in the main clause and the same
happens to the pronoun "her" in the complement clause
introduced by "that"; but the conjoined sentence is
expressed in the indicative and requires a specific woman
to be picked up for referring the pronoun "her", which
in this case must be computed as referential and not as
generic, so the sentence is ungrammatical. The opposite
happens in 35, where the indefinite is taken to refer to a

. specific woman in the discourse, and the two occurrence
of "her" to be bound to this individual. As clearly .
shown, the referential capabilities of pronouns are
tightly linked to the ones of their antecedent: but the
opposite may happen, i.e. the -referential abilities of the
antecedents are bound by those of the pronouns, and
these in turn are conditioned by the referential nature of
the RD- ·referential domain - in which they are
contained: an [-BOUND] domain is one containing
indicative mood and reference is free, whereas a
[+BOUND] domain is one containing a subjunctive
mood and reference not free but locally bound, for anaphors, or lacking in referential import for lexical
pronouns.

7. Chains and Binding
As we know, when at c-structure level a syntactic

variable is bound to a TOPic or a FOCus a chain is
created, which essentially is a couple of f-structures
carrying the same index. One of the two members of the
chain - the tail, is the controlled or bound element: this
is an argument function and carries a theta-role; on the
contrary, the head of the chain, the controller or binder
is a non-argument function and has no theta-role. At f­
structure level, the chain counts as a single element, in
other words, the head of the chain plays no independent
referential role from its tail, which is the argument
function. Thus a short anaphor can be bound by the tail
of a syntactic chain if contained in the same clause. On
the contrary the head of the chain, which is contained in
the higher domain cannot be the antecedent of anaphors
or pronouns. The head of the chain, in turn, can contain
a referring expression, a quantified expression, a
pronoun or an anaphor: in the latter case, the tail cannot
act as an antecedent, being conindexed with an element

70

which must be itself bound in some domain. The
domain is the one of the tail to which the anaphor
contained in the head of the chain must be bound. We
shall discuss some examples, now:
36) a. Parlando di suo suocero, Nixon ha ordinato a
Bush, che lo ascoltava, di lasciarlo perdere.

/ Talking about his brother-in-law, Nixon ordered
Bush, who listened to him, to let him go.
b. A se stesso Franco crede che Tom non pensa e mai.

/ Himself Frank believes that Tom never thinks to.
c. Parlando di se stesso, Nixon ha detto a Bush che

ama la propria famiglia. / Talking about himself, Nixon
told Bush that he loves his own family.
Consider a and the status of suo/his: it is contained in
an OBLique/theme and as such it can either be bound to
the local SUBJect, big PRO, which in turn being
contained in an untensed adjunct is bound under f­
command by the SUBJects of the matrix, or be free and
be bound to the coargument of the matrix SUBJect, the
OBJ2 "Bush". Now consider lo/him which is contained
within the non-restrictive relative clause: being a
pronoun it is obviative within its minimal clause and
must look in the higher f-structure, the matrix clause.
At this level, two possible antecedents seem to be
available: Nixon and Bush. However, Bush is already
bound to the relative pronoun which is the SUBJect of
the relative clause that contains the pronoun lo. Thus, it
must be eliminated from the list of the possible
candidates. In example b. a short anaphor se
stessa/herself has been left dislocated and is thus bound
to its bindee in the embedded clause: since the anaphor
requires a binder, and the interpretation of the anaphor is
derived from the location of its bindee� the antecedent of
the anaphor should be found in its minimal clause. Tom
is thus the binder of the anaphor and not Frank.
Finally, in the c. example, the anaphor contained in the
adjunct clause is bound only to big PRO and this in
turn is anaphorically controlled by the SUBJect of the
matrix, Nixon. Differently from the pronoun in the a.
example, the anaphor cannot pick Bush as its possible
antecedent. Now consider propria/his own: the reportive
verb of the matrix dire/say requires the matrix SUBJect
to bind the lower little pro and thus to act as antecedent
for the possessive anaphor.

The main predicate which spots chain members
contained in a separate f-structure from the one
containing the variable and the reflexive or pronominal
element is non_referred_in, which we list here below:
non_referred_in(index,Ante) :-

pair_level(index,ListPair),
maplist(find_ind,ListPair ,Listlnd),

not referenced(Ante,[] ,Listlnd).
referenced(N,Path,ListPair) : -

member(N,ListPair), ! .
referenced(Npx,Path,ListPair) :-

(antecedent(_,Npx,Np 1);antecedent(_,Np 1 ,Npx);
controlled(Npx,Np 1);controlled(Np 1 ,Npx)),
not member(Npl ,Path) ,
riferimento(Np 1 ,[NpxlPath] ,ListPair).

find_ind(ncxle/_,Ind):- ncxle(ncxle):index:Ind, ! .
.find_ind(ncxle/ _,nil).
This predicate deletes from the list of possible
antecedents for lexical pronouns the Np head of the

chain, and talces as local binder of a reflexive the
controlled variable or tail of a chain.
Let's consider now more closely the English version for
36b., with examples talcen from Barrs(1988). First of
all, the English version which we repeat here below,
where we indicate with superscripts the syntactic index
and with subscript the anaphoric index,
36b. Himselfj/k, Frank believes that Tomk never thinks

to ej .
has a lexical anaphor "himself' which can be bound
both by Frank and by Tom. This is not allowed in
Italian: in other words, Italian requires the anaphor to be
"reconstructed" back into the place from which it has
been extracted to produce the Topicalized structure. This
is possible by considering the variable as the tail of a
chain and the topicalized element as its head. Barrs's
examples are very similar (his 7a,42)
37)a. Which pictures of himself did John say Bob liked

e?
b. Himself, he thinks Mary loves e.

in 37a, the sentence is ambiguous - either John or Bob
may be interpreted as the antecedent of the reflexive, in
the b. example binding by "he" is grammatical,
however in the corresponding Italian examples, no such
ambiguity may arise and the b. version becomes
ungrammatical,
38)a. Quali foto di se stesso Gino ha detto che Bruno

ama e?
b. *Se stesso, egli pensa che Maria ama e.

Ungrammaticality is readily explained by the fact that
"se stesso" must be locally bound and "Maria" is not an
adequate SUBJect binder because of failure of agreement
features. Two cases suspend ambiguity: the anaphor is
contained in a predicative function, an ACOMP, or
there is an accessible SUBJect, and are illustrated by the
following examples, (his 7b, 17)
39)a. Whose pictures of himself did John say Bob liked

e?
b. How proud of himself did John say Bob became e?

In 39a. the possessive pronoun "whose" provides a
POSSessor or a SUBJect for the binding of the anaphor
in its minimal local domain; in 39b. the head predicate
"proud" is a predicative function with a functionally
controlled SUBJect which is lexically bound to the
available SUBJect "Bob". This happens before f­
structure is accessed, so that no more binding domains
may be accessed. Barrs gives a version within
Chomsky's(1 986) "Barriers " framework and
Higginbotham's(1983) Linking Theory which accounts
for the same facts in a transformation model.

8 . C u r r e n t S tatu s a n d
Comparison with Related Work

In using f-structures rather than syntactic
constituency, LFG makes it more natural and direct
looking for information such as being the "subject of",
a notion crucial for antecedenthood.
Each referring expression receives a separate treatment
by the rules for binding according to its feature matrix,
grammatical function, and thematic role. For instance,
little pro and clitics are included in the same class, but
their grammatical function is crucial for distinguishing

71

among them in their ability to be bound by an
antecedent: little pro's can only be bound by subject
antecedents, or nominative ones, whereas clitics being
assigned accusative, dative or oblique can never be
bound by a subject antecedent

A set of criteria for assigning priority scores to
candidates for antecedenthood and binding are used in
order to define what can be bound by what: candidates
receive scores according to their grammatical function,
SUB ject scoring the highest; and to thematic role, agent
scoring the highest, and so on. Exceptions are also
individuated on the basis of the interplay of grammatical
functions and thematic roles: for instance one such rule
says that a possessive anaphor contained in a subject f­
structure can be bound to a NP in its sentence unless it
is a Theme.As appears, binding is crucially performed
on a structural basis, rather than on a functional basis as
the approach based on Functional Uncertainty would
require. The structures involved are f-structures: the
parser makes reference to the SUBJect a primitive
notion which is used primarily to set NP f-structure
apart from clausal ones; untensed clauses may either
appear as controlled complements, or as closed adjuncts
or closed functions such as SUBJect: also in this case
anaphoric binding applies as long as structural
conditions allow it. In this sense, anaphoric binding
together with syntactic binding are structurally
determined and can be opposed to lexical binding which
is entirely functionally determined. Scores are also very
important and are based on the superiority hierarchy of
theta-roles, and on the degree of referentiality a certain
NP possesses.
In particular, the difference in binding domain existing
between an anaphor like "himself' and a pronoun like
"him" is obtained simply by reference to the level at
which these two lexical items must start out. looking
for their antecedent for the former it would be equal to
0, while for the latter would be equal to 1. Rather than
formulating a "Coargument Disjointness Condition" it
is sufficient to individuate a viable f-structure, which
looks for the accessible SUBJect in the case of nominal
ones and let the feature matrix do the rest.

As we saw, reference to the particular domain in
which a certain element must be bound _or· be disjoint,
and reference to the particular grammatical function the
antecedent should bear in a particular environment is not
sufficient to deal with the inventory of pronominals
available in Italian and other languages: reference to the
thematic role is sometimes required, whenever a psychic
verb is used, as well as the type of quantified NP or
quantifier that can become a candidate for antecedenthood
in certain environments. Our systems does this directly
by means of the feature matrix associated to- the
referential table and by directly investigating the content
of the functional node, where theta-roles are available
together with the function label. Possibly, the same
result could be achieved by means of Functional
Uncertainty, even though we have not tried to test this
hypothesis.

However, let us consider why Functional
Uncertainty has been introduced: basically because
syntactic restrictions could be formulated in terms of
grammatical functions, and could be expressed by the

introduction of equation whose right-hand side member
contained regular exyressions like the following,
(37) (t TOPIC) = (T COMP* OBJ)
which refers · to the analysis of Topicalization as
discussed by Kaplan & Zaenen(l 989). The equation
specifies an infinite disjunction of paths within f­
structures, paths involving zero or more COMPs: OBJ
stands for the landing site or for the bindee for the
binder. Using functional attributes makes things easier
and does completely away with the need to keep in
memory c-structure syntactic trees once they have been
used to build the corresponding f-structures. I don't
intend here to comment on Kaplan & Zaenen proposal,
but simply to criticize Dalrymple's idea to use this
procedure with some minor modification and adaption in
anaphoric binding.
It is clear to me that the regularity of · syntactic
phenomena has a different nature from the one
belonging to anaphoric ones. An equation like the one
reported in (37) states that no matter what happens
within the COMP, and as long as the landing site is an
OBJ, any number of COMP's may be traversed in order
to adequately bind the TOPIC. This never happens with
anaphoric binding: even though the difference existing
between ADJunct clauses and COMPiement ones is
relevant, the depth of embedding is also a crucial factor.
Structural differences like the one existing between
COMP and ADJ clauses are already taken care for by f­
command: however, in order to let, say, a long-distance
anaphor or a clitic pierce through, inside-out, more than
one relevant domain, a number of conditions on
antecedenthood and distance intervening between the
anaphor and the antecedent must be also accounted for.
References
Barrs A.(1988), Paths, Connectivity, and featureless
empty categories, in Annali di Ca' Foscari XXVII, 4, 9-
34.
Belletti A., Rizzi L.(1988), Psych-Verbs and Theta­
theory, Natural Language and Linguistic Theory 6, 3,
291-352.
Bratko 1.(1986), Prolog Programming for Artificial
Intelligence, Addison-Wesley Pub.Co.
Bresnan J.(ed)(1982), The Mental Representation of
Gra�matical Relations, MIT Press, ·cambridge Mass.
Bresnan J . ; Per-K.Halvorsen; J .Maling(l 985),
Logophoricity and bound anaphora, MS , Stanford
University.
Bresnan J., Mchombo J.M.(1987), Topic, Pronoun and
Agreement in Chichewa, Language 63, 4, 741-782.
Chomsky N.(1986), Barriers, MIT Press, Cambridge,
Mass.
Dahl V�(198 1), Translating Spanish into Logic through
Logic, American Journal of Computational Linguistics
7, 3, 149- 164.
Dalrymple M. (1990), Syntactic Constraints on
Anaphoric Binding, Ph.D. Dissertation, Stanford
University.
Delmonte R . (1 985) , Parsing Difficulties &
Phonological Processing in Italian, Proceedings of the
2nd Conference of the European Chapter of ACL,
Geneva, 136-145.

Delmonte R.(1989), Grammatica e Quantificazione in
, LFG, MS, University of Venice.

Delmonte R.(to appear)(1990), Semantic Parsing with
LFG and Conceptual Representations, Computers & the
Humanities, 5-6,pp.30.
En� M.(1989), PronOU!lS, Licensing, and Binding,
Natural Language and Linguistic Theory 7, 1 , 5 1-92.

1 Higginbotham J.(1983), LF, Binding and Nominals,
Linguistic Inquiry 14, 395-420.
Ingria R . , D.Stallard(1989), A Computational
Mechanism for Pronominal Reference, in Proceedings
of the 27th Annual Meeting of ACL, Vancouver, 262-
271 .
Kaplan R . , A .Zaenen (1989) , Long-distance

1 dependencies, constituent structure, and functional
uncertainty, in M.Baltin & A.Kroch(eds), Alternative
Conceptions of Phrase Structure, Chicago University

· Press.
McKeown K., C.Paris(1987) , Functional Unification

1

Grammar Revisited, in Proceedings of the 25th Annual
Meeting of the ACL, Stanford, 97- 103.

72

Pereira F.(1981), Extraposition Grammars, American
Journal of Computational Linguistics 1, 4, 243-256.
Pereira F.(1983), Logic for Natural Language Analysis,
Technical Note 275, Artificial Intelligence Center, SRI
International.
Pereira F.(1985), A Structure-Sharing Representation
for Unification-Based Grammar Formalism, in
Proceedings of the 23rd Annual Meeting of the ACL,
Chicago, 137- 144.
Pollard C., I.Sag(1989), Anaphors in English and the
scope of the binding theory, MS, Stanford University.
Sells P. ; A.Zaenen; D.Zec(1987), Reflexivazation
variation: Relations between syntax, semantics , and
lexical structure. In M.Lida; S .Wechsler; D.Zec(eds)
Working Papers in Grammatical Theory and Discourse
Structure, 169-238, CSU/University of Chicago Press,
Stanford University, CSLI Lecture Notes, N.1 1 .
Zaenen A.(1983) On Syntactic Binding, Linguistic
Inquiry 14, 3, 469-504.
P.S. All modules have been implemented in Prolog and
run both under Macintosh, MS-Dos and VMS with
Quintus Prolog.
Acknowledgements
The programming work by Paolo Frugoni is kindly
acknowledged. Support for the research has been partly
provided by the PROMETHEUS Project, Man-Machine
Interface, PFT "Trasporti" , under CNR, contract number
89.01470.93.

A HYBRID MODEL OF HUMAN SENTENCE
PROCESSING: PARSING RIGHT-BRANCHING, CENTER­

EMBEDDED AND CROSS-SERIAL DEPENDENCIES

ABSTRACT

THEO VOSSE
GERARD KEMPEN

N.I.C.I., University of Nijmegen
Montessorilaan 3

6525 HR Nijmegen
The Netherlands

Phone: +3 1 80 512621
Internet: vosse@psych.kun.nl

kempen@psych.kun.nl

A new cognitive architecture for the syntactic aspects
of human sentence processing (called Unification
Space) is tested against experimental data from

human subjects. The data, originally collected by
Bach, Brown and Marslen-Wilson (1986) , concern
the comprehensibility of verb dependency construc­
tions in Dutch and German: right-branching, center­
embedded, and cross-serial dependencies of one to
four levels deep. A satisfactory fit is obtained be­
tween comprehensibility data and parsability scores
in the model.

8.0

6.0

4.0

§ 2.0

u 0.0 -+-----------...-----
0.0

Level
1 .0

la

0

Cl

2.0 3.0 4.0
Center-embedded
Cross-serial

Right-Branching
Figure 1 . Comprehensibility ratings for various

construction types and depths (1 = very
easy, 9 = very hard).

73

INTRODUCTION
In a recent paper (Kempen & Vosse, 1990), we have
proposed a new cognitive architecture for the syntac­
tic aspects of human sentence processing. The model
is 'hybrid' in the sense that it combines symbolic
structures (parse trees) with non-symbolic processing
(simulated annealing) . The computer model of this
architecture - called Unification Space - is capable
of simulating well-known psycholinguistic sentence
understanding phenomena such as the effects of
Minimal Attachment, Right Association and Lexical
Ambiguity (cf. Frazier, 1987).

In this paper we test the Unification Space archi­
tecture against a set of psycholinguistic data on the
difficulty of understanding three types of verb depen­
dency constructions of various levels of embedding1

1 A recent paper by Joshi (1990) motivated us to do the present study. He succeeds in obtaining a good fit between Bach et al. 's data and a complexity measure deriving from his model, which is based on an Embedded Push-Down Automaton (EPDA) and Tree Adjoining Grammar (I' AG).

NP pp

Figure 2. Various types of synactic segments.

The data were collected by Bach, Brown and
Marslen-Wilson (1986) and concern comprehensibil­
ity ratings of cross-serial, center-embedded and right­
branching constructions as illustrated by (1). Subjects
rated two types of verb dependencies: right-branching
and either center-embedded (German) or cross-serial
(Dutch) dependencies.

Dependency type

r7 r-i
(la) . . . when John saw Peter walk

Right-branching

I r7 I (1 b) • • • als Jolian Peter laufen sah
Center-embedded (nested)

I I I I (le) . . . toen Jan Peter zag lopen
Cross-serial (crossed)

The right-branching constructions are quite common
in Dutch and German. German sentences were rated
only by native speakers of German, Dutch sentences
only by native speakers of Dutch. Figure 1 shows the

boy

V
walks

obtained comprehensibility (or rather, incomprehen­
sibility) ratings for four 'levels' (the term level refers
to the depth of embedding; level 1 : one clause, with­
out embeddings; level 2: two clauses, one embedded
in the other as in (1) , etc.). Notice that the (Dutch)
crossed dependencies were consistently rated easier
to understand than the (German) nested dependen­
cies. From level 3 onward, the right-branching struc­
tures were judged easier than their crossed or nested
counterparts. Via a question-answering task Bach et
al. verified that the comprehensibility ratings indeed
reflect processing loads (real difficulties in compre­
hension).

In Section 2 we outline briefly the type of gram­
mar we use to represent syntactic structures. The
parsing mechanism capable of building such struc­
tures is described in Section 3. Section 4 is devoted to
design and results of the computer simulation. In
Section 5, finally, we evaluate our results and draw
some comparisons with alternative computational
models proposed in the psycholinguistic literature.

SEGMENT GRAMMAR
Kempen (1987) introduced Segment Grammar as a
formalism for generating syntactic trees out of so-

s

Figure 3. Building a tree through unification.

74

called segments. A segment is a node-arc-node triple,
the top node being called 'root' and the bottom node
'foot' . Both root and foot nodes are labeled by a
syntactic category (e.g. S , NP) and have associated
with them a matrix of features (i.e., attribute-value
pairs). Arc labels represent grammatical functions.
See Figure 2 for some examples. All syntactic knowl­
edge a segment needs (including ordering rules) is
represented in features.

The basic tree formation operation is unification
of the feature matrices of nodes which carry the same
category label. In Figure 3 successful unification has
been visualized as the merger of the corresponding
nodes.

Segment Grammar is completely lexicalized.
Every lexical entry specifies a single segment or a
sub-tree consisting of several segments. For instance,
one entry for the English verb eat looks like Figure 4.
It specifies the subcategorization features for this
verb, including the fact that it can take zero or more
modifiers (Mod*) in the form of prepositional or ad­
verbial phrases. For more details about Segment
Grammar (including the Dutch sentence generator
based on it) see De Smedt (1990).
/

THE UNIFICATION SPACE
The dynamics of the Unification Space model were
inspired by the metaphor of bio-chemical synthesis.
Think of the segments as molecules floating around
in a test-tube and entering into chemical bonds with
other molecules {unification of nodes). The resulting
larger structure may be insufficiently stable and fall
apart again. After a br�-up, the segments continue
their search for suitable unification partners until a
stable 'conformation' - that is, the final parse tree
- has been reached.

Henceforth, we denote the test-tube by the term
Unification Space. Words recognized in the input
string are immediately looked up in the mental lexi­
con and the lexical entry listed there is immediately
entered into the Unification Space. In case of an am­
biguous input word, all entries are fed into the system
simultaneously.

75

s

Figure 4. Lexical entry for the transitive verb 'eat' .

The following principles control the events in the
Unification Space (see Kempen & Vosse, 1989, for
details):

• Activation decay. When the nodes are entered into
the Unification Space they are assigned an initial
activation level by their lexicon entry. This activa­
tion level decays over time.

• Stochastic parse tree optimization. Generally, on the
basis of its feature composition, a node could unify
with several other nodes present in th� Unification
Space. In order to make the best possible choice,
Simulated Annealing is used as a stochastic opti­
mization technique (cf. Sampson, 1986). If two
nodes can unify, they actually unify with pro­
bability pu. This probability depends, among
others, on the activation level of both nodes and on
the grammatical 'goodness of fit' . Various syntactic
and semantic factors are at stake here. Among the
former are word order constraints. For instance, if
during the analysis of He gave that girl a dollar the
article a would attempt to unify with the noun girl,
this would cause violation of a word order rule and
drastically reduce the value of Pu- Assigning a
dollar the role of indirect object would be evaluated
as less good than as direct object, both for syntactic
and semantic reasons.

On the other hand, unified nodes may break up,
with probability p B· This probability increases
accordingly as the activation of the nodes and/or
their grammatical goodness of fit decrea�e. One
consequence of this scheme is a bias in favor of
semantically and syntactically well-formed
syntactic trees encompassing recent nodes.

• Global excitation. Due to the spontaneous decay of
node activation and the concomitant rising PB, all
unifications would ultimately be annulled in the ab­
sence of a mechanism for intercepting and 'freez­
ing' high-quality parse trees. In standard versions
of simulated annealing one obtains this effect by
making both p u and p B dependent on a global
'temperature' variable T which decreases gradually
according to the 'annealing schedule' which has

been determined beforehand. We define a
parameter E (for global Excitation) whose function
is similar to that of temperature. However, E ' s
value does not decrease monotonically - as
prescribed by some annealing schedule but is
proportional to the summed activations of all nodes
that currently populate the Unification Space.

The relation between E on one hand and p u and
p B on the other is such that, after E has fallen below
a threshold value ('freezing'), no unifications are
attempted anymore nor can unified nodes become
dissociated. If the resulting confonnation consists
of exactly one tree, the parsing process is said to
have succeeded. If several disconnected, partial
trees result, the parsing has failed.

It is important to note that the workings of the
Unification Space prevent the parallel growth of
multiple parse trees spanning the same input string. In
other words, structural (syntactic) ambiguity is not
reflected by multiple parse trees. Only in case of
lexical ambiguity can there be parallel activation of
several segments or subtrees. This agrees with the
picture emerging from the psycholinguistic literature
(cf. the survey by Rayner & Pollatsek, 1989).

We now describe the essence of the computer im­
plementation of the Unification Space model.
Mathematical details can be found in Kempen &
Vosse (1989).

1. Time is sliced up into intervals of equal duration.
During each cycle, one iteration· of the basic algo­
rithm is carried out. This process stops when E has
fallen below the threshold value.

2. Words recognized in the input sentence are stored
in an input buffer for a limited period of time, TB .
Individual words are read out from left to right at
fixed intervals· T w << TB. Their corresponding lexi­
cal entries are immediately entered into the Uni­
fication Space.

3. During each cycle, two nodes, nJ and n2 , are
picked at random. If their feature composition per­
mits unification, they actually unify with a proba­
bility of PU which covaries with nj's and n2's acti­
vation levels. The activation level of the resulting
single node is higher than the activation level of ei­
ther nJ or n2.

4. Then, for each segment in the Unification Space, it
is determined whether or not it will dissociate from
its unification partner (if any). This event takes
place with probability p B which correlate_s negatively with the activation level. Whenever lexi­
cal segments are are involved in a break-up (lexical

76

segments have word classes rather than phrases as
their foot labels), their lexical entries are reentered
into the Unification Space without delay. Thus they
are given a new chance to find a suitable unification
partner. The activation levels of reentering nodes
are reset to the initial value stored in the lexicon.
However, if a word has already been dropped from
the input buffer, its lexical entry is not reentered.

5. The activation levels of all nodes are adjusted
on the basis of the decay parameter and the new value
for E is computed

THE SIMULATION STUDY
In our earlier study we obtained satisfactory

simulation results for the sentences in (2).

(2a) The rat the cat chased escaped.
(2b) The cat chased the rat that escaped.
(2c) The rat the cat the dog bit chased escaped.
(2d) The dog bit the cat that chased the rat that

escaped.

The Simulation Space had virtually no problems in
parsing doubly embedded sentences (2a) and (2b): the
number of correct solutions was close to 100 percent.
However, this score dropped considerably for triply
embedded clauses: to about 80 and 50 percent for
righthand and center-embeddings respectively2• This
pattern is in good agreement with psycholinguistic
observations.

In order to avoid controversial assumptions about
the syntactic structure underlying cross-serial depen­
dencies, we have devised simple artificial grammars
which generate right-branching, center-embedded and
cross-serial dependencies among pairs of opening and
closing brackets, e.g. 'O {) ' , ' { {))' or '(() } ' . The
grammars contain two types of lexical segments (with
arc labels Left and Right) and one optional type of
non-lexical segments with arc label Mod. The
number of Mod segments dominated by an S node is
either zero or one The optional Mod segment is
attached to the lexical entries of opening brackets as
depicted in Figure 5. It is the Mod segments that give
the grammar a recursive flavor.

The S nodes have associated with them a 'bracket
type' feature whose value is 'round' , ' curly' ,
' square' , etc. This prevents unification of S nodes

2 These numbers have been computed as described in foot­note 3 below.

that dominate brackets of different types, e.g. S-Left­
{ with S-Right-] .

The sole difference between the three grammars
rests in their word order constraints. Center-embed­
dings require the embedded subtree to be positioned
inbetween the branches of the embedding S . (The
constraints for both other grammars are easy to
devise.) However, there was no need to have the
Unification Space actually check word order
constraints because we never used input strings which
contained more than one pair of brackets of the same
type (e.g. ' { } { } ') and/or more than one type of
embedding (e.g. ' [<>] { } '). Thus word order con­
straints are in effect encoded in the bracket type
feature.

iUft

Lparen
s

s

U'Aod

Lp�n ,.9
(

iRight

Rparen

tight

Rparen
)

Figure 5. Segments of the grammar, and the lexical
entries for '(' and ')'.

The actual simulations were run with 5 (levels)
times 3 (dependency types) equals 15 different input
strings. Each string was fed into the Unification
Space 400 times. The parameter settings were exactly
equal to those used in the earlier Kempen & Vosse
(1989) paper 3• No attempts have been made to find a
set of parameter values yielding a better fit with Bach
et al.'s empirical data.

The simulation results for the 1 5 sentences are
displayed in Figure 7. They show the same general
pattern as the comprehensibility ratings displayed in
Figure 2 above. That is, (1) comprehensibility de­
creases with increasing depth of embedding, (2)
center-embedded dependencies are harder than cross-

3 For Chaos parameter C (not discussed in the present
paper) we had four different values: .1 , .2, .3 and .4. There
were 100 runs for each value of C. In Figure 7 we show
percentages averaged over C values.

71

serial dependencies, and (3) right-branching depen­
dencies take a strong lead, being much easier to
understand than both other constructions.

s

s

s

Figure 6. Example parse trees of level 2: respectively
right-branching, center-embedded and
cross-serial.

There are also differences between the human
data and computer simulation, however. First of all,
the comprehension scores for the three dependency
types fan out more rapidly in our simulation than in
the human subjects. Second, in the human data the
first signs of a differentiation between sentence types
manifest themselves already at level 2, whereas in our
simulation the percentages start diverging at level 3
only. From our previous study we know that the
Unification Space is rather sensitive to sentence
length. If this applies to human readers as well, we
could argue that our level 1 and level 2 scores are too

100

80

60

40
CJ Right-branching

20 0 Cross-serial
A Center-embedded

0
0 1 2 3 4 5

Level

Figure 7. Percentages of correctly parsed strings for
three types of dependency and five levels of
depth.

good (in Bach et al. 's study, these levels were tested
through sentence of 6 to 8 words long).

DISCUSSION

The simulation revealed a satisfactory fit between the
empirical pattern of comprehensibility ratings
observed by Bach · et al. and parsability by the
Unification Space. Since the model applied exactly
the same grammar when processing the three types of
dependencies, it follows that the empirical pattern can
be explained in terms of the different spatial­
temporal arrangements between the members of a
dependency pair. No additional assumptions about
differences between the syntactic structure underlying
the three types of dependencies are needed.

To what extent are alternative computational
models of human sentence processing capable of
accounting for the empirical pattern? So far, Joshi' s
(1990) proposal is the only one reported in the
literature. However, it is not clear how well this
model behaves with respect to other psycholinguistic
sentence processing phenomena such as Right
Association, Minimal Attachment, Verb Frame
Preferences and the like. Two other recent models
(Gibson, 1990a,b,c; McRoy & Hirst, 1990) do
address the latter phenomena but they pay no
attention to cross-serial dependencies. So, as far as
we know, there is no competing model of comparable
wide coverage.

78

REFERENCES

Bach, Emmon, Colin Brown & William Marslen­
Wilson (1986). Crossed and nested dependencies
in German and Dutch: a psycholinguistic study.
Language and Cognitive Processes, 1 , 249-262.

De Smedt, Koen (1990). Incremental sentence
generation: Representational and computational
aspects. Ph.D. thesis, University of Nijmegen.

Frazier, Lyn (1987). Theories of sentence processing.
In: Jay L. Garfield (Ed.), Modularity in

- knowledge representation and natural language
understanding. Cambridge, MA: M.I.T. Press.

Gibson, Edward (1990a). Memory capacity and
sentence processing. In: Proceedings of the 28th
Annual Meeting of the ACL, Pittsburgh.

Gibson, Edward (1990b). Recency preferences and
garden-path effects. In: Proceedings of the 12th
Annual Conference of the Cognitive Science
Society, Cambridge MA.

Gibson, Edward (1990c). A computational theory of
processing overload and garden-path effects.
Proceedings of the 13th international Conference
on Computational Linguistics (COLING-90),
Helsinki.

Joshi, Aravind K. (1990). Processing crossed and
nested dependencies: an automaton perspective
on the psycholinguistic results .. Language and
Cognitive Processes, 5(1), 249-262.

Kempen, Gerard (1987). A framework for in­
cremental syntactic tree formation. In:
Proceedings of the 10th International Joint
Conference on Artificial Intelligence (IJCAI-87),
Milan, 655-660.

Kempen, Gerard & Theo Vosse (1990). Incremental
syntactic tree formation in human sentence
processing: an interactive architecture based on
activation decay and simulated annealing.
Connection Science, 1, 273-290.

McRoy, Susan & Graeme Hirst. (1990). Race-based
parsing and syntactic disambiguation. Cognitive
Science, 14, 3 13-353.

Rayner, Keith & Alexander Pollatsek (1989). The
psychology of reading. Englewood Cliffs, NJ:
Prentice-Hall.

Sampson, Geoffrey (1986). A stochastic approach to
parsing. In: Proceedings of the 11 th International
Conference on Computational Linguistics
(COLING-86), Bonn.

Using inheritance in Object-Oriented Programming to combine
syntactic rules and lexical idiosyncrasies

Benoit HABERT
Ecole Nortnale Superieure de Fontehay Saint Cloud

31 avenue Lomba.rt
F-92260 FONTENAY-AUX-ROSES FRANCE

internet: bh@litp.ibp.fr
bitnet: bh@frunip61 .bitnet

Phone: (33) 1-47-02-60-50 Ext 415
Fax: (33) 1-47-02-34-32

ABSTRACT

In parsing idioms and frozen expressions in
French, ohe needs to ·combine general syntactic
rules and idiosyncratic -constraints. The
inheritance structure ·provided by Object­
Oriented Programming languages, and more
spedf.ically the combination of methods
present in ct:bs, Common Lisp Gbjed System,
·appears -as an elegant ;and -efficient ,approach
to 'deal with such a complex interaction-.

in parsiIYg hHom's -antl frozen
-expre'sst'on:s 1n Fren�i\" one n:e'ei:l's to ·comb1ne
g'enelal :syntacH:c rules a·na idlosyncra.Ht
'constrai1nls. As :a mat'fet ·of 'iat:l; representing
such an interacHon vla an inheritance laHke
·appears ,a:s •an elegaht and :�flkient -approach.
For t!1e sake of explanation; EngHsh -Mtoms
wi-11 he used as exampM,-. However this
t�mbh1ift-i-on ·o f synlacHc rule-s and
idi-osyn:cr-atk 'behaviour via manipulations bf
the tnherH:ance struftu:re and lhe methods
artad1ed to u> has been -designed for French
cbmpound adverbials. More lhan 6,boo
compou.ntl •adverbial's have be'eii Hsred and
's°fudietl il't t!i\fit 1 f(Gross, 19'9'0). A lexicon­
gtammat··ot �,525 °compoun<1 advetb1als coming
from the tAbt files has been used 1n ;parsing a
test ccotpus of 72;000 words.

toiOMS: A -PECULIAR COMBINATION OF
REctutARitiES AND lDIOSYNCRASIES

The semantics of idioms will hot he
-accounted fbt here, since it is a cohftovetsial

1 Laboratoire d'Automatique Documentaire et
Linguistique: Universite Paris 7 and CNRS.

79

problem. LFG, GPSG and TAGs made quite
different claims on this topic 2 . Within a
syntactic category, it has been shown for
French, at LADL, that frozen expressions are
generaily mote numerous than 'free' ones: 20,
000 frozen verbs (12,000 free), 6,000 adverbials
(1,500 free). More than ·25, UOO compound nouns
have been studied so far, but their number is
far greater, as they -consHtute the fna,jor part
of new terms -in subia�gttages (Grishman '&
l<ittred.ge, 1986). A small propotHon ot frozen
expressions have constitnen'fs ,exi-snng only in
such ·conlex'ts (snch as "umbrage'· ,n ··�te tak�
um'orage at NP-.�'i -or :�rte . 'ta�n , from re>reign
:ianguag�s (''a pri0rfi•t ·or t-oUbw letS-citl:en .
rules·. Apa.ft from these matgina:t 'case$; l�loms
consis't 'of the same words as fwe it.re� phrases,
and tlrey Ifiriow tl\'e same syntactit :rni@s� ··�m
·contrast\ ...-,,Y the way'\ for ln.-slance, are Jtist
ordinarf PP; FutHl'ermbte) a·s shoWh _ tot
Engitsh by Wa·sc>'w et ;at 1982- and -fb'r -Frenih
by· · Gto·ss- ., 1"88, Woo. 'the §vnt:atlic behaviour ,o·- f ., I ·t I ·fl -•

Idioms 1s .fh:uch :fnore s_y-stemaHt than · is
us11aRy thought: 'lra-nsfotmaHo't,'s·· •apply fo
them. &>me tdn:tl 'of ··m�taihll-�s' mu.·st he th'en
teseci :to atcoun:t for these -t�iated ·struchi-tes.

While foflow.ttrg ro a tatge �xtent the
:gen�tal ·syntatHc "ful�:s, .ftijzen 'expre'ssi'ons
present :itiiosyrforas1es. At a :syn'tat:tlt "l'evel, -an
id.ibm can acce.pt ·a moaHie-r _ ("in (-loving)

2 For Bresnan, 1982b, constifua'titH>f ah idiom very
otten have ·a regular s;ynta.cHc behavlou-r withtiut
contr-lhuting at :a)) h> the nteaning -o'f the w"i,ole
expression. According to Gazclar et :a1.,, tifss, p :236,.
24-2, the seri\'antk behav1our o"f 'i'dioms is more
often com·posttforta.1 ·than has gerrera1iy been
assumed,. The approach of (Abeille -& Schabes,
1989) characterizes ·idioms by ·the combiftatiort of
syntactic regularity and semantic non
corn positionali ty.

memory of'), or not (#'by the new way") 3 . It
can require certain syntactic. features for some
of its constituents. For instance, it may need a
certain type of determiner: "for the sake of"
versus "#for a sake of". Lastly, an idiom is
associated with · fixed lexical items. Usually
it is not possible to replace them by synonyms:
#"by the road" versus "by the way". Since
most of frozen expressions follow general
syntactic rules, and since 'transformations'
apply to them, it is not reasonable to try and
process them in a first lexical step .
Recognizing idioms belongs therefore to the
whole syntactic analysis. Nevertheless their
idiosyncratic features must be taken into
account in rules.

STATING THE GENERAL BEHAVIOUR OF
A FAMILY OF IDIOMS

OLMES 4 is a general parser written in
CLOS 5 (Keene, 1989; Steele, 1990, p 770-864),
and ·tested with the Victoria Day
implementation of .PCL 6 (provided by Xerox
Labor_atories), using Lucid Common Lisp 3.0.1,
oil. a Sun 3 workstation, at LITP 7 . OLMES
belongs to the active chart parser family. The
inpunext can be parsed from left to right, or
the other way round, or even both ways at the
same time (around pivots). Top-down, bottom­
up or bottom-up then top-down strategies are
available. The rules used by OLMES: follow
the formalism created for P ATR-II (Shieber,
1986), because it is a kind of "lingua franca"
for unification-based grammars. Additional
constraints can be associated with ordinary
context-free rules so as to analyse mildly
context-sensitive languages (Gazdar, 1988).
Each symbol in the rule is the root of a
Directed Acyclic Graph (DAG) . · In such
category structures, each edge is labelled, and
leads either to an atom or to another .complex
category structure - (Gazdar et al., 1988).

3 We use the same convention as (Gazdar et al.,
1985)_: '#' indicates that a structure is acceptable,
but with a literal meaning.
4 Objects, Language, Means for Exploring and
Structuring (Texts).
5 Common Lisp Object System.
6 Portable Common Loops
7 Laboratoire d'lnformatique TJ\eorique et de
Programmation: Universite Paris 6, Universite Paris
7 and CNRS.

80

For instance, a lot of adverbials in English use
the following rule, in PATR-11 form:

LHS -> RHS l RHS2 RHS 3
<LHS cat> = adv
<RHSl cat> prep
<RHS2 cat> = det .
<RHS3 cat> = noun
<RH S 2 ag reeme nt >

agreement>
< RH S 3

The sequence of a first right-hand side symbol
dominating a DAG with an edge "cat(egory)"
having "prep(osition)" as its value, a second
symbol with "cat" "det(erminer)", and a third
symbol with "noun" as "cat" makes an
"adv(erbial)". Additionally the second and
the third symbol must share the same value
for the feature "agreement".

A graphical equivalent could be:

lhs rhs 1 rhs2 rhs 3

c a I c:t I cat

adv . . prep d et .noun

Figure 1: sequence of DAGs defining an
adverbial

In the lexicon, one can find entries 8 .
such as:

a

at

by

in

cat det
cat -precisions

determiner-type article
article-type indefinite

cat prep

cat prep

cat prep
end

cat noun
agreement

number singular

8 The features not relevant for the rule are not
mentioned.

moment

my

the

cat noun
agreement

number singular

cat det
cat -precisions
determiner-type possessive

cat det
cat -preci sions

determiner-type article
article-type definite

this
cat det
cat preci sions

determiner-type demonst rative
those

cat det
cat -precisions

determiner-type demonst rative
agreement

number plural
way

cat noun
agreement

number singular

The rule above would recognize as idioms "at
the moment", "in a way", "in the end", using
this toy lexicon. Note that the completed rule
is more restrictive than the context-free part
of it. The latter would accept "*by those
way", the former would not, because "those"
and "way" do not agree.

THE GRAI\,iMAR: A NETWORK OF ACTIVE
A G E N T S E N C A P S U L A T I N G
CONSTRAINTS

The context-free rules of the grammar
are represented by a network of classes. Each
class in the network corresponds to an
occurrence of a symbol, whether terminal or
not, appearing in the grammar. The topology
of the network mirrors exactly the strategy
(top-down versus bottom-up) and the direction
of exploration (left-right, right-left or bi­
directional) chosen by the user when
compiling the grammar. This approach
extends the work done within the actor
paradigm by Yonesawa & Ohsawa, 1990.

There are two main classes: active and
inactive. An inactive agent corresponds to a
(possibly partial) constituent which has been

81

found. For instance, for each left-hand side
symbol in the grammar, a class is created
inheriting from the inactive agent class. The
active agents correspond to the right-hand
side symbols of the grammar . . Each of them is
searching for a constituent meeting certain
constraints, as defined in the corresponding
DAG in the rule. If it finds such a constituent,
it then creates an instance of the class
corresponding to the following symbol in the
right-hand side part of the rule. When the
last active agent of the rule "succeeds", it
creates an instance of the class corresponding
to the left-hand side of the rule. The pivot of
the rule is the symbol starting the whole
analysis. It need not be the left-most one.

For the -rule above, in bottom-up
parsing, four classes are defined: LH S - 1 ,
RH S l - 2 , R H S 2 - 3 , RH S 3 - 4 , respectively
(figure 2). RHS l -2 , RHS 2 - 3 and RHS 3 - 4 are
subclasses of LHS - 1 , their instances will be
active agents examining the text from right to
left. The pivot of the rule is the class RH s 3 - 4
(in bold font), corresponding to a noun.

prep det noun

Figure 2: classes resulting from the
compilation

To indicate that a word can belong to the type
of idiom described in the rule, the lexicon
associates the class-name RHS 3 - 4 with this
word. It could be the case for the word
"moment". In a bottom-up analysis, for each
occurrence of "moment" in the input text,

OLMES creates an instance of RHS 3 -4 . This
instance searches for a noun, and finds it:
"moment". It creates an instance of RH s 2 - 3
which examines the word on the left of
"moment", and which stores a partial parse
tree. If this word is a determiner, and has a
feature "agreement" matching with the
corresponding feature of "moment", the new
partial parse tree is transmitted to the
instance of �HS l -2 which is then created and
whose constraints are matched against the
word on the left of the determiner found by the
instance of RH s 2 - 3 . In the case that · the
instance of RHSl -2 finds a preposition, it then
creates an instance of L H s - 1 storing the
complete parse tree and the additional
information gathered from the unification on
the rest of the DAGs.

Changing the grammar rules from
sequences of 'passive' labels to a network of
active classes makes it possible to increase as
necessary the knowledge the instances of these
classes can utilise, and to use inheritance not
only in the lexicon (Shieber, 1986), but in the
grammar rules as well.

USING THE .· iNHERITANCE STRUCTURE . .

T O TAKE IDIO SYNCRASIE S INTO
ACCOUNT

The rule stated above is not restrictive
enough. For instance, it would parse as an
idiom "by a way" in the sentence: "he arrived
by a way new to me". It would be rather an
unsatisfactory approach to· create as many
rules as combinations found between the .
preposition and the type of determiner used· in
such idioms. What we need .instead is a means
to adjoin new constraints to the set of
conditions · defined . in the rule, in a modular
way, that is, using inheritance. In the CLOS
philosophy, if means that some 'mixin' classes
are created. Such classes are not intended to
have instances on their own. On the contrary,
they are only used as constituents (super­
classes) in defining more specialized classes.

For instance, one can define the following
'mixin' classes (see figure 3). Each 'mixin' class
used to specialize the rule has a method
c o n s t r a i n t s which states particular
constraints on the determiner. The content of

82

this method (in PA TR form) follows the class
name, below.

det-article
<RHS3 detl cat-precisions

determiner-type> = article

det-definite-article (subclass of
det-article)

<RHS3 detl cat-precisions
article-type> = definite

det-indefinite-article (subclass of
det-article)

<RHS3 det l cat-precisions
article-type> indefinite

det-possessive
<RHS3 detl cat-precisions

determiner-type> = possessive

det-demonstrative
<RHS3 detl cat-precisions

determiner-type> = demonstrative

r o o t (c o n s t r a i n ts
--..---- < i nstance of

root>) => []

(co nstrai n ts
< i n stance of Det-
article>) = >

rh s 3
d e t 1

c a t ­
p rec i s i o n s

d e t e r m i n e r ­
ty p e

i n d e f i n i t e ­
a r t i c l e

d e f i n i t e ­
a r t i c l e

(c o n s t r a i n ts (c o n s t r a i n ts
<instance of <instance of

O a t - i n d e f i n i t e - D e t - d e f i n i t e -
article>) = > article>) =>

rhs 3
d et 1

c a t ­
p rec i s i o n s

a r t i c l e ­
t y p e

i n d e f i n i t e d e f i n i t e
Figure 3 : Some classes for the constraifits on
determiners

The rule given above (figure 1) is slightly
redefined : from now on, the pivot transmits to

the RHSl the form of preposition, and to the
RHS2 precisions on the type of determiner
which is needed (the dark nodes indicate this
sharing of values in figure 4).

lhs rhs 1 rh s2 rhs3

adv prep de t

Figure 4 : Redefined. rule for adverbials

noun

It is now possible to create final classes for the
pivots of the idioms:

- adv=prep_det -de finite­
art icle_noun, subclass of RHS3-4 and det­
def ini te-art icle. E.g.: by the way.

d e t ­

d e f i n i t e ­

a r t i c l e

ad v =p rep_ d ef i n i te-a rti c I e _no u n

Figure 5: An example of final class

- adv=prep_det -indefinite­
article_noun, subclass of RHS3 -4 and det­
indefini te-a rticle. E.g. : in a way.

- adv=prep_det -demonst rative-noun,
subclass of RHS3-4 and det -demonst rati ve.
E.g.: in this respect.

- adv=prep det -possessive noun,
subclass of RHS3-4 and det -pos;essi ve.
E.g.: in my opinion.

Of course, it could have been possible to
define mixin classes to deal with constraints
on the preposition. Such classes would have
looked like:

prep-in

83

<RHSl prepl form>
prep-by

<RHS l prepl form>
and so on.

in

by

It should be noted that the constraints on the
preposition and the conditions on the
determiner are not on the same level. The
latter are in a way more syntactic: some
syntactic properties of the idiom as a whole
depend on the nature of the determiner. The
form of the initial preposition is purely
idiosyncratic. It does not even always
contribute to the meaning of the expression.
For that reason, the way to specify the initial
preposition does not use inheritance. A list of
associations { <parameter> <value>} is being used
at the initialization of the instance of a given
pivot class to deal with such litteral
constraints. For instance, the list "RHSl by"
will trigger the adjunction of:

<RHSl prepl form> = by

to the conditions specified for the idiomatic
rule.

Usually, in an Object-Oriented
programming language, when a method is
called for an instance of a class, and there are
different methods of the same name linked
with the ancestors of this class, the most
specific method is actually used, overriding
the other ones. For instance, calling
(const raint s det-definite-article-
1) , det -de f ini te -a r t i c le - 1 being an
instance of det -de finit e - a rt ic le, would
yield 9:

<RHS3 det l cat -precisions
article-type> = definite

As shown in figure 6, three methods are
applicable (inside the grey frame) :
const raint s of Det -def inite-a rt i cle
(det -def ini te-art icle-1 is an instance of
this class), c o n s t r a int s of D e t - a rt i c l e
(an instance of Det -de fini te -a rticle i s
a Det -article) and const raint s of root
(for the same reason). The last one (in bold
font) shadows the others.

9 We do not use the actual Lisp syntax for the
result, as it is not relevant.

Method combination

most -s

root

d e t ­
ind efin j t e ­

a r tic l e

:(qop�t�atnis:
•<tnstance of·
:raof>l

: (�onsfr�nts:
: sir1staoc� :ot
· D et -= · ·

ariide>): : :

: {cons trai n t
: : <J'1staMe : Qf .
· D e t--d e-f tn-ite ..

ariicle>.)

(constraints
<instance of

D et -indefinite ­
article>)

Figure 6: Standard method combination

One of the salient characteristics of
CLOS, inherited from its ancestors, COMMON
LOOPS (Bobrow et al., 1 986) and NEW
FLAVORS, is the control given over the
combination of methods having the same name
and present in the super-classes of a given
class (Keene, 1989) 1 O . In this case, it is .
possible to specify that all the methods
cons t raint s accessible from a given class
should be called in turn, and the final result
should be the addition of all the returned
values. With this combination of methods,
the result of the function call (const raint s
det - de f i n i t e - a r t i c l e - 1) would be
(figure 7):

<RHS3 detl cat-preci sions
determiner-type> = article

1 0 When the most specific method represents nothing but an ··addition to the action of one super­method, it is generally possible in an Object­Oriented Programming Language to combine it with this super-method, so as to share common behaviours.

84

<RHS3 det l cat -precisions
article-type> = definite

Method combination

addition

.
root {oonstra ints-

d e t -

d e t ­
ind efinit e ­

ar tic l e

:<inatMc:e : ot:
!�0�>:) :

d efinit e ­
artic l e

: (cQ'1sJr�i)1ts :
. <instance oJ
: O e t:- : : : : :
· �r!i�I�>:) : : : :

: (C�".'� t ra:i � t� .
• • <instance • of ·
: O e t: d e:t {nj t:e �

article>") · - · . .

(constraints
<instance of

D et .:inde finite ­
article>)

Figure 7: Special method combination

This method combination provides a means to
add constraints present in the inheritance
lattice, and only the relevant ones.
In the lexicon, the entries for pivots of
ad verbials could mention (among other
information):

moment
adv=prep_definite-article_noun

RHS l at

opini on
adv=prep_possessive_noun RHSl in

way
adv=prep_definite-article_noun

RSHl by
adv=prep_indefinite-article_noun

RHSl in

When coming across "way" in the
input text, OLMES would therefore create one
instance of each class. For example, in the case
of the instance of a dv =p re p_de f i n i t e -

a r t i c 1 e_n o u n , because this class is a
subclass of <let -de fi ni t e - a rt i c le, and
because the method combination for
cons t r a i n t s is redefined, the constraints
inherited via det -defini te-art icle and
<let - a r t i c l e are added to the general
constraints defined in the rule and inherited
through RHS3-4 . The arguments following the
name of the class are used as well. In the end,
the parser will actually try the following rule
(figure 8):

LHS -> RHS l RHS2 RHS3
<LHS cat> = adv·
<RHSl cat> = prep
<RHSl form> = <RHS3 prepl form>
<RHS2 cat> = det
<RHS3 . cat> = noun
<RHS3 prepl form> = by
<RHS2 . agre��ent> = <RHS3

agreement>
· <RHS2 cat -precisions> =

<RHS 3 detl cat -preci s ions>
<RHS3 detl cat -precisions

determiner-type> = artic1e
<RHS3 . detl cat-precisions

article-type> = definite

(The basic constraints are in normal font, the
inherited ones in bold font, and the
parametrized ones are underlined.)

This rule will accept "by the way", but will
reject ''by a way", "in the way" ... The rule and
the parameters for "moment" would allow the
parsing of "at the moment", and those f<;>r
"opinion" the acceptance of "in my opinion" . . .

85

lhs rhs 1 rhs2 rhs3

adv

a r t i c l e d e f i n i te

Figure 8 : Sequence of DAGs for the- final rule

This very simple example does not do
justice to the complexity of syntactic and
lexical properties of adverbial idioms.
However it stresses the hierarchy of these
features, and the way in which the
inheritance graph can, at the same time, _
mirror this structure and take advantage of it.
Note that the 'mixin' classes defined above
are useful as such. They constitute the
primitives to complete the basic syntac;tic
rules. They correspond to organized constraints
which are interesting on their own, . as they
can be reused in different contexts. · For
instance, another rule for ad verbials is:

LHS -> RHSl RHS2 .RHS3 RHS4 .
<LHS cat> = adv
<RHSl cat> = prep
<RHSl form> = <RHS 3 prepl form>
<RHS2 cat> = det
<RHS3 cat> = noun
<RHS2 agreement> = <RHS3

agreement>
<RHS2 cat-precisions> = <RHS2

detl cat-precisions>
<RHS4 cat> = prep
<RHS4 form> = <RHS3 prep2 form>

A class would be created for each symbol of
the rule. For example, the class corresponding
to the pivot (the noun) is RHS4-9. New
specialized classes are then defined:

- adv=prep_definite­
article_noun_prep (super-classes: RHS4 -9,
det-definite-article)' • -

- adv=prep_indefinite­
article_noun_prep (super-classes: RHS4-9,
det -indef ini te-article) . . .

And the lexicon now has entries like:

eye
adv=prep_indefinite­

article_noun_prep RHSl with RHS4 to

form
adv=prep_definite­

article_noun_prep RHSl in RHS4 of

which could recognize "with an eye to" and
"in the form of'', respectively. It is possible in
OLMES to express that a certain word can
enter different linked syntactic structures at
the same time, thus providing 'meta-rules' .
One of theses families of rules is the class:
[adv = prep definite-article noun
prep + adv prep po s se s s ive ­
determiner noun] gathering the following
rules

adv=prep_definite­
article_noun_prep

adv=prep_det-possessive_noun

And, in the lexicon, the entry time mentions:

[adv = prep definite-article
noun prep + adv = prep possessive­
determiner noun] RHSl for RHS4 of

Therefore, the parser, when finding t ime in
the input text, creates an instance of the class
[adv = prep definite-article noun
prep + adv prep po s se s s ive ­
determiner noun] , which in turn creates
an instance of a d v = p r e p_ de f i n i t e -
a r t i c l e_n o u n_p rep and an instance of
adv=prep_de t -po s s e s s ive_noun. This
instance of [adv prep de finite­
article noun prep + adv = prep
pos s e s s ive -det e rmi ner noun] also
transmits to them the correct values for the
parameters RH S l and RHS 4, possibly leading
to the parsing of for the sake of or for
its sake.

RELATED WORK: PARSING IDIOMS IN
TREE ADJOINING GRAMMARS (TAGS)

86

Recent work, within the TAG
formalism (Abeille, 1990; Abeille & Schabes,
1989), claimed that idioms should be parsed
during the whole syntactic analysis, using the
same formal devices as for parsing non
idiomatic expressions. This approach uses a
slightly modified version of T AGs, namely
lexicalized T AGs, in which each 'rule', i.e.
each tree, is anchored with a lexical item. In
fact, there are no separate phrase structure
rules any more: they are collapsed into the
lexicon. Only the relevant rules are used
while parsing, as they are triggered by lexical
items. Meta-rules are provided by means of
families of trees. The trees corresponding to
idioms include several lexical items: t a ke
and bu c ke t in the case of t o take the
b u c k e t . As an additional filtering, the
search of an idiom is triggered only if all the
lexical heads are actually present in the
sentence, in the right order�

As a matter of fact, giving the rules a
pivot and associating the words in the lexicon
with these pivots� as shown above, is a first
step in lexicalizing a grammar. On the other
hand, Lexicalized T AGs do not use phrase
structure rules any more, but trees directly
stating to any depth the constituents needed,
their structure, and possibly their lexical
heads. For this very reason, the TAG
formalism deals with idioms in a more natural
and powerful way. For the sake of
explanation, the rules given in this paper are
flattening the structure of the phrases. In
order to give to the relevant idioms the same
structure as the corresponding free phrases, one
would need some complex transmission of
features among related rules (Habert, 1991).

S TRUCTURING GRAMMARS VIA
INHERITANCE

Relying to such an extent on the
inheritance structure partly breaks the
decentralization rule which is central to object
oriented programming 1 1 . When slightly
modifying a class, here is a risk of triggering a

11 (Meyer, 1988, p 251) In most cases, clients of a
class should not need to know the inheritance
structure that led to its implementation.

chain reaction of changes. As Sakkinen, 1989, states: Features aiming at "exploratory programming" need not necessarily make the programmer into a Vasco de Gama or an Amundsen; (s)he may well become Alice in Wonderland, never knowing what metamorphoses some seemingly innocent act may cause. The danger is a real one. Nevertheless, so far, it has been most beneficial to take advantage of the inheritance structure to portray the linguistic knowledge we are dealing with. In doing so, we stress the classification tools present in Objet-Oriented Programming Languages: the inheritance lattice is used to progressively constrain the class of the solution (Wegner, 1987). This approach uses a unification-based formalism with a clear-cut distinction between phrase structure rules and subcategorization frames. In spite of this, it combines properly the generalizations stated by the syntactic rules and additionnal constraints necessary to account for the idiosyncrasies that the idioms show. This solution is by no means limited to frozen expressions. It contributes to a clear expression of the complex interactions found in the grammar between syntactic and lexical rules (Abeille 90). It is thus worth investigating the ways in which inheritance can help in structuring not only the lexicon but also the grammar.
AKNOWLEDGMENTS

I greatly benefited from discussions with F.-X. Testard-Vaillant (LITP), Pierre Fiala (ENS de Fontenay Saint Cloud), and Anne Abeille (LADL) on Object-Oriented Programming, Idioms and TAGs respectively.
REFERENCES

Abeille Anne 1990 "Lexical and syntactic rules in a tree adjoining grammar", ACL'90
Abeille Anne, Yves Schabes 1989 "Parsing Idioms in Lexicalized TAGs", EACL'89.
Bresnan Joan 1982a (editor) The mental representation of grammatical representation, The MIT Press.

87

1982b "The passive in Lexical Theory", (Bresnan, 1982a, p 2-86).
Bobrow Daniel G ., Kenneth Kahn, Gregor Kickzales, Larry Masinter, Mark Stefik and Frank Zdybel 1986 "CommonLoops: merging Lisp and Object-Oriented Programming, OOPSLA'86.
Gazdar Gerald 1988 "Applicability of Indexed Grammars to natural languages", in Natural language parsing and linguistic theories. Reyle and Rohrer editors, D. Reidel Publishing Company.
Gazdar Gerald, Ewan Klein, Geoffrey Pullum, Ivan Sag 1985 Generalized Phrase Structure Grammar. Harvard University Press.
Gazdar Gerald, Mellish Chris 1989 Natural Language Processing in Lisp. Addison-Wesley.
Gazdar Gerald, Geoffrey K. Pullum, Robert Carpenter, Ewan Klein, Thomas E. Hukari, Robert D. Levine 1988 "Category structures", Computational Linguistics. Vol. 14, #1.
Grishman Ralph, Richard Kittredge (editors) 1986 Analyzing language in restricted domains: sublanguage description and processing. Lawrence Erlbaum Associates.
Gross Maurice 1988 "Sur les phrases figees complexes du fran�ais", Langue Francaise 77. 1990 Grammaire transformationnelle du francais: 3 - syntaxe de l'adverbe. ASTRIL.
Habert Benoit 1990 "Controlling the generic dispatch to represent domain knowledge", Proceedings of the third CLOS users and implementors workshop. OOPSLA'90. 1991 Lan gages a objets et a n a 1 y s e linguistigue. Doctoral thesis.
Keene Sonya E. 1989 Object-Oriented Programming i n Common Lisp. Addison Wesley.
Kay Martin 1985 "Parsing in Functional Unification Grammar", in Natural language parsing, D. Dowty, L. Karttunen and A. Zwicky editors, Cambridge University Press.

Kickzales Gregor, Luis Rodriguez
_ 1990 "Efficient method dispatch in PCL",

Proceedings of the 1990 conference on Lisp
and Functional Programming.

Meyer Bertrand
1 988 Object -Oriented S o f t w a r e
Construction. Prentice Hall.

Pollard Carl, Ivan A. Sag
1987 Information-based syntax and
semantics. Vol 1: Fundamentals, CSLI.

Sakkinen Markku
1989 "Disciplined Inheritance", ECOOP'89

Shieber Stuart
1986 An introduction to unification-based
approaches to grammar. CSLI.

Steele Guy L.
1990 Common Lisp: The Language. 2nd
edition, Digital Press.

Wegner Peter
1987 "The Object-Oriented Classification
Paradigm", in Research Directions in
Object-Oriented Programming. The MIT
Press.

Wasow Thomas, Ivan A. Sag, Geoffrey Nunberg
1 982 " Idioms : an interim report",
Proceedings of the 13th International
Congress of Linguists,

Yonesawa Akinori, lchiro Ohsawa
1990 "Object-Oriented Parallel Parsing for
Context-Free Grammars", in ABCL: a n
Object-Oriented Concurrent Sys tem.
Akinori Yonezawa editor, The MIT Press.

88

February 14, 1991

Session A

AN LR(k) ERROR DIAGNOSIS AND RECOVERY METHOD

Philippe Charles
IBM T.J . Watson Research Center

P.O . box 704,
Yorktown Heights , N.Y 10598

Abstract

In this paper, a new practical, efficient and
language ... independent syntactic error recov­
ery method for tR(k) parsers is presented.
This method is similar to and builds Upon
the three-level approach oi' Burke�Fisher [1 1] .
However, it is more time- and space-efficient
and fully automatic.

1 . Introduction and Overview

1 . 1 l'h.� Parsing Framework
An LR parsing configuration has two components:
a state stack and the remaining input tokens. This
method assumes a framework in which the parser
maintains a state stack, denoted stack, and a fixed
number of input symbols . These symbols include
the current token or lookahead, denoted curtok, the
token immediately preceding the current token, de­
noted prevtok , and an input buffer 1 denoted b·uff er,
containing a predetermined number of the input tokens following curtok .. A number of attributes
are associated with each input symbol such as its
class, its location within the input source, its char­
acter string representation, · etc . . . An input sym­
bol together with all its attributes is referred to as
a token element. Each state q in the state stack
is also associated with certain attributes includ­
ing the grammar symbol that caused the transition
into- q (called the in_symbol of q) , and the location
of the first input token on which an action was ex­
ecuted on q .

An LR parsing configuration may be repre­
sented by a string of the form:

The sequence to the left of the vertical bar is the
content of the state stack , with qm at the top ;
q1 . . . qm is a valid sequence of states in the LR
parsing machine. The sequence to the right of the
vertical bar is the unexpended input . Each ele­
ment ti represents the class of a corresponding in­
put symbol . The symbol t 1 represents the class of

89

the current token , t2 represents the class of the suc­
cessor of cttrtok , etc. The symbol t o which is not
shown above represents the class of prevtok.

For simplicity, it will be assumed that the
grammar used to construct the _ .parser is LR(l) ,
but this method is applicable to all forms of LR(k)
parsers.

1 .. 2 Error Recovery
A parsing configuration in which no legr:t:l act. ion
is possible is called an error configuration . . When
an error configuration is reached , the error recov­
ery procedure is invoked. Its. role is to- adjust the
configuration so as to allow the parser to advance
a minimum predetermined distance .. in the input
stream, usually two or thr�e tokens past th� repair
point . The token on which the error is detect�d
is referred to as the error token and the state m
which the error is detected is called the error state.

Three kinds of recovery strategies are used .
They are:

• Primary recov-ery. A singfe-.symbol modifka­
tion of the source · text ;. i .e . , the insertion of a
single symbol into the inp�t stream, the dele­
tion of an input token , the su:bsti�ution of a
grammat symbol for an input token �or_ the
merging of two adjacent tokens to form a smgle
one. Previous authors [7] [1 1 J have used a tnorc
restricted form of pri'mary recovery inv·olving
only terminal symbols as repair candidates.

• Secondary. rewvery. Deletion of as small a se­
quence of tokens as- possible in tf-1.e vicinity of
the error token or replacement or such a se�
quence with a nontennfoal symbol. This ap:..

proach can be viewed as an autotllatic gener­
alization of the error productions· method de­
scribed in [3].

• Scope recovery. A scope is a syntactically
nested structure such as a parenthesized ex­
pression , a block or a procedure . In scope re­
covery, the strategy is to recover by inserting
relevant symbols into the text to complete the
construction of scopes that are incompletely
specified .

1 . program TEST (INPUT , OUTPUT) ;
2 . var X , Y : array [] of integer ;

•Error : index_list expected after . . .
3 . begn

•Error : misspelling of BEGIN
4. 1 : X : = y ,

•Error : ; expected instead of this token
5 . if x == b then begin

•Error : Unexpected symbol ignored
6 . go t o 1 ;

<--->
•Error : Symbols merged to form GOTO

7 . a : = ((b + c)

•Error : 1 1) 11 inserted to complete phrase ·
•Error : " END" inserted to complete . . .

8 . end .

Figure 1 : Primary phase recoveries

1 . program P (INPUT , OUTPUT) ;
2 . procedure ? (X : INTEGER) : integer ;

<------>
•Error : Unexpected input discarded

3 . · begin
4 . end ;
5 ; begin
6 . if count [listdata [sub] .- O then

•Error : "] " inserted to complete phrase
•Error : invalid relat ional_operator

7 . a : = ((b + c]] ;

<>
•Error : 1 1) 1 1 inserted to complete phrase
•Error : 1 1) 11 inserted to complete phrase
•Error : Unexpected input discarded

8 . end .

Figure 2 : Secondary phase recoveries

90

This error recovery sch��� consists of two
phases called Primary phase and Secondary phase. In the Primary phase, an attempt is made to re­
cover with minimal modification of the remaining
input stream. Figure 1 shows some examples of
primary phase recoveries. In the Secondary phase,
more radical approaches involving removal of some
left con text (state stack) information as well as
multiple deletion of tokens from the input stream
(right context) are attempted. Figure 2 shows some
examples of secondary phase recoveries.

1 . 3 Error Detection ·

A canonical LR(k) parser h� the capability of
detecting an error at the earliest possible point .
However, because of their size, canonical LR(k)
parsers are seldom used. Instead, variants such as
LALR(k) and SLR(k) (usually k = l) , invented
by DeRemer [11 [2] are used . These LR variants,
in part , solve the space problem by always using
the underlying LR(O) au.tomatoil . However, cer­
tain states in these parsers usually contain reduce
actions that may be illegal , depending on the ac­
tual context . Illegal reduce actions do not cause
the resulting parser to accept illegal inputs, but

· they -prevent it from always detecting errors at the
earlier possible point . This problem is usually com­
pounded by a space-saving technique known as de­
fault reductions which is often· used in compress­
ing parsing tables. To apply the default reduc­
tions technique, the most common rule by which
the parser can · reduce in each state is chosen as
a default action for that state and all the reduce
actions by that rule are removed from the parsing
table . Another undesirable side effect · of using de­
fault reductions is that it is no longer possible to
compute, from the parsing table , the set of termi­
nal symbols on which valid actions are defined in a
given state. The inability to detect errors as soon
as possible and to obtain a set of viable terminal
candidates for a given state is very problematic for
error recovery.

Furthermore, even with a canonical LR(k)
parser, the ability to detect an error at the ear­
liest possible point only guarantees that the pre­
fix parsed up to that point is correct . Therefore,
it is possible that the token on · ·which an error is
detected i� not the one that is actually in , error.
Consider the following Pascal decl_aration :

FUNCTION F (X : TINY , Y : BIG , Z : REAL) ; In this example, it is very difficult to deduce
the actual intention of the programmer, but a sim­
ple substitution of the keyword "PROCEDURE" for

the keyword "FUNCTION" would solve the problem. However, the error is not detected-· until the semi­colon (;) is encountered or 15 tokens later. In [1 1] , Burke and Fisher introduced a deferred parsing technique where two parsers are run con­currently : one that parses normally and another that is kept at a fixed distance (measured in termi­nal symbols) back. When an error is encountered, error recovery is attempted at all points between the two parsers. This approach avoids the prema­ture reductions problem and solves, in part , the problem of late detection of errors . However, the overhead of the two parsers penalizes correct pro­grams. In this method, a new LR driver routine called deferred driver is introduced. This new driver can effectively detect an error at the earliest possible point even if the parser contains default reductions . It can also be adapted to defer parsing actions on a fixed number of tokens with very little slow-down on correct programs. To achieve this goal , an ad­ditional state stack is required for each deferred symbol . Thus, in practice, one must restrict the number of symbols on which actions are deferred. The method also relies on having two map­pings: Lsymbols and nLsymbols , statically con­structed, which yield for each state, a subset of the terminal and nonterminal symbols , respectively, on which an action is defined in the state in question. These subsets are the smallest subsets of viable er­ror recovery candidates for each state . Their com­putation will be discussed later . The remainder of this paper is organized as follows: • detailed description of the new driver • presentation of various recovery techniques • discussion of how to apply these recovery tech­niques • concluding remarks
2 The Driver

An important improvement that can be made to an LR(k) automaton is the removal of LR(O) reduce states. An LR(0) reduce state is a state that con­tains only reduce actions by a particular rule . If a representation of the parsing tables with default ac­tion is used, then the parser will never consult the lookahead symbol when it is in one of these states. Thus, such states may be completely removed from the parser by introducing a new parsing action: read-reduce. The read-reduce action comprises a read transition followed by a reduction . A read­reduce action is referred to as a shift-reduce when

91

l e t #x denote the number of elements in a # sequence x. rhs and l hs are maps that yield the # size of the right-hand side and left-hand side # symbol of a given rule, respectively. ACTION # and GOTO are the terminal and nonterminal # parsing functions, respectively.
I. function lookahead_action(stk, tok, pos) ; 2 . { pos := #stk.state ; 3 . top := pos - 1 ; 4. act := ACTION(stk .state[pos] . tok) ; 5 . while act is a reduce action do 6. { do
7 .

8 .

9 . 10 .
1 1 . 12 .
13 .

14 .

15 .

16 . }

{ top := top - rhs[act] + 1 ;
if top > pos then s := tstk [top] ; else s := stk.state[top] ; act := GOTO_(s , l hs[act]) ; } while act i s a goto-reduce action; tstk[top+l] := act ; act := ACTION(act , tok) ; pos := m i n(pos, top) ;

17 . return act ;
18 . }

Figure 3 : lookahead_action function
the symbol X in question is a terminal symbol and as a goto-reduce action when X is a nonterminal . The removal of LR(0) _reduce states from an
LR automaton does not cause premature reduc­tions. Moreover, the execution of a read-reduce action is always followed by a sequenc� of zero or more goto-reduce actions, and finally, by a goto action . All of these actions may also be executed without deferral . When the parser executes a reduce action in a non-LR(0) reduce state, that action is also followed by goto-reduce actions and a final goto action . If the reduce action in question is an illegal action, executed by default , then all the associated goto­reduce and goto actions following it are also ille­gal moves. To complicate matters, the · goto action may be followed by a sequence of reduce actions on empty rules, each followed by its associated goto­reduces and goto action . In such a case, all actions induced by the lookahead symbol must be invali­dated and the original configuration of the parser (prior to the initial reduction) must be restored . One way to achieve this goal is as follows. When a reduce action is encountered , make a copy of the state stack into a temporary stack and sim­ulate the parser using the temporary stack until either a shift , shift-reduce or error action is corn-

stk .state := [start_state] ;
loop do
{ ppos := O ; pstk := [] ;

}

npos := O ; nstk := [] ;
stk . loc[#stk.state] := curtok . loc;
tstk := stk ;
act := lookahead_action(tstk , t1 , pos) ;
while act # error and act # accept do
{ nstk(npos+l . .] := tstk[npos+l . .] ;

stk . loc[pos+l . .] :=
[curtok . loc : i i n (pos+l . .#nstk]] ;

if act is a shift-reduce action then
{ top := #nstk ;

}

do
{ top := top - rhs[act] + 1 ;

act : = GOTO(nstk[top] , l hs[act]) ;
} while act i s a goto-reduce action;
nstk[top+l . .] := [act] ;
pos := m in(pos, top) ;

act := lookahead_action(nstk , t2 , npos) ;
if act # error then
{ get next token;

}
}

pstk[ppos+l . .] := stk.state[ppos+l . .] ;
ppos := pos;
stk.state[pos+l . .] := nstk[pos+l . .] ;
pos := npos ;

if ad =accept then
return ;

error Jecovery() ;

Figure 4 : Driver with 3 deferred tokens
puted on the lookahead symbol. If the first non­
reduce action computed on the lookahead is valid,
the temporary state stack is copied into the state
stack and the parsing can continue. Otherwise , the
error recovery routine is invoked with the unadul­
terated state stack. This idea captures the essence
of what needs to be done, but it is too costly for
practical use.

Instead of copying the information, the tem­
porary stack is used to hold the values of the
contiguous elements of the state stack that have
been added or rewritten . If the moves turn out
to be valid , then only the added or rewritten el­
ements are copied to the state stack. Otherwis�,
the original configuration is passed · to the error ·
recovery routine. This idea is illustrated in the lookahead_action function of Figure 3, written in
pseudo-code.

The lookahead_action function always returns

92

the first non-reduce action computed on the looka­
head symbol . If that action is valid , the state se­
quence of the new configuration consists of the el­
ements l . .pos of stk .state . and the elements pos +
l . .top + 1 of tstk .

A parser with actions deferred on one token
can be constructed as follows. Starting with the
initial configuration, the parser advances through
the input stream one token at a time after verify­
ing that the token in question is a valid input by
invoking the lookahead_action function . When the lookahead_action function is invoked with a valid
lookahead it returns either a shift or a shift-reduce
action which is processed immediately. As men­
tioned earlier, .shift-reduce actions and all their as­
sociated goto-reduce and final goto actions may be
processed without deferral. After successfully pro­
cessing a token, the next token is .read in and the
process is repeated on the new configuration. If,
on the other hand, the lookahead_action function
returned the error action, the state stack is not
updated and the error recovery routine is invoked
instead .

A driver routine can be constructed, using the lookahead_action function, to defer parsing actions
on n tokens given n state stacks. In experiments
with this method, parsing has been deferred for
three tokens. The three stacks that are used are :
pstk which captures the configuration of the parser
prior to processing any action induced by prevtok ,
stk which captures the configuration prior to pro­
cessing actions induced by curtok , and nstk which
captures the configuration prior to processing ac­
tions induced by the successor of curtok . Asso­
ciated with each of these stacks are three integer
variables: ppos, pos and npos which are used to
mark the position of the top element in the corre­
sponding stack that is still valid after the actions
induced by the relevant lookahead symbol are ap­
plied. Figure 4 shows the body of a driver routine
with actions deferred on three input symbols.

3 Recovery Strategies

Each recovery attempt is called a trial. The ef­
fectiveness of a recovery is evaluated using a vali­
dation function: parse_check , which indicates how
many tokens . in the input buffer can be success­
fully parsed after the repair in question is applied : parse_check distance. A recovery trial is not con­
sidered successful unless the parse_check distance
is greater than or equal to a certain value, called min_distance . Experiments have shown that a
good choice for min_distance is 2 [1 1] .

The parse_check function is essentially an LR driver that simulates the parse until it has either shifted all the tokens in the buffer, completed the parse successfully, or reached a token in error.
In the following subsections, algorithms for optimizing the necessary error recovery informa­tion and implementing the three different recovery strategies are presented .

3.1 Primary Recovery Given a configuration: q1 , q2 , . . . , qm I t 1 , t2 , . . . , tn , where t1 is assumed to be the error token, the pri­mary recovery finds the best possible primary re­pair (if any) for that configuration. The selection of a best primary repair is based on three criteria: • the parse_check distance • the misspelling index • the order in which the trials are performed. The misspelling index is a real value between 0.0 and 1 .0 that is associated with each primary re­covery trial . When a new token is substituted for the error token - a simple substitution, a misspelling function is invoked to determine the misspelling in­dex; i .e . , the relative proximity of the two tokens in question expressed as a p-robabilistic value. For other kinds of recoveries, the misspelling index is set to a constant value depending on the recovery in question and other conditions. This will be dis­cussed later. Primary recoveries are attempted in the fol­lowing order: merging of the error token (t 1) with its successor (t2); deletion of t 1 ; insertion of each terminal candidate in t..:.symbols(qm) before t 1 ; substitution of each legal terminal candidate in Lsymbols(qm) for t 1 ; insertion of each non ter­minal candidate in nLsymbols (qm) before t 1 ; and, finally, substitution of each nonterminal candidate
nt_symbols(qm) for t 1 ; For now, one can assume that for a state q , !_symbols(q) and nLsymbols(q) yield the sets of all terminal and nonterminal sym­bols, respectively, on which actions are defined in
q. Optimization of these sets is discussed in sec­tion 3 .3 . As the trials are performed, the primary re­covery routine keeps track of the most succesf�l trial . Initially, the merge recovery is chosen since it is attempted first . If a subsequent recovery yields a larger pai'se_check distance than the previously chosen recovery or it yields the same parse_check distance but with a greater misspelling index, then it is chosen instead as the best recovery candidate. For the merge trial , the character string rep­resentation of t2 , is concatenated to the charac-

93

ter string representation of f 1 to obtain a merged string s. A test is then performed to determine if s is the character string representation of some t E Lsymbols(qm) - If such an_ element t, called a merge candidate, is found , a new configuration is obtained by temporarily replacing f 1 and t2 with t in the input sequence and the parse_check distance is computed for this new configuration . As described in the previous section , the de­ferred driver insures that the state qm on top of the stack of the error configuration is the state en­tered prior to the execution of any action on f 1 .

In that configuration, it may be possible to exe­cute a sequence of reduce, goto-reduce and goto actions before the illegality of t1 is detected in another state qe . In such a case, the .. elements in Lsymbols(qm) that are also in Lsymbols(qe) are given priority in applying the insertion and substitution trials. (It is not hard to show that Lsymbols (qe) � t..symbols(qm) -) The benefits of this ordering can be seen in the following example :
writ e (1*5+6 ; 2*3 , 4/2) In this erroneous Pascal statement, a semicolon is used instead of a comma after the first parame­ter . Assume state qm is the first state that en­counters the semicolon . . At that point, the parser has just shifted an expression operand and the set of valid lookahead symbols inclucfes not only the comma but all the arithmetic operators. However, if the parser is allowed to interpret the operand as a complete expression , it will enter an error state qe where the comma is the only candidate. In order to give priority to the candidates in an error state qe , it is necessary to identify when the parser has entered such a state. State qe can be computed in the lookahead_action function by inserting the following statement after lines 3: and 13 . in Figure 3 :

error ..state := act;

3.1.1 The Mispelling Index For a successful merge trial , the misspelling index is set to 1 . 0 since the merged string must perfectly match the character string representation of the merge candidate. As mentioned earlier, a misspelling function is invoked to calculate the misspelling index for a simple substitution. The misspelling function used in this method was proposed by Uhl (14] . The dis­tance between two words is measured by the num­ber of letter inversions, insertions and deletions. The smaller the distance between two words, the

more likely it is that one is a misspelling of the other. For all other recoveries, the misspelling index is set to 0 .0 .
3.2 Seconda·ry Recovery Secondary recovery (also called Phrase-level recov­ery [8] [12]) is based on the identification of an error phrase which is then deleted from the input or replaced by a suitable nonterminal symbol or reduction goal. If the string:

t 1 , . . . , tn (1)

is an error configuration, then a substring
t1 , . . . , t; - 1 (2)

1 :s; i :s; m, 1 :s; j :s; n , of that configuration-· is an error phrase - (of the configuration) if removing that substring allows the parser to advance at least min_·distance tokens into the forward context , or if there is a nonterminal A such that a valid action is defined in state qi on A, and after processing A, the parser can advance at least min_distance into · the forward context . Here, qi , A and t; are the recovery state; reduction goal and recovery symbol, respectively. The scheme used in this method to select er­ror phrases reflects a fundamental distinction that is made among three different kinds of errors. Con­sider the error configuration (2) above. The case of the empty error phrase is considered during pri­mary recovery as a nonterminal insertion. Simi­larly, the case where an error phrase c l t 1 is deleted or replaced by a nonterminal candidate is processed by a primary recovery deletion or nonterminal sub­stitution. Next , priority is given to a successful secondary recovery that consumes no input sym­bol and requires no insertion of a reduction goal; i .e . , a recovery based on the removal of an error phrase of the form ,Bk where ,B # c. This kind of error is called a misplacement error, and ,B is called a misplaced phrase. The-following Pascal program illustrates this case:
1 . program P (IHPUT ,OUTPUT) ;
2 . var ! : real ;

<--------->
•Error : Misplaced construct (s)
3 . type ORDER=array [1 . . MAX] of real ;
4 . var Q : integer ;·
5 . begin
6 . end . Finally, the case in which one or more input symbols and/or states must be deleted or replaced with a nonterminal candidate is considered . In

94

that case, input symbols are consumed faster than states. In other words, the error phrases are ·se­lected as indicated by the row-major order of the table below:
c lt 1 , . . . , tn qm lt1 , • . . , tn

q2 , . • . , qm jt 1 , . . • , tn
In this final case, each error phrase selected is re­moved from the base configuration (1) . An ini­tial attempt is made to recover by parse checking the resulting configuration. This action, called sec­ondary deletion, can be viewed as a multiple dele­tion of the symbols that make up t,he error phrase. Next, each element in the set of nonterminal can­didates for the newly exposed state on top of the state stack is substituted, in tum, for the ·error phrase and the parse_check function is invoked to determine its viability. This ·action is called , a sec­ondary substit'lition. This process ,continues until a successful recovery is found or all the possibilities are exhausted. Iri secondary recovery, the aim is to find a re­pair that least alters the original configuration. For this reason, misplacement trials -are performed sep­arately from the other secondary trials and given, higher priority, since such a rep-air does not delete any symbol from the forward context and t-ehds to remove whole structures from the left context that have been previously analysed. The parse.check· distance is used as the criterion to select the best misplacement repair. After the misplacement tri­als, a secondary deletion and substitution_ trial _is performed on successive error phrases. The se­lection of a hest deletion or substitution repair is based on the length of the relevant error phrase and the parse_check distance, with deletion_ having pri­ority over substitution in case of a tie. The length of an error phrase ,Blx is obtained by adding the length ·of the string x :to the number of non-null symbols in ,B. Given the best misplacement repair and the best deletion or substitution repair, if the misplace­ment repafr is based on a shorter error phrase or it yields a longer parse_check distance, then it is chosen. Otherwise, the deletion or substitution is chosen .
3 .3 Optimization of Candidates Consider the case of a secondary substitution in which a recovery goal A must be inserted into the input stream. In such a case, every nonterminal

E - -E + T
T - •T * F
F - ·F i P
P - -id

E - -1'
T - •F
F - -P
P - · (E)

Figure 5 : Items in a state qi

candidate in state qi is a potential reduction goal .
However, an implementation that checks all poten­
tial candidates for each error phrase would be pro­
hibitively slow.

Two optimizations are applied to the set of
nonterminal candidates in a given state to obtain,
in most _cases, a substantially reduced subset of rel­evant reduction goals.

In [8] , the following concept is presented: a re­
duction goal A of error phrase .Blx in error config­
uration a,Blxy is important if .Blx has no reduction
goal B such that B --+.+ A. In this method a more
restricted concept of an important symbol is used.
The new concept takes into consideration the full
context of the error phrase. A nonterminal A on
which a transition is defined in a state qi is said to
be important if A does not appear in a single item
of the form B --+ • A in qi . For example, assume
a recovery state qi contains the set of items shown
in Figure 5 . By the definition of [8] , the only im­
portant reduction goal in such a state is E, since
T, F and P can be derived from E via a chain of
unit productions. By the more restricted definition
of this method, T and F would also be considered
important symbols since they appear immediately
to the right of the dot in more than one item. To
understand the importance of T and F, assume
that the rules from which the items of Figure 5 are
derived are all the productions of a grammar and
consider the following erroneous input strings :

()) (* id + id
()) (j id + id

If E is the only important symbol considered,
then the best secondary repair that is achievable is
the replacement of " ()) (* id" by E in the first
sentence and " ()) (j id" by E in the second
sentence. However, it is clear from the grammar
that replacing " ()) (" by T in the first sentence
and by F in the second sentence would be prefer­
able.

One further notices that using F as a reduc­
tion goal in the first sentence would have worked
just as well , since after a transition on F, with the
symbol "*" as lookahead, a reduction by the rule
"T --+ F" would be applied . Similarly, P could

95

have been used as a suitable reduction goal in both
sentences. This leads to the following concept , on
which the second optimization is based : a nonter­
minal element C of a set of non terminal candidates S in an LR state q is said to be relevant with re­
spect to S if there does not exist a nonterminal D,
such that D E S, D -=p C, and D can be success­
fully substituted for C as a reduction goal for any
error phrase with q as the recovery state.

Given a set S of nonterminal candidates for
a given state, the objective is to find the largest
subset S' C S such that S' contains only relevant
reduction goals. Let S = {B1 , . . . , Bk } for 1 :'.S i :'.S k, Bi E S is relevant iff �Bi , j # i , such that B. _.__+ B · The proof of this assertion follows i,...rm J •
directly from the definition of an LR parser. If
a nonterminal B can be substituted for an error
phrase , then the recovery symbol t in question must
be a valid lookahead symbol for any rule derivable
from B. In particular, if Bi ⇒ fm Bj and Bj is
substituted for an error phase where Bi is known
to be a valid reduction goal , the recovery symbol
will cause B; to be reduced to Bi .

For each state q in an LR automaton , the set nLsymbols(q) is obtained as follows. Starting with
the set of nonterminal symbols on which an ac­
tion is defined in q , remove all unimportant sym­
bols from that set , and reduce the resulting set
further by removing all irrelevant reduction goals
from it. For example, consider the state qi of Fig­
ure 5 . State qi contains nonterminal transitions on
the symbols E, T, F and P. The only unimpor­
tant symbol in that set is P. After P is removed,
the irrelevant symbols E and T are removed from
the subset {E, T, F} leaving F as the only relevant
reduction goal in qi .

The notion of an important symbol can also be
extended to terminal candidates in the Lsymbols
,sets. Once again , consider the state qi of Figure 5 .
This state contains a single terminal action on the
symbol id, but, since id appears only in the item
P --+ - id, it is not an important candidate in qi .
The removal of unimporta_nt terminals improves
the time performance of the primary recovery and
saves space. However, it may suppress some oppor­
tunities for merging and misspelling corrections.

In [13] , an algorithm is presented that can be
used to further reduce the space used by Lsymbols
and nt_symbols .
3.4 Scope Recovery

One of the most common errors committed by
programmers is the omission of block closers such
as an end statement or a right parenthesis. Such

if..stm t -+ I F cond THEN
�tJist elsif.Jist opt...else

END IF ;
sUist -: stmt I stJist stmt
elsifJist -+ c: I elsifJist ELSIF cond THEN stJist
opt_else _/ £ I ELSE stJist
stm t -+ : . . I · if..stm t I . . .

Figure 6 : BNF rule for Ada if statement

an error is referred to as a scope error. Scope er­
rors are · common because the structures requiring
block closers are usually recursive structures that , ·
in practice, are specified in a nested fashion. In
such a case, a matchin·g block closer must accom­
pany each structure · in the nest . For example, if a
user specifies an expression that is missing a sin­
gle right parenthesis, primary recovery can success- ·
fully insert that symbol . However, if two or more
right parenthesis are missing, neither primary nor
secondary recovery can successfully repair such an
error. Similarly, consider the BNF rule for an Ada if -statement in Figure · 6 [9] : If an Ada if statement
is specified without the "EN D IF ;'' closer, neither
of the two recovery techniques mentioned so far can
effectively repair this error. The repair that is nec­
essary for this kind of error is the insertion of a
sequence of symbols; called multiple symbol inser-tion.

. Scope recovery ·was first introduced by ,Burke and Fisher (1 1] . Their technique requires that each
closing sequence be supplied by the user as a list
of terminal symbols. Scope recovery is attempted
by checking whether or not the insertion of a �om­
bination of these closing sequences can allow the
parser to recover.

By contrast , the scope recovery technique used
in this method is based on the identification of one
or more recursively defined rules that are incom­
pletely specified, and insertion of the appropriate
closing symbols to complete these phrases. All nec­
essary scope information required by this method is
precomputed automatically from the input gram­
mar. In addition , the method is based on a pattern
match with complete rules rather than just the in­
sertion of closing sequences of terminal symbols .
As a result , the diagnosis of scope errors is more
accurate in that it identifies whole structures that
are incompletely specified instead of just the miss­
ing sequence of closing terminals.

96

3.4.1 Scope Information
Definition 3.1 A rule A - o:B/3 is a scoped
rule ifa -:j; £, B ⇒• -yA.6, for some arbitrary string
"Y and fJ, and /3 -p,• t .

In the example of Figure 5 , the rule P - (E)
is a scoped rule since P can be derived from E.
The if ...stmt rule of Figure 6 is also a .scoped rule
since each of the bold symbols following TH EN in
that rule can recursively derive a string contain_ing
the symbol if...stmt. A scope can be derived from a ·
scoped rule for each recursive symbol in the right­
hand side of the scoped rule.

A scope is a quintuple (1r, u, a , A , Q) where 1r
and u are strings of symbols called scope prefix
and scope suffix, resp�ctively, a is a terminal sy�­
bol called the scope lookahead, A is a nonterminal
symbol called the left-hand side and Q is a set of
states. The s�ope prefix is the prefix of a suit(!,ble strin!J. deriva:ble from ·the scoped rule in que�tiori .
It is used to determine whether or not a recovery
by the associated scope is applicable; i .e . , a_t run
time, a repair by a given scope is considered only
if this initial substring of the suitable string can be
successfully derived before the error token causes
an _err�r actior,i . The scope suffix is the suffix (of the
suitable string) that follows the scope prefix. When
diagnosing a scope error, the user is advised to in­
sert the _symbols of the scope suffix into the input
stream to complete the specification of the scoped
rule. The scope lookahead symbol (string, if the
grammar is LR(k)) is a terminal symbol (string}
that rriay immediately . follow ·the p·refix in a legal
input . The left-hand sid� of the scope is the non­
terminal on the left of the scoped rule. , The set
Q contains the states of the LR(k) automaton in
which the left-hand side can be introduced through
closure.

Given a scoped rule A - o:B/3, the scope
information related to B is computed as follows.
Since f3 -p, • l , there exists a string 1/;X </J such that /3 ⇒• 1/;X <P, l/; ⇒• t , and ·x ⇒;m aw . Let o:Blj)X <P
be the suitable string mentioned above, then a
valid scope for the above rule is (o:Btf;, X <P , a , A , Q),
where Q i s the set of states in the LR automaton
containing a transition on A.

A s a n example , consider the if...stmt rule of Fig­
ure 6 and the scope induced by the nonterminal
stJist in its right-hand side . To put it in the form A - o:B/3, let B be the symbol "stJ.ist" . It fol­
lows that o is the string " IF cond TH EN" , and /3 is
the string "elsifJist opLelse E N D I F ;" . Let 1/; be
the string "el sifJ.ist opt...else" and let X be the
symbol "EN D'' . One observes that /3 is exactly in

Let scope..seq be a global output variable.
- Initially, scope..seq= [] and scope_trial is
invoked with the sequence q1 , . . . , qm . The input
sequence t1 , . . . , tn is assumed to be global.
proc scope_triai(stack) ;
{ for each scope (1ri , O'i , a i , Ai , Qi) do

{ sstk := stack;

}
}

ad := lookahead_action(sstk, lli , pos)
if act ¥ error then
{ sstk[pos+1 . .j := tstk[pos+l . .] ;

top := #sstk - l1h l ;

}

if top > o then
{ pref := [in..sym [sstkLiH : j in top+L#sstk] ;

if pref == 7ri and sstk[top] E Qi then

}

{ do

}

{ top := top - rhs[act] + 1 ;
_ act : = GOTO(sstk[top] , l hs[act]) ;
} while ad is a goto-reduce action
sstk[top+i .. } := [act] ;
if prschck(sstk, t1 , . . . , tn) > m in..dist then
{ scop�...seq := [i] ;

· return;
}
elst?
{ scope ... ttial(sstk);

}

if scop�...seq -/- [] then
scope..seq := stope...seq + [i] ;

return;

Figure 7: st:ope_irial procedure

the desired form 1/;X </J. Thus, assuming the set of
transition states Q is available i the scope induced
by st.list for the tule iLstmt is:

(IF tond THEN st.Jist elsifJist opt_else, END IF ; ,
END, if..stmt, Q)

The other recursive symbols in if...stmt: elsif-1ist
and opt_else induce exactly the same scope as
st-1ist , since they are both nullable.

3.4.2 Scope Error Detection
Given an error configuration:

and a set of scopes:

97

the applicability of scope recovery to this config­
uration is determined as follows . . For each scope
(1ri , (ji , ai , Ai , Qi) , a three-step test is performed:

step 1 : The lookahead_action function is invoked
with ai as the current token to check if ai is
a valid lookahead symbol for the viable pre­
fix. As a side-effect , this function updates the
state stack configuration (using" a temporary
stack) to reflect all reduce actions, including
empty reductions, induced by ai . If the action
returned by lookaheadaction is the error ac­
tion then the whole test fails. Otherwise, step
2 is executed.

step 2: A pattern match is made between the pre­
fix 1ri and the topmost l 1ri I symbols of the vi­
able prefix, i .e . , the string obtained from the
concatenation of the in_symbols of the states:
qm- l'!"d+l . . . qm . Again , if this test fails , the
whole test fails. Otherwise the final step is
executed.

step 3: If qm- l*d E Qi then the test is successful .
Otherwise, the test fails.

If the three-step test is successful, · then a
parse check is performed on the configuration:
q1 , . . . , qm- l 1r; l , qA I t 1 , . . . tn , where qA is . the sue�
cessor state of qm and A 1 . If the par.S'e _eke.ck func­
tion can parse at least min_distance symbols, the
scope recovery . is successful . . Otherwise , it is in­
voked recursively with the new configuration above
and the process is repeated until scope recovery ei­
ther succeeds , or there are no more possibil ities to
try.

When scope recovery is successful, the se- ·
quence of scopes that resulted in. the successful , re­
covery must be saved for the issuan {:e of an accu­
rate diagnostic.

Figure 7 shows a complete implementatio� of
the scope error detection a.lgorithm. The algorithm
mirrors the preceding discussion in a st·raightfor­
ward manner. The emphasis in writing the code
was on the clarity of the exposition rather than
efficiency.

4 Recovery Phases
This section describes how the different repair
strategies discussed in the previous sections are in-

1 If the action in Qm on A is a goto-reduce, the parser is
simulated through the whole sequence of goto-reduce actions
that follow, until a goto action is encountered. This final
goto is executed and the resulting state sequence is used
instead. Note that these actions do not consume any input
symbol.

corporated into the unified two-phase scheme of this method. At the global level , the effectiveness of a recovery trial is measured based on two crite­ria: • the number of symbols that must be deleted if the repair in question is applied • the parse_check distance of the recovery The primary phase recovery which includes all re� covery trials that are based on at most a single in­put token modification is attempted first . If a suc­cessful primary phase· recovery is found that cannot be beaten by any other recovery in terms of the cri­teria above, it is accepted. If such a primary phase recovery is not found , secondary phase recovery is attempted. If a successful secondary phase recov­ery is found , then it is accepted . Otherwise, the er­ror recovery gets into a form of panic mode, where the current input buffer is flushed, new input to­kens are read in and secondary phase recovery is attempted again . This process is repeated until ei­ther a successful secondary recovery is obtained �r the end of the input stream is reached. When a recovery is accepted, the following ac­tions are taken : a diagnosis is issued, the repair is applied and the error recovery procedure returns successfully. The diagnosis of a prima�y recovery is stra�ghtforward. To diagnose a secondary deletion, the user i_s advised to delete the symbols in the er­ror phrase _ in question. Similarly, for a secondary substitution, the relevant reduction goal is sug­gested as a replacement for the error phrase. The location of an error phrase starts from the location assocJated with the recovery state to the location of the last .token in the error phrase. To diagnose a scope recovery, the location of prevtok is used to indicate where the symbols of the scope ·suffix in question should be inserted . A repair is applied by resetting the compo­nents of the main configuration (buffer and stk) . The resetting of the input buffer simply involves the insertion of some symbols into the buffer, the reading of new input tokens into the buffer , or the replacement of some buffer elements. The rese�­ting of the stack is more complicated . For a pri­mary recovery, one only needs to choose the stack on which the recovery was successful . For a sec­ondary recovery, all states following the recovery state are removed from the stack . For a scope re­covery, the sequence of states on top of the stack that corresponds to the prefix of the scope is re­moved and the repair proceeds as if the error. was a simple insertion of the left-hand side of the scope.

98

4.0.3 Primary Phase In the primary phase, error recovery is applied on each available configuration, starting with nstk , proceeding with stk and finally processing pstk . For each configuration, scope recovery i s attempted first followed by primary recovery. The same cri­teria used in choo�ing. a primary recovery is used in the primary phase. The n:iisspelling index of a scope recovery trial is set to 1 .0 . Thus, for a given configuration, a successful scope recovery al­ways has priority over a primary recovery trial that yields the same parse_check distance.
If a successful recovery is obtained from the primary phase and its stack configuration is nstk or stk , the recovery trial is evaluated against cer­tain secondary recovery trials on the stack config­uration in question before being accepted . . These recovery trials are the ones whose repair actions wo�ld have as little impact on the recovery config­uration as a primary recovery. They are misplace­ment recovery trials and scope recovery trials that require the deletion of one input token. The idea is to ensure that none of these borderline recoveries can be more effective than the best primary phase recovery.

4.0.4 Secondary Phase In the secondary phase, secondary error re­covery is applied first on nstk if it is available and then on st k. If a successful secondary recovery is obtained, a check is made to see if the error can be better repaired by the closing of some scopes followed by less radica:l surgery. Consider the fol­lowing Pascal example:
if count [listdata [sub] : = O then

x : = ((3]] ; In the first line, the user is missing a closing "] " and the assignment operator " : ='� is used instead of a relational operator. This error is · detected on the symbol " : =" . In the second line, tl�e user used the wrong closing symbols in an expression and the error is detected on the first "] " . Noth­ing short of a secondary deletion of the sequence
" [listdata [sub] : = O" in the first instance and a secondary substitution of "expression" for the se­quence " ((3]] " would successfully repair these errors·. However, it is not difficult to see that they can be repaired more accurately, using scope recov­ery by proceeding as follows. Before accepting a secondary recovery based on an error phrase ,Blx , a scope recovery check is performed on the recovery configuration, followed by the deletion of up to l x l tokens in the right con­text . If the scope recovery is successful , then its

associated repair actions are applied without the subsequent deletion and the secondary phase re­turns successfully. The parser fails right away and once again invokes the error recovery procedure. On this next round, primary and secondary phase recovery are attempted again. This subsequent at­tempt will at best fix the remaining input or at worst delete a string up to the length x from the input . In the example above, the missing "] " is in­serted and "relational..Dperator" is substituted for " : =" in the first line. In the second line, two clos­ing ")" are inserted, followed by a deletion of the pair "] l " (See figure 2) .
5 Implementation

The error recovery method described in this paper has been successfully implemented. An LALR(k) parser generator was modified to produce the ex­tra tables required: t_symbols , nLsymbols and the scopes. The method can be used with any LR(k) application. However, programming lan­guages were used in our examples because such ap­plications are the best illustrations of the problems one is likely to encounter. Parsers were built for Ada and Pascal and tested on the Ada examples of [1 1] and the Pascal examples of [6] . Penello and DeRemer [4] proposed that the quality of a repair be rated "excellent" if it repaired the test as a human reader would have, "good" if not but it still resulted in a reasonable program and no spurious errors, and "poor" if it resulted in one or more spurious errors. Based on these categories, the performance of this method on the test set of [6] was 85.9% excellent , 14 . 1 % good and 0 .0% poor. In fact , most of the "good" recoveries resulted from errors whose repair required some kind of semantic judgement. The time performance of this method is excel­lent , usually requiring less than 50 milliseconds per error on a 16 MHz PS/2 model 80.
6 Conclusion

This paper described a new practical LR(k) er­ror diagnosis and recovery method which improves upon the current state-of-the-art in some signifi­cant ways. Specifically, • a new deferred driver is introduced which al­ways detects an error at the earliest possible point ; • the primary recovery is generalized to process both terminal and nonterminal symbols ;

99

• the secondary recovery is an efficient (and completely automatic) generalization of the error production method; • techniques are presented for optimizing error recovery candidates; • a new automatic method for scope recovery is presented. Moreover, this method is completely language- and machine-independent and more efficient than other known methods .
7 Acknowledgements The author wishes to thank the following people for many helpful suggestions and their encourage­ment throughout the development of this work: Michael Burke, Ron Cytron, Gerald Fisher , Lau­rent Pautet , Matthew Smosna. The author is es.:. pecially thankful to Fran Allen and Ed Schon berg for their advice and support .
References

[l] F . L. DeRemer
Practical Translators for LR(k) Languages.
Ph.D. dissertation, MIT, Cambridge, Mass . , 1 96�1

[2] F. L. DeRemer: Simple LR(k) Grammars,
Comm. ACM 1 4 , 7, 453-460 July 1 971

[3] Alfred V . Aho, Jeffrey D . Ullman
The Theory of Parsing, Translation , and Compiling
Volume I & II, Prentice Hall , Inc 1 972

[4] Penello, T . J . , and DeRemer, F. L.
A forward ·move algorithm for LR error recovery.
ACM Symposium on Principles of Programming Lan­
guages (Jan . 23-25 , 1 978, Tuscan) , pp. 241-254

[5] Ripley, G . D., and Druseikis, F.C.
A statistical analysis of syntax errors
Journal of Computer Languages 3,4 (1 978) (227-240)

[6] Ripley, D . J . : Pascal Syntax Errors Data Base
RCA Laboratories, Princeton, N.J . , Apr 1 979

[7] S. L. Graham, C. B. Haley, W. N. Joy
Practical LR Error Recovery
SIGPLAN 79 Symposium on Compiler Construction
(August 6- 1 0 , 1 979 , Denver) ACM, NY, pp 1 68- 1 75 .

[8} Seppo Sippu , Eljas Soisalon-Soininen
A Syntax-Error-Handling Technique and Its Experimen­
tal Analysis
ACM Transactions on Programming Languages and Sys­
tems, Vol. 5, No. 4, October 1 983, Pages 656-679

[9] Ref. Manual for the ADA Programming Language
ANSI/Mil-STD- 1 8 1 5A: 1 983, U .S . Dept . of Defense.

(1 0] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman
Compilers: Principles, Techniques and Tools
Addison Wesley Publishing Company, 1 986

[1 1]

[1 2]

[13]

[14]

Michael Burke, Gerald A. Fisher
A Practical Method for LR and LL Syntactic Error Diag­
nosis and Recovery
ACM Transactions on Programming Languages and Sys­
tems, Vol . 9, No. 2, April 1 987, Pages 1 64- 1 97
Nigel P. Chapman : LR Parsing: Theory and Practice
Cambridge University Press, 1 987
Philippe Charles, Laurent Pautet
Efficient Representation of LR Error Recovery tables
Unpubl ished paper, 1 989

J iiergen Uhl : Private communications

J --

ADAPTIVE PROBABILISTIC GENERALIZED LR PARSING

Jerry Wright* , Ave Wrigley* and Richard Sharman+

• Centre for Communications Research
Queen ' s - Building , Univers ity Walk , Bristol BS8 lTR , U . K .

+ I . B . M . Uni ted- Kingdom Scientific Centre
Athelstan House , St Clement Street , Winchester S023 9DR , U . K .

ABSTRACT

Various issues in the
implem�ntation of generalized LR
parsing with probability' are
discussed . A method for preve_nting
the generation of infinite · numbers
of states is described and the space
requirements of the pars ing tables
are · assessed for a substantial
natural - language grammar . Because
of a high degree of ambiguity in the
grammar , there are many multiple
entries and the tables are rather
large . A new method for grammar
adaptation is introduced which may
help to reduce this problem . A
probabilistic version of the Tomita
parse forest i& also described .

1 . INTRODUCTION

The generalized LR pars ing
algorithm of Tomita (1986) allows
most context - free grammars to be
parsed with high efficiency . For
appl ications in speech recognition
(and perhaps elsewhere) there is a
need for a systematic treatment of
uncertainty in language · modelling ,
pattern recognition and pars ing .
Probabilis tic grammars are
increas ing in importance as language
models (Sharman , 1989 , Lari and
Young , 1990) , pattern recognition is
guided by predictions of forthcoming
words (one application of the recent
algorithm of Jelinek (1990)) , and
the extension of the Tomita
algorithm to probabilistic grammars
(Wright et al , 1989 , 1990) is one
approach to the pars ing problem .
The successful application of the
Viterbi beam- search algorithm to

1 00

connected speech recognition (Lee ,
1989) , together with the poss ibility
of building grammar ... level mqdelling
into this . framework (Lee and
Rabiner , 19S 9) is further evidence
of this trend . Th_e p\lrpose. of this
paper is to cons ider some issues , , in
the implementation of probabil istic
generalized LR pars ing .

The obj ectives of our current
work on language modelling and
pars ing for · s·peech · recognition can
be summarised as follows :

(1) real - time pars ing without
excessive space requirement,s ,

(2) minimum restrictions on
the grammar (ambiguity , null rules ,
left - recurs ion all · permitted , no
need to use a normal form) ,

(3) probabilistic predictions
to be made available to the patte·rn
matcher , with word or phoneme
likel ihoods received in return ,

(4) interpretations , ranked by
overall probability , to be made
available to the user ,

(5) adaptation o f the language
model and parser , with mihimwn delay
and interaction with the user .

The choice of parser generator is
relevant to obj ectives (1) and (3) .
All vers ions satisfy obj ective (2)
but are initially susceptible td
generating an infinite number of
states for certain probabilistic
grammars , and in the case of the
canonical parser generator this can
happen in two ways . A solution to
this problem is described in section
2 . The need for probabilistic
predictions of forthcoming words or
phonemes (obj ective (3)) is best met
by the canonical parser generator ,

because for all other versions the
prior probability dis tribution can
only be found by following up all
pos s ible reduce actions in a state ,
in advance of the next input (Wright
et al , 1989 , 1990) . This · consumes
both time and space , but the s ize of
the pars ing tables produced by the
canonical parser generator generally
pre.eludes . their use . The , space
requirements for the various · · parser·
generato,rs :are assessed in section .
3 . . , - ,The grammar used· fo.r · this
purpose. ,was develop�d by 1 . -B . M . fro·m · -
an Associated Press corpus o.f.. ·text
(Sharman , _1989) .

Obj ective (4) is met . by the parse
forest representation which is a
pro_bab_�listic vers ion_ of . - that
empioyed · by Tomit·a . . . (19.� 6) __ ,
incorporating sub -node . • �haring· · �nd
local · ambiguity packi�g . · This . is
des�rib�d in- section 4 : ·

The final issue ·(�b,.j ec_tive : (5)
and section 5) i s crucial to the
applicab:i.li ty of the whole .9:ppr�_ac� •,
We regard a grammar as ; a
prob�bilistic structured_ hier -
arc.hical_ model of language .. a� used �
not _a - - prescriptive bas is - for
correctness .of that use . . A
rela_tiyely compact pars ing table
presumes a relatively compact
grammar , which is therefore going to
be inadequate to cope with the range
of usage to which it is likely to be
exposed . It is essential that the
software be made adaptive , and our
experimental vers ion operates
through the LR. parser to synthes ise
new grammar rules , assess their
plaus ibility , and make incremental
changes to the LR. pars ing tables in
order to add or delete rules in the
grammar .

1 01

2. PARSING TABLE

SPACE REQUIREMENTS

2 . 1 INFINITE SERIES OF STATES :
. FROM THE ITEM PROBABILITIES

When appl ied fo a probabilistic
grammar , the various versions of LR
parser generator first produce a
series of item sets in which a
pro:t,ability derive� fr9m the grammar
is attached . to each item , and . then
generate . the ac tion and goto · tables
in wh;ich each entry again has an
attach�d probab.ility , representit;1g_ a
frequency for . that act_ion
conditional_ upon the state (Wright
et al ., l989 , . 1 99.0) . S ometimes these.
probapiliti..es can cause ; a p�oblem in .
state generation . For example ,
cons fder the following probabilistic
grammar :

s ➔ A , P1 I B , P2
A ➔ c A , ql a , q2
B · ➔ C B , r1 b , r2 ·

where p1 , p2 and so on (with
P1 + p2 = 1) represent the
probabilities of the respective
rules . After receiving ·, the terminal
symbol c , the state with the
(closed) item set shown in Table 1
is entered , with the firs t coluinn of.
probabilities for each item . After
rece iving the terminal symbol c
again , a state with the same item
set is entered but with the second
column of probabilities for each
item , and ' these ·are different from
the firs t unless q1 = r1 . For the
probabilistic parser these states
must therefore be distinguished , and
in fact this process continues to
generate an (in principle) infinite
sequence of states . Although it may
sometimes be sufficient merely to
truncate this series at some point ,
the number of additional states
generated when all the " goto " steps
have been exhausted can be very
large .

Table 1 : Item se1 with probabilities .
II- ➔ I d

B --3> , 0_f
·� � , c,,

I tem First pro�ability Second probability
I

A ➔ C • A P1 q1 / (P1 q�+P2 ;--;)]
2 2 2

P1 q1 I (p1 q1 +p2 r1) B ➔ C • B P2 r1 / (p1 q1 +P2 r1)
2 2 2

P2 r1 / (p1 q1 +P2 r1)

A ➔ • C A
2

P1 q1 / (P1 q1 +p2 r1)
3 2 2

P1 q1 I (P1 q1 +p2 r1)

A ➔ • a P1 q1 q2 / (p1 q1 +P2 r1)
2 2 2

P1 q1 <12 / (P1 q1 +p2 r1) · B ➔ • c B . 2
P2 r1 / (P1 q1 +p2 r1)

3 2 2 · ·
P2 r1 I (P1 q1 +p2 r1) B ➔ • b P2 r1 r2 / (p1 q1 +P2 r1)

2 2 2
P2 r1 r2 / (p1 q1 +p2 r1)

Table 2 : Separated item sets .

A ➔ c • A

A ➔ • c A

A ➔ • a

1

We can avoid . this problem by
in��oducing a multiple - shift entry
for the terminal symbol c , in the
state from which the one j ust
discussed is entered . Multiple
entries in the ac tion table are
normally confined to cases of
shift - reduce and reduce - reduce
conflicts , . but the purpose here is
to force the stack to divide , with a
probability , P1 q1 / (p1 q1 +P2 r1)
attached to one branch and
P2 r1 / (p1 q1 +P2 r1) to the other .
These then lead to separate states
with item sets as shown in Table 2 .

The prior probabilities of a , b
and c are obtained by combining the
two branches and take the same
values as before . Further
occurrences of the terminal symbol c
s imply cause the same state to be
re - entered in each branch , and
eventual ly an a or b eliminates one
branch . If c is replaced by a
nonterminal symbol C , the same
procedure applies except that a

1 02

B ➔ C • B B ➔ • c B
B ➔ • b

1

multiple goto entry is required , and ·
this in .turn means that a
probability has to be attached to
each go to entry (this was not
required in the original version of
the probabilistic LR parser) .

Suppose in general that a grammar ·
has non terminal and terminal
vocabularies N and T respectively .
Conditions for the occurrence of an
infinite series of states can be
summarised as follows : there occurs
a state in the closure of which
there arise either

(a) two distinct self-
recurs ive nonterminal symbols (A , B
say) for which a nonempty string
a e (N u T)

+
exists such that •

A � a A f3 and B � a B -y

where /J , -y e (N u T)

or (b) two (or more) mutually
recurs ive nonterminal symbols for
which a nonempty string a e (N u T)

+

exists such that

• •
A � a B /3 and B � a A -y •

where {3 , -y e (N u T) and in
addition either

(i) �
of one symbol
poss ible :

left -most
from the

derivation
other is

• •
A � B 6 where 6 e (N u T)

or (i i) a
nonterminal (C ,
coincide with A or
such that

say ,
B)

self- recurs ive
which . - may

also arises

•
where 6 e (N u T)

for the same a .

These conditions ensure that the
a - successor of this s tate also
contains items with A and B after
the dot but with probabilities
different from those for the earlier
s tate , and moreover that this
continues to generate an infinite
series (different item probabilities
do not always imply this) . One way
to prevent this series is to
associate with each item in the
lists (which form the states) an
array of states for each nonterminal
symbol , recording the state (s) in
which that · symbol occurred as. the
left -hand s ide of an item from which
the current item is descended .
These arrays can be created during
the course of the LR " closure"
function . Pairs of nonterminals
satisfying the conditions above are
then easily detected within the
" goto " function , so that an
appropriate multiple shift or goto
entry can be automatically created
for the las t symbol of a . Only the
items leading to the looping
behaviour need to be separated by
this means , and the number of
additional states generated is
smal l . Cases of three -way (or
higher) mutual recurs ion with a
common a are very rare .

1 03

2 . 2 INFINITE SERIES OF STATES :
FROM THE LOOKAHEAD DISTRIBUTION

For the probabilistic LALR parser
generator the lookaheads cons ist of
a set of terminal symbols , as in the
case of non- probabilistic grammars .
However , for the canonical parser
generator there is a ful l
probabil_ity distribution of
lookaheads and this creates a second
potential source of looping
behaviour . I t is poss ible for item
sets · to have the same item.
probabilities but different
lookahead distributions . Suppose
that a s tate contains an item with a
right - recurs ive nonterminal symbol
(C , say) after the dot , with nothing
following . If the state also
contains another item with C after
the dot followed by a non-null
string , thus-• .

C � a C and C � a C /3
+

where a , /3 e (N u T) , then the new
lookahead probability distribution
computed for C wil l be a mixture of
the old one and a distribution
derived from fJ in the second • item .
The state automaton possesses a loop
because of the right - recurs ion , and
the lookahead dis tribution is
different each time around so that
again an (in principle) infinite
series is generated . The second
item can arise within the same state
if C is also left- recurs ive (the
s implest example of this is the
grammar S ➔ S S , p1 I a , P2) , and
this problem also arises for an item
of the second kind on its own , if fJ
is nonempty but nullable .

It is pos s ible to break the
by introducing multiple shift
goto) actions as before , but
procedure is complicated by
presence of nul l rules and/or
recurs ion . These can allow
distribution to change even
there is j us t a s ingle item in
kernel . In the absence of
behaviour the state from which

loop
(or
the
the

left ­
the

when
the

this
the

one j ust discussed is entered can be

treated with a multiple entry in
order to prevent the lookaheads from
mixing , the conditions which give
rise to this problem being checked
within the '" goto " function . The
prior probability c -alculations at
run- time are :correct .

This pro,cedure has not ·been fully
implemented at the prPsent time , but
it seems that this kind of looping
behaviour , is more common than that
discussed in the previ'ous section .
The additional states cre�ted by the
mul •tiple shifts exace.rbates the
already maj or disadvantage · of the
canonical parser with regard to
space re·quirements .

2 . 3 MERGING OF CANONICAL STATES

Cons ider the fol lowing grammar :

S ➔ A b A C

A ➔ e f S l g

(the rule -probabilities do not
ma:tter) . - The full canonical parser
generator produces eighteen states ,
of which eight are eliminated by
shift - reduce optimisation (Aho et
al , 1985) . Of the remaining states ,
a further eight cons ist of two sets
of four , the sets · distinguished only
by the lookaheads . These states
propagate the dot through the longer
rules , but in fact the lookaheads
are not used because in each case
the series terminates in a shift ­
reduce entry . When this action
occurs the parser moves to a state
wherein the possible next symbols
are revealed . These s tates can
therefore be merged without
compromis ing the predictive
advantage of the canonical parser .
This reduces the number of states to
s ix , the same as for the LALR parser
generator .

All this applies to
probabilistic vers ion where
lookaheads are propagated
distribution . A fairly
procedure allows each state

the
the

as a
s imple
to be

1 04

endowed with a flag to indicate
whether or not any of the lookahead
data are important . If not , merger
can b,e based purely on the rule and
dot positions for the items , and
their probabilities . The numbers of
states saved va.ries very much with
the gr amm-ar : ·dre above -example
repres·ents an extreme case , and
equally there are grammars f'o·r which
no saving occurs .

3-. COMPARISON · OF PARSER
GENERATORS

To compare the parser ,generators
a test grammar developed by L B . M .
from ari Associated Press corpus was
used (Sharman , 1989) . This grammar
cons ists of 677 rules , ranked with a
rule - count which was easily
converted into a probability . It
was convenient to use _ reduced
vers ions of the gr'ammar based on - a
rule - count threshold � S imply
truncating - the grammar is not
sufficient , however , for . two
reasons . Firs t , the resultfng
grammar can be disconnected in that ·
there exist rules whose left -hand
s ides cannot occur in any s tring
derived from S . Second , the gra!filllar
can be incomplete in that
nonterminal symbols can arise within
strings derived from S but for which
there are no corresponding rules
because all have counts below the
threshold . The solution to these
two problems is bas ically the same :
recurs ively to add to the truncated
grammar a small number of additional
rules , with counts below the
threshold , until the resulting
grammar is connected and complete .

Applying this procedure for
various rule - count thresholds
creates a hierarchy of grammars and
allows the relationship between the
s ize of the grammar and the pars ing
tables to be explored . Table 3
contains a summary of the results .
The number of states and total

Table 3 : Pars ing table space requirements .

Non-pr-�p IALR . Probabilistic LALR Canonical
•. - .

Rules S ize States Entries %>1 States Entries %>1 - - States· · Entries %>1

15 37 . . 15 '. 58 0 15

2 7 ' 6 3 2 3 128 2 2 3

42 · 104 - · 3 6 239 2 38

77 191 7 1 845 6 . 7 1

115 291 120 1931 13 146

194 · 510 214 7522 2 _2 359

677 2075 , 1011 : · 126322 46 3 600

� . .
number of entries . in t9e .pars in.g
tables are compared for > non­
probabilistic and probabilistic LALR
parser . generators-, . the la:tter
in�orporating the multiple - shift .
procedure discusse'd :fo section 2 . 1 .'
Shift - reduc� optimisation · was
applied in all _case$. ,The " s ize" of
each grammar is the· total length . . of
right -hand s ides of all rules . plus
the number of nonterminal sym�ols .
The number of table entries is the
total of all non- error action and.
goto entries including _ multiple
entries . Also displayed is the
percentage (%>1) of non- error cells
in the tables (action and goto)
which contain multiple entries .

Only limited results are
available for the canonical parser
generator because the lookahead loop
suppres s ion procedure (section 2 . 2)
has not yet been implemented .
Despite the use of the canonical
merging procedure (section 2 . 3) the
s ize of the pars ing tables . is
clearly growing rapidly and this
version of parser generator is only
a practical propos ition for rather
small grammars .

What stands out most
LALR results is not that
number of entries grows

from the
the total
with the

1 05

58

128

239

845

2297

12051

>250000

0

2

2

6

7

19

' '

17 6 8 . ,

27 151

• 110 · 780

(lookahead
. ,

looping: . · ' ·

behaviour)

0

0

1

. .

s ize of the grammar but that it does
so exponentially .. _ ; · · The space
requirements of LR parsers for
unambiguous computer languages · tend
to grow in a linear way with s ize
(Purdom , 1974) . It is also notable
(and no coincidence) that · the
proportion of multiple entries also
grows with the s ize of the grammar .
Although , further stages of
optimisation may enable space to be··
saved , attention must be focussed on
the grammar itself .

The parser generation algorithm
of Pager (1977) is s imilar to the
LALR algorithm except that states
are merged only when doing so
results in no · additional multiple
entries . All such entries · are
therefore the result of non­
determinism in the grammar (with the
exception of loop -breaking multiple
shifts as discussed in section 2) .
This algorithm has been implemented
for probabilistic grammars , but - for
the - test series the results are
identical to those for the LALR
generator . It follows that the
growing proportion of multiple
entries is the product not of state
merger but of rich non- determinism
in the grammar .

The last . two rows in the table

correspond to the addition to .the
grammar of two large groups of
rules , used twice a11d once.
respectively in the corpus . These
infrequent rules appear to introdµce
a .high _ degree · �f ambiguity , which .
also shows up during the state ­
genera�ion procedure . Each ·state is
first gene�ated as a "kernel: " of
items , and the presence of more than
one item within a kernel implies
that. there is a local ambiguity
which is being carried forward in
order that the state automaton is
determ.inistic . For the non­
probabilistic LALR parser generator
with the full grammar of 677 rules ,
the average kernel contained 6 . 1
items and the largest contained no
fewer than 68 !

According to Gazdar and Pullum
(1985) , it .. has never been argued
that English is inherently
ambiguous , rather that a
descriptively adequate grammar
should be ambiguous in order to
account for semantic intuitions .
However , the I . B . M . grammar may
suffer from excess ive ambiguity and
the parser would benefit
cons iderably if some way could be
found to reduce it .

Finally , the phys ical storage
requirements are eas ily stated :
each table entry requires four
bytes , two to spec ify the action and
two for the probability in
logarithmic form , converted to a
short integer .

4. PROBABILISTIC PARSE FOREST

In keeping with the . first and
fourth obj ectives set out in the
Introduction a probabilistic version
of the parse forest representation
of Tomita (1986) has been developed .
In the presence of ambiguity , and
even more so with uncertainty in the
data , the number of interpretations
may increase exponentially with the

1 06

length of the input string . The
impact of this is minimised by sub ­
node sharing and local - ambiguity
packing . Where two or mote parses
contain parts of their
interpretation of a sentence which
are identical they can share - the
relevant nodes . And , two . o.r more
parses may differ becaus··e .of
ambiguity which is localised : · if
part of the . sentence is derivable
from a nonterminal symbol in more
than one way then. the relev.ant nodes
may be packed together .- By thus
compacting the .parse foresf . the
space requirement becomes O (n) · f6r
most grammars (Kipps , 1989) .

Employing this representation for­
probabilistic grammars requires that
a value be attached to . each node
which enables the eventual
calculation of the parse probability
for the whole sentence given the
data . In addition it is necessary
that the m (say) most probable
interpretations be , obtained without.
an exhaustive search of the
compacted parse fores t .

A value P (� , (D } 1 • • • J I A) is
attached to each node in a parse
tree , where � denotes a particular
derivation of the string w1 • • • wJ
from the symbol A , and (D } 1 • • • J
represents the corresponding
acous tical data . This probability
is the product of the probabilities
of all rules used in the particular
derivation of w1 • • • wJ from A and the
likel ihoods of those words given the
data , and is eas ily found for a
particular node from the
probabilities attached to each
subnode and the rule probability
when the reduce action occurs . This
calculation is not affected by the
context of w1 • • • wJ , arid therefore
shared nodes need have only one
value . For locally ambiguous packed
nodes the probabilities of each
alternative are recorded , in order
that the correct ordering of
alternatives can be created at
further packed nodes higher in the

parse forest .

The probab il ity attached to the
S - nqde at the apex of any parse tree
is P (6 , { D } 1 . . . M I S) where M is the
length of input . If all
alternatives are retained in the
pars_e ·forest then the parse
probabilities given all the data can
be obtained by normalisation . If .
all that is required is to identify
the s ingle most probable parse then
all local ambiguity can be resolved
by maximis ing at packed nodes (in
the manner of the Viterbi algorithm)
and retaining only the most . probable
derivation , because this ambiguity
is invis ible to higher - level
struct�res in the forest .

The general problem -0f
identifying the m most probable
parses is more complex . The current
m most probable are stored at each
shared node together with a compact
way of indicating which combination
of subnodes corresponds to each
derivation . Upon reduction by a
rule whose right -hand side is of
length k, the new m most probable
derivations must be found and sorted
from the (in the worst case) m

k

poss ibilities . If two reductions
are poss ible , . to the same
nonterminal symool and spanning the
same data , and if the right -hand
s ides are of length k1 and k2 , then
the wors t- case number of
pos s ibilities is mk 1 + mk 2 and so
on . With appropriate book-keeping
there are efficient ways to find and
sort the m most probable of these ,
and record the subnodes . In
practice this requires an array of
s ize 4m stored for each node in the
parse fores t .

This approach has several
advantages as compared with the
original Bayes ian algorithm for
uncertain input data (Wright e t al ,
1989 , 1990) . The results are
essentially equivalent , and most of
the exponentially- growing number of
possible interpretations are

1 07

truncated away on grounds of
probability , s o the algorithm
requires polynomial time and space .
Furthermore , in this version the
probabilities in the pars ing tables
are used only for prediction . (to
guide the pattern�matcher) arid not
for calculating the parse
probabilities . These predictions do
not have to be very precise so space
can be saved by storing each ­
probability in logarithmic form as a
short integer . All this applies to
isolated-word recognition ; for
connected speech the situation could
be different .

5. ADAPT ABILITY

The speed and effectivenes s of
the probabil istic LR parser would be
seriously compromised if a large
grammar (of , say , thousands -of rules
with a high degree of ambiguity)
were adopted , and yet it would seem
that if · a grammar -based language ·
model is to be employed for large ­
vocabulary speech recognition th�n
the need for a large grammar will be
unavoidable . The full version of ·
the I . B . M . grammar referred to in
section 3 extends to many thousands
of rules but the greater part of
these consist of oddball - rules that
are used only once or twice in the
corpus . Collectively the oddballs
are important because - they allow the
corpus to be modelled , but
individually · each one is rather
ins ignificant . It may be the case
that generalisations (perhaps going
beyond a context - free grammar) would
eliminate a lot of these rules , but
there is also a case for the parser
to be made adaptive .

One approach to adaptation would
be to assume a probabilistic grammar
in Chomsky normal form and then use
the ins ide - outs ide algorithm (Lari
and Young , 1 990) . This approach has
a lot to recommend it , but here we
cons ider an alternative approach

based on a rule - adaptive enhancement
of the LR parser . The principle is
that at any time the pars ing tables
are based on a relatively small core
grammar of important rules , but with
an error - recovery procedure and a
backup grammar . Error - recovery
allows new rules to be created as
required , and rules can be
trans ferred between backup and core
grammars in response to usage .

The probabilistic LR parser has
been enhanced with such a procedure .
The m1n1mum adaptation which can
allow an ungrammatical sentence to
be accepted is a local change to a
s ingle existing rule : in this sense
it is assumed that the sentence is
" close" to the language . The
conditions for rule - adaptation can
be summarised as follows :

Input string :

W1 Wi WJ Wn

Existing rule : A ➔ a1 fi a2

Adapted rule :

such that •
S � 'Y1 A "(2 •
"f1 a1 � W1 · · · · W1 •
6 � W1 + 1 · · · · WJ •
a2 'Y2 � WJ + 1 • • • . Wn

and where o1 , o2 cons ist of
with any unused nullable
suppressed .

The adaptation therefore cons ists
in the deletion , insertion or
replacement of a substring within
the right -hand s ide of a rule , and
the suppress ion of unused nullables
s imply ensures that all remaining
symbols actually contribute to the
parse of the sentence . This
procedure usually generates a number
of rule - candidates . Assuming that
one of these is chosen as correct
(although it may not be possible to
automate this entirely) , it is then
added to the backup grammar as a

1 08

potential core rule . With
sufficient evidence of usage a rule
may be promoted from backup to core
grammar , and l ikewise a rule may be
demoted .

A vers ion is being developed in
which the LR pars ing tables are
updated incrementally as rules are
transferred between backup and core
grammars . This should occur on­
line , with the intention that the
core grammar be kept reasonably
compact (and the parser
correspondingly fast) while adapting
to the user . This is still very far
from a complete solution to the
problem of context - free gramm_ar
adaptation , but a system operating
along these l ines would satisfy (at
least to some degree) all the
obj ectives as set
Introduction .

out in the

ACKNOWLEDGMENT

This work was funded by the I . B . M .
United Kingdom Scientific Centre .

A V Aho , R
(1985) ,
Techniques
Wesley .

REFERENCES

Sethi and J D Ullman
Compi lers : Principles ,

and Tools , Addison-

Gerald Gazdar and Geoffrey K. Pullum
(1985) , " Computationally relevant
properties of natural languages and
their grammars " , New Generation
Computing , 3 , 273 - 306 .

Fred Jelinek (1990) , " Computation of
the probability of initial substring
generation by stochastic context
free grammars " , I . B . M . Research ,
Yorktown Heights , New York .

J R Kipps (1989) ,
Tomita ' s algorithm
context- free pars ing" ,

"Analys is of
for general

Proceedings

of the International Workshop on
Parsing Technologies , Carnegie ­
Mellon Univers ity , 19 3 - 202 .

K Lari and S J Young (1990) , "The
estimation of stochastic context ­
free grammars using the inside ­
outside algorithm" , Computer Speech
and Language , 4 , 3 5 - 56 .

Chin-Hui Lee and Lawrence R . Rab iner
(1989) , "A frame - synchronous network
search algorithm for connected word
recognition" , IEEE Trans . on
Acous tics , Speech and Signal
Processing , 37 , · 1649 - 1658 .

Kai - Fu Lee (1989) , Au toma tic Speech
Recogni tion , Kluwer Academic
Publishers .

D Pager (19 77) , "A practical general
method for constructing LR(k)
parsers " , Ac ta Informatica , 7 ,
249 - 268 .

P Purdom (1974) , "The s ize of
LALR(l) parsers " , BIT , 14 , 326 - 337 .

Richard Sharman
"Observational evidence
statistical model of
I . B . M . United Kingdom
Centre Report 205 .

(1989) ,
for a

language " ,
Scientific

Masaru Tomita (1986) , Efficient
Parsing for Natural Language , Kluwer
Academic Publishers .

Jerry Wright and Ave Wrigley (1989) ,
" Prob_abilistic LR pars ing for speech
recognition" , Proceedings of the
International Workshop on Parsing
Technologies , Carnegie-Mellon
Univers ity , 105 - 114 .

Jerry Wright (1990) , " LR
probabilistic gramm.ars
uncertainty for speech
Computer Speech and

pars ing of
with input

recognition" ,
Language , 4 ,

2 9 7 - 3 2 3 .

1 09

PHONOLOGICAL ANALYSIS AND OPAQUE RULE ORDERS

Michael Maxwell Summer Institute of Linguistics Box 248 Waxhaw, NC 28173 USA
ABSTRACT General morphological/ phonological analysis using ordered phonological rules has appeared to be computationally expensive, because ambiguities in feature values arising when phonological rules are "un-applied" multiply with additional rules. But in fact those ambiguities can be largely ignored until lexical lookup, since the underlying values of altered features are needed only in the case of rare opaque rule orderings, and not always then.

INTRODUCTION While syntactic parsing has a long and illustrious history, comparatively little work has been done on general morphological and phonological parsing - what I will call, for lack of a better term, "morphing. " The morphological and phonological parsing programs which do exist are, for the most part, either restricted to a single language or, like FONOL (Brandon 1988), are limited to generating surface forms from underlying forms. Two exceptions to this generalization are Kimmo (see Koskenniemi 1984, and the papers in Te.xas
Linguistic Forum 22) and AMPLE (Weber, Black and Mcconnel 1988). However, Kimmo implements a non-standard theory of phonology, while AMPLE implements an item-and-arrangement morpher with virtually no allowance for (morpho-)phonological rules. One reason for the paucity of general morphing programs is the apparent computational complexity of morphing. Phonological rules of natural language include deletion rules, which means that they potentially represent an unrestricted rewriting system. But in fact people routinely parse words into their constituent morphemes, which implies that Universal Grammar must place strong restrictions on phonology and morphology, effectively reducing the complexity of morphing. To the extent that linguists can. analyze such restrictions, we may be able to reduce the computational complexity of

1 1 0

morphing. 1 This paper investigates how one such restriction, a restriction on interaction among multiple rules, can be taken advantage of. While linguists treat phonological rules as rules which derive surface forms from underlying forms, a program analyzing the surface strings of a language must "un-apply" those rules to a surface form to discover its underlying form. Most phonological rules have a neutralizing effect when applied in the derivational (synthesis) direction; accordingly, when a rule is un-applied , there will in general be more than one way to undo its effects . In a computational setting, this implies the need to restrict the search · space, lest those ambiguities multiply with the application of multiple rules. This paper discusses a way of restricting that search space.
ASSUMPTIONS For purposes of discussion, I will consider a morpher which implements a morphophonological theory of the following type. Phonological rules are written in the "standard" way with di_st_incti ve features but without any abbreviatory conventions (parentheses, curly braces, angled _brackets, alpha variables, etc.) ; the rules . apply in linear order, -the output of each serving as the input to the next. I will assume that distinctive features are binary, although the results will apply in an analogous · way to (finitely) multiply-valued features. For the most part, I will ignore the multipl� application problem.

I will not explicitly discuss morphological rules, but we may assume they apply either in a block (p,re­cyclically) or cyclically. The resulting system resembles that of The Sound Pauern of English (Chomsky and Halle 1 968 , henceforth SPE) , but without the abbreviatory schemata.
1Even without being able to explicitly state the restrictions, it may be that a correctly formulated set of rules for a given language will turn out to be readily parsable. However, that hope relies on the linguist to properly formulate the rules. I will return to this point later.

From a computational perspective, the working cycle of the morpher is as follows: phonological rules are un-applied in linear order to a form (assumed to be in an unambiguous phonetic representation), and then one or more morphological rules are un-applied (one in the case of cyclic rule ordering, one or more with non-cyclic rule ordering). By un-application of a rule, I _mean applying it in reverse: going from a (more) surface form to a (more) underlying form. Lexical lookup is attempted after each morphological rule is un­applied. Lexical lookup acts then as a filter; if lexical lookup is successful, the set of phonological and morphological rules which were un-applied represents a successful derivation (modulo certain later tests, not discussed here} , otherwise not. This is the classical approach to computational morphology/ phonology, as described in Kay (1977).2
THE PROBLEM The problem to be explored in this paper arises when un-application of a rule results in one or more ambiguous feature values. Consider, as a simple case, the following rule:

[+ syllabic 7 [c J [c 7 -cons i ---,> 0 / d __ dJ l -V -V -stress J _ Suppose this rule is used to analyze a word which, on the surface, has two adjacent voiceless consonants. The rule specifies only three features for the vowel to be epenthesized in analysis of the surface form (i.e. the vowel which was deleted to generate the surface form): [+ syllabic -cons -stress] . The remaining features must be "guessed" during analysis. Since this involves multiple features, the combinatorial possibilities are many. In addition, there is the possibility that no vowel should be epenthesized - that the consonants were adjacent underlyingly.
2The morpher discussed in the text is being implemented as one module of the planned "Hermit Crab" system (a syntactic parser and possibly a functional structure module being additional modules) . Hermit Crab takes its name from the fact that the internal rule system (the "crab") has a rule structure which will, in general, depart from the rule structure as viewed by the user (who sees only the "shell ").

1 1 1

This problem is not limited to rules of deletion. Any rule which neutralizes an underlying contrast will cause ambiguity (albeit not usually as great as in the case of deletion rules) when the rule is un-applied. The difficulty is compounded by the interaction of multiple rules. Anderson (19 8 8) suggests a " typical" rule depth in natural languages of 1 5-20 rules. Clearly the possibilities of computational explosion loom large. The remainder of this paper will investigate some approaches to this problem.
THE BRUTE FORCE APPROACH I will first explore the following brute-force technique: when a phonological rule is un-applied, instantiate all possible combinations of features changed by the rule onto the new form output by the rule. For a deletion rule, the number of feature combinations which may be instantiated is zn, where n = the number of features not specified in the left­hand side of the rule. For concreteness, consider the vowel deletion rule discussed above. In the SPE system I count eighteen distinctive features (not including certain prosodic features) . Subtracting the three features whose values are supplied by the rule leaves fifteen unspecified features. Since 2 1 5 is a very large number, there is clearly a need for pruning the search space. A certain amount of pruning comes readily . One can begin by eliminating universally impossible feature cooccurences. For instance, if a segment is [+ syllabic] , it cannot be [-continuant] . In the case of the vowel deletion rule, this reduces the search space to about 28 combinations. (The eight features in the SPE system whose values are not determined by the [+syll -cons -stress] features of the rule are: High, Low, Back, Round, Tense, Voiced , Covered and Nasal. Some combinations of these are also mutually incompatible, e .g . [+high + low] , reducing the search space slightly more.) We can do still better by eliminating noncontrastive features in the language we are working with. For Spanish, for instance, we could eliminate the features Covered and Nasal if we work with the surface vowels (ignoring the light nasalization of vowels before nasal consonants) , and the features Tense and Voiced if we limit ourselves to features appearing only in

underlying vowels. (The assumption here is that tensing and voicing, which in most dialects of Spanish are predictable, do not condition other rules.) These reductions leave a search space of 24 = 16. We can limit this still further by eliminating combinations of features which do not occur in a particular language ([-back +round], for instance) . We are left with an irreducible search space of five combinations of features in this case - the five vowels which occur (underlyingly) in standard Spanish. This last reduction constitutes the use of Segment Structure Conditions (SSCs) to constrain rule un-application. This may be done rapidly by consulting a list of possible segments of the language. (The list of possible segments need not be confined to those appearing at the surface; i .e. absolute neutralization can be · accommodated by allowing for absolutely neutralized segments in the SSCs.) Since this rule is a deletion rule, we must also allow for the situation in which no vowel was deleted, increasing the search space by one. Similarly, non-deletion rules introduce an ambiguity of 2m, where m = the number of features on the right-hand side of the rule, often pruneable by reference to SSCs.3 Consider, for example, a language in which the only coronal obstruants are t and c, and the following rule:

3 An assumption here is that the features on the left­and right-hand sides of the rule are disjoint. Anyone who has taught phonology has seen students write rules like the following:
[+�J - [-vd]

I (some environment) The + vd specification on the left-hand side is redundant; without it, the rule applies vacuously to underlyingly nonvoiced consonants. The phonological literature as well contains many such rules with redundant specifications, but they can usually be reanalyzed to eliminate the redundancy. Of the few rules which resist reanalysis, most employ such debatable techniques as alpha switching variables or angled brackets. I leave it to phonologists to determine whether rules which necessarily employ the same features on both sides of the arrow actually occur in natural languages.
1 1 2

+ cor i -� -ant ! / i [-i � "l -cont j + del re� -
Naive un-application of this rule to the sequence ci would lead to a four-way ambiguity in the values of the feature set {ant, del rel} ; but this ambiguity can be reduced to a two-way ambiguity by the use of SSCs in combination with the known features on the left-hand side of the rule, since two combinations ([+ant + del rel] and [-ant -del rel]) can be ruled out. . In general , the more features there on the right hand side of the rule (and hence the

more ambiguous the underlying feature values, apart from pruning) , the more likely it . is that some combinations of those features can be ruled out. It is clear, then, that using SSCs considerably improves the Brute Force method . Thus far, I have considered. · only the case where a single rule is un-applied, without regard for other rules, nor for the possible reapplication of the rule in question. The interaction of several rules results in a combinatorial multiplication: the number of feature values which must be instantiated in the course of analysis is (roughly) the product of the number of feature values which must be instantiated during the un-application of each rule. · This combinatorial explosion is one of the major reasons it has seemed that the automatic un-application of phonological rules is a computationally difficult problem. This problem of multiple rule application will be the topic of the next section . . The effects of a rule which can re-apply to its own output can be even worse. Consider the following plausible consonant ·cluster siinplification rule:
C -� 0 / C C If this rule is un-applied to a surface form with a two-consonant cluster, the result will be an intermediate form having a three-consonant cluster. But if the rule is allowed to un-apply to this intermediate form, it can un-apply in two places to yield a five-consonant cluster, and so on ad infinitum! There are two ways of avoiding this problem: placing ad hoe limits on the application of deletion rules (which are the only rules that can cause such infinite application) , or requiring that the forms derived by reverse applicatiop of phonological rules meet certain conditions, such as Morpheme Structure Conditions. Morpheme Structure Conditions (MSCs) would be the most principled solution. Nonetheless� a

morphing program must rely on the linguist to write
rules and conditions which in their combination will
not cause problems. Nor are such interactions
always obvious. For instance, the above rule could
be written to delete consonants only at morpheme
boundaries:

C -;> 0 / C + C

Then i f morphemes o f a single consonant are
allowed, MSCs would not prevent the rule from
looping infinitely, endlessly postulating deleted
morphemes. (I assume here that morpheme
boundaries, unlike other parts of the environment,
must be postulated as needed d4ring un-application
of phonological rules, since they are unlikely to be
marked in surface forms. Clearly such postul�tion
will have to be restricted. See Barton, Berwick and
Ristad 1981, sec. 5.7, concerning problems caused
by unrestricted pos�lation . of segments which are
null at the surface.) . Fu_rtheiniore, it has often been
proposed that MSCs do �o� apply to the output of
phonological rules (Kenstowicz .and Kisseberth
1977, chap . . 3 , and Ande.rson 1974, chap. 15).
Bence, ad hoe limits .. c>n 1,11le reapplication will be
needed, even with MSCs. · ·

One might hope that Word Structure Conditions
(WSCs) would ·have . . the · desired · effect in
consfraining rules. However, since WSCs apply to
surface forms, they ·cannot help. In fact, from one
perspective a consonant deletion rule exists in order
to bring a nonconforming underlying representation
intq conformance witl;i a WSC; hence the un­
application of such a rule necessarily results in an
intermediate form violating the WSC.

WHEN MUST FEATURES BE
INSTANTIATED?

In this section I explore an approach to the
problem of multiple rule interaction and the
resulting combinatorial explosion. I will argue that
features altered by rules can usually be left un­
instantiated (at least until lexical lookup), thereby
avoiding the combinatorial effects otherwise
inherent in multiple rule application. The question
then is, Under what circumstances do features
actually need to be instantiated during un-application
of a rule?

As a first approximation, if one rule assigns a
value to some feature, while the environment of an
earlier rule refers to that same feature, it may be
necessary to instantiate the feature values altered by

1 1 3

the later rule. I will refer to the situation where
such instantiation becomes necessary as
"interference" between the two rules.

We can be more precise about when
interference occurs, since two rules do not interfere
if the second rule can only alter the feature in an
environment in which the first rule could not apply. 4

Before giving a more explicit definition of
when two rules interfere, I present a definition of
phonological unification:

Let X = X1 · · ·Xa · · ·Xi and Y =
Y 1 · · ·yb . . . Yj be two non-empty
phonological sequenc�s (i .e.
sequences of segments, each segment
being a set of distinctive features) .
Then X and Y p[honologically]-unify,
with Xa and Yb corresponding, iff
there exists a phonological sequence Z
= Z1 · · ·Zg · · ·Zk such that z9 is the
unification of Xa and Y b , and all the
other segments of Z are the
unifications of the respective segments
of X and Y (where X and Y may be
extended to · the left and/ or · right as
necessary by the addition of empty
segments) .

Consider then the following two rules: 5

A -;;:,. B / C D

E -;;:,. F / G H

4A concrete example of a situation where there is no
interference, despite the fact that the second rule
alters a feature referred to by the first rule, is the
following two hypothetical rules:

[_;d] -,> [+ asp] / _ V
C -;;:,. [-vd] / _ #

Since the second rule devoices consonants only word
finally, it will never interfere with the first rule,
which refers to voiceless consonants only in pre­
vocalic position. I asume here that there is no rule
of word-final vowel deletion ordered between these
rules; see fn. 6 .
51 assume the features on the two sides of each rule
are disjoint; see fn. 3 .

In order to un-apply the first rule to a form,
the values of the features given in A, B, C, and D
must be known in that form, so that they can be
matched against the values required by the rule.
Interference occurs when the second rule alters any
of the features of A, B, C, or D in an environment
compatible with the application of the first rule.
More specifically, let W (the output of the first rule)
= C (A U B) D , where (A U B) = the unification
of A and B; and let W:i be a segment of W such that
wi includes one or more of the features of F (i.e. the
features altered by the second rule, not necessarily
with the values specified in F). Then the second
rule will interfere with the first if G E H p-unifies
with W such that the segment E corresponds to wi.

If we restrict our attention to the case where
the -output of the second rule contains but a single
feature, the interference just described corresponds
'.to one of two types of rule interactions in
phonological theory: counterbleeding and
counterfeeding interactions. To see why, suppose
the order of application of the two rules were
reversed. Then the rule E ---;> F (now the first
rule to apply) .assigns certain values to the feature F,
while the other rule relies on a certain value of that
feature being present in its environment.
Furthermore, the -two environments are compatible
(p-unifiable)� by hypothesis. Then if the first rule
{E -;> F) assigns the required value to F, it feeds
the second rule (A ---;> B). Similarly, if the first
rule assigns to F the opposite of the required value,
it bleeds the second rule. Since the actual rule order
is the reverse, the rules stand in either a
-counterfeeding or a counterbleeding relationship.

The reason for restricting attention to one
feature of F at a time, is that the rules may stand in
a counterfeeding relationship with respect to one
feature, but a counterbleeding relationship with
respect to another feature. In such a case, the pair
-of rules as a whole will be in a counterbleeding
relationship. (There may also be features in F
which do not cause interference.)

It is significant that counterfeeding and
counterbleeding ·rule orders are precisely those rule
orders which are opaque (cf. Kiparsky 1971). In
other words, the features altered by the second rule
will have to be instantiated just in case the two rules

1 1 4

are opaquely ordered. 6 Crucially , opaque rule
orderings appear to be quite rare in natural language
(Kiparsky 197 1) . (More precisely, rules which are
opaquely ordered tend to be lost, reordered, or
reanalyzed, so that opaque orderings are unstable.
As a result, they tend to be rare.)

The fact that interference only occurs with
opaque rule orderings suggests a better method of
rule un-application than the Brute Force approach:
instantiate features in a rule only if they (potentially)

6This description of potentially interfering rules is
complicated by the fact that a rule ordered between
two other rules can change their interaction.
Consider the following two rules:

r V 7 . I

I . I +high !
I i 1,:t- stressj

,- V l -;>, [-high] / r V J L_--stressJ - l.-high

Since these rules are not p-unifiable (the I-stress]
feature requirement in the second rule not being
unifiable with the { + stress] feature in the first rule) ,
the rules cannot interfere as they stand. But now let
a second rule be introduced, ordered between these
two, so that the new set of rules is the following:

r. V
J +high

_+ stress

V -;>, [-stress] / _ C V C [V T _ + stres�

[-st:ess
J -;>, [-high] / -- C Gh�gJ

The first rule is now (potentially) interfered with by
both of the other rules: the second rule alters the
stress on the vowel , and the third rule alters the
height of that vowel in an environment which may
now be compatible with that of the first rule because
of the destressing rule.

For an intermediate rule to alter the interaction of
two other rules, the intermediate rule must be p­
unifiable with both the other rules (otherwise it
could not operate on any forms that both the other
rules operated on) ; and it must change the value of
the feature(s) on the first rule which block p­
unifiability with the third rule into a value(s)
compatible with the third rule, i .e. feed the third
rule.

interfere with an earlier rule. Instead, when a rule
is un-applied, simply mark the features it changes as
uninstantiated (i.e. of unknown value). In practice,
this will usually result in a large savings in search
space due to the rarity of opaque rule orderings. It
will still be necessary to instantiate these "empty"

. features prior to lexical lookup, but this is clearly a
lesser problem, since the effects are not
multiplicative (an� the instantiati�n can again be
restricted by reference to SSCs).

However, in the next section I will suggest an
even better approach, which takes advantage of the
fact that even . t�ough two rules interfere po_tentially,
the_ interference. may nQ.t arise in every word in
which one or the other of the rules _applies. (In . fact,
one can imagine · that in 3 language having
potentially counterbleeding or counterfeeding rules,
it might be the case that no words actually meet the
structural description · of both rules.)

THE LAZY APPROACH:· ·
INSTANTIATING FEATURES ONLY

WHEN NECESSARY
The strategy of the lazy approach· should by

now be . dear: postpone instantiation of feature
values aitered by pho�ological rules until those
values ar� actually needed, either by lexical lookup
or in order to un-apply another rule (i.e. when all
the instantiated features of a form match a rule, but
the values of one or more uninstantiated features in
the form are also specified by the rule). When
features are instantiated, such instantiation may
again_ be restricted by the SSCs. In effect, then, un­
application of a phonological rule produces
arcluphonemes, 7 so that features are instantiated
only when absolutely required. Assuming that
opaque rule orde�s are as rare as phonologists have
claimed, and that words in which both members of a
pair of opaque rules apply are even rare�, this will

71 assume that all features start out instantiat� in
surface forms, even "irrelevant" features. If they
were not, it would be impossible on examining a
given un-instantiated feature to know whether it has
become · un-instantiated during the course of the
derivation and therefore is a candidate for
instantiation, or whether it is an irrelevant feature
for a particular segment and therefore could not
trigger the rule in question. Alternatively, one
could keep track of which features have become un­
instantiated during the (un-)derivation.

1 1 5

greatly reduce the . computational complexity of
general computational morphology.

CONCLUSIONS
In summary, I have shown that one of the

combinatorial difficult��s which would appear to
make implementation of general morphing progra_ms
impractical is the, ambiguity of feature values arising
during un--application of phonological rules. But in
fact those ambiguous values a�e needed later . in the
derivation only in the case of opaque rule orderings.
This apparent difficulty can therefore be dealt with
by delaying .the instantiation of features which have
become un-instantiated until they · are actually
required. Since opaque rule orderings are relatively
rare, this results in a considerable savings in search
space against the · alternative of immediately
instantiating all features altered by rules. ·Delayed
instantiation also · represents a savings in search
space against the alternative of instantiating only
those features whose values may be required by
another tule, · since not �ll · words . will meet the
structural description ' "of both rules of an opaque
pair�

REFERENCES
Anderson, Stephen R. 1974. · The Organizarion of

Phonology. New York: Academic Press.

Anderson, Stephen R. 1988. "Morphology as a
Parsing .Pro�leni. " In Morphology as a
Computational Problem, ed. Karen
Wallace, 1-2 1 . UCLA [Linguistics
Depart�ent] Occasional Papers _ no . 7 ,
Working Papers i n Morphology.

Barton, G. Edward, Robert C. Berwick, and Eric
Sven Ristad. 1987. Computational
Complexity and Natural Language.
Cambridge, Mass. : MIT Press.

Brandon, Frank R. 1988. · "FONOL: Phonological
Programming Language. " Unpublished
computer file.

Kay, Martin. 1977 . "Morphological and Syntactic
Analysis. " In Linguistic Structures
Processing, ed. Karen Wallace, 1 3 1 -234.
Amsterdam: North Holland.

Kenstowicz, Michael, and Charles Kisseberth . 1 977 .
Topics in Phonological Theo,y. New
York: Academic Press.

K.iparsky, Paul. 1968. "Linguistic universals and linguistic change. " In Universals in
Linguistic Theory, ed. Emmon Bach and Robert Harms, 171-202. New York: Holt, Rinehart and Winston. K.iparsky, Paul. 1971 . "Historical Linguistics. " In
A Survey of Linguistic Science, ed. William Dingwall, 576-642. College Park: University of Maryland. K.isseberth, Charles. 1970. "On the Functional Unity of Phonological Rules. " Linguistic
Inquiry 1 :291-306. Koskenniemi, Kimmo. 1984. "A general computational model for word-form recognition and production. " COLING-84 178-181. Stanley, Richard. 1967. "Redundancy rules in phonology. " Language 43 :393-436. Various, 1983 . Texas Linguistic Forum no. 22. Department of Linguistics, University of Texas at Austin. Weber, David J. , H. Andrew Black, and Stephen R. Mcconnel. 1988. AMPLE: A Tool for
Exploring Morphology. Occasional Publications in Academic Computing. Dallas: Summer Institute of Linguistics.

1 1 6

February 1 4, 1991

Session B

AN EFFICIENT CONNECTIONIST CONTEXT-FREE PARSER

Klaas Sikkel and Anton Nijholt
Department of Computer Science, University of Twente,

PO box 217, 7500 AE Enschede, The Netherlands
sikkel@cs.utwente.nl

anijholt@cs.utwente.nl

MJSTRACT
A connectionist network is defined that parses a

grammar in Chomsky Normal Form in logarithmic
time, based on a modification of Rytter's recognition
algorithm. A similar parsing network can be defined
for an arbitrary context-free grammar. Such net­
works can be integrated into a connectionist parsing
environment for interactive distributed processing of
syntactic, semantic and pragmatic information.

INTRODUCTION
Connectionist networks are strongly intercon­

nected groups of very simple processing units. Such
networlcs are studied in natural language processing
since their inherent parallelism and distributed deci­
sion making allows an integration of syntactic,
semantic and pragmatic processing for language
analysis. See, e.g., (Waltz and Pollack, 1988),
(Cotrell and Small, 1989) . By isolat_ing the syntactic
component - without abandoning the connectionist
paradigm - it becomes possible to study context-free
parsing in environments where we can make different
assumptions about types of networks, learning rules
and representations of concepts. Examples of this
type of research can be found in (Fanty, 1985), a sim­
ple connectionist implementation of the CYK
method; (Selman and Hirst, 1987), Boltzmann
machine parsing; (Howells, 1988), a relaxation algo­
rithm that utilizes decay over time; (Nakagawa and
Mori, 1988), a parallel left-corner parser incorporated
in a learning network; (Nijholt, 1990), a Fanty-like
connectionist Earley parser.

In this paper we push the speed of the parsing net­
work to its l imits, so as to investigate how much
parallellism is possjble in principle. We define a
parsing network that constructs a shared forest of
parse trees in O (log n) time for an input string of
length n, using O (n 6) units. Our network is based
upon Fanty 's "dynamic programming" approach and
a type of algorithm first introduced by Rytter (1985).
The network is rather large, but not too large: no
logarithmic-time parsing algorithm for arbitrary
contrext-free languages is known that uses less than
0 (n 6) processors. Furthermore, the number of units
can drastically be reduced (albeit within the same
complexity bounds) by a meta-parsing algorithm that

1 1 7

constructs a minimal network custom-tailored for a
specific grammar.

After some preliminary definitions, we construct a
network for a grammar in Chomsky Normal Form.
At the end of this paper we argue that a similar net­
work can be built for an arbitrary CFG; space limita­
tions do not all<?W a detailed presentation.

PRELIMINARIES AND DEFINITIONS
Let G = (N, �, P, S) be a grammar in Chomsky

Normal Form (CNf), i .e. , production rules have the
form A -+BC or A -+a. We consider input strings
a 1 • • • am with m < n, where n is an implementation­
dependent constant.

A ce·ntral role in the parsing algorithm is played
by items of the form (A, i,j), which are called trian­
gles. A triangle (A, i,j) is called recognizable· if
A � + ai +l · · · aj '. The set of triangles S is defined
by

def
S = { (A, i,j) I A EN, 0 s i < j s n } .

A triangle (A, i,j) is called parsable if it is recog­
nizable and S � + a 1 • • • aiAaj+ l · · · am . The collec­
tion of all arsable trian les is called the shared
forest of an in ut sentence· "forest" because it
comprises all different parse trees for that sentence,
"shared" as common sub-trees of different parse trees
are represented only once. The algorithm and net­
work in section 3 compute the shared forest of a sen­
tence.

We shall also need items of a different kind,
called triangles with a gap, denoted ((A , i,j), (B,k, l)).
A triangle with a gap ((A , i, j), (B,k, l)) is called pro­
posable if A � + ai + I · · · akBa1 + 1 • • • aj . During the
application of the algorithm, we will propose trian­
gles with a gap that need further investigation. If
((A, i,j), (B,k, l)) has been proposed and (13,k, l) can pe
recognized, we can fill up the gap and recognize
(A, i,j). The set of all triangles with a gap is denoted
by

def
r = {((A , i, j), (B,k, l)) I (A , i,j)E s, (B,k, l) E s,

i s k < l s j, i ;it k or l ;it n }

The gap can be at the inside or at the outside o f a tri-

angle, as shown in Figure 1 .

A

/ ·� i -- k /: : -. l = j
Figure 1 . Triangles with a gap

The size of a triangle is defined as the length of
the substring a; + 1 • • • aj : size((A, i,j)) = j - i. The
s ize of a 'triangle with a gap is defined as the size of
the triangle minus the size of the gap:
size(((A , i,j),(B,k, l))) = size((A , i,j)) - size((B,k, l)) =
j - i - 1 + k.
A FAST CONNECTIONIST PARSING NET­
WORK FOR CNF GRAMMARS

A variant of Rytter's recognition algorithm
The algorithm presented here is a (for our pur­

pose) improved version of Rytter�s recognition algo­
rithm (Gibbons and Rytter, 1 988). I t can be trivially
extended into a parsing algorithm and has a simpler
correctness proof. Remarks about the differences
with the original algorithm are deferred to the end of
this section, so as to keep the expose as clear as pos­
sible. We wi l l describe first what is to be computed
by the algorithm, and elaborate on how to compute it
afterwards. The recognition algorithm uses two
tables of boolean values:
• recognized ((A, i,j)) for (A, i,j) E 'E, which is true

once we have established that (A, i,j) is indeed
recognizable, and false otherwise;

• proposed (((A , i,j), (B,k, l))) for ({A, i,j), (B,k, l))
E r, which is true once we have established that
((A, i,j), (B,k, l)) is indeed proposable, and false
otherwise.

The algorithm will satisfy the following loop­
invariant properties :
(I) if size((A , i,j)) s 2k and (A , i,j) is recognizable

then recognized((A, i,j)) = true after k steps,
(I I) if size(((A , i,j), (B,k, l))) s 2k and ({A , i,j), (B,k, l))

is proposable then proposed(((A, i, j), (B,k, l))) =
true after k steps .

Acceptance or rejection of the input string depends
on the recognizability of (S, O, m), hence the number

1 1 8

of steps that need to be performed is 1 2 1og ml (the
smallest integer � 2 log m).

The well-known Cocke-Younger-Kasami algo­
rithm uses an upper triangular recognition table T CYK:

The nonterminal A is added to table entry t;,j if {A, i,j)
is recognized. The statements A E t;,j and
recognized ({A,i,j)) = true are equivalent. We can
i llustrate the results of our algorithm (though the
operations are different) with an extension of the T CYK recognition table. In this case, the recognition
table is a three-dimensional structure,

TR = {t;,j,k I O s i < j s n, O s k s j - i} .

Figure 2. The surface of TR as it should be
computed by the algorithm

The third index k denotes the s ize of an item. When a
triangle (A, i,j) is recognized, the nonterminal A is
added to t;, j, j -i · When a triangle with a gap
({A, i,j), (B, k, l)) is proposed, an object {A, B, k, l) is
added to t;, i, h with h j - i - l + k
size(({A, i,j), (B,k, l))). Hence the surface of TR is
equal to T CYK, representations of triangles with a gap
are contained in entries inside the table. Invariants (I)
and (II) guarantee that a table entry with height k will
be completed within i 2 log kl steps. As a s imple
example, consider the grammar

s -+ NP VP I s pp
NP -+ *det *noun I NP PP
VP -+ *verb NP
PP -+ *prep NP

and the input sentence the boy saw a man with a tele­
scope. Figure 2 shows the surface of TR after appli­cation of the algorithm. Having illustrated the purpose of the recognition algorithm, we can now explain · how it works. We define the following operations on 2, r and the tables
recognized and proposed;

INITIALIZE
for aJI (A, i,j) E 'E.
do recognized((A, i,j)) := false od ;
for ali ((A, i,j), (B,k, l)) Er
do proposed(((A , i,j), (B,k, l))) := false od ;
for all (A, i -1, i) E'E.
do if A --+ai EP

then recognized((A, i -l , i)) := true ti
od

PROPOSE :
for all (A� i,j), (B, i,k), (C,k,j)E 2

such that A -+BC EP
do if recognized((B, i,k))

)
then proposed(((A, i,j), (C,k,j))) := true ti ;

} if recognized((C,k,j))
then proposed(((A, i,j), (B, i,k))) := true ti

od A
/)c. _ _ _ _ _
--- k · · · · · · · · · · j

Figure 3. PROPOSE

RECOGNIZE :
for all ((A, i,j), (B,k, l)) Er , (B,k, l) E2
do if proposed(((A, i,j), (B,k, I)))

and recognized((B,k, l))
then recognized((A, i,j)) := true ti

od A
�B �

i - k · · · · · · · · · · l - j

+ B / �
k -- 1

A

= / �
------- j

Figure 4. RECOGNIZE

1 1 9

COMBINE :
for all ((A, i,j), (B,k, l)) , ((B,k, l), (C,m,n))E r �
do if proposed(((A, i,j), (B,k, l)))

and proposed(((B,k, l), (C,m,n)))
then proposed(((A, i,j), (C,m,n))) := true ti

od

B

/c�
k - m · · · · · n - l

A

i -- m · · · · · n -- j

Figure 5. COMBINE

The functioning of the operators PROPOSE,
RECOGNIZE and COMBINE is illustrated in Figures 3-5 . Everything in a for all statement can be corn-� puted in parallel. The recognition algorithm, using these operators, can be given as:

begin

end

INITIALIZE
PROPOSE ;
repeat 1 2 log m l times
begin

end ;

RECOGNIZE ;
PROPOSE ;
COMBINE ;
COMBINE

if recognized((S, 0,m))
then accept
else reject
fi

In the sequel, we will give a proof of the correctness of the modified Rytter algorithm. But let 's first look at an example. In Figure 6 one parse tree of the input sentence is shown. The algorithm obviously recognizes much more than a single parse tree, but it is sufficient to show that all items in one parse tree are recognized in order to make clear that the top item is recognized. (S, 0, 8) can be recognized in a number of different ways, but that would only clutter up the example. The nodes in the parse tree have been numbered, so

Figure 6. A parse tree .

�e can identify the triangles by their number rather
than by the more cumbersome (A, i, j) notation. We
will apply the algorithm step-:-by-step on the items in
this tree. Step O is shown in Figures 7-8, step 1 in
Figures 9-1 2 and (the first half ot) step 2 in .Figures
1 3- 1 4. Circles correspond to recognized triangles,
lines .correspond to proposed triangles with gaps. The
example shows that the algorithm may need less than
1 2 log kl steps in some cases; we need only 2 steps
although 3 are allowed.

1
2 3

0 0 0 7

8 9

@ ® @ 13
@ ®

Figure 7. After s.tep O(a) : INITIALIZE

I K.

1 20

J 1

\
® '

9

\
@ 13
d '@

Figure 8. After step O(b) : PROPOSE

1
3

\
® '

�
9

@ @ @ '@
d-�

Figure 9. After step l (a) : RECOGNIZE

�
3

0 0 0 \
�

'® 0l�
A

Figure 10. After step l (b): PROPOSE

Figure 11 . After step l(c) : COMBINE
� (½¾Go �
lq J.vi�

/�' �

Figure 12. After step 1 (d) : COMBINE

Figure 13. After step 2(a): RECOGNIZE

1 21

Figure 14. After step 2(b): PROPOSE

Correctness of the algorithm
Theorem. After application of the above algo­

rithm, a triangle will have been recognized if and
only if it is recognizable; a triangle with a gap will
have been proposed if and only if it is proposable.

We will give a proof that is a great deal simpler
than the proof of the original algorithm (Gibbons and
Rytter, 1988). For more details see (Sikkel and
Nijholt, 1990).

Terminology. We denote triangles with greek
letters s, YI, t etc. The triangles YI, t are called a pair
of sons of s if s = (A, i, j), YI = (B, i,k), t = (C,k,j) for
some A, B, C EN with A -">BC E G and O s i < k < j s n.
For technical reasons we allow empty triangles with a
gap (s, s)- For such an empty triangle, pro­
posed ((s, s)) = true by definition.

Basis. It is easy to verify that proposable trian­
gles with a gap of size 1 have been proposed after the
initialization step and recognizable triangles of size
s 2 have been recognized after step 1 .

Induction hypothesis. We write (I)k for the
claim that (I) holds for s with size(s) s 2k and (Il)k for
the claim that (II) holds for (s, YI) with size@, YI)) s
2k . Hence (11)0 and (1) 1 have been established above.
From the induction hypothesis (II)k -l , (Ih we will
derive (II)k , (I)k +l ·

(Il)k - Given (Il)t_ 1 , (l)t, we prove (II)t . Let
(s, YI) be proposable, 2k - l < size ((s, YI)) s 2k .
• Claim A. There is a <P with sons ,p, ,p' , such that

<P, ,p, ,p' are recognizable, (s, <P), (,p, ri) are pro­
posable, size ((s, <P)) s 2k-l , size ((,p, ri)) s 2k -l .
See Figure 15 .
Proof If_ (s, Y1) i s proposable, there i s a sequence
to, · · · , tp with � = s, �P = 'Y) such that each

(Si , Si + i) is proposed by a PROPOSE operation;
these "atomic" triangles with a gap are subse­
quently COMBINEd into (;, 11). Choose
(<I>, 1jJ) = (Si , Si + 1) with the largest i such · that
size ((;, sJ) s 2k- l . From size ((Si +] , 11)) > 2k - l it
fol lows that size ((;, Si +l)) s 2k -l , hence a larger i
could have been chosen.

<I>
I \

1jJ' 1jJ

size ((1;,cp)) s 2k -l

size ((lJJ,11)) s 2k - l

Figure 15 . Claim A

From the induction hypothesis _we find that (s, cp), .
(1jJ, 11) have been proposed after step k -l ; 1jJ 1 has·
been recognized after the . RECOGNIZE in step k.
Then (<I>, 1JJ) is PROPOSEd in step' k ·and two COM­
BINE operations yield proposed @, 11)).

(lh+I · Given (II)k -1 , (I)k, we prove (I)k +l · Let s
be recognizable, 2k < size(;) s 2k + l .
• Claim B. There is an 11 with a pair of sons 0, s

such that size((;, 11)) s 2\ size(0) s 2k , size(s) s
2k and 11, 0, s are recognizable.
Proof let cp1 be the largest son of s, cp2 the largest
son of q> 1 , etc. Let <j>j tie the first one with size s
2k . Then 11 = <l>j - 1 •

If l'J = s, (I)k + I follows trivially. Otherwise, Claim A
holds and we find a situation as shown in Figure 16 .

I \
1jJ' 1jJ

size ((s,<p)) S 2k -l

11
I \

size ((11-',11)) s 2k -l

size (0) s 2k e s size (s) S 2k

Figure 16. Claims B and A

From the induction hypothesis we find that (s, cp),
(1JJ, 11) have been proposed after step k - l ; 1jJ' , 0, �
have been recognized after the RECOGNIZE in step
k. Then (<I>, 1JJ), (11, t) are PROPOSEd in step k and
(�. 1.v), (1J • . n arc COMBINEd. The second COM­
BINE i n s k ; l k proposed (s, t). Hence s will be
recognized in step k + 1 .

1 22

Conclusion. Thus we have established invariants
(I) and (II). The " if' parts of the Theorem follow
from (I), (II); the "only if' parts from the soundness
of each of the operators INITIALIZE, RECOGNIZE,
PROPOSE and COMBINE. □

A recognizing network
We define a connectionist network in a way that

resembles the parsing network of Fanty (1985) . The
network consists of simple units computing AND and
OR functions. The output of every unit is either 1 or
0. An AND unit is activated - i.e. its outputs have
value 1 - iff all its inputs have value one; an OR unit
is activated iff at least one of its inputs has value 1 .
I n neural networks terminology: a n AND unit with k
inputs has a threshold value k - 0.5, an OR unit has a
threshold value 0.5, irrespective of its number of
inputs. In order to make a distinction between the
two types of units we will write OR units between
parentheses "()" and AND units between brackets
"[]" .

For each triangle (A, i,j) E2, the network contains
a unit (R (A, i,j)) with an activation level correspond­
ing to the value of recognized((A, i,j)) . Likewise,
proposed (((A, i,j), (B,k, l))) is represented by a unit
(((A, i,j), (B,k, l))). Furthermore, we need an output
unit (accept) that is activated only if the sentence is
accepted and input units ((a, i)) for a E�U {$ },
1 s i s n + 1 . It is assumed that the input units are
activated externally and that their activation level
remains fixed. If a sentence has m words, then unit
((m + 1, $)) should be activated to mark the end of the
sentence.
• INITIALIZE is implemented by linking the units

((a, i)) to ((A , i- 1 , i)) for A �a EP.
• For the PROPOSE operation, for all A �BC EP

and O s i < k < j s n, a link from (R (B, i, k)) to
(((A, i,j), (C,k,j))) and a link from (R (C,k,j)) to
(((A, i,j), (B, i,k))) are added to the network.

• For an implementation of RECOGNIZE, we need
additional match units [((A , i,j), (B,k, l))] for each
((A, i,j), (B,k, l)) E f. This is because a unit
(R (A, i,j)) can be recognized in more than one
way. It should be recognized if both
(((A, i,j),(B,k, l))) and (R (B,k, l)) are active for
some (B,k, l) E 2. To this end, (R (B,k, l)) and
(((A, i,j),(B,k, l))) are linked to [((A, i,j), (B,k, l))]
that ANDs their values; [((A, i,j), (B,k, l))] is
linked to (R (A, i,j)).

• For the COMBINE operation, we also need addi­
tional match units . For each ((A, i,j), (B,k, l)) and
((B,k, l), (C,m,n)) E r, an AND unit
[((A, i,j), (B,k, l), (C,m,n))] is added. It receives

input from
(((B,k, l), (C,m,n)))
(((A, i,j), (C,m,n))).

(((A, i, j), (B,k, l))) and
and sends output to

• The (accept) unit receives input from match units
[accept, i] that will be activated if a sentence of
length i could be recognized. This is accom­
plished by linking (($, i +l)) and (R (S, 0, i)) to
[accept, i] .

An example of a small fraction of the network is
given in Figure 17 . I t represents the units that are
used for the recognition of the propositional phrase
(PP, 5, 8).

Figure 17. A fraction of the recognizing network

Construction of the shared forest
The main purpose of modifying Rytter's algo­

rithm is the introduction of invariant (II). It will
become clear now why we need it. Tacitly we have
done all the necessary preparations for the extension
to a parsing algorithm, all that is left is to reap the
results.

1 23

Let (A,i,j) be parsable for a particular input string
a 1 · · · am (m s n), and assume (A, i,j) � (S, 0,m) .
Then the following two conditions hold:

(i) A ==- + a; + 1 • • • aj ,
(ii) S =:> + a 1 • • · a;Aaj +I · · · am .

In other words, (A,i,j) is parsable if (A, i,}) is recog­
nizable and ((S, 0,m), (A, i,j)) is proposable. Conse­
quently, parsed((A, i,j)) must be · made true if both
proposed (((S, 0,m), (A, i,j))) and recognized ((A , i,j))
are true. This can be done in parallel in one step !
We define an additional boolean table parsed((A, i,j))
for (A, i, j)E'E. and an operation on 'E., r and the table
parsed, as follows:

PARSE :
for all (A, i, j) E 'E.

. d o parsed({A, i, j)) : = false od ;
if recognized((S, 0,m))
then parsed((S, 0,m)) := true ;

for all (A, i,j)E 'E.

fi

do ifproposed(((S, 0,m), (A, i,j)))
and recognized((A, i,j))

then parsed((A, i,j)) := true fi
od

The recognition algorithm is extended to a full­
fledged parsing algorithm by inserting one PARSE
operation after the repeat loop.

We can extend the network accordingly. The
table parsed will be represented by a collection of
AND units [P (A, i,j)] . Additionally, we need a col­
lection of match units [Qm (A, i,j)] for lsm sn and
(A, i,j) E 'E. and a collection of OR match units
(Q (A, i,j)) for (A, i,j)E 'E..
• [Qm (A, i,j)] will be activated if parsed((S, 0,m))

= true and proposed (((S, 0,m), (A, i,j))) = true.
That is, for all possible values of m, [P (S, 0,m)]
and (((S, 0,m), (A, i,j))) are linked to [Qm (A, i,j)] .

• (Q (A, i,j)) will be activated if the above holds for
some m. To this end, each [Qm (A, i,j)] is linked
to (Q (A, i,j)).

• [P (A, i,j)], obviously, receives input from
(R (A, i,j)) and (Q (A, i,j)).

• In order to start the parsing phase, all [accept, m]
units are linked to (Q (S, 0,m)). I f a string of
length m is accepted, then (R (S, 0,m)) will be
active, hence [P (S, 0, m)] will be activated.

If (Q (A, i,j)) is activated (via [Q1 (A, i, j)]) by any
[P (S, 0, /)] with l s l s m, it is also activated by
[P (S, O,m)], because ((S, O,m), (S, 0, l)) and
((S, 0, /), (A, i,j)) can be COMBINEd. Thus [P (A, i,j)]
will be activated if and only if (A, i, j) is parsable.

Complexity of the network
The number of input units ((a, i)) is

m: J + 1) · (n + 1) = 0(1 :�: J · n). The COMBINE match
units [((A, i,j), (B,k, l), (C,m,n))] account for the
highest order of all other types of units, 0 (!N I 3 • n 6),
yielding a total of O (J"f. J · n + JN J 3 · n 6) units . It is
easy to verify that the number of connections is also
O (JL I · n + J N J 3 · n 6) .

These numbers conform to the best known com­
plexity measures for logarithmic parsing algorithms:
O(log n) time on a. CRCW PRAM and O(log2 n) time
on a CREW PRAM. PRAM models use O(n 6) pro­
cessors. It is not obvious that an equivalent network
exists with the same order of complexity. A general
method to construct a network composed of AND
and OR units for an arbitrary PRAM is given by
Stockmeyer and Vishkin (1984). Applying this gen­
eral method, however, would yield O (n 13) units,
rather than our custom-tailored network of O (n 6)
units .

Meta-parsing
We defined units for all (A, i,j) E '2 and

((A , i, j), (B,k, l)) E f. A large fraction of these units
will never be needed. For any ·particular grammar we
can establish a much smaller network, by an algo­
rithm that closely resembles the parsing algorithm .
Such analysis has been called meta-parsing (Nijholt,
1 990).

A triangle (A, i,j) is called meta-recognizable if
(A, i, j) is recognizable for s�me input string
a 1 • • • am ELm , (m s n) . Similarly, ((A , i, j), (B,k, l)) is
called meta-proposable if there is an input string such
that (A, i,j) is proposable; (A., i,j) is called meta-
parsable if there is an input string such that (A., i,j) is
parsable. These meta-properties can be computed in
advance, and incorporated in the structure of the net­
work. The meta-recognizable and meta-parsable
items for our example grammar and n = 8 are shown
in tabular form in Figures 1 8 and 1 9. The meta­
parsing algorithm is identical to the parsing algorithm
but for two small differences:
• meta-recognized((A , i- l , i)) is made true if

A -a EP for any a EL,
• meta-parsed((S, O, i)) is made true for every

(S, 0, i) that has been meta-recognized.
It is easy to verify that after application of the meta­
algorithm, (A , i,j) has been recognized if and only if
(A, i,j) is meta-recognizable; s imilarly for meta­
proposable and meta-parsable items.

For the construction of the shared forest, we only
have to consider triangles that are meta-parsable. All
triangles that are not meta-parsable can be discarded:

1 24

l
*d *n NP VP s VP s
*v *p pp NP pp NP

*d *n NP VP s VP
*v *p pp NP pp

*d *n NP VP s VP
*v *p pp NP pp

*d *n NP VP s
*v *p pp NP

*d *n NP VP
*v *p pp

*d *n NP VP
*v *p pp

*d *n NP *v *p
*d *n
*v *p

Figure 18. A E ti,j if (A., i,j) is meta-recognizable

I
*d NP s s NP

*n

*v VP VP *p pp

*d NP NP

*n

*v VP
*p pp

*d NP

*n
--

Figure 19. A E ti,j if (A, i,j) is meta-parsable

even if such a triangle is recognized, it can never con­
tribute to a parse tree for any input. Thus we define
the minimal set of triangles and triangles with gaps,
as fol lows :

.:::.min {(A, i,j) E '2 I (A, i,j) is meta-parsable} ,

r min {((A , i,j), (B, k, l))E f I

((A, i,j), (B,k, l)) is meta-proposable}

While constructing the network, we only have to
introduce units for (A., i,j) E '2min , ((A., i,j), (B,k, l))
E r min and appropriate match units. The reduced
network still yields the shared forest.

Robustness of the network
In contrast with Fanty 's network, even the

minimal network is rather robust. When a few units
do not function, it is most likely that the proper input
strings will be accepted. There is a multitude of dif­
ferent ways in which a triangle can be recognized; if
the most direct path is broken, chances are that the
triangle is recognized by an alternative path, using
slightly more time. That is, unless one of the rela­
tively few vital units breaks down, the recognition
network shows graceful degradation. The parsing
part of the network has no redundancy, however. If
any unit fails, a triangle in the shared forest may be
lost: But this is less . dramatic than failure to recog­
nize a valid sentence.

It is possible to supplement the recognition net­
work with a robust parsing network if a top-down
structure is used that is equivalent to the bottom-up
structure, as in Fanty 's network. Such a top-down
network would yield a parse forest in logarithmic,
rather than constant time. But : that :does not really
matter as time complexity of the network is loga­
rithmic anyway.

Bibliographic notes
The CYK algorithm cari be found in any textbook

on formal languages, e.g. (Harrison, 1978). A con­
nectionist network for the CYK algorithm has been
defined by Fanty (1985) and circulated on a wider
scale in (Fanty, 1986).

Rytter's recognition algorithm is presented in
(Rytter, 1985) and (Gibbons and Rytter, 1988). A
similar algorithm is independently described by Brent
and Goldschlager (1984r The operators PROPOSE,
COMBINE and RECOGNIZE were called
ACTNATE, SQUARE and PEBBLE in the original
algorithm. The word "activate" had to be changed so
as to avoid confusion with activation of a unit. The
new identifiers are chosen because we operate in a
parsing context ("recognize") rather then a combina­
torial context ("pebble"). Rytter's algorithm per­
forms the following steps:
• step 0: INITIALIZE
• step k (k > 0) : ACTNATE;

SQUARE;
SQUARE;
PEBBLE

I

which do not satisfy invariant (II) ! Hence the algo-
rithm does not allow a similar trivial extension for the
computation of a shared forest. In (Gibbons and
Rytter, 1988), the correctness of the Rytter's algo­
rithm is derived from the correctness of a "pebble
game" on binary trees, which has a rather compli-

1 25

cated proof. The proof of the modified algorithm as
presented ;above . is a lot simpler, mainly due to the
' introduction of invariant (II).

EXTENSION;TO ARBITRARY CONTEXT­
FREE-GRAMMARS

· n is possible to define a similar parsing network
for 'an arbitrary context-free grammar. · Rytter's algo­
rithm can be regarded as a speed-up of the CYK algo­
rithm, using more resources. In the same way,
bottom-up versions of Eatley's algorithm (Graham,
Harrison and Ruzzo, 1980), (Chiang and Fu, 1984)
can be speeded up in a similar way. Triangles have
the form (A �a . f3, i,j) for A �af3EP and O � i s j �·n .

A �a . 13 is recognizable iff a ==:> • ai + l · · · ai .
Proposability can be defined accordingly. A triangle
(A �a . 13, i,j) is parsable if there is a y E v• such that
S ==:> • a 1 · · · aiAy, a ==:> • ai +l · · · ai and l3y ==:> *
llj +l . . · am .

The network for arbitrary CFGs has
O (g3

• IP l 3 · n6) units and O (g3
· IP l 3 ; n 6) connec­

tions, in which g is t�e average number of symbols in
the right-hand side of a grammar rule. For a full
treatment we refer to (Sikkel and Nijholt, 90).

A similar parsing algorithm for arbitrary CFGs on
PRAM models is discussed in (de Vreught and
Honig, 1991).

CONCLUSIONS
A modification of Rytter's logarithmic · time

recognition algorithm for CNF grammars has been
introduced. This algorithm is conceptually easier than
the original, and the correctness proof is a great deal
simpler. Furthermore, the construction of a shared
parse forest represented by a set of triangles can be
added in constant time.

We have defined a connectionist network that
parses a CNF grammar with the above algorithm in
O(log n) time using o m: i -n + IN l 3 ·n 6) units. This
conforms to the best known complexity bounds on a
CRCW PRAM, and is a factor log n faster than the
best algorithm on a CREW PRAM known to date. A
Similar . network can be constructed for an arbitrary
context-free grammar.

A network of minimum size for a particular gram­
mar can be custom-tailored. The meta-parsing algo­
rithm . that estab.lishes the configuration of a network
for the specific grammar is almost id�ntical to the
parsing algorithm that is implemented by the net­
work.

The network is robust in the sense that a few bro- .
ken down units will most likely cause some degrada­
tion in performance but still all valid sentences will

be recognized. A network structure with O (n 6) units is too large for any serious practical implementation in natural language processing. The purpose of our investiga­tions, however, has been to push the time complexity to its very limits to see how much parallelism is pos­sible in principle. These results confirm that connec­tionist networks can be used as a suitable abstract machine model for parallel algorithms. It is also confirmed that traditional parsing algorithms for general context-free languages can be given connec­tionist implementations, allowing integration · into · more comprehensive connectionist networks for natural language analysis.
REFERENCES Brent, Richard P. and Goldschlager, Leslie M. (1984). "A Parallel Algorithm for Context-Free Pars­ing," Australian Computer Science Communications
6, 7, 7.1-7. 10. Chiang, YT. and Fu, K.S. (1984). "Parallel Pars­ing Algorithms and VLSI implementations for Syn­tactic Pattern Recognition," IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-6, 3, 302-314. Cottrell, Garrison W. (1989). "A Connectionist
Approach to Word Sense Disambiguation ", Research Notes in Artificial Intelligence, Morgan Kaufmann Publishers. Fanty, Mark A. (1985). "Context-free Parsing in
Connectionist Networks ", report TR 174, Computer Science Dept., University of Rochester, Rochester, NY. Fanty, Mark A. (1986). M.A. Fanty: "Context­free Parsing in Connectionist networks," in: J.S: Denker (Ed.), "Neural Networks for Computing", Snowbird, UT, API conference proceedings 151 , American Institute of Physics, 140-145. , Gibbons, Alan and Rytter, Wojciech (1988);11 · "Efficient Parallel Algorithms ", Cambridge Univer­sity Press. __ . -Graham, Susan L, Harrison, Michael A. and Ruzzo, Walter L. (1980). "An Improved Context­Free Recognizer," ACM Transactions on Program­
ming Languages and Systems 2 415-462. Harrison, Michael (1978). "Introduction to For­
mal Language Theory ", Addison-Wesley, Reading, Mass. Howells, Tim (1988). "VITAL: a Connectionist Parser," Proc. 10th Conf of the Cognitive Science
Society 18-25.

1 26

Nakagawa, Hiroshi and Mori; Tatsunori (1988). "A parser based on a connectionist model," Proc.
12th Int. Conf on Computational Linguistics (COL­ING'88), Budapest 454-458. Nijholt, Anton (1990). "Meta-Parsing in Neural Networks," Proc. 10th European Meeting on Cyber­
netics and Systems Research, R. Trappl (Ed.), Vienna 969-976. R<" tter, Wojciech �1985). "On the recognition of context free languages;" in: "Proc. 5th Symp. on Fun­
da.mentals of Computation Theory ", Lecture Notes in Computer Science 208, Springer-Verlag 315-22. Selman, Bart and Hirst, Graeme (1987). "Parsing as an energy minimization problem," in: Genetic
algorithms and Simulated Annealing, Research Notes in AI, Morgan Kaufmann · · Publishers, Los Altos 141-154. Sikkel, Klaas (1990). "Connectionist Parsing of
Context-Free Languages ", Memoranda Informatica 90-30, Comput(;!r Science Department, University of Twente, Enschede, The Netherlands. Stockmeyer, Larry and Vishkin, Uzi (1984). Simulation of Parallel Random Access Machines by Circuits, SIAM J. Comput. , 13, 2, 409-422. de Vreught, Hans and Honig, Job (1991) "Slow and Fast Parallel Recognition," Proc. 2nd Int.
Workshop on Parsing Technologies, (IWPT'91), Cancun, Mexico . Waltz, David L. and Pollack, Jordan B. (1988). "Massively Parallel Parsing: A Strongly Interactive Model of Natural Language Interpretation," in: D.L. Waltz, J .A. Feldman (Eds.), Connectionist models
and their implications, Readings from Cognitive Sci­ence, Ablex Publishing Co., Norwood, NJ, 181-204.

SLOW AND FAST PARALLEL RECOGNITION

Hans de Vreught , Job Honig* Delft University of Technology Faculty of Technical Mathematics and Informatics Section Theoretical Computer Science Julianalaan 132, 2628 BL Delft , The Netherlands e-mail: hdev@dutiae.tudelft .nl , joho@dutiae.tudelft.nl
ABSTRACT

In the first part of this paper a slow paral­
lel recognizer is described for general CFG's.
The recognizer runs in 0(n3 / p(n)) time with
p(n) = O(n2) processors . It generalizes the
items of the Earley algorithm to double dot­
ted items, which are more suited to parallel
parsing. In the second part a fast parallel
recognizer is given for general CFG 's. The
recognizer runs in O(log n) time using 0(n6)
processors . It is a generalisation of the Gib­
bons and Rytter algorithm for grammars in
CNF.

1 INTRODUCTION

The subject of context-free parsing is well
studied, e.g. see (Aho and Ullman, 1972 ;
1973; Harrison , 1978) . Nowadays, research
on the subject has shifted to parallel context­
free parsing (op den Akker, Alblas , Nijholt ,
and Oude Luttighuis, 1989) . Two areas of
interest can be distinguished: slow and fast
parallel parsing. We call a parallel algorithm
fast when it does its job in 'polylogarithmic
time. This is in contrast to the sequential
case, in which algorithms are called fast when
they run in polynomial time. Obtaining a
fast parallel algorithm is often quite simple:
when the fast sequential algorithm is highly
parallelizable, using an exponential number
of processors is sufficient . This is not very
realistic, however.

A parallel algorithm is called f ea.si ble only
when it uses a polynomial number of proces­
sors . Note that when a feasible slow par­
allel algorithm runs in polynomial time, it

• using initials: J .P.M . de Vreught and H . J . Honig.
1 27

can be simulated by a fast sequential algo­
rithm. Therefore in practice we often see that
slow parallel is fast enough; fast parallel al­
gorithms often achieve their speed because
of their huge number of processors and large
amounts of storage.

Several authors have studied a�gorithms for
slow parallel recognition. Most of these. al­
gorithms are variants of the Cocke-Younger­
Kasami (CYK) algorithm and the Earley al­
gorithm. In the first part of this paper an­
other slow parallel recognizer is given (de
Vreught and Honig, 1989; 19�0b) _- Its new
feature is that it uses double dotted it�ms,
which are more natural for parallel parsing;
these items make it easy to do error determi­
nation , a feature that is shared with niost
parallel bottom up algorithms. Although
there are some similarities between the three
algorithms, they should not be regarded as
variants of each other since they all fill their
respective matrices with different 'items' and
for entirely different reasons .

When compared to a. parallel versio� of
the Earley algorithm, which would have to
be bottom up , our algorithm generates far
less i terns on the principal diagonal of the
recognition matrix. A detailed comparison
of the items required by the given algorithm
and the Earley algorithm will be necessary
to show the strengths · or weaknesses of both
approaches to parallel parsing. The si zes of
the item sets in relation to particular classes
of grammars is still under research.

The subject of fast parallel pars�ng is rel­
atively new. Amongst the first to give a fast
parallel recognizer were Gibbons and Rytter
(1988) . Their recognizer requires a grammar
in CNF; it can be regarded as the fast par-

allel version of the slow parallel CYK algo­
rithm. The speeded up version is obtained
by also examining the consequences of incom­
plete items . When an incomplete item gets
completed, we can also complete the conse­
quences immediately. The reason for the al­
gorithm being fast is based on the fact that
for every skewed tree (with n internal nodes)
of height 0 (n) describing the composition of
a certain item, there exists a reasonably well
balanced one of height O(log n) that uses
both complete and incomplete items .

In the second part of the paper a fas_t par­
allel recognizer for general CFG 's is given (de
Vreught and Honig, 1 990a) . In spite of the
fact that any CFG can be transformed into
CNF in 0 (1) time, usi�g CNF is undesirable
in practice (especially in natural language
processing) . The fast parallel recognizer does
not need to transform the grammar. The fast
parallel recognizer can be . regarded as the fast
parallel version of the slow paraliel recognizer
described in the first part . The fast parallel
recognizer is based on the Gibbons and J;lyt­
ter algorithm for grammars in CNF (Gibbons
and Rytter, 1988) . The paper is concluded
with some final remarks .

2 THE SLOW PARALLEL
RECOGNIZER

We start by sketching the ideas behind the
slow parallel recognizer. Then we will give an
inductive relation which plays a central role
in our algorithms. Finally we will present the
slow parallel recognizer .

2 . 1 INFORMAL DESCRIPTION
Let a1 • • • an be the string to be recognized.
We are going to build an upper triangular
matrix U as shown below.

In each cell Uij we enter items of the form
A --+ a •/3 ·, such that A --+ a{31 is a produc­
tion and /3 ⇒ * ai+I . . . aj . We will also insist

1 28

that if f3 = A then a, = A :
A

�
a f3 ,
�

i i
J

Suppose B --+ • /3 • E U ij and let A --+ aB,
be a production. In that case we can assert
that A --+ a • B ·, E Uij :

A
�

a B ,

/3
�

i i
J

This assertion follows from the application
of the inclusion operation to B --+ • /3 • E
Uij • Another operation is concatenation . If
A --+ a • /31 • /32, E Uik and A --+ a/31 • /32 · , E
U kj then we can assert that A --+ a • /31 /32 • ,
E Uij , applying the concatenation operation :

i i
k

i
J

When the entries of matrix U are closed with
respect to the operations, we look for an item

S --+ •a • E Uon where S is the start symbol
of the grammar:

s
!
a

� ao • a1 . . . an · an+l
i i
0 n

S --+ • a · E U On

In the following, we will give a relation
U defining the item sets constructed dur­
ing the recognition process . We do this by
identifying the matrix U with the relation U
such that A --+ - a •/3 ·, E Uij iff (i , j,A --+
o: •/3 ·,) E U.

2 .2 THE RELATION

Let G = (V, � , P, S) be the CFG in question
and let x = a1 • • , an the string to be recog­
nized. Furthermore, let • (/. V and let A be
the empty string. Finally, let .J = {O , . . . , n } 2

x { A --+ a • /3 ·, I A --+ a{); E P} .
Definition 2 .2 .1 U = {(i , j, A --+ o: •/3 ·,)
E .J I A => a{); and /3 =>* ai+1 . . , aj and
if f3 = A then a; = A }

In (de Vreught and Honig, 1989) some vari­
ants of U are examined; for instance, one of
them takes context into account . The dis­
advantage of definition 2.2 . 1 is that it is not
immediately clear how to determine whether
or not an item is in the relation . For this
purpose we need an inductive definition.
Definition 2 . 2 . 2 The relation U' over .J is
defined as follows:

• If A --+ A E P then (j, j, A --+ • ·) E U'
for any j E { 0, . . . , n } .
This item i s a base item.

• If A --+ aan E P then (j - l , j, A --+
a • aj •i) E U' for any j E { 1 , . . . , n} .
This item is a base item.

• If A --+ aB; E P and (i , j, B --+ ·/3 ·) E
U' then (i , j, A --+ a • B ·,) E U' .
This operation is called inclusion .

1 29

• If (i , k , A --+ o: •/31 ·/32,) E U' and
(k , j, A --+ af31 ·f32 ·,) E U' then
(i , j, A --+ o: • /31/32 ·,) E U' .
This operation is called concatenation.

• Nothing is in U' except those elements
which must be in U' by applying the pre­
ceding rules finitely often.

It can be proved that U = U'.

2.3 THE RECOGNIZER

We will now present the recognition . algo­
rithm (de Vreught and Honig, 1989) . In the
algorithm mode is either sequence or par­
allel.

Recognizer(n) :
for i : = 0 to n do

for j := 0 to n - i in parallel do
case i

= 0 :

= 1 :

> 1 :

Empty(j + i)

Symbol(j + i)

Ui ,i+i := 0
for k := 1 to i - 1 in mode do

Concatenator
(j, j + k , j + i)

while U i ,i +i still changes do
Concateriator(j, j, j + i)
Concatenator(j, j + i, j + i)
Includer(j, j + i)

return Test(n)

Empty(j) :
Uii := {A -+ • · I A - ,\ E P}

Symbol(j) :
Uj - 1 ,j := { A --+ O: • aj · , I A --+ o:an E P}

Includer(i, j) :
for all B --+ • /3 • E U ii do

Uii := Uii U
{A - o: •B ·, I A - o:B, E P}

Concatenator(i, k , j) :
for all A --+ 0: •/31 ·/32, E uik
with I /31 I = 1 do

for all A --+ o:/31 •/32 •, E Uki do
Uii := Uii U {A -+ o: •/31/32 ·,}

Test(n) :
accept := False
for all S --+ a E P do

if S --+ •a • E U on then
accept := True

return accept
Although the algorithm fills the matrix di­

agonal by diagonal, there are many other fill­
ing orders for the matrix (de Vreught and
Honig, 1989) . Note that all cells on a diago­
nal can be filled independently of each other.
When mode = sequence, it can be shown
that a CREW-PRAM (Concurrent Read Ex­
clusive Write - Parallel RAM) (Quinn, 1987)
with p(n) = 0(n) processors can fill the ma­
trix in T(n) = 0(n3/p(n)) time.

The concatenations done in the loop over k
in Recognizer can also be done independently
of each other. However, in that case the ar­
chitecture must allow parallel writing in cell
Uj,j+i • Thus when mode = parallel , it
can be shown that a CRCW-PRAM (Concur­
rent Read Concurrent Write - Parallel RAM)
(Quinn, 1987) with p(n) = 0(n2) processors
can fill the matrix in T(n) = 0(n3 / p(n))
time. In both cases the space complexity
is dominated by the matrix: S(n) = 0(n2)
space.
Example 2 . 3 . 1 Consider the string aabcc
and the CFG G = (V, E, P, A) :

• V = {A, B} u �
• E = {a , b , c}

• P contains the following productions:
o A --+ aB
o B --+ Ace

o B --+ b

Notice that G is ,\-free (this simplifies the ex­
ample) . From the given grammar and string,
the following matrix (see figure 1) can be ob­
tained .

3 THE FAST PARALLEL
RECOGNIZER

In this section we will sketch the ideas behind
the fast algori thm . The proof that the rec-

1 30

ognizer is fast uses a pebble game, described
in (Gibbons and Rytter, 1988) , and critically
depends on the fact that the 'minimal compo­
sition trees' are linear in size (with respect to
the length of the string to be recognized) . In­
stead of determining U directly we will com­
pute its extension U, on which the fast par­
allel recognizer is based. Finally we will de­
scribe the recognizer for a general CFG . The
algorithms is based on the fast parallel Gib­
bons and Rytter recognizer for CFG 's in CNF
(Gibbons and Rytter, 1988) .

3 .1 COMPOSITION TREES
Definition 2.2 .2 offers a way of justifying the
presence of an item x in U . A justification is
a sequence of rules corresponding to a proof
showing why x E U. Sometimes an item x
can be justified in more than -one way. We
will consider justifications one at a time . . A
complete justification of an item x in U will
be called a composition for x; such a com­
position can be represented by a composition
tree Tx . The nodes in Tx are labelled with
the items mentioned in the antecedents of the
rules of definition 2.2 .2 that are applied; the
root is labelled x .

Example 3 . 1 . 1 Suppose w is the result of
an inclusion of x , x is the result of a con­
catenation of y and z, and y and z are base
items. The composition tree Tw for w is as
given below.

Tw : w

!
X

�
y z

3.2 INFORMAL DESCRIPTION
We will speed up the slow parallel algorithm
that computes relation U to a fast parallel
algorithm computing U by using a relation
denoted by U (given in section 3 .4). The
presence of each item x in U can be justified
by means of a composition tree Tx . In Tx all

I A -+ •a•B A -+ •aB •
B -+ •A •cc

A -+ •a •B A -+ •aB • B -+ •Ac • c B -+ •Ace •
B -+ • A • cc A -+ a •B •
B -+ •b •
A -+ a • B •

B -+ A •c • c B -+ A •cc •
B -+ Ac • c •

B -+ A •c • c
B -+ Ac • c •

Figure 1 . Matrix U for aabcc

nodes are labelled with items in U. The root
is labelled x . The other nodes are labelled
by the items mentioned in the antecedents of
the rules of the inductive definition of U. As
an immediate consequence we have that each
subtree of Tx is a composition tree too. We
will represent Tx (or to be more exact : the
existence of Tx) as in the figure below:

· Suppose Ty exists . Thus we assume y E
·u. Let us see what the consequences of this
assumption are. Suppose we can derive Tx

for item x from Ty :

Tx&

Assume we don't no� wet her or not y ac­
tually is in U. Instead . of saying that we have
determined Tx , we say that we have deter­
mined Tx except for the part Ty : we have the
partial composition tree Tx+-y (or better: its
existence) represented as given below:

Tx-�

Note that Tx+-y might exist whilst Ty does
not (because y (j_ U) . By using these partial
composition trees, we draw conclusions from
facts yet to be established . This makes the
algorithm for the recognizer fast ; the proof of
this is based on Rytter's pebble game (Gib­
bons and Rytter, 1988) .

For each base item x (in U) , we can assert
the existence of a composition tree Tx :

1 31

T�

Suppose x can be obtained from y by
means of an inclusion operation . In that case
we can assert the partial composition tree
Tx+-y :

Now suppose that x can be obtained from
y and z by means of a concatenation opera­
tion and assume that Ty · exists (the case that
Tz exists, is handled analogously) . In that
case we can assert the partial composition
tree Tx+-z :

The rules for the inclusion and concate­
nation operations are called activation rules
(the names of all rules are borrowed from the
pebble game) .

The square rule (a misnomer) merges two
partial composition trees Tx+-y and Ty+-z to
obtain the partial composition tree Tx+-z :

Ty-�
--------- ________ J

The final rule is the pebble rule, which
merges a partial composition tree Tx+-y and
a composition tree Ty to obtain the composi­
tion tree Tx :

T,6
-------- -------...... J

When we would define a composition tree
for if in the same way as we did for U,
we would find that for an arbitrary U­
composition tree Tx there exists a reason­
ably well balanced U-composition tree Tx ,
w hi eh also asserts that the i tern x is in U. It
can be shown that if the activation rule, the
square rule, and the pebble rule are iterated
O(log n) times , we have found the existence
of at least one composition tree Tx for every
x in U (and for only those) . Therefore we
can say that we can compute U in O (log n)
time.

3 .3 THE MINIMAL
COMPOSITION SIZE

As a notational shortcut we will speak of an
item x in Uij , by which we mean that x E U
and that x is of the form (i , j, A -+ a � /3 •,) .
The composition size will be defined as the
number of operations in the composition tree.
We call a composition tree minimal iff its
composition size is minimal . In this section
we will argue why the minimal composition
size for item x in Uij is linear in j - i + 1 .
There are two cases t o consider:

• A composition tree which has an item
appearing twice as a label on a path
(such a tree is called a 'cyclic '1 composi­
tion tree) is not minimal .

• An 'acyclic' composition tree has a liµear
composition size. 1 A misnomer on our part .

1 32

Assume that for item x in Uij we have found
a cyclic composition tree Tx , So on a certain
path in Tx we must have a certain item y in
U p q that appears twice as a label (the non­
trivial path between those nodes is called a
'cycle') :

Upq

Cycle removed

It is clear that when the part between the up­
per y and the lower y is removed from Tx , the
number of operations in Tx' is less than the
number in Tx , So after removing a cycle, we
allways get a smaller composition tree. Thus
the minimal composition tree is a member of
the set of the acyclic composition trees .

We will now argue that any acyclic compo­
sition tree has a composition size bounded by
a function linear in the length of the string
to be recognized. Since we don't need a tight
upper bound, we will not use an actual · com­
position. Instead, we will assume that in ev­
ery step on our way the worst case occurs.
This may lead to a 'case' that is worse than
the actual worst case.

We will assume that every internal node is
the result of a concatenation. Suppose x is
the result of an inclusion of y: in that case
Tx contains one more operation than Ty , But
when x is the result of a concatenation of y
and z, then Tx contains one more operation
than Ty and Tz together. Thus a concate­
nation can only lead to more (and never to
fewer) operations than an inclusion. We will
assume that the compositions are acyclic.

We define M = l {A -+ a •/3 •, I A -+ a/3, E
P} I ; M is an upper bound for the number of
i terns in any U ij . Let us focus on an i tern x
in Ujj , see figure 2(a) . We know that item x
has an acyclic composition , so Tx is bounded
in height by O(M) . Since a completely bal­
anced tree has the maximum number of op­
erations, we have an exponential number of

Vj-1 ,j

y

(a) (b)

Vik Vkj

(c)

Figure 2 . A simplified partial subtree of an acyclic Tx

operations in M. However, this number is in­
dependent of n. Thus there exist only 0(1)
many operations in such a composition .

The next case is an item x in V j-l ,j , see
figure 2(b) . We know that there must exist
a path from x to a base item y in Vj-l ,j •
All nodes on that path are i n Vj-l ,j and the
path is bounded in length by 0(M) . Any
internal node on that path has one son in
Vj- 1 ,j and one son in either Vj-1 ,j- 1 or Vjj
(if the node corresponds to an inclusion, this
last son does not exist) . Here too, it can be
shown that only 0(1) operations are possible
for item x .

The last case will b e item x i n Vij with
i + 1 < j , see figure 2(c) . This is essentially
like the previous case, but y is not a base
item anymore. In this case y is the result
of a concatenation of an item in Vik and an
item in U kj with i < k < j . So instead we
get 0(1) operations plus the number of op­
erations needed for the item in Vik and the
item in V kj • These considerations lead to
a difference equation, the solution of which
shows that the number of operations for x is
0(n), see (de Vreught and Honig, 1990a) .

3.4 THE EXTENDED RELATION

Definition 3.4.1 The relation U over :I U
:12 is defined as follows :

• If A � A E P then (j, j, A �) E U
for any j E { 0 , . . . , n} .
This rule i s used for the initial ization.

1 33

• If A � aan E P then (j - l , j, A �
a · a r 1) E U for any j E { 1 , . . . , n } .
This rule is used fo r the initialization .

• If A � aB, E P and B � /3 E P then
(i , j, A � a • B · ,) f--(i , j, B � · /3 ·) E
U with O � i � j � n.
This rule is called the activation rule for
the inclusion operation .

• If (i , k , A � a • /31 • /321) E U then
(i, j, A � a • /31/32 ·,) f-- (k, j, A �
a/31 •/32 ·,) E U with k � j � n.
This rule is called an activation rule for
the concatenation operation.

• If (k , j, A � a/31 ·/32 ·,) E U then
(i , j, A � a •/31 /32 ·,) f--(i , k , A �
a • /31 • /32,) E U with O � i � k .
This rule is called an activation rule for
the concatenation operation .

• If x f-- y E fJ and y f-- z E U then x f-- z
E U.
This rule is called the square rule.

• If x f-- y E fJ and y E fJ then x E U.
This rule is called the pebble rule.

• Nothing is in fJ except those elements
which must be in U by applying the pre­
ceding rules finitely often .

It can be shown that U = U n :I .

3.5 THE RECOGNIZER

We will present the fast parallel recognizer
(de Vreught and Honig, 1990a) .

Recognizer(n) :
iJ := 0
for all i 1 , i2 such that O � i1 � i2 � n
in parallel do

Initialization(i1)
Activatelnclusion(i1 , i2)

while U still changes do
for all i1 , . . . , i6 such that
0 � i 1 � . . . � i6 � n in parallel do

ActivateConcatenation(i1 , . . . , i3)
Square(i1 , . . . , i6)
Square(i1 , . . . , i6)
Pebble(i1 , . . . , i4)

return Test(n)

lnitialization(j) :
u := u u

{ (j, j, A -t • •) E ..7 1 A -t .-\ E P}
u := u u

{ (j - 1 , j, A -t o: •a; •1) E ..7 1
A -- o:an E P}

Activatelnclusion(i, j) :
u := u u

{ (i, j, A -t o: • B ·,) -
(i, j, B -t • {3 •) E ..72 I
A -t o:B, E P and B -t /3 E P}

ActivateConcatenatiori(i, k , j) :
for all A -t o:/31 /321 E P do

i.f (i , � , A � o: • /31 • /321) E U then
U := U U

{ (i , j , A -t o: •/31/32 ·,) -
(k , j, A -t o:/31 • /32 ·,) }

if (k , j, A -t o:/31 •/32 •,) "E U then
u := u u

{ (i, j, A -t o: • /31 /32 • 'Y) -
(i , k , A -- o: • fJ1 • /32,) }

Square(i 1 , i2 , i3 , h h , i1) :
for all A1 -t 0: 1/Ji ,1 , A2 -- o:2fJ212 ,
A3 -t 0:3/3313 E P do

if (i1 , i1 , A 1 -- o:1 •/31 ·,1) -
(i2 , h , A2 -- 0:2 •/32 ·,2) E lJ
and (i2 , h , A2 -- o:2 •/32 ·,2) -
(i3 , h A3 - o:3 •/33 •13) E U then

u := u u
{ (i1 , i1 , A1 - 0:1 •fJ1 ·,1) -
(i3 , ia , A3 -t 0:3 •/33 •,3) }

Pebble(i1 , i2 , h, i1) :
for al l A 1 -t 0:1/31 ,1 , A2 -t 0:2/3212 E P do

if (i 1 , ii , A1 - o:1 •/31 ·,1) ­
(i2 , h , A2 -- o:2 •/32 •,2) E U
and (i2 , h, A2 - o:2 •fh ·,2) E U then

u := u u
{ (i 1 , i1 , A1 -t o:1 •/31 ·,1) }

1 34

Test(n) :
accept := False
for all S -t o: E P do

if (0 , n , S-t •o: •) E U then
accept := True

return accept

With the pebble game described in (Gib­
bons and Rytter, 1988) , and the fact that the
minimal composition size of an item is linear,
we can show that any item can be constructed
in O (log n) time. Thus U = -0 n 3 can be
computed in O (log n) time. It can be shown
that closure of U requires an extra O (log n)
time following the computation of the com­
pletion of U � -0 (detection of the closure of
U is easy, whilst detection of the completion
of U � U is not) .

I t can be shown (de Vreught and Honig,
1990a) that the algorithm will compute the
relation U on a CRCW-PRAM with p(n) =
0(n6) processors in T(n) = O (log n) time
using S(n) = 0 (n4) space.

4 FINAL REMARKS

The slow parallel recognizer i s based on a rel­
atively simple idea. In spite of several sim­
ilarities , it is not a variant of the ' Cocke­
Younger-Kasami (CYK) algorithm or the
Earley algorithm (Aho and Ullman, 1972 ;
Harrison , 1978; Earley, 1970) ; the algebraic
definitions specifying. the. algorithms all differ
considerably, and therefore these algorithms
all enter their 'items' into their respective
matrices for different reasons. Just as for
the given algorithm, there exist slow paral­
lel versions of the CYK algorithm and of the
Earley algorithm (Nijholt , 1990; Chiang and
Fu, 1 984) .

The topic of fast parallel recognizing and
parsing is still young and little research on
the subject has been conducted. One of the
first publications of a fast parallel recognizer
is (Brent and Goldschlager, 1984). Far better
known are the results of Gibbons and Rytter.
They have described a fast parallel recognizer
and parser for grammars in CNF (Gibbons
and Rytter, 1988) . Unfortunately, CNF is
undesirable for many purposes . This is why

we have developed a new fast parallel rec­
ognizer that leaves the grammar unchanged.
Another recognizer with the same property
can be found i n (Sikkel and Nijholt , 1991) .

Although not given in this paper there also
exist parallel parsers which can be used in
conjunction with the parallel recognizers . For
the slow parallel recognizer there exists a slow
parallel parser that can do its job with 0(n)
processors in 0(n log n) time (de Vreught
and Honig, 1 990b) . When the grammar is
acyclic, there exists a fast parallel parser run­
ning with 0(n6) processors in O(log n) time
(de Vreught and Honig, 1990a).

Since the subject of fast parallel parsing
is so young, there are many open questions,
some of which will probably be solved in the
near future. For instance, at this moment it
is not yet known whether or not fast parsing
of general CFG's is possible without trans­
forming the grammar (we suspect that it is) .
In addition , determining the behaviour of the
algorithms for unambiguous grammars is an
interesting research problem.

REFERENCES

Aho, Alfred V. and Ullman, Jeffrey D .
1972 The Theory of Parsing, Translation and
Compiling, Volume I: Parsing , Prentice Hall ,
Englewood Cliffs, NJ .

Aho, Alfred V. and Ullman , Jeffrey D .
1973 The Theory of Parsing, Translation and
Compiling, Volume II: Compiling , Prentice
Hall , Englewood Cliffs , NJ .

Akker, Rieks op den; Alblas , Henk;
Nijholt , Anton; and Oude Luttighuis, Paul
1989 An Annoted Bibliography on Parallel
Parsing, Memoranda lnformatica 89-67, Uni­
versity of Twente, Enschede.

Brent , Richard P. and Goldschlager, Leslie
M . 1984 A Parallel Algorithm for Context­
Free Parsing, Austral. Comput. Sci. Comm.
6: 7- 1 - 7- 10 .

Chiang, Y.T. and Fu, King S . 1984 Par­
allel Parsing Algorithms and VLSI Imple­
mentations for Syntactic· Pattern Recogni-

1 35

tion , IEEE Trans. Pattern Anal. Mach. In­
tell. 6: 302-314 .

Earley, Jay 1970 An efficient Context-Free
Parsing Algorithm, Commun. A CM 13(2) :
94- 102.

Gibbons, Alan and Rytter, Wojciech 1988
Efficient Parallel Algorithms , Cambridge
University Press, Cambridge, MA.

Harrison, Michael A. 1978 Introduction to
Formal Language Theory , Addison Wesley,
Reading, MA.

Nijholt , Anton 1990 The CYK-Approach
to Serial and Parallel Parsing, Memoranda
lnformatica 90- 13 , U niversity of Twente, En­
schede.

Quinn , Michael J . 1987 Designing Efficient
Algorithms for Parallel Computers , McGraw­
Hill , New York , NY.

Sikkel, Klaas and Nijholt, Anton 1991 An
Efficient Connectionist Context-Free Parser,
In 2nd Int. Workshop on Parsing Technolo­
gies 19 91 (these proceedings) .

Vreught , Hans de and Honig, Job 1989 A
Tabular Bottom Up Recognizer, Reports of
the Faculty of Technical Mathematics and In­
formatics 89-78, Delft University of Technol­
ogy, Delft .

Vreught , Hans de and Honig, Job 1990a
A Fast Parallel Recognizer, Reports of the
Faculty of Technical Mathematics and Infor­
matics 90- 16, Delft U niversity of Technology,
Delft .

Vreught , Hans de and Honig, Job 1990b
General Context-Free Parsing, Reports of the
Faculty of Technical Mathematics and Infor­
matics 90-31 , Delft University of Technology,
Delft.

PROCESSING UNKNOWN WORDS IN CONTINUOUS SPEECH
RECOGNITION

Kenji Kita, Terumasa Ehara, Tsuyoshi Morimoto

ATR Interpreting Telephony Research Laboratories
Seika-cho, Souraku-gun, Kyoto 6 19-02, Japan

ABSTRACT
Current continuous speech recognition systems essentially ignore unknown words. Systems are designed to recognize words in the lexicon. However, for using speech recognition systems in real applications of spoken-language processing, it is very important to process unknown words. This paper proposes a contin­uous speech recognition method which accepts any utterance that might include unknown words . In this method , words not in the lexicon are transcribed as phone sequences, while words in the lexicon are recognized correctly. The HMM-LR speech recognition system, which is an integration of Hidden Markov Models and generalized LR parsing, is used as the baseline system, and enhanced with the trigram model of syllables to take into account the stochastic characteristics of a language. · Preliminary re­sults indicate that our approach is very promis­ing.

1 INTRO DUCTION
For natural language applications, process­ing unknown words is one of the most important problems. It is almost impossible to include all words in the system's lexicon. In the area of written language process­ing, some methods for handling unknown words have been proposed. For example, Tomita (1986) shows that unknown words can be han­dled by the generalized LR parsing framework. In generalized LR parsing, it is easy to handle multi-part-of-speech words, and an unknown word can be handled by considering it as a spe­cial multi-part-of-speech word.

U nfortunat'ely, in the area of continu­ous speech recognition, there has been little · progress in unknown word processing. Un­like written language processing, in continu­ous speech recognition, word boundaries are not clear and the correct input is not known, so the problem is more difficult . Recently, Asadi et al . (1990) proposed a method for automatically de­tecting new words in a speech input . In their method, an explicit model of new words is used to recognize the existence of new words. This paper proposes a continuous speech recognition method which accepts any utter­ance that might include unknown· words. In our approach, the HMM-LR continuous speech recognition system for Japanese (Kita et al . 1989a; Kita et al. 1989b; Hanazawa et al . 1990) is used as the baseline system, and is an integration of Hidden Markov Models (HMM) (Levinson et al. 1983) and g'eneralized LR pars­ing (Tomita 1986) . The HMM-LR system is a syntax-directed continuous speech recognition system. The system outputs sentences that the grammar can accept . The Hidden Markov Model is a stochas­tic approach for modeling speech, and has been used widely for speech recognition . It is suit­able for handling the uncertainty. that arises in speech, for example, contextual effects, speaker variabilities, etc. Moreover , if the HMM unit is a phone, then any word models can be com­posed of phone models. Thus, it is easy to construct a large vocabulary speech recognition system. In our approach, two kinds of grammars are used. The first grammar is a normal gram­mar which describes our task . The lexicon for the task is embedded in this grammar as phone
1 36

r - - - - - - - - - - - - - -,

: Speech :
I I

: Database :
: (phone labeled) :
L - - -----.- - - - - - - .J

Forward­
backward

I
I

I
I
I

IIMM Phone
Models

verification

r - - - - - - - - - - - - -- ,
I I

: Context-Free :
I I

: Grammar :
I I
L ____ _ _ __ _ _ _ _ _ _ .J

I
I
I
I
I

LR table
generator

LR Parsing
'fable

Predictive
LR Parser

result
out

· - ,
I · . I : �t-·1111W•d._ Input speech !
I I � - � Figure 1 : Schematic diagram of HMM-LR speech recognition system

sequences . The second grammar describes the Japanese phonemic structure, in which con­straints between phones are written. These two grammars are merged and used in the HMM-LR system. The HMM-LR system outputs words in the lexicon if no unknown word is included in a speech input . If an unknown word is in­cluded, then the system outputs a phonemic transcription that corresponds to the unknown word. However, the second grammar by itself is too weak to get correct phonemic transcrip­tions. We strengthened the grammar by adding other linguistic information, the trigram model based on J apanese syllables. A trigram model is an extremely rough approximation of a lan­guage, but it is very practical and useful. By adding the trigram model of syllables , the per­formance of the system is improved drastically.
2 HMM-LR CONTINUOUS SPEECH

RECO GNITION SYSTEM

First , we will review the baseline system, the HMM-LR continuous speech recognition system (Figure 1) . This system is an integra­tion of the phone-based HMM and generalized LR parsing. In HMM-LR, the LR parser is used as a language source model for symbol predic-

(1) s --+ NP VP (2) NP --+ DET N (3) VP --+ V

(4) VP --+ V NP

(5) DET --+ / z/ / a/
(6) DET --+ / z/ /i/
(7) N --+ /m/ /ae/ / n/ (8) N --+ / ae/ / p/ / a/ / I/ (9) V --+ /iy/ /ts/

(10) V --+ /s/ /ih/ /ng/ /s/

Figure 2: An example of a grammar with phonetic lexicon
tion/ generation. Thus, we will hereafter call the LR parser the predictive LR parser. A phone-based predictive LR parser predicts next phones at each generation step and gener­ates many possible sentences as phone se­quences . The predictive LR parser determines next phones using the LR parsing table of the specified grammar and splits the parsing stack not only for grammatical ambiguity but also for phone variation . Because the predictive LR parser uses context-free rules whose terminal symbols are phone names, the phonetic lexi­con for the specified task is embedded in the grammar. An example of context-free gram-

1 37

mar rules with a phonetic lexicon is shown in Figure 2. Rule (5) indicates the definite arti­cle "the" before consonants , while rule (6) in­dicates the "the" before vowels. Rules (7) , (8) , (9) and (10) indicate the words "man" , "apple" , "eats" and "sings" , respectively. The actual recognition process is as fol­lows. First , the parser picks up all phones pre­dicted by the initial state of the LR parsing table and invokes the HMM models to verify the existence of these predicted phones . The parser then proceeds to the next state in the LR parsing table . During this process, all pos­sible partial parses are constructed in parallel. The HMM phone verifier receives a probabil­ity array which includes end point candidates and their probabilities, and updates it using an HMM probability calculation. This prob­ability array is attached to each partial parse. When the highest probability in the array is un­der a certain threshold level, the partial parse is pruned. The recognition process proceeds in this way until the entire speech input is pro­cessed . In this case, if the best probability point reaches the end of the speech data, parsing ends successfully. High recognition performance is attained by driving HMMs directly without any inter­vening structures such as a phone lattice. A more detailed algorithm is presented in (Kita et al. 1989a; Kita et al . 1989b).
3 TRIGRAM MODEL OF

SYLLABLES

3.1 STOCHASTIC LANGUAGE
MODELING

Language models such as context-free grammars or finite state grammars are effective in reducing the search space of a speech recog­niton system. These models, however, ignore the stochastic characteristics of a language. By introducing stochastic language models, we can assign the a priori probabilities to word/phone sequences . These probabilities, together with acoustic probabilities, determine most likely recognition candidates.

Having observed acoustic data y, a speech recognizer must decide a word sequence w that satisfies the following condition:
P(wly) = max P(w ly)

w

By Bayes ' rule ,
P(I) = P(y lw)P(w) w y P(y)

Since P(y) does not depend on w, maxi­mizing P(wly) is equivalent to maximizing
P(y lw)P(w) . P(w) is the a priori probability that the word sequence w will be uttered, and is estimated by the language model. P(y lw) is estimated by the acoustic model. Note that we are using HMM as an acoustic model.

3.2 TRIGRAM MODEL OF
SYLLABLES

Word bigram/trigram models are exten­sively used to correct recognition errors and im­prove recognition accuracy (Shikano 1987; Pae­seler and Ney 1989) . The general idea of a trigram model can be easily applied to J apanese syllables. A typi­cal syllable in J apanese is in the form of a CV, namely one consonant followed by one vowel, and the number of syllables is very small (about one hundred) . Moreover, Japanese syllables seem to have a special stochastic structure. Araki et al . (1989) suggest that a statistical method based on J apanese syllable sequences is effective for ambiguity resolution in speech recognition systems. Thus , a syllable trigram model is effective for recognizing Japanese syl­lable sequences. In our syllable trigram model, the a pri­
ori probability P(S) that the syllable sequence
S = s1 , s2 , . . . , Sn will be uttered is calculated as follows (Kita et al . 1990) .

P(s1 , . . . , sn) =
n

k=3

P(# l sn-1 , sn)

1 38

P(sk I Sk-2 , Sk-i) =
qi f(sk I Sk-2 , Sk-i) + q2 f(sk I Sk-1) +
qa f(s k) + q4 C

In the above expressions, "#" indicates the
phrase boundary marker, and C is a uniform
probability that each syllable will occur . The
function . N counts the number of occurrences
of its arguments in the training �ata. The op­
timal interpolation weights qi are determined
using deleted interpolation (Jelinek and Mercer
1980). Given a collection of training data, the
interpolation weights are estimated as follows
(Kawabata �t al . 1990) .

1 . Make a n initial guess of qi. that Li qi = l
holds.

2 . Calculate i-gram probabilities ff when the
j-th data is removed from _the ttaining
data.

3 . Re-estimate qi by the following formula.

N
� - 1 . "'""' ci qi - N � i

. j = l

whe,re N is the number of syllables in train­
ing data, and

4. Replace qi �i�h iii and repeat from step 2 .

4 PROCESSING UNKNOWN
WORDS IN AN HMM-LR SPEECH

RECO GNITION SYSTEM

4.1 GRAMMAR FOR JAPANESE
PHONEMIC STRUCTURE

The HMM-LR system is a syntax-directed
continuous speech recognition system. If we use

1 39

a grammar which describes the J apanese phone­
mic structure, we can then constr"uct a phonetic typewriter for Japanese. This grammar includes
rules like "a sequence of consonants doesn't ap­
pear" or "the syllabic nasal /N/ doesn't appear
at the head of a word" . This grammar does
not include phonemic spellings for each word,
so this grammar is suitable for transcribing an
unknown word as a phone sequence.

However, because the perple�ity 1 of this
grammar is quite large, the trigram model of
Japanese syllables is used at the same time. By
adding the trigram model of syllables, the per­
plexity of the grammar is reduced from 18 .3 to
4 .3 (Kawabata et al . 1990) .

4.2 UNKNOWN WORD
PRO CESSING

For processing unknown words , two kinds
of grammars are used. The first grammar is a
normal grammar which describes our task . The
phonemic spellings for each word are also in­
cluded in this grammar. The second grammar
is a grammar for Japanese phonemic structure,
mentioned in the previous subsection. Here­
after, these two grammars are referred to as the task grammar and the phonemic grammar, re­
spectively.

These two grammars are merged and used
in the HMM-LR system. When merging two
grammars, the start symbol of the phonemic
grammar is replaced with pre-terminal names
that might include unknown words (in our ex­
periments, proper-noun is allowed to include
unknown words) .

If a speech_ input .. includes an unknown
word , then a segment of speech input does not
match well with any word in the system's lex­
icon. In this case, the grammar for phone­
mic structure produces the phone sequence that
matches well with the unknown word. If the
speech input includes no unknown word, then
the HMM-LR system outputs words in the lex­
icon .

1 Perplexity is a measurement of language model
quality. It represents the average branching of the lan­
guage model. In general, as perplexity increases, speech
recognition accuracy decreases . For more details , see
(Jelinek 1990) .

4.3 REC OGNITIO N LIKELIHOOD

The HMM-LR continuous speech recogni­tion system uses the beam-search technique to reduce the search space. A group of likely recog­nition candidates are selected using the likeli­hood of each candidate. The likelihood S is calculated as follows.
s = (1 - >.)s(HMM) + >.s(SYLLABLE)

s(HMM) and s(SY LLABLE) are the log like­lihoods based on the HMM and the trigram model of syllables, respectively. The scaling pa­rameter >. is introdued to adjust the scaling of the two kinds of likelihoods, as determined by preliminary experiments. At the end of recognition, the likelihood of recognition candidates that include unknown words are penalized a small value to reduce the false alarms.
5 EXPERIMENTS

5.1 HMM PHONE MODELS

HMMs used in the experiments are basi­cally the same as reported in (Hanazawa et al. 1990) . _HMM phone ·models ·based on the dis­crete HMM are used as phone verifiers. A three­loop model for consonants and a one-loop model for vowels are tr.ained using each phone data extracted from the A TR isolated word database (Kuwahara et al. 1989) . Duration control techniques and separate vector quantization are used to achieve accurate phone recognition.
5.2 SPEECH DATA

The experiments were carried out using 25 sentences including 279 phrases uttered by one male speaker . The speech is sampled at 12kHz , pre­emphasized with a filter whose transform func­tion is (l - 0.97z-1) , and windowed using a 256-point Hamming window every 9 msec. Then ,

12-order LPC analysis is carried out . Spectrum, difference cepstrum coefficients , and power are computed. Multiple VQ codebooks for each fea­ture were generated using 216 phonetically bal­anced words . Hard vector quantization without the fuzzy VQ was performed for HMM training. Fuzzy vector quantization (fuzziness = 1 .6) was used for test data.
5.3 LINGUISTIC DATA

Syllable trigrams were estimated using a large number of training_ texts extracted from the ATR dialogue database (Ehara et aL 1990) . This database conta111s not only raw texts but also various kinds of syntactic/semantic infor­mation, such as parts of speech, pronouncia­tion and conjugational patterns, etc . The train­ing texts includes approximately 73,000 phrases . and 300,000 syllables .

1 40

5.4 GRAMMARS

As stated earlier, the task grammar and the phonemic grammar are merged into one grammar and used in the · HMM-LR system. The task grammar describes the domain of an International Conference Secretarial Service and has 1,461 rules including 1 ,035 words. Of course, all the words which appea� in the test data are included in this grammar. To evaluate the unknown word processing method, all proper nouns (8 words) , such as a person's name and a place name, were removed from the task grammar.
5 .5 RESULTS

Table 1 shows the transcription rates for phrases that include unknown words. Here the transcription rate is equal to phone accuracy (Lee 1989) , which can be calculated as follows .
total - sub - ins - del phone accuracy = l x 100 tota

where total indicates the total number of phones in test data, and sub, ins and del are the number

Table 1 : Transcription rates for phrases that include unknown words

Without syllab le trigrams (With syllable trigrams I
66 . 1% 1 95 .3% 1

Table 2 : Examples of recognition results that include unknown words

Input Results Without With Correct Meaning syllable trigrams syllable trigrams
higashiku higashiku (place name) shigashiku higashiku
ichitaroudesu (I am) Ichitarou ishitaoouutsusu ishitarou desu
takarasamadesune (You are) Mr. Takara (aren't you) takaasabautsunu takarasamadesune
kyoutoekikara from Kyoto station hyotorekitaafu kyoutoekikara
kitaooj iekimade to Kitaooji station shitaouziekimare kitaoojiekimade

Table 3 : Phrase recognition rates (with syllable trigrams)

rank I Task grammar I Task grammar + Pho nemic grammar I
1
2
3

. -

87.5%
93.5%
94.6%

of phones recognized as incorrect , deleted and
inserted, respectively.

Table 2 shows examples of recognition re­
sults that include unknown words. By using the
trigram model of Japanese syllables, the system
can output very close phonemic transcriptions
for unknown words .

Table 3 shows the phrase recognition rates
for two kinds of grammars, the task grammar
and a merged grammar consisting of the task
grammar and the phonemic grammar . These
grammars are both enhanced with the trigram
model of syllables. By adding the phonemic
grammar, the phrase recognition rate dropped
from 87.5% to 8 1 .7%. This is because the
phonemic grammar sometimes causes a word to
be recognized as a phone sequence despite the
word being in the lexicon.

6 CONCLUSION
In this paper, we described a continuous

recognition method that can process unknown

1 41

81 .7%
86 .4%
87.5%

words . The key idea is merging a task gram­
mar and a phonemic grammar. If no unknown
word is included in the speech , then the system
uses the task grammar and outputs a correct re­
sult . If an unknown word is included, then the
system uses the phonemic grammar and out­
puts a phonemic transcription for _the unknown
word. We also showed that the trigram mo<;).el
of J apanese syllables is very effective in getting
phonemic transcriptions for unknown words.

This is our first approach. There are many
problems that must be resolved. Further devel­
opment to improve the system is currently in
progress.

ACKNOWLEDGMENTS
The authors are deeply grateful to

Dr. Kurematsu, the president of ATR interpret­
ing Telephony Research Laboratories, all the
members of the Speech Processing Department
and the Knowledge and Data Base Department
for their constant help and encouragement .

REFERENCES

[1] Araki, T. ; Murakami, J . ; and Ikehara, S . 1989 Effect of Reducing Ambiguity of Recognition Candidates in J apanese Bun­setsu Units by 2nd-Order Markov Model of Syllables . Transactions of Information Processing Society of Japan. Vol. 30, No. 4 (in J apanese) .
[2] Asadi, A . ; Schwartz , R. S . ; and Makhoul, J . 1990 Automatic Detection of New Words in a Large Vocabulary Contin­uous Speech Recognition System. Proceed­ings of the 1990 International Conference on Acoustics, Speech, and Signal Process­ing.
[3] Ehara, T.; Ogura, K . ; and Morimoto, T. 1990 ATR Dialogue Database. Proceedings of the International Conference on Spoken Language Processing.
[4] Hanazawa, T. ; Kita, K . ; Nakamura, S . ; Kawabata, T. ; and Shikano, K . 1990 ATR HMM-LR Continuous Speech Recognition System. Proceedings of the 1990 Interna­tional Conference on Acoustics, Speech, and Signal Processing. Also In : Waibel, A . and Lee, K . F . (eds.) Readings in Speech Recognition. Morgan Kaufmann Publish­ers .
[5] J elinek, F. and Mercer , R. L. 1980 Interpo­lated Estimation of Markov Source Param­eters from Sparse Data. In: Gelsema, E. S . and Kanal, L . N . (eds.) Pattern Recogni­tion in Practice. North Holland .
[6] J elinek, F . 1990 Self-Organized Language Modeling for Speech Recognition, In: Waibel, A . and Lee, K. F . (eds .) Readings in Speech Recognition. Morgan Kaufmann Publishers.
[7] Kawabata, T.; Hanazawa, T. ; Itoh, K.; and Shikano, K. 1990 HMM Phone Recognition Using Syllable Trigrams. IEICE Technical Report. SP89- 1 10 (in Japanese) .
[8] Kita, K . ; Kawabata, T. ; and Saito, H . 1989a HMM Continuous Speech Recogni­tion Using Predictive LR Parsing. Proceed­ings of the 1989 International Conference

on Acoustics, Speech, and Signal Process­zng.
[9] Kita, K. ; Kawabata, T. ; and Saito, H . 1989b Parsing Continuous Speech by HMM-LR Method. First International Workshop on Parsing Technologies.

[10] Kita, K. ; Kawabata, T. ; and Hanazawa, T. 1990 HMM Continuous Speech Recogni­tion Using Stochastic Language Models . Proceedings of the 1990 International Con­ference on Acoustics, Speech, and Signal Processing.
[1 1] Kuwahara, H . ; Takeda, K. ; Sagisaka, Y. ; Katagiri, S . ; Morikawa, S . ; and Watan­abe, T. 1989 Construction of a Large­Scale Japanese Speech Database and its Management System. Proceedings of the 1989 International Conference on Acous­tics, Speech, and Signal Processing.
[12] Lee, K. F. 1989 Automatic Speech Recog­nition: The Development of the SPHINX System. Kluwer Academic Publishers.
[13] Levinson, S. E. ; Rabiner, L. R.; and Sondhi, M. M. 1983 An Introduction to the Application of the Theory of Probabilis­tic Functions of a Markov Process to Au­tomatic Speech Recognition. Bell System Technical Journal. Vol. 62, No. 4.
[14] Paeseler, A . and Ney, H . 1989 Continuous­Speech Recognition Using a Stochastic Language Model. Proceedings of the 1989 International Conference on Acoustics, Speech, and Signal Processing.
[15] Shikano, K . 1987 Improvement of Word Recognition Results by Trigram Model . Proceedings of the 1987 International Con­ference on Acoustics, Speech, and Signal Processing.
[16] Tomita, M. 1986 Efficient Parsing for Nat­ural Language: A Fast Algorithm for Prac­tical Systems. Kluwer Academic Publish­ers.

1 42

February 1 4, 1 991

Session C

The Specification and Implementation of
Constraint-Based Unification Grammars*

Bob Carpenter Carl Pollardt Alex Franz
Philosophy Department , Carnegie Mellon University, Pittsburgh, PA 15213

(412) 268-8573 carp@lcl.cmu.edu
t Linguistics Department , Ohio State University

Summary

Our aim is to motivate and provide a specification for a unification-based natural language
processing system where grammars are expressed in terms of principles which constrain linguis­
tic representations . Using typed feature structures with multiple inheritance for our linguistic
representations and definite attribute-value logic clauses to express constraints , we will develop
the bare essentials required for an implementation of a parser and generator for the Head-driven
Phrase Structure Grammar (HPSG) formalism of Pollard and Sag (1987) .

1 Introduction

In the past decade, two competing approaches to the scientific study of natural language gram­
mar have become predominant , the rule-based approach and the principle/constraint-based
approach. Within the rule-based approach , exemplified by Lexical Functional Grammar (LFG)
(Bresnan 1982) and Generalized Phrase Structure Grammar (GPSG) (Gazdar et al. 1985) ,
rules are taken to correspond to grammatical constructions and are modeled as more or less
schematic productions with the well-formed structures of the language generated over a finite
set of lexical items by recursively applying the rules . Both LFG and GPSG are based upon
context-free skeletons and explain syntactic dependencies in terms of informational consistency
constraints that can be solved using feature structure unification . There has been a great deal
of success in implementing these formalisms, in part due to their declarative nature and nat­
ural semantics, but also due to the existence of general unification-based grammar processing
systems such as Functional Unification Grammar (FUG) (Kay 1985) and PATR-II (Shieber et
al. 1983) .

Principle-based approaches to grammar have become predominant in theoretical linguistics ,
primarily due to the influence of Chomsky's (1981) Government-Binding (GB) framework.
The novel aspect of GB considered as a grammar formalism is that it advocates the total
abandonment of construction-specific rules in favor of a collection of interacting principles
which serve to delimit the well-formed linguistic structures . Candidate structures are generated
according to extremely general, universal, phrasal immediate dominance (ID) schemata (X
Theory) and then iteratively transformed using movement rules (Move-a) in accordance with a
number of highly tuned principles to deal with case (Case Theory) , complementation (Projection
Principle) , pronominal and other coreference (Binding Theory) , long-distance dependencies

•The authors would like to thank Bob Kasper for a number of useful comments on an earlier draft of this paper. The research of Pollard and Franz was supported by a grant from the National Science Foundation (IRI-8806913) .

1 43

(Empty Category Principle and Subjacency) and so forth. Patterns of cross-linguistic variation
are accounted for by means of the parametrization of these principles .

The methodological distinction between these two approaches is widely supposed to be that
rules enumerate possibilities , while principles eliminate possibilities . But it is quite difficult to
distinguish formally between a parametrized disjunctive principle and a collection of schematic
rules only one of which can apply . �o a given structure . Consider, for example, the distinction
between categorial grammar application schemata, basic ID rules of GPSG, and the C-structure
constraints of LFG, on the one hand, and the disjunctive clauses of X Theory or the Empty
Category Principle on the other. It should also be borne in mind that so-called rule-based
approaches often employ not only rules but also global constraints on representations which
behave similarly to principles, such as the Head Feature Convention and the Control Agreement
Principle of GPSG or the Completeness and Function-Argument Biuniqueness Conditions of
LFG.

HPSG belongs to the "unification-based" family of linguistic theories , but differs from LFG
and GPSG in that grammars are formulated entirely in terms of universal and language-specific
principles expressed as constraints on feature structures, which in turn are taken to represent
possible linguistic objects . As shown by Pollard and Sag (1 987) , constraints on feature struc­
t ures can be used to do the same duty as many of the principles and rules of GPSG, LFG and
GD. Unlike rule-based theories, in HPSG, immediate dominance and linear precedence condi­
tions (traditional phrase-structure) are not modeled any differently than other constraints . But
like the rule-based approaches , there is no appeal to derivational notions such as movement ;
th� work of transfor�ations in GB is taken over by declarative constraints stated at a single
level of representation .

Departing from more traditional formalisms which employ phrase-structure trees as the
primary device for linguistic representation , we follow HPSG (and to some extent LFG) in
representing linguistic objects as feature structures . To this end, we show how a natural type
discipline can be imposed on feature structures allowing for multiple inheritance and the speci­
fication of feature appropriateness and value restrictions. Our typing will be strong in the sense
that every feature structure must be associated with a type. Strong typing carries with it the
usual benefits of early error detection and enhanced control over crucial memory allocation , ac­
cess an<l reclamation functions . The use of multiple inheritance allows a sophisticated network
of constraints to be expressed at the appropriate level of detail . This is especially important
for the development of large lexicons (Flickinger et al. 1985) .

Our types can be used to represent information that must be encoded by expensive structural
unification or inference steps in untyped systems. In automatic deduction systems , this has been
found to provide a significant run-time gain due to the fact that useless branches in the search
space can be efficiently detected and pruned before the creation of expensive structural copies
or binding frames (Walther 1985, 1988; A1t-Kaci and Nasr 1986) .

In a constraint-based linguistic theory such as HPSG, parsing and generation reduces to
solving constraints . We allow constraints to be expressed by a feature logic analogue of definite
clauses . The benefit of this approach is that it admits a natural and effective method paralleling
SLD-resolution (see Lloyd 1984) for enumerating the solutions to a system of constraints .

1 44

2 Inheritance and Appropriateness

Type declarations in our system contain information concerning su btyping and appropriateness
conditions which state the features that are appropriate for each type and the values that they
can take.

Definition 1 (Type Scheme) A type scheme is a tuple � = (Type, � , Feat , Approp) where

• (Type , �) is a finite consistently completet partial order of the types by subsumption,
called the inheritance hierarchy

• Feat is a finite set of features
• Approp : Feat x Type -+ Type is a partial function such that:

- (Minimal Introduction)
for every f there is a least type a · such that Approp(f, a) is defined
(Upward Closure and Monotonicity)
if a � T and App.rop(f, a) is defined then Approp(f, r) is defined and
Approp(f, a) � Approp(f, r)

If a � r we say that a subsumes, is more general than or a supertype of T . We refer to the least
upper bound operation in our inheritance hierarchy as (type) unification since the least upper
bound of a set of objects representing partial information is the object which represents the
most general piece of information that is more specific than each member of the set . The least
upper bound of the empty set is written J_ , read "bottom" , and is the unique universal or most
general type. Our restrictions on appropriateness are analogous to the condition of regularity
in the signatures of order-sorted algebras (Meseguer et al. 1987); taken together, the conditions
on the inheritance hierarchy and appropriateness function will ensure that unification is well­
defined and produces a unique result , which is crucial for efficient and natural unification-based
processing (Pereira 1987) .

3 Feature Structures
We will begin by introducing an untyped collection of feature structures which are similar to
the ?p-terms of AYt-Kaci (1 984) and the sorted feature structures of Smolka (1 988) and Pollard
and Moshier (1990) .
Definition 2 (Feat ure Structure) A feature structure is a tuple
F = (Q , q, 8, c5) where

• q : the root node in Q

• Q : a finite set of nodes rooted at ij so that Q = { c5(1r , q) I 1r E Path } (sec below for
definition of c5(1r , q) and Path)

t A subset X of a partial ordering (S, �) is said to be consistent if it has an upper bound. A partial order is
consistently complete if every (possibly empty) consistent set X has a least upper bound, which we write LJ X, or x U y when X = {x , y} .

1 45

• 0 : Q -+ Type : a total node type assignment
• 6 : Feat x Q -+ Q : a partial feature value function

Thus a feature structure is a rooted, connected, directed graph with vertices labeled by types
and edges labeled by features. We will write q : a L q' : a' if c(f, q) = q' and 0(q) = a and
0(q') = a'. We think of each node as representing a partial frame or record with values for its
slots given by its outgoing arcs.

We let Path = Feat* be the set of paths , which consist of finite sequences of features. We let £

denote the empty path and extend c to paths by setting 6 (£, q) = q and 6(f7r , q) = c(1r , c(f, q)) .
Our definition requires that every node b e reachable from the root node ij, where c (1r , ij) i s the
node that can be reached from ij along the path 1r.

Note that we have not disallowed cyclic feature structures, in which there is some non-empty
path 1r and node q such that 6(1r , q) = q.

We extend our ordering on types to an ordering of the feature structures in the usual way
(see Pollard and Moshier 1990) .
Definition 3 (S ubsumption) F = (Q , ij, 0, c) subsumes F' = (Q', ii.' , 0' , c') , F h F', iff there
is a · total h : Q -+ Q' such that

• h(ij) = ii'
• 0(q) k 0'(h(q)) for every q E Q -

• h(c(f, q)) = c'(f, h(q)) for every q E Q and feature f such that c(f, q) is defined

The last two conditions on h can be stated graphically as requiring that if q : a L q' : a' in
F- then h(q) : r L h(q') : r' in F' and furthermore, a k T and a' h r'. Such a mapping
takes each node of the more general structure · onto a node of the more specific structure in a
way that preserves structure sharing and does not lose any type information.

Subsumption is only a pre-ordering , so we write F rv F' if F !;;; F' and F' !;;; F and say
that F and F' are alphabetic variants. We could work in the collection of feature structures
modulo alphabetic variance, which is guaranteed to be a partial order, but this becomes tedious
(for an elegant approach to representing these equivalence classes, see Moshier (1988)) . In our
situation , with only a pre-order, we define a unifier of a pair of feature structures F and F'
to be any feature structure F" such that F h G and F' k G if and only if F" h G. The
primary result concerning subsumption is stated as follows:

Theorem 4 (Unification) Unique unifiers exist for pairs of consistent feature structures, up
to alphabetic variance.

Proof: The usual unification algorithm for feature structure works with the addition of a step
that unifies the types of the inputs to produce the type of the result and fails if the types are
not consistent . See Ai"t-Kaci (1984) or Pollard and. Moshier (1 990) . □
In theory, the asymptotic behavior of the unification algorithm is not affected; type unification
can be carried out by table look-up . In practice, the negligible constant overhead of type
unification at every step of the process will actually save time in that inconsistencies can be
detected before any recursive structures need to be inspected .

1 46

We now define a notion of typing which singles out some of the feature structures as be­
ing well-typed. Intuitively, a feature structure is well-typed if every feature that appears is
appropriate and takes an appropriate value.

Definition 5 (Well-Typing) A feature structure F = (Q , q, 0, 6) is well-typed if q : a �
q' : a' in F implies Approp(f, a) � a' .
If F is a feature structure and F' a well-typed feature structure such that F � F' then we say
that F' is a well-typed extension of F and that F is typable .

Fortunately, the user does not need to specify all of the values for appropriate features
about which nothing is known; a type inference procedure can be defined that determines the
minimum possible types that will extend a feature structure so that it is well-typed.

Theorem 6 (Type Inference) There is an effectively computable partial function Typlnf
from the feature structures onto the well-typed feature structures such that Typlnf(F) is defined
if and only if F is typable. In that case F � F' for a well-typed F' if and only if Typlnf(F) �
F' .

Proof: A constructive type inference procedure can proceed by successively increasing the types
on those nodes which do not yet meet the appropriateness conditions. All that is required is
the iteration of the following steps untH a closure is reached :

• if a feature is defined at a node, the type of the node should be unified with the minimal
type appropriate for the feature.

• if a feature is defined and its value is not of great enough type, unify in the type for the
minimal value.

Thus every typable feature structure has a minimal well-typed extension which is unique up
to alphabetic variance. This process is not sensitive to the order in which nodes and features
are chosen. It is also guaranteed to terminate as there are only a finite number of types and
nodes to start with. To see that the result is minimal , simply notice that each operation in the
iteration was required so that the result is well-typed. □
The function Typlnf displays a host of interesting properties . For instance, it can be factored
into two separate operations corresponding to the two steps in Typlnf. It is not hard to see
that that F � Typlnf(F) , Typlnf(F) = Typlnf(Typlnf(F)) , and F � F' implies that
Typlnf(F) � Typlnf(F') . More significantly, we have:

(1) Typlnf(Typlnf(Fi) LJ • • • LJ Typlnf(Fn)) = Typlnf(F1 LJ • • • LJ Fn)

whenever the latter exists. This means that we can be as lazy as we like about type inference
at run time without fear of information loss. It also follows that the type inference procedure
can be composed with a unification procedure for feature structures to provide a unification
procedure for well-typed feature structures.

Theorem 7 (Well-Typed Unification) If F and F' are consistent well-typed feature struc­
tures such that F U F' is typable, then Typlnf(FU F') is their least upper bound in the collection
of well-typed feature structures (modulo alphabetic variance).

1 47

The significance of this theorem is that it will be possible to compute the least specific well-typed
feature structure that extends a consistent pair of well-typed feature structures .

This notion of well-typing is not the only one possible. It is also sensible to consider
a stronger notion of typing whereby every feature that is appropriate must be defined. This
notion , called total well-typing, corresponds to the composition of Typlnf with a second closure
operator that adds in features that have not been defined in Typlnf(F) and gives them their
minimal values. As Franz (1990) points out , the appropriateness conditions must meet a certain
acyclicity condition to ensure the termination of type inference for this stronger notion of typing.
These more strongly typed systems allow better management of memory since feature structures
of a given type are of a known size and can have their feature values indexed positionally rather
than by feature/value pairs . On the other hand, the notion of well-typing that we consider here
is simpler and is also better suited to applications in which the number of features containing
information is sparse relative to the number of possible features that can be defined for any given
feature structure. For instance, in the application to HPSG we provide below, feature structures
occurring early in the search space . will be quite sparse compared to their later instantiations .

4 Feature Logic

vVe can describe our feature structures with a variant of the feature logic introduced by Rounds
and Kasper (1986). We present a simultaneous definition of both the well-formed formulas or
descriptions and of satisfaction of a formula by a feature structure, which we write F F <f>:
Definition 8 (Formulas and Satisfaction)

FORM U LA SATISFACTION CO N D ITION

F F a the root node of F is assigned a type at least as specific as a
F F 7r : </> the value of F at 1r is defined and satisfies </>
F F 7r ::E:: 1r' the paths 1r and 1r' lead to the same node in F
F F </> I\ 'ljJ F F </> and F F 1/;.
F F </> V 1/; F F </> or F F 'l/J.

The bchavior of this logic on the typed feature structures we present here can be given a
complete equational axiomatization along the lines of Rounds and Kasper (1 986) by adding
in additional axioms for type unification (Pollard in press) and appropriateness (Pollard and
Carpenter to appear) . The primary result of Rounds and Kasper carries over to the present
situation :
T heorem 9 (Minimal Satisfiers) For every formula </> there is a finite set {Fo , . . . , Fn-i} of
pairwise incomparable feature structures, unique up to alphabetic invariance, such that F F </>
if and only if Fi � F for some i < n .

Proof: The proof of Rounds and Kasper (1986) can be easily adapted by applying the type
inference procedure. The key result is that the set of minimal satisfiers of a conjunction is
derived by the pairwise unification of the minimal satisfiers of the conjuncts . □

5 Constraint Systems and Solutions

Departing from Pollard and Sag (1987) and following Pollard and Moshier (1990), we attach
constraints to types rather than allowing general implicative and negative constraints. The

1 48

constraints attached to types will be much more expressive than the easily decidable conditions
arising from the inheritance and appropriateness conditions in the type scheme which are only
intended to specify the class of well-typed feature structures over which the constraints range.

Definition 10 (Constraint System) A constraint system � associates each type r with a
feature logic formula � 7" •

We provide for the multiple inheritance of constraints, letting ! �7" be the conjunction of the
constraints associated with T and all of its supertypes; formally ! � 7" = /\(j

c 7" �(j ; Since the
feature structures in � (j may contain arbitrary types, the system � may be recursive. Pollard
and Sag (1987) show how systems of constraints of this general form can ·be used to model not
only language-specific grammars, but also entire linguistic theories (universal grammars) .

In general, we will be interested i n solving queries with respect t o systems of constraints,
where a query simply consists of an feature logic description. In applications to parsing, a query
would represent the value of the phonology feature and a constraint on the syntactic category
of the result ; for generation , a query might represent instantiated semantic and pragmatic
features. A solution is then a well-typed feature structure which satisfies both the query and
all of the constraints expressed by the grammar.

Definition 1 1 (Solution) A feature structure F is a solution to a query 1/; with respect to a
system � of cons!raints just · in case F F 1/; and the maximal substructure Fq _ roqted at each
node q of F satisfies the inherited constraint on its type B(q), so that Fq I= !�o(q) ·

We will provide a complete method for generating the solutions to queries with respect to
constraint systems that is defined in terms of non-deterministic feature structure rewriting. Our
method is inspired by the rewriting operation employed by Art-Kaci (1984) , which, to the best
of our knowledge, was the first programming system based upon recursively defined constraints
on feature structures; but our method is cleaner in that it provides a strong distinction between
the logical language and its feature structure models and also more general in that it applies
to cyclic feature structures. More importantly, our system is provably complete.

The basic operation of rewriting is to non-deterministically choose a node in the feature
structure and then non-deterministically choose a minimal satisfier for the inherited constraint
associated with the type attached to that node to be unified into the feature structure. This
is analogous to SLD-resolution as applied to definite clauses, in which a subgoal is replaced by
the body of a clause after unifying the head of the clause with the subgoal.

Let 7r • F be the feature structure consisting of the path 1r with F attached to its terminal
node.

Definition 12 (Rewriting) If F is a well-typed feature structure where the node at path 1r
is assigned type u and if G is a minimal satisfier of the inherited constraint ! � (j on u then
rewriting is defined so that F ⇒ Typlnf(F LI 1r • G) .

Of course, as we mentioned earlier, type inference can be interleaved arbitrarily with this
rewriting operation . We can also interleave rewriting along arbitrary paths , using the notation
F ==> F' if F ⇒ F' for some path 1r .

Our next theorem shows that minimal solutions can be effectively generated by rewriting.
In effect , it is the completeness theorem for our operational interpretation ; it tells us that every
solution can be found by rewriting. In particular, a breadth-first enumeration of the search
space determined by the rewriting system will eventually uncover every solution .

1 49

Theorem 1 3 (Solut ion) F is a solution to the query 1/; with respect to the constraint system
� if and only if F � F for every path 1r for which F is defined. F is a minimal solution if
and only if there is a derivation of F by rewriting from a minimal satisfier of 'lj;.

Proof: {Sketch) The conditions on a solution are just that every node satisfy the constraint
on its type. This happens if and only if the unifying in of a minimal satisfier to the constraint
does not add any new information .

The usual fixed-point style induction suffices to establish minimality. Suppose we fix a
solution to the query 1/;. In the base case, this solution must be more specific than a minimal
satisfier of the query 1/;. The inductive hypothesis is that at every stage during rewriting we
are dealing with a feature structure which subsumes the solution.

During rewriting, we unify in constraints associated with more general types than in the
solution since we have a feature structure which subsumes the solution. Since we inherit con­
straints, rewriting can be done so that it unifies in a minimal satisfier to a constraint which
subsumes the minimal satisfier associated with the corresponding node in the solution . The
rewriting process will eventually reach a solution after a finite number of steps or continue on
indefini tely, because there are only a finite number of steps that can be taken without adding
in more nodes due to the finite number . of nodes in a feature structure and finite number of
types in the inheritance hierarchy.

If rewriting reaches a solution , then by the inductive hypothesis, that solution must be at
least as general as the given solution . Finite satisfiers which are not generated by rewriting
from a minimal satisfier of the query can thus not be minimal. □

For the sake of brevity we have not discussed constraints which express n-ary relational
dependencies between path values. An example of a relational dependency expression would be
append(1r1 , 1r2 , 1r3) , where 1r1 , 1r2 , and 1r3 are paths ; this means that the value of the path 1r3 must
be the concatenation of the values of 1r1 and 1r2 • Such relations can be given definite-clause-style
recursive definitions , as in :
(2) append(1r1 , 1r2 , 1r3) f- (1r1 : nil /\ 1r2 == 1r3)

V (7rt · F IRST � 7r3 · F IRST /\ append(7rt · REST, 7r2 , 7r3 · REST))
Adding definitions of this kind to our feature logic is somewhat analogous to augmenting an un­
derlying constraint language with definite relations as proposed by Hohfeld and Smolka (1 988) .
However, i t should b e borne i n mind that the 7ri in our definition schemata are path parameters,
not genuine logical variables . Ai't-Kaci (1984) showed how relations could be encoded as types
with arguments specified by features and arbitrary constraints for definitions ; each use of such
a relation then requires a node in a feature structure at which to be anchored (usually as the
value of a so-called garbage feature) . Franz (1990) implemented relations directly, requiring
their arguments to be typed ; in the case of append, all of the arguments would be of type list ,
which has two subtypes : nil (empty list) , which is not appropriate for any features, and ne-list
(nonempty list) , which is appropriate for the features F IRST with value restriction .l and REST
with value restriction list .

6 Implementation

The typed system described here has been implemented in both Lisp (Franz 1990) and Pro­
log. Emele and Zajac (personal communication) report that Franz's (1990) grammar has been

1 50

ported , with a 100-fold speedup , to their TFS system (1990) which was originally based on
Alt-Kaci (1984 , 1986) . We anticipate that a number of the optimizations employed in TFS will
carry over to the system described here. In Franz 's system, compilation is first carried out on
the type scheme and constraints to detect errors and compute minimal satisfiers . A serious
processing bottleneck can be traced to the search incurred by disjunctive constraint solving.
This naturally leads to the issue of which search strategy should be employed. The conclusion of
Franz (1990) was that specialized search strategies would be needed for linguistic applications.
Ideally, a general mechanism for specifying search preference would be provided.

The complexity of the basic operations of this system is very low. Subsumption can be
computed in linear time by explicit construction of the mapping function . Similarly, efficient
near-linear unification algorithms can be used (Jaffar 1984) . On the other hand, disjunctive
representations are very compact in that the number of minimal satisfiers for a formula is
exponential in the size of the formula in the worst case and satisfiability of a formula is NP­
complete (Kasper and Rounds 1986) . Relatively efficient practical algorithms for dealing with
disjunctions have been developed by Kasper (1987) and Eisele and Dorre (1 988) . Another option
that is being explored is the utilization of total typing as discussed above, for managing memory
allocation and improving the speed of both unification and the unwinding of information upon
backtracking. The features values themselves could then be retrieved automatically without
searching through a collection of feature-value pairs . Hopefully, compilation and run-time
optimization techniques employed for logic programs can also be directly incorporated , such as
type indexing for rules and deterministic tree pruning.

Furthermore, the connections between constraint-based grammars and terminological knowl­
edge representations based on inheritance networks such as KL-ONE (Brachman and Schmolze
1985) and especially its descendant LOOM (Mac Gregor 1988) has only begun to be explored
(Kasper 1989, Nebel and Smolka 1989); there is a great deal of promise that insights from these
systems can be employed to produce more powerful and efficient type inference and search tech­
niques. Kasper and Pollard are currently exploring the possibility of a chart-parser analog for
HPSG-style grammars that exploits the possible-worlds mechanism of LOOM for conceptually
clean and space-efficient structure sharing within the chart .

There are many possible extensions that could be added to our constraint systems. In
particular, Pollard and Moshier (1990) have provided a compatible account of set valued feature
structures , Carpenter (1990) has added a notion of inequation analagous to the inequations of
Prolog II (Colmerauer 1984) , and a general notion of feature structure extensionality is discussed
in Pollard and Carpenter (to appear) .

One thing that this system shares with PATR-II and other general unification-based systems
is that while the solutions to queries can be recursively enumerated, it is undecidable whether a
query has a solution. While we do not present a proof here , the result follows from the fact that
logic programs and queries can be reduced to the solution of a system of constraints (the trick is
to include proof trees as a type and encode the notion of an acceptable proof tree with respect to
a program as a constraint on its type) . Of course, this does not render our system unusable any
more than Prolog or PATR-II are rendered useless by their undecidability; it just means that
the user must exercise due caution in constructing linguistically reasonable grammars , in order
to ensure that all-paths parsing always terminates . In generation, of course, nontermination is
to be expected ; but in this case, fortunately, a single solution will suffice.

1 51

References

A"it-Kaci, H . (1984) . A Lattice- Theoretic Approach to Computation Based on a . Calculus of Partially Ordered Types. PhD thesis, University of Pennsylvania. A1t-Kaci, H. (1986) . An algebraic semantics approach to the effective resolution of type equations. Theoretical Computer Science, 45:293-351 . Ait-Kaci, H . and Nasr, R. (1986) . Login: A logical programming language with built-in inheritance. Journal of Logic Programming, 3 : 187-215. Brachman, R. J . and Schmolze, J . G . (1985) . An overview of the KL-ONE knowledge representation system. Cognitive Science, 9 : 171-216. Bresnan, J . W. , editor (1 982) . The Mental Representation of Grammatical Relations. MIT Press, Cambridge, Massachusetts. Carpenter, B. (1990) . Typed feature structures: Inheritance, (in)equations and extensionality. In Proceedings of the First International Workshop on Inheritance and Natural Language, Tilburg, The Netherlands. Chomsky, N. (1981) . Lectures on Government and Binding. Foris, Dordrecht. Colmerauer , A. (1 984) . Equations and inequations on finite and infinite trees. In Proceedings of the International Conference on Fifth Gen eration Computer Systems, Tokyo. Eisele, A. and Dorre , J . (1988) . Unification of disjunctive feature descriptions . . In Proceedings of the 26th Annual Conference of the Association for Computational Linguistics, Buffalo, New York . Emele , M. C . and Zaj_ac , R. (1 990) . Typed unification grammars. In Proceedings of the 13th Interna­tional Conference on Computational Linguistics, Helsinki, Finland. Flickinger, D. , Pollard , C . J . , and Wasow, T. (1985) . Structure-sharing in lexical representation. In Proceedings of the 23.rd Annual .Conference of the Association for Computational Linguistics. Franz , A. (1990) . A parser for HPSG. Technical Report LCL-90-3, Laboratory for Computational Linguistics , Carnegie Mellon University, Pittsburgh . Gazdar , G . , Klein , E . , Pullum, G . , and Sag, I. (1985) . Generalized Phrase Structure Grammar. Basil Blackwell , Oxford. Hohfeld , M . , and Smolka, G. (1988) Definite Relations over Constraint Languages. LILOG-REPORT 53, IBM Deutschland GnibH , Stuttgart, FRG . Jaffar , J . (1 984) . Efficient unification over infinite terms. New Generation Computing, 2:207-219 . Johnson , M . (1 988) . Attribute- Value Logic and the Theory of Grammar, volume 14 of Lecture Notes. Center for the Study of Language and Information, Stanford, California. Kasper, R. T. (1 987) . A unification method for disjunctive feature structures. In Proceedings of the 25th Annual Conference of the Association for Computational Linguistics, pages 235-242 . Kasper, R. T. (1 989) . Unification and classification: An experiment in information-based parsing. In First International Workshop on Parsing Technologies, pages 1-7, Pittsburgh. Kasper, R. T. and Rounds, W. C. (1986) . A logical semantics for feature structures. In Proceedings of the 24th Annual Conference of the Association for Computational Linguistics, pages 235-242. Kay, l\'1 . (1 985) . Parsing in functional unification grammar. In Dowty, D. R. , Karttunen, L . , and Zwicky, A . , editors, Natural Language Parsing, pages 206-250. Cambridge University Press, London .

1 52

King, P. (1989) . A Logical Formalism for Head-Driven Phrase Structure Grammar. PhD thesis, University of Manchester , Manchester, England. Lloyd , J . W. (1984) . Foundations of Logic Programming. Springer-Verlag, West Berlin , FRG . Mac Gregor , R . (1988) . A deductive pattern matcher . I n Proceedings of the 1988 National Conference on Artificial Intelligence, pages 403-408, St . Paul, Minnesota. Meseguer, J . , Goguen , J . , and Smolka, G. (1987) . Order-sorted unification. Technical Report CSLI-87-86 , Center for the Study of Language and Information, Stanford University, Stanford , California. Moshier , D. (1988) . Extensions to Unification Grammar for the Description of Programming Lan­guages. PhD thesis, University of Michigan , Ann Arbor . Moshier, M . A . (1989) . A careful look at the unification algorithm. Unpublished Manuscript , Depart­ment of Mathematics , University of California, Los Angeles. Mycroft , A . and O 'Keefe, R. A. (1984) . A polymorphic type system for Prolog. A rtificial Intelligence, 23:295-307. Nebel, B . and Smolka, G . (1989) . Representation and reasoning with attributive descriptions . IWBS Report 8 1 , IBM - Deutschland GmbH, Stuttgart , FRG. Pereira, F . C . (1987) . Grammars and logics of partial information. In Lassez, J .-L . , editor , Proceedings of the Fourth International Symposium on Logic Programming, pages 989-1013. Pereira, F . C . N . and Shieber, S . M . (1984) . The semantics of grammar formalisms seen as computer languages. In Proceedings of the 10th International Conference on Computational Linguistics, pages 123-129. Pollard , C . J . (in press) . Sorts in unification-based grammar and what they mean. In Pinkal, M. and Gregor , B . , editors , Unification in Natural Language Analysis. MIT Press. Pollard , C . J . and Carpenter , B . (to appear) . Extensionality in Feature Structures and Feature Logic . Paper presented at the Workshop on Unification and Generation, Bad Teinach, Ger­many, November 1990 . To appear in the Proceedings . Pollard, C. J . and Moshier, M. D. (1990) . Unifying partial descriptions of sets. In Hanson , P. , editor, Information, Language and Cognition, volume 1 of Vancouver Studies in Cognitive Science. University of British Columbia Press, Vancouver. Pollard , C . J. and Sag , I . A . (1987) . Information-Based Syntax and Semantics: Volume I - Funda­mentals, volume 13 of CSL/ Lecture Notes. Chicago University Press, Chicago. Rounds, W. C. and Kasper, R. T. (1986) . A complete logical calculus for record structures repre­senting linguistic information. In Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science, Cambridge, Massachusetts . Shieber , S . M . (1986) . An Introduction to Unification-Based Approaches to Grammar, volume 4 of CSL/ Lecture Notes. Chicago University Press , Chicago. Shieber , S . M . , Uszkoreit , H . , Pereira, F. C. N . , Robinson , J . , and Tyson, M . (1983) . The formalism and implementation of PATR-11. In Research on Interactive Acquisition and Use of Knowledge, volume 1894 of SRI Final Report. SRI International , Menlo Park , California. Smolka, G. (1 988) . A feature logic with subsorts. LILOG-REPORT 33, IBM Deutschland GmbH, Stuttgart , FRG. Walther, C . (1985) . A mechanical solution of Schubert's Steamroller by many-sorted resolution. Arti­ficial Intelligence, 26(2) :217-224. Walther, C. (1988) . Many-sorted unification. Journal of the ACM, 35 :1-17.

1 53

PROBABILISTIC LR PARSING FOR GENERAL CONTEXT-FREE
GRAMMARS*

See-Kiong Ng and Masaru Tomita School of Computer Science and Center for Machine Translation Carnegie Mellon University Pittsburgh, PA 15213 U.S .A.
ABSTRACT To combine the advantages of probabilistic gram­mars and generalized LR parsing, an algorithm for constructing a probabilistic LR parser given a prob­abilistic context-free grammar is needed. In this pa­per, implementation issues in adapting Tomita's gen­eralized LR parser with graph-structured stack to per­form probabilistic parsing are discussed. Wrig__ht_and-­_ Wrigley (1 989) has proposed a probabilistic L�le construction algorithm for non-left-recursive context-lree grammars . To account for left recursions, a method for comput1ng item probabilities using the '_generation o sy m-s-nftirre'a:r equa ions 1s presen ea: The notion of e erre pro a 1ties is proposed as a means for dealing with similar item sets with differing probability assignments.

1 Introduction Probabilistic grammars provide a formalism which accounts for certain statistical aspects of the lan­guage, allows stochastic disambiguation of sen­tences , and helps in the efficiency of the syntactic analysis . Generalized LR parsing is a highly effi­cient parsing algorithm that has been adapted to handle arbitrary context-free grammars . To com­bine the advantages of both mechanisms, an algo­rithm for constructing a generalized probabilistic LR parser given a probabilistic context-free gram­mar is needed. In Wright and Wrigley (1 989) , a probabilistic LR-table construction method has been proposed for non-left-recursive context-free grammars. However , in practice , left-recursive context-free grammars are not uncommon, and it is often necessary to retain this left-recursive grammar structure . Thus, a method for handling left-recursions is needed in order to attain proba­bilistic LR-table construction for general context free grammars. In this paper , we concentrate on incorporat­ing probabilistic grammars with generalized LR parsing for efficiency. Stochastic information from probabilistic grammar can be used in making sta­tistical decision during runtime to improve per­formance . In Section 3, we show how to adapt Tomita's(1985, 1987) generalized LR parser with
*This research was supported in part by National Science Foundation under contract IRI-8858085.

1 54

graph-structured stack to perform probabilistic parsing and discuss related implementation issues. In Section 4, we describe the difficulty in comput­ing item probabilities for left recursive context­free grammars . A solution is proposed in Sec­tion 5, which involves encoding item dependencies in terms of a system of linear equations . These equations can then be solved by Gaussian Elim­ination (Strang 1980) to give the item probabili­ties, from which the stochastic factors of the cor­responding parse actions can be computed as de­scribed in Wright and Wrigley (1989) . We also introduce the notion of deferred prob­
ability in Section 6 in order to prevent creating excessive number of duplicate items which a.re sim­ilar except for their probability assignments .
2 Background Probabilistic LR parsing is based on the notions of probabilistic context-free grammar and prob­abilistic LR parsing table, which are both aug­mented versions of their nonprobabilistic counter­parts . In this section , we provide the definitions for the probabilistic versions.
2 . 1 Probabilistic CFG A probabilistic context-free grammar (PCFG) (Suppes 1970 , Wetheral l 1980 , Wright and Wrigley 1989) G, is a 4-tuple (N, T, R, S) where N is a set of non-terminal symbols including S the start symbol, T a set of terminal symbols, and
R a set of probabilistic productions of the form
< A --+ a, p > where A E N, a E (N U T) * , and
p the production probability. The probability p is the conditional probability P(a lA) , which is the probability that the non-terminal A which appears during a derivation process is rewritten by the se­quence a. Clearly if there are k A-productions with probabilities Pi , . . . , Pk , then I::= l Pi = 1 , since the symbol A must b e rewritten by the right hand side of some A-production . The production probabilities can be estimated from the corpus as outlined in Fu and Booth(1975) or Fuj isaki(1984) . It is assumed that the steps of every derivation in the PCFG are mutually independent, meaning that the probability of applying a rewrite rule de-

Figure 1 : GRA l : A Non-left Recursive PCFG
(l) S -+ NP VP l
(2) NP -+ n i
(3) NP -+ det n 3
(4) VP -+ v NP 1

Figure 2 : GRA2: A Left-recursive PCFG

(1) S -+ NP VP ::!.
1 (2) s -+ s pp 1 (3) NP -+ n
� (4) NP -+ det n f (5) NP -+ NP PP 10

(6) PP -+ prep NP 1
(7) VP -+ V NP 1

pends only upon the presence of a given nonter­
minal symbol (the premis) in a derivation and not
upon how the premis was generated. Thus , the
probability of a derivation is simply the product
of the production probabilities of the productions
in the derivation sequence.

Figures 1 , 2 and 3 show three example PCFGs
G RA l , G RA2 and G RA3 respectively. Inci­
dentally, GRA l is non-left recursive, GRA2 and
G RA3 a.re both left-recursive, although GRA3 is
"more" left-recursive than GRA2 . GRA2 is said
to have simple recursion since there is only a fi­
nite number of distinct left-recursive loops1 in the
grammar. GRA3, on the other hand, is said to
have massive left recursions because of the inter-

! \ m i nglcd left 1
-
·ecursions, __'._hich _ .:_esu

_
_ It in infinit�

(. oss ib Jy unc<?_un�able)_ number �f __d!st!n�� !�­
E.C-lu:s.LV. . .e QQR§_ in the grammar .

1 A Os a derivation cycle in which the first and
last p1�ions used in the derivation sequence are
the same and occur now here else in the sequence.

Figu re 3 : GRA3:A Massively Left-recursive PCFG

(1) S -+ S a1 1
! (2) S -+ B a2
� (3) S -+ C a3 I (4) B -+ S a3
I (5) B -+ B a2 f (6) B -+ C a1 1 (7) C -+ S a2 j (8) C -+ B a 3

\5 (9) C -+ C a1 1 y (1 0) C -+ a3 B l (1 1) C -+ a3 1 ,;,

1 55

2 . 2 Probabilistic LR Parse Table
A probabilistic LR table is an augmented LR table
of which the entries in the ACTION-table contains
an additional field which is the Pirobability of the
action. We call this probability {ikchastic Jacwrj
because it is the factor used in the computation
(multiplication) of the runtime stochastic prod­uct . The parser keeps this stochastic product dur-
ing runtime for each ossible derivatio ectin
t eir respective likelihoods. his product can be

� computed uring runtime by multiplication using
the precomputed stochastic factors of the parsing
actions (or by addition if the stochastic factors
are expressed in logarithms) . The parser can use
this stochastic information to disambiguate or di­
rect/prune its search probabilistically.

Figures 4, 5 and 6 show the respective prob­
abilistic parsing tables for GRA l , GRA2 and
GRA3 , as constructed by the algorithm outlined
in Section 5. Note that the stochastic factors of r distinct actions associated with a state add up to
1 as expected, since each action's stochastic fac- {
tor is simply the probability of the parser making \
that action during that point of parse. The format -
of the GOTO-table is unchanged as no stochastic
factor is associated with GOTO actions.

3 Generalized Probabilistic LR
Parsers for Arbitrary PCFGs

In this section, we describe how the efficient gen­
eralized LR parser with graph-structured stack in
(Tomita 1985, 1987) can be adapted to parse prob­
abilistically using the augmented parsing table. In
particular, we discuss how to maintain consistent
runtime stochastic products base on three key no­
tions of the graph-structured stack: merging, lo­
cal ambiguity packing and splitting. We assume
that the state number and the respective runtime
stochastic product are stored at each stack node.

3.1 Merging
Merging occurs when an element is being shifted
onto two or more of the stack tops. Figure 7 il­
lustrates a typical scenario in which a new state
(State 3) is pushed onto stack tops States 1 and
2, of which original stochastic products are P1
and p2 respectively. These two nodes's stochas­
tic products are modified to P1 q1 and p2q2 corre­
spondingly. If the stochastic factors of the actions
has been represented as logarithms in the parse
table, then their new "product" (or rather , loga­
rithmic sums) would be P1 + q1 and P2 + q2 in­
stead. For the stochastic product of Node 3 , we
can either use the sum of its parents ' products
(giving p3 as P1 q1 + p2q2) if we adopt strict prob­abilistic approach , or the maximum of the prod­
ucts (ie, p3 = max (p1 q1 , p2 q2)) if we adopt the

Figure 4: Probabilistic Parsing Table for G RAl State ACTION GOTO det n V $ NP VP s
0 (sh2, �) (shl , ½) 4 3 1 (re2 , 1) (re2 , 1) 2 (sh5, 1) 3 {ace, 1} 4 (sh6 , 1} 7 5 (re3 , 1) (re3 , 1) 6 (sh2 , ¾) (shl , ½) 8 7 {rel , 1} 8 (re4, 1)

Figure 5 : Probabilistic Parsing Table for GRA2 State ACTION det n V 0 (sh2, !) (sh l , ¾} 1 (re3 , l} 2 {sh5 , l} 3 (sh7, ,�n } 4 5 (re4, 1} 6 (sh2, ! } (shl , ¾} 7 (sh2, ! } (sh l , ¾} 8 (re5 , l }
9

10
1 1 (re6 , 1�0 }
12 (re7, t0 }

maximum likelihood approach . Note that although the maximum likelihood approach is in some sense less "accurate" than the strict probabilistic ap­proach , it is a reasonable approximate and has an added advantage when the stochastic factors are represented in logarithms, in which case the s tochastic "products" of the parse stack can be maintained using only addition and subtraction operators(assuming, of course, that additions and subtractions are "cheaper" computationally than multiplications and divisions) .
3 .2 Local Ambiguity Packing Local ambiguity packing occurs when two or more branches of the stack are reduced to the same non­terminal symbol . To be precise, this occurs when the parser attempts to create a GOTO state node (after a reduce action , that is) and realize that the paren t already has a child node of the same state. In this case there i s no need to create the

prep
re3 , 1

(sh6, ,10 } (sh6, ¼} re4, 1
re5 , 1
rel , l _re2, 1 > (re6, 1�0 } (sh6, ,10 } (re7, fa} (sh6 , ,10)

$

re3 , 1
(ace, �} re4, 1
re5, 1
rel , l 1 re2 , l (re6, 1�0 }

(re7, to }

GOTO
NP pp VP s 3 4

8 9
10

1 1 12
8
8

Figure 7: Merging

GOTO node but to use that child node ("pack­ing") . This is equivalent to the merging of shift nodes, and can be handled similarly : the runtime product of the child node is modified to the new "merged" product (either by summation or max­imalization) . This modification should be propa­gated accordingly to the successors of the packed child node, if any.

1 56

Figure 6 : Probabilistic Parsing Table for ·GRA3
State ACTION GOTO

a1 a2
0
1 (re l l , �}

2 (sh9, ½) (sh8 , ,,,j�)
3 (sh l l , :�)
4 (sh 13 , m)
5 (sh9 , �) (sh8, ?6

._
6

0
)

6 (1'e 10 , 27{4) (sh15 , �11)

7 (sh 16 , {;�)
8 :re7, 1 1
g c re l , 1 1 Tre l , l}

1 0 1 re4, 1 1 {re4, 1}
1 1 (re2 , t�) (re2, t�)

(re5 , �7 } (re5 , '.'\7)
12 re8, 1
13 (re6 , to\) (re6 , too7)

(re9, �}
14 re3 , 1 {re3 , 1}
15 (1·e2, w) (re2 , w)

(re5 , 1 1 � } (re5 , 1 1 '.'\)
16 (re� , \��) (re6 , ���)

(re9 , T?R)

3 .3 Splitting

Spl i t. t i ng occu rs when there i s an action conflict.
Th is can be h and led straightforwardly by creat­
i ng corresp ond ing new nodes for the new resulting
states with the respective runtime products (such
as the product of the parent 's stochastic prod­
uct with the action 's stochastic factor) . Splitting
can also occur when reducing (popping) a merged
node . In this case, the parser needs to recover
the original runtime product of the merged com­
ponents, which can be obtained with some math­
ematical man ipulation from the runtime products
recorded in the merged node 's parents. Figure 8
i l lustra tes a simple situation in which a merged
node is split into two. In the figure, a reduce
act ion (of which the corresponding production is
of un i t length) is applied at Node 3, and the
GOTO's for Nodes 1 and 2 are states 4 and 5
respectively. In the case that strict probabilis­
tic approach is used in merging (see above) , we
get p4 = P i7+P2 p3q and Ps =

P i7+P2 p3q . If the
maximum l i keli hood approach is used, then p4 =
m ax f; 1 , 1' :!) p3q and]Js = max f;1 ,p2)p3q . Further­
more , if the stochastic factors have been expressed
i n logn r i t. l 1 ms , t.hen p .. , = J)3 - max (p1 , P2) + PI + q
and 71" = JJ::1 - m ax (71 1 , pJ +p:2 + q (notice that only

a3 $ s B C
shl , 1 · 2 3 4

(re l l , J) 5 6 7
(sh l , �)

(shlO , '>bn; } (ace, �)
(sh12 , :¼½)
(sh14, 1�)
(sh lO , �)
(relO, �4)
(sh12 , 1�)
(sh14, ,f�)

(re7, 1
re l , 1 Tre l , l}

1 re4, 1
(re2, t�) (re2 , �;)
(re5 , �7)

re8, 1
(re6 , \Ob7)
(re9 , �)

re3, 1 Tre3 , 1}
- (re2, w) (re2, /1\)

(re5, 1 1 � }
(re6 , \��)
(re9 , 1� }

addition and subtraction are needed , as promised) .

1 57

Figure 8: Splitting

[reduce,q]
- - +

P2

In general , there may be more than one splitting
corresponding to a reduce action (ie, we may have
to pop more than one merged nodes) . For every
split node, we must recover the runtime products
of its parents to obtain the appropriate stochas­
tic products for the resulting new branches . This
can be tricky and is one of the reasons why a
tree-structured stack (described below) instead of
graphs might perform better in some cases.

3.4 Using Stochastic Product to
Guide Search

The main point of maintaining the runtime
stochastic products is to use it as a good indicator

function to guide search . In practical situation , the grammar can be highly ambiguous, resulting in many branches of ambiguity in the parse stack. As discussed before, the runtime stochastic prod­uct reflects the likelihood of that branch to com­plete successfully. In Tomita's generalized LR parser , processes are synchronized by performing all the reduce actions before the shift actions. In this way, the processes are made to scan the input at the same rate, which in turn allows the unification of processes in the same state. Thus, the runtime stochastic products can be a good enough indicator of how promising each branch (ie. partial derivation) is, since we are comparing among partial derivations of same in­put length. We can perform beam search by prun­ing away branches which are less promising . If instead of the breadth-first style beam search approach described above we employ a best­first (or depth-first) strategy, then not all of the branches will correspond to the same input length. Since the measure of runtime stochastic product is biased towards shorter sentences, a good heuris­tic would have to take into account of the num­ber of input symbols consumed. Even so, han­dling best-first search can be tricky with Tomita's graph-structured stack without the process-input synchronization , especially with the merging and packing of nodes. Presumably, we can have ad­ditional data structure to serve as lookup table of the nodes currently in the graph stack: for in­stance, an n by m matrix (where n is the num­ber of states in the parse table and m the in­put length) indexed by the state number and the input position storing pointers to current stack nodes. With this lookup table, the parser can check if there is any stack node it can use before creating a new one. However, in the worst case, the nodes that could have been merged or packed might have already been popped of the stack be­fore it can be re-used. In this case, the parser degenerates into one with tree-structured stack (ie, only splitting , but no merging and packing) and the laborious book-keeping of the stochastic products due to the graph structure of the parse stack seems wasted. It might be more productive then to employ a tree-structured stack instead of a graph-structured stack, since the book-keeping of runtime stochastic products for trees is much simpler : as each tree branch represents exactly one possible parse, we can associate the respec­tive runtime stochastic products to the leaf nodes (instead of every node) in the parse stack, and up­dating would involve only multiplying (or adding, in the logarithmic case) with the stochastic fac­tors of the corresponding parse actions to obtain the new stochastic products. The major draw­back of the tree-stack version is that it is merely a. slightly compacted form of stack list (Tomita

1 58

1987) - which means that the tree can grow un­manageably large in a short period , unless suitable pruning is done. Hopefully, the runtime stochastic product will serve as good heuristic for pruning the branches; but whether it is the case that the sim­plicity of the tree implementation overrides that of the representational efficiency of the graph version remains to be studied.
4 Problem with Left Recursion The approach to probabilistic LR table construc­tion for non-left recursive PCFG , as proposed by Wright and Wrigley(1989) , is to augment the stan­dard SLR table construction algorithm presented in Aho and Ullman(1977) to generate a proba­bilistic version. The notion of a probabilistic item (A -+ o:•/3, p) is introduced, with (A -+ o: ·/3) being an ordinary LR(O) item, and p the item probabil­ity, which is interpreted as the posterior probabil­ity of the item in the state. The major extension is the computation of these item probabilities from which the stochastic factors of the parse actions can be determined. Wright and Wrigley(1 989) have shown a direct method for computing the item probabilities for non-left recursive grammars. The probabilistic parsing table in Figure 4 for the non-left recursive grammar GRA l is thus con­structed. Since there is an algorithm for removing left re­cursions from a context-free grammar (Aho and Ullman 1 977) , it is conceivable that the algo­rithm can be modified to convert a left-recursive PCFG to one that is non left-recursive. Given a left-recursive PCFG , we can apply this algo­rithm, and then use Wright and Wrigley(1 989) 's table construction method on the resulting non left-recursive grammar to create the parsing ta­ble. Unfortunately, the left-recursion elimination algorithm destructs the original grammar struc­ture. In practice, especially in natural language processing, it is often necessary to preserve the original grammar structure. Hence a method for constructing a parse table without grammar con­version is needed. For grammars with left recursion, the computa­tion of item probabilities becomes nontrivia.l. First of all , item probability ceases to be a "probabil­ity" , as an item which is involved in left recursion is effectively a coalescence of an infinite number of similar items along the cyclic paths, so its as­sociated stochastic value is the sum of posteriori probabilities of these packed items. For instance, if starting from item (A -+ a: • B/3, p) we derive the item (C -+ • B,, p x p B) , then by left recursion we must also have the items (C -+ ·B, , p x Pk) for i = 1 , . . . oo. The probabilistic item (C -+
·B,, q) , being a coalescence of these items, would have item probability q = I::� 1 p x p� = �'

and there is no guarantee that q � l . This is un­derstandable since (C '----+- -B,, q) is a coalescence of items which are not necessarily mutually ex­clusive. However, we need not be alarmed as the stochastic values of the underlying items are still legitimate probabilities . Owii1g to this coalescence of infinite items into one single item in left recursive grammars, the computation of the stochastic values of items in­volves finding infinite sums of the items' stochastic values. For grammars with simple left recursion (that is, there are only finitely many left recursion loops) such as GRA2, we can still figure out the sum by enumeration, since there is only a finite number of the infinite sums corresponding to the left recursion loops . With massive left recursive gramma.rs like GRA3 in which there is an infinite number of (intermingled) left recursion loops, the enumeration method fails . We shall illustrate this effect in the following sections .
4 . 1 Simple Left Recursion For grammars with simple left recursion, it is pos­sible to derive the stochastic values by simple cycle clct.ect. ion . For instance , consider the following set of L R(0) items for GRA2 in Figure 9 .

F igure 9 : An Example State for GRA2 lo : l VP - v - NP , SoJ 11 : [NP - ·n , Si] h : [NP - - det n , S2] h [NP - - NP PP , Sa]
Suppose the kernel set contains only 10 , with

So = ¥ . Let V be a partial derivation before seeing the input symbol v. At this point , the possible derivations which ,vill lead to item Ji are:
1 'D � VP --. v - NP � NP -+ ·n

·v � VP ..:...... v - NP .Jb_ NP -+ - NP VP � NP -+ ·n
.L ..1.. i 'D � VP --. v · NP ¾ NP -+ - NP VP ¾ . . . :¼-NP - -n

The sum of the posterior probabilities of the above possible partial derivations are: S1 = (So X ½) + (So X ft x ½) + (So X t/ X ½) + . . .
3 '\""" oo 1 n 1 5

= 7 X Lm=O 10 X 2 = 21
S . · 1 I S 3 '\"""

oo i n 2 4 d 1 1rn ar Y, 2 = 7 x L....n =O To x 5 = 21 ' an
S � "\'oo 1 n 1

3 = 7 X L....n = l 10 = 2 1 '

4 . 2 Massive Left Recursion For grammars with intermingled left recursions such as GRA3 , computation of the stochastic val­ues of the i tems becomes a convoluted task . Con-

1 59

sider the start state for GRA3 , which is depicted in Figure 10 .
Figure 10 : Start State of GRA3

lo : lS' - ·S, 1] 11 : [S - -Sa1 , Si] 12 : [S - -Ba2 , S2]
/J: [S � -Caa ,· . Sa]]4 : [B � •Saa , S4]
]5 : [B - -Ba2 , Ss] 16 : [B - -Cai , S6] h: [C - -Sa2 , S1]
ls : [C - •Baa , Ss]
]9 : [C - -Cai , -Sg] 110 : [C - •aaB, S10] · 11 1 , : [C - ·aa, Su]

Consider the item 11 . In an attempt to write down a closed expression for the stochastic value S1 , we discover in despair that there is an infi­nite number of loops to detect , as S is immedi­ately reachable . by all n_on-terminals, and so are the other nonterminals themselves. This intermin­gling of the _loops renders it impossible to write down closed expressions for S1 through Su .
5 Probabilistic Parse Table

Construction for Left Recursive
Grammars In this section, we describe a way of computing item probabilities by encoding the item depen­dencies in terms of systems of linear equations and solving them by Gaussian Elimination (Strang 1 980) . This method handles arbitrary context­free grammar including those with .left recursions. We incorporate this method with Wright and W:rigley's (1989) algorithm for computing stochas­tic · factors for the parse actions to obtain a ta­ble construction algorithm which handles general PCFG. A formal description of the complete table construction algorithm is in the Appendix . In the following •discussion of the algorithm, lower case greek characters such as a and /3 will denote strings in (N U Tt' and upper case alpha­bets like A and B denote symbols in N unless mentioned otherwise .

5 . 1 Stochastic Values o f Kernel
Items For completeness, we mention briefly here how the stochastic values of items in the kernel set can be computed as proposed by Wright and Wrigley(1989) : The stochastic value of the kernel item [S' - ·S] in the start state is 1 . Let State m - 1 be a prior

state of the non-start State m. We want to com­
pute the stochastic values of the kernel items of
State m. Suppose in State m - 1 there are k
items which are expecting the grammar symbol
X , their stochastic values being S1 , S2 , . . . , Sk re­
spectively. Let [Ai � Cl'i · X /3i , Si] be these item, i = 1 , . . . , k. Then the posterior probability of the
kernel item [Ai � aiX · /3i] of State m given those
k items in State i and grammar symbol X as the
next symbol seen on the parse stack is -ff;, where
Sx = I:�=l Si .

5 . 2 Dependency Graph
The inter-dependency of items within a state can
be represented most straightforwardly by a depen­
dency forest . If we label each arc by the proba­
bility of the rule represented by that item the arc
is pointing at , then the posterior probability of
an item in a dependency forest is simply the total
product of the root item's stochastic value and the
arc costs along the path from the root to the item.

This dependency forest can be compacted into
a dependency graph in which no item occurs in
more than one node. That is , each graph node
represents a stochastic item which is a coalesce of
all the nodes in the dependency forest represent­
ing that particular item. The stochastic value of
such an item is thus the sum of the posterior prob­
abilities of the underlying items.

Figure 1 1 depicts the graphical relations of the
items in the example state of GRA2 in Figure 9 .
We shall not attempt to depict the massively cyclic
dependency graph of the start state for GRA3
(Figure 10) here.

Figure 1 1 : A Dependency Graph
[VP --+ v-NP,So]

2 To
5

[NP - -n , S1][NP - -det n,S,] [NP

1

-
:::;:

P,S,]

t½ H 11 1
1
0

5 .3 Generating Linear Equations
Rather than attempting to write down a closed
expression for the stochastic value of each item,
we resort to creating a system of linear equations
in terms of the stochastic values which encapsu­
late the possibly cyclic dependency structure of
the items in the set .

Consider a state \JI with k items, m of which
are kernel items. That is, \JI is the set of items
{ Ij 1 1 :S j :S k} such that Ii is a kernel item if
1 :S j :S rn.. Again , let Si be a variable represent­
ing the stochastic value of item Ij . The values of

1 60

S1 , . . . , Sm are known since they can be computed
as outlined in Section 5 . 1 .

Consider a non-kernel item Ij , m < j :S k . Let
{Ii 1 1 • • • , ljn, } be the set of items in 'P from which
there is an arc into Ij in the dependency graph
for 'Ill . Also , let Pj i denote the arc cost of the arc
from item Ii i to Ij . Then , the equation for the
stochastic value of Ij , namely Sj , would be:

n'

Sj = L Pii X Sj i i= l (1)

Note that Equation (1) i s a linear equation of
at most (k - m) unknowns, namely Sm+1 , . . . , Sk .
This means that from 1 we have a system of (k-m)
linear equations with (k - m) unknowns. This can
be solved using standard algorithms like simple
Gaussian Elimination (Strang 1980) .

The task of generating the equations can be fur­
ther simplified by the following observations:

1 . The cost of any incoming arc of a non­
kernel item Ii = [Ai � •ai , Si] is the produc­
tion probability of the production (Ai -+

Cl'i , Pr) - In other words, Pj i
= Pr for i =

1 . . . n'. Equation (1) can then be simplified
n' to Sj = Pr X Li=l Sj ; ·

2 . Within a state , the non-kernel items repre­
senting any X-production have the same set
of items with arcs into them. Therefore ,
these npn-kernel items have the same value
for L;=l Sr,, (which is similar to the Sx in
Section 5 . 1) .

Thus, Equation (1) can be further simplified
n' . as Sj = Pr X SAj where SAj = Lx= l Sr,,

. With
that , the system of linear equations for each state
can be generated efficiently without having to con­
struct explicitly the item dependency graph .

5.3 .1 Examples

The system of linear equations for the state de­
picted in Figures 9 and 1 1 for grammar G RA2 is as
£ 11 . So = f (Given) S2 = ¾(S0 + S3)

0 ows. S1 = 2 (50 + S3) S3 = k(So + S3)
On solving the equations , we have S1 = 251 ,

S2 = 241 and S3 = l1 , which is the same solution
as the one obtained by enumeration (Section 4 . 1) .

Similarly, the following system of linear equa­
tions is obtained for the start state of massively
left recursive grammar GRA3:

So = 1 S6 = t (S2 + S5 + Ss)
S1 = t (So + S1 + 84 + S1) S1 = -.dS3 + s6 + S9)
S2 =

I
(So + S1 + S4 + S1) Ss = ft (S3 + S6 + S9)

S3 =
I

(So + S1 + S4 + S1) S9 = tf (S3 + Se + S9)
84 = f (S2 + 85 + Ss) S10 = 3(83 + S6 + S9)
S5 = 6 (82 + S5 + Ss) S1 1 = ft (S3 + Se + S9)

On solvinp; the equations, we have the solutions 29 1 1 6 s� 64 32 96 � 1 l 2 and 1. for the 1 , 77 , 77 , 77 , 77 , 77 , 77 , 7 , 7 , 7 , 7 ' 7 . stochastic variables So through Su respectively.
5 . 4 Solving Linear Equations with

Gaussian Elimination The systems of linear equations generated during table construction can be solved using the popular method Gaussian Elimination which can be found in many numerical analysis or linear algebra text­books (for example, Strang 1980) or linear pro­gramming books (such as Vasek Ch�atal , 1983) . The basic idea is to eliminate the variables one by one by repeated substitutions . For instance, if we have the following set of equations : (1) S1 = a 1 1 S1 + a 1 2 S2 + . . . + a1n Sn

(n) Sn = a.n 1 S1 + an2S2 + • • • + annSn . We can eliminate S1 and remove equation (1) from the system by substituting, for all oc�ur­rences of S1 in equations (2) through (n) , the right hand s ide of equation (1) . We repeatedly remove variables S1 through Sn- 1 in the same way, until we are left with only one equation with one vari­able Sn . Having thus obtained the value for Sn , we perform back substitutions until solutions for S1 through Sn are obtained . Complexity-wise , Gaussian elimination is a cu­bic algori thm(Vasek Chvatal , 1983) in terr!1s of t�e number of variables (ie, the number of items m the closure set) . The generation of linear equa­tions per state is also polynomial since we only need to find the stochastic sum expressions the SA . 's , for the nonterminals (Point 2 of Sec­tion 5 . 3) . These expressions can be obtc1:ined _by partition i ng the items in the state set accordm_g to their left hand sides . There are 0(mn) possi­ble LR(O) items (hence the size of each state is O(mn)) and 0(2mn) possible sets where n is the number of productions and m the length of the longest right hand side . Hence , asymptotically, the computation of the stochastic values would not affect the complexity of the algorithm, since it has only added an extra polynomial amount of work for ea.eh of the exponentially many possible sets. Of course , we could have used other methods for solving these linear equations, for example, by finding the inverse of the matrix representing the equations(Vasek Chvatal , 1983) . It is also plausi­ble that particular characteristics of the equations generated by the construction algorithm can be exploited to derive the equations' solution more efficiently. We shall not discuss further here.
5 . 5 Stochastic Factors Since the stochastic values of the terminal items in a parse state are basically posterior probabili-

1 61

ties of that item given the root (kernel) item, the computation of the stochastic factors for the pars­ing actions, which is as presented in Wright a_nd Wrigley(1989) , is fairly straightfor':ard . For sh!ft­action say from State i to State z + 1 on seemg the in�ut symbol x, the corresponding stochas­tic factor for this action would be Sr , the sum of the stochastic values of all the leaf items in State i which are expecting the symbol x. For reduce-action, the stochastic factor is simply the stochastic value Si of the item representing the re­duction, namely [Ai � Oi · , Si] if the red�ction is via production Ai � Oi . For accept-action, the stochastic factor is the stochastic value Sn of the item [S' � S· , Sn] , since acceptance can be trea�ed as a final reduction of the augmented production
S' � S, where S' is the system-introduced start symbol for the grammar.
6 Deferred Probabilities

The introduction of probability created a new cri­terion for equality between two sets of items: not only must they contain the same items, they mu�t have the same item probability assignment . It 1s thus possible that we have many (possibly infi­nite) sets of similar items of differing probability assignments. This is especially s� when there a�e loops amongst the sets of items (1e, the states)_ m the automaton created by the table construct10n algorithm - there is no guarantee that �he differ­ing probability assignments of the recurrmg states would converge. Even if they do converge even�u­ally, it is still undesirable to have a huge parsmg table of which many states have exactly the same underlying item set but differing probabilities. To remedy this undesirable situation, we in­troduce a mechanism called deferred probability which will guarantee that the item sets converge without duplicating too many of the states. Thus far we have been precomputing item's stochas­tic ' values in an eager fashion - propagating the probabilities as early as possible. Deferred_ proba­bility provides a means to defer propagatmg cer­tain problematic probability assignments (Pr?b­lematic in the sense that it causes many s1m1lar states with differing probability assignments) un­til appropriate. In the extreme case, probabilities are deferred until reduction time, ie, the stochas­tic factors of REDUCE actions are the respec­tive rule probabilities and all other parse actions have unit stochastic factors. A reasonable post­ponement , however, would be to defer propagating the probabilities of the kernel items (kernel prob­abilities) until the following state. By forcing the differing item sets to have some fixed predefined probability assignment (while deferring the pro�­agation of the "real" probabiliti:s until �.pp�opri­ate times) , we can prevent excessive duplication of

similar states with same items but different prob­abilities. To allow for deferred probabilities , we extend the original notion of probabilistic item to contain an additional field q which is the deferred proba­bility for that item. That is, a probabilistic item would have the form (A - a · /3, p, q) . The de­fault value of q is 1 , meaning that no probability has been deferred. If in the process of construct­ing the closure states the table-construction pro­gram discovers that it is re-creating many states with the same underlying items but with differing probabilities or when it detects a non-converging loop , it might decide to replace that state with one in which the original kernel probabilities are deferred. That is, if the item (A - a · /3, p, q) is a kernel item, and /3 =f. f , we replace it with a deferred item (A - a · {3, p' , �) and proceed to compute the closure of the kernel set as before (ie, ignoring the deferred probabilities) . In essence we have reassigned a kernel probability of p' to the kernel items temporarily instead of its origi­nal probability. It is important that this choice of assignment of p' be fixed with respect to that state . For instance, one assignment would be to impose a uniform probability distribution onto the deferred kernel items, that is, let p' be the prob­ability Number of iernel items . Another choice is to assign unit .probability to each of the kernel items, which allows us to simulate the effect of treating each of the kernel items as if it forms a separate state . Although in theory it is possible to defer the kernel probabilities until reduction time, in prac­tice it is sufficient to defer it for only one state transition . That is, we recover the deferred prob­abilities in the next state. We can do this by enabling the propagation of the deferred proba­bilities in the next state, simply by multiplying back the deferred probabilities q into the kernel probabilities of the next state. In other words, as in Section 5 . 1 , if [Ai - ai · X/3i , Si , q] is in State m - 1 , then the corresponding kernel item in State m would be [Ai - aiX · /3i , � ' 1] .
7 Concluding Remarks In this paper, we have presented a method for deal­ing with left recursions in constructing probabilis­tic LR parsing tables for left recursive PCFGs. We have described runtime probabilistic LR parsers which use probabilistic parsing table. The table construction method, as outlined in this paper and more formally in the appendix, has been imple­mented in Common Lisp . The two versions of run­time parsers described in this paper have also been implemented in Common Lisp , and incorporated with various search strategies such as beam-search and best-first search (only for the tree-stack ver-

1 62

sion) for comparison. The programs run success­fully on various small toy grammars, including the ones listed in this paper. In future, we hope to ex­perime:qt with larger grammars such as the one in Fujisaki(1984) .
Appendix A. Table Construction

Algorithm A full algorithm for probabilistic LR parsing table construction for general probabilistic context-free grammar is presented here. The deferred proba­bility mechanism as described in Section 6 is em­ployed, the chosen reassignment of kernel proba­bility being the unit probability.
A.1 Auxiliary Functions
A.1 .1 CLOSURE CLOSURE takes a set of ordinary nonproba­bilistic LR(0) items and returns the set of LR(0) items which is the closure of the input items. A standard algorithm for CLOSURE can be found in Aho and Ullman(1977) .
A.1.2 PROB-CLOSURE
Input: A set of k probabilistic items for some k � 1 : { [Ai - ai · /3i , Pi , qi] j 1 � i � k} .
Output: A set of probabilistic items which is the closure of the input probabilistic items. Each probabilistic item in the output set carries a stochastic value which is the sum of the posterior probabilities of that item given the input items.
Method:

Step 1: Let
C := CLOSURE{{ [Ai -+ O'i · ,Bi] I I � i � k}) ;

Step 2: Suppose k ' i s the size of C. Let Ii be the i-th item [Ai - ai ./3i] in C, 1 � i � k' . Also, for each item Ii, let Si be a variable denoting its stochastic value. 1 . For 1 � i � k , Si := Pi ; 2 . Let &B b e the set of items i n C that are expecting B as the next symbol on the stack. That is, &B is the set
{Ij I Ij E C, Ij = [Aj - frj . B/3j] }

def Let SB E1i E £B Si , where B E N. For k < i < k' such that Ii = [Ai - -,Bi] , set Bi := Pr X SA ; , where Pr is the probability of the production Ai - /3i .
Step 3: Solve the system of linear equations gen'erated by Step 2 , using any stan­dard algorithm such as simple Gaussian Elimination (Strang 1980) .

S tep 4: Return { [Ai --+ a · /3, Si , qi] 1 1 :::; i :::;
k' } , where qi = 1 for k � i � k' .

A . 1 .3 GOTO
Another useful function in table construction is

GOTO({!1 . . . In } , X) , where the first argument
{ Ii . . . In } is a set of n probabilistic items and the
second argument X a grammar symbol in (N U T) .

Suppose the probabilistic items in { Ii . . . In }
are such that those with symbol X after
the dot are [Ai --+ 0i · X .Bi , Si , qi] , 1 � i � k for
some 1 � k � n. Let Sx be 'I:7= 1 Si and set
GOTO({Ii } , X) to be PROB-CLOSURE({ [Ai --+
aiX · /Ji , � ' 1] 1 1 � i � k}) .

When k = 0 , GOTO({Ii } , X) i s undefined.

A . 1 .4 Sets-of-Items Construction
Let U be the canonical collection of sets of prob­

abilistic items for the grammar G' . U can be con­
structed as described below .

Initially U := PROB-CLOSURE({[S' - -S, 1] }) .
Repeat the process of applying the GOTO func­
tion (as defined in Step A . 1 .3) with the existing
sets in U and symbols in (N U T) to generate new
sets to be added to U. If it is detected that an ex­
cessive number of states with similar underlying
item sets but differing probabilities are created,
use a state that is created by deferring the prob­
abilities of the kernel items. That is, suppose the
original kernel set is { [Ai --+ 0i • /3i , Pi , qi] 1 1 � i �
k } , use instead { [Ai --+ Oi · /Ji , 1 , piqi] I 1 � i �
k and .Bi ;/:- £} .

The process stops when no new set can be gen­
erated.

Note that equality between two sets of proba­
bilistic items here requires that they contain the
same items with equal corresponding stochastic
values, as well as deferred probabilities.

A.2 LR Table Construction
The algorithm is very similar to standard LR ta­
ble construction (Aho and Ullman 1977) except
for the additional step to compute the stochastic
factor for eac;h action (shift , reduce , or accept) .

Given a grammar G = (N, T, R, S) , we de­
fine a corresponding grammar G' with a system­
generated start symbol S' :

(N U {S' } , T, R U { < S' --+ S, 1 > } , S') .
Input : U , the canonical collection of sets of prob­

abilistic items for grammar G' .
Output: If possible, a probabilistic LR parsing

table consisting of a parsing action function
ACTION and a goto function GOTO.

Method: Let U = {'110, '11 1 , . . . , '11n } , where W'o is
that initial set in Sets-of-Items Construction .
The states of the parser are then 0, 1 , . . . , n,
with state i being constructed from 'Wi . The

1 63

parsing actions for state i are determined as
follows:

1 . If [A --+ a · a,B, qa] is in 'Wi , a E T, and
GOTO(W'i , a) = '11; , set ACTION[i , a] to
("shift j" , Pa) where Pa is the sum of
qa 's - that is the stochastic values of
items in 'Wi with symbol a after the dot .

2. If [A --+ a• , p] is in 'Wi , set ACTION[i , a]
to ("reduce A --+ a" , p) for every a E FOLLOW(A) .

3 . If [S' --+ S· , p] is in 'Wi , set ACTION [i , $]
($ is an end-of-input marker) to
("accept'' , p) .

The goto transitions for state i are con­
structed in the usual way:

4. If GOTO(Ii , A) = I; , set GOTo [i, A] = j
All entries not defined by rules (1) through
(4) are made "error" .

The FOLLOW table can be constructed from G ·
by a standard algorithm in Aho and Ullman(1977) .

References

Aho, A.V. and Ullman , J .D . 1977. Principles of Compiler Design. Addison Wesley.

Fu, K. S . , and Booth, T. L. , 1975. Grammati­
cal Inference: Introduction and Survey - Part II. IEEE Trans on Sys. , Man and Cyber. SMC-5:409-
423 .

Fuj isaki , T. 1984. An Approach to Stochastic
Parsing. Proceedings of COLING8,4.
Strang, G . 1980. Linear Algebra and Its Applica­tions, 2nd Ed. Academic Press, New York , NY.

Suppes , P. 1970 . Probabilistic Grammars for N a.t­
ural Languages. Synthese 22:95- 1 16 .

Tomita, M . 1985. Efficient Parsing for Natural Language. Kluwer Academic Publishers, Boston ,
MA.

Tomita, M. January-June, 1987. An Effi­
cient Augmented Context-Free Parsing Algorithm. Computational Linguistics 13(1-2) :3 1-46.

Vasek Chvatal , 1983. Linear Programming , Chap­
ter 6 .

Wetherall , C. S . 1980 . Probabilistic Languages:
A Review and Some Open Questions. Computing Surveys 12 :36 1-379.

Wright , J .H . and Wrigley, E .N . 1989. Probabilistic
LR Parsing for Speech Recognition . International Parsing Workshop '89, Carnegie Mellon Univer­
sity, Pittsburgh PA.

February 1 5 , 1 991

Sess ion A

Quasi-Destructive Graph Unification
Hideto Tomabechi

ATR Interpreting Telephony Carnegie Mellon University
Research Laboratories* 109 EDSH, Pittsburgh, PA 1 5213-3890, USA

Seika-cho, Sorakugun, Kyoto 6 19-02 JAPAN tomabech@a.nl.cs.cmu.edu

ABSTRACT

Graph unification is the most expensive part
of unification-based grammar parsing. It of­
ten takes over 90% of the total parsing time
of a sentence. We focus on two speed-up
e�ements in the design of unification algo­
nthms: 1) elimination of excessive copying
by only copying successful unifications, 2)
Finding unification failures as soon as possi­
ble. We have developed a scheme to attain
these two criteria without expensive over­
head through temporarily modifying graphs
during unification to eliminate copying dur­
ing unification. The temporary modification
is invalidated in constant time and therefore
unification can continue looking for a failur�
�ithout the overhead associated with copy­
mg. After a successful unification because
the nodes are temporarily prepared for copy­
ing, a fast copying can be performed with­
out overhead for handling reentrancy, loops
and variables. We found that parsing rel­
atively long sentences (requiring about 500
unifications during a parse) using our algo­
�ithm is 100 to 200 percent faster than pars­
mg the same sentences using Wroblewski 's
algorithm.

1. Motivation

Graph unification is the most expensive part of
unification-based grammar parsing systems. For ex­
ample, in the three types of parsing systems currently
�sed at A1R 1 , all of which use graph unification algo­
n�hms based on [Wroblewski, 1987], unification oper­
ations consume 85 to 90 percent of the total cpu time
�evoted to a parse. The number of unification opera­
t10ns per sentence tends to grow as the grammar gets
larger and more complicated. An unavoidable paradox
is that when the natural language system gets larger
and the coverage of linguistic phenomena increases the
writers of natural language grammars tend to rely more
on deeper and more complex path equations (loops and

*Visiting Research Scientist. Local email address: tomabech%atr-la.atr.co.jp@uunet.UU.NET 1�he three p�sing systems are based on: 1. Earley 's algonthm, 2. active chart parsing, 3. generalized LR parsing.

1 64

frequent reentrancy) to lessen the complexity of writ­
ing the grammar. As a result, we have seen that the
number of unification operations increases rapidly as
the coverage of the grammar grows in contrast to the
parsing algorithm itself which does not seem to grow so
quickly. Thus, it makes sense to speed up the unifica­
tion operations to improve the total speed performance
of the natural language parsing system.

Our original unification algorithm was based on
[Wroblewski, 1987] which was chosen in 1988 as
the then fastest algorithm available for our applica­
tion (HPSG based unification grammar, three types of
parsers (Earley, Tomita-LR, and active chart), unifica­
tion with variables and loops2 combined with Kasper's
([Kasper, 1987]) scheme for handling disjunctions).
In designing the graph unification algorithm, we have
made the following observation which influenced the
basic design of the new algorithm described in this
paper:

Unification does not always succeed.
As we will see from the data presented in a later sec­
tion, when our parsing system operates with a rela­
tively small grammar, about 60 percent of unifications
attempted during a successful parse result in failure.
If a unification fails, any computation performed and
memory consumed during the unification is wasted. As
the grammar size increases, the number of unification
failures for each successful parse increases3 • Without
completely rewriting the grammar and the parser, it
seems difficult to shift any significant amount of the
computational burden to the parser in order to reduce
the number of unification failures4 •

Another problem that we would like to address in
our design, which seems to be well documented in the
existing literature is that:

Copying is an expensive operation.
The copying of a node is a heavy burden to the parsing
system. [Wroblewski, 1987] calls it a "computational
sink". Copying is expensive in two ways: 1) it takes

2Please refer to [Kogure, 1989] for trivial time modifica­tion of Wroblewski's algorithm to handle loops. 3We estimate over 80% of unifications to be failures in our large-scale speech-to-speech translation system under development. 4Of course, whether that will improve the overall perfor­mance is another question.

time; 2) it takes space. Copying takes time essentially
because the area in the random access memory needs to
be dynamically allocated which is an expensive opera­
tion. [Godden, 1990] calculates the computation time
cost of copying to be about 67 % of total parsing time
in his TIME parsing system. This time/space burden
of copying is non-trivial when we consider the fact that
creation of unnecessary copies will eventually trigger
garbage collections more often (in a Lisp environment)
which will also slow down the overall performance of
the parsing system. In general, parsing systems are
always short of memory space (such as large LR tables
of Tomita-LR parsers and expanding tables and charts
of Earley and active chart parsers5), and the marginal
addition or subtraction of the amount of memory space
consumed by other parts of the system often has critical
effects on the performance of these systems.

Considering the aforementioned problems, we pro­
pose the following principles to be the desirable con­
ditions for a fast graph unification algorithm:

• Copying should be performed only for success­
ful unifications.

• Unification failures should be found as soon as
possible.

By way of definition we would like to categorize ex­
cessive copying of dags into Over Copying and Early
Copying. Our definition of over copying is the same as
Wroblewski 's; however, our definition of early copying
is slightly different.

• Over Copying: Two dags are created in order
to create one new dag. - This typically happens
when copies of two input dags are created prior
to a destructive unification operation to build one
new dag. ([Godden, 1990] calls such a unifica­
tion: Eager Unification.). When two arcs point to
the same node, over copying is often unavoidable
with incremental copying schemes.

• Early Copying: Copies are created prior to the
failure of unification so that copies created since
the beginning of the unification up to the point of
failure are wasted.

Wroblewski defines Early Copying as follows: "The
argument dags are copied be/ore unification started. If
the unification fails then some of the copying is wasted
effort" and restricts early copying to cases that only
apply to copies that are created prior to a unification.
Restricting early copying to copies that are made prior
to a unification leaves a number of wasted copies that
are created during a unification up to the point of failure
to be uncovered by either of the above definitions for
excessive copying. We would like Early Copying to

5For example, our phoneme-based generalized LR parser for speech input is always running on a swapping space be­cause the LR table is too big.

1 65

mean all copies that are wasted due to a unification fail­
ure whether these copies are created before or during
the actual unification operations.

Incremental copying has been accepted as an effec­
tive method of minimizing over copying and eliminat­
ing early copying as defined by Wroblewski. How­
ever, while being effective in minimizing over copying
(it over copies only in some ,cases of convergent arcs
into one node), incremental copying is ineffective in
eliminating early copying as we define it.6 Incremen­
tal copying is ineffective in eliminating early copying
because when a graph unification algorithm recurses
for shared arcs (i.e. the arcs with labels that exist in
both input graphs), each created unification operation
recursing into each shared arc is independent of other
recursive calls into other arcs. In other words, the re­
cursive calls into shared arcs are non-deterministic and
there is no way for one particular recursion in to a shared
arc to know the result of future recursions into other
shared arcs. Thus even if a particular recursion into
one arc succeeds (with minimum over copying and no
early copying in Wroblewski's sense), other arcs may
eventually fail and thus the copies that are created in
the successful arcs are all wasted. We consider it a
drawback of incremental copying schemes that copies
that are incrementally created up to the point of fail­
ure get wasted. This problem will be particularly felt
when we consider parallel implementations of incre­
mental copying algorithms. Because each recursion
into shared arcs is non-deterministic, parallel processes
can be created to work concurrently on all arcs. In each
of the parallell y created processes for each shared arc,
another recursion may take place creating more paral­
lel processes. While some parallel recursive call into
some arc may take time (due to a large number of sub­
arcs, etc.) another non-deterministic call to other arcs
may proceed deeper and deeper creating a large num­
ber of parallel processes. In the meantime, copies are
incrementally created at different depths of subgraphs
as long as the subgraphs of each of them are unified
successfully. This way, when a failure is finally de­
tected at some deep location in some subgraph, other
numerous processes may have created a large number
of copies that are wasted. Thus, early copying will be
a significant problem when we consider parallelization
of incremental copying unification algorithms.

2. Our Scheme

We would like to introduce an algorithm which ad­
dresses the criteria for fast unification discussed in the
previous sections. It also handles loops without over
copying (without any additional schemes such as those
introduced by [Kogure, 1989]).

6'Early copying' will henceforth be used to refer to early copying as defined by us.

As a data structure, a node "is represented. with eight
fields: type, arc-list, comp-arc-list, forward, copy,
co"mp-arc-mark, forward-mark, and copy-mark. Al­
though this . number may seem high for a graph node
data Structure, - the amount of memory consumed is
nof significantly diffeJent from that consumed by other
algorithms. Type can be represented by three bits;
comp-arc-mark, forward-mark, and copy-mark can be
represented by short integers (i.e. fixnums); and comp­
are-list (justlike arc-list) is a mere collection of pointers
to memory locations. Thus this additional information
is trivial in terms of memory cells consumed and be­
cause of this data structure the unification -algorithm
itself can remain simple.

NODE
+---------------+
I type I
+- --------------+

· I arc:- list
+-------- . ------+
I comp-arc-list I
+---------- �---+

I forward I
+---------------+
I copy I
+-- ---------- -+
I comp-arc·-mark - 1

+-------- -- ---+
I forward-mark I
+---------------+
I copy-mark I
+---------------+

ARC
+--- . -----------+
I label I
+---------------+
I value I
+------------- ·-+

Figure 1 : Node and Arc Structures

The represeritation for an arc is no different from that
of other unification algorithms. Each arc has two fields
for 'label' and 'value' . 'Label' is an atomic symbol
which Jabels the arc, �d 'value' is a pointer to a node.

The central n_otion of our algorithm is the depen­
dency of the representational content on the global
timing clock (or the global counter for the current
generation of unification algorithms). - This scheme
was used in [Wroblewski, 1987] to_ invalidate the copy
field of a node after one unification by incrementing a
global counter. This is an extremely cheap operation
but has the power to invalidate the copy fields of all
nodes in the system simultaneously. In our algorithm,
this dependency of the content of fields on global tim­
ing is adopted for arc lists, . forwarding pointers, and
copy pointers·. Thus any modification made, such as
adding forwarding links, copy links or arcs during one
iop-level unification (unifyO) to any node in memory
can _be invalidated by one increment operation on the
global timing _counter. During unification (in unifyl)
and copying after a successful unification, the global
timing ID for a specific field can be checked by compar­
ing the content of mark fields with the global counter

value and if they match then the content is respected,
· if not it is simply ignored. Thus the whole operation is
a trivial addition to the original destruc.tive unification
algorithm (Pereira's and Wroblewski's unifyl). ·

We have two kinds of arc lists 1) arc-list and comp­
are-list. Arc-list contains the arcs that are permanent
(i.e., usual graph arcs) and comp-arc-list contains arcs
that are only valid during one graph unification oper­
ation. We also have two kin_ds of forwarding links ,
i.e., permanent and temporary. A permanent forward­
ing link is the usual forwarding link found in other
algorithms ([Pereira, 1985] , [Wroblewski, 1987], eic).
Temporary forwarding links are links ihai are only valid
during one unification. The currency of the temporary
links is_ determined by matching the content of the_mark
field for the links with the global counter and if they
match then the content of this field is respected7 • As
in [Pereira, 1985], we have three types of nodes: 1)
:atomic, 2) :bottom8 , and 3) :complex. :atomic type
nodes represent atomic symbol values (such as Noun)�
:bottom type nodes are variables · and :complex type
nodes are nodes that have arcs coming out- of them.
Arcs are stored in the arc-list field. The atomic value
is also stored in the arc-list if the node type is :atomic.
:bottom nodes succeed in unifying with any nodes and
the result of unification takes the type and the value
of the node that the :bottom node was. unified with.
:atomic nodes succeed in unifying with :bottom nodes
or :atomic nodes with the same value (stored in the
arc-list). Unification of an :atomic node with a :corn- _
plex node immediately fails. :complex nodes succeed
in unifying with :bottom nodes or with :complex nodes
whose subgraphs all unify. Arc values are always nodes
and never symbolic values because the :atomic and
:bottom nodes may be pointed to by multiple arcs (just
as in structure sharing of :complex nodes) depending
on grammar constraints, and we do not want arcs to
contain terminal atomic values.

Below is our algorithm:

funct ion UNIFY-DAG { dagl , dag2) ; , , toplevel .
RESULT : == catch with tag ' UNIFY-FAIL

call ing UN IFYO (dagl , dag2)
increment * unify-global-counter* ; ; starts from 1 0

return RESULT ;
end;

funct ion UNIFY0 { dagl , dag2) ;
i f ' * T * == UNIFYl (dagl , dag2) ;

then COPY : == COPY-DAG-WI TH-COMP -ARCS { dagl } ; 7In terms of forwarding links, we do not have a separate field for temporary forwarding links; instead, .we designate the integer value 9 to represent a permanent forwarding link. We start incrementing the global counter from 10 so when­ever the forward-mark is not 9 the integer value must equal the global counter value to respect the forwarding link. 8Bottom is called leaf in Pereira's algorithm.

1 66

return COPY;
end ;

funct ion UN IFYl (dagl -underef , dag2-underef) ;
DAGl : == DEREFERENCE-DAG (dagl-underef) ;
DAG2 DAG (dag2-und�re f) ;

i f (DAGl == DAG2) i . e . , ' eq ' relation
then return ' * T * ;

return COPY;
else i f (DAG . type = = :·bottom}

COPY : == CREAT�-NODE () ;
·cOPY ._type . : == : bottom;
DAG . copy : == · COPY ;
DAG . copy-mark

: == *unify-global-counter * ;
return COPY;

else if (DAGl . type = = : bottom} ; ; variable
then FORWARD-DAG (DAG1 , DAG2 , : temporary) ;

return ' *T * ;

else · COPY : == CREATENODE () ;
COPY . type : == : complex ;
for a l l AR.C in DAG . arc- list do

NEWARC : == COPY-ARC-AND-COMP-ARC (ARC) ;
push NEWARC into COPY . arc-list ; else if (DAG2 . type == : bottom)

then _FORWARD-DAG (DAG2 , DAG1 , . : temporary) ; if (DAG . comp-arc- list is non-empty
/ return ' *T * ;

e l s e if (DAGl . type : atomic • and
DAG2 . type == : atomic)

then
if (DAGl . arc-list == DAG2 . arc-list)

; ; ; contains atomic values
then FORWARD-DAG (DAG2 , DAG1 ,

: temporary) ;
return ' *T * ;

else throw with keyword ' UNIFY-FAIL;
; ; ; return directly to unify-dag

(throw/catch construct)
else · if (DAGl . type == : atomic

or DAG2 . type == : atomic)
then -throw with ke·yword ' UNIFY-FAIL;

else NEW : == COMPLEMENTARCS (DAG2 , DAG1) ;
SHARED : == INTERSECTARCS (DAGl j DAG2) ;

end ;

for each ARC in SHARED do
RESULT : == UNIFYl (destination of the

shared arc for dagl ,
destination of the

shared arc for dag2) ;
i f (RESULT =/= ' *T *)

throw with keyword ' UN IFY-FAIL ;
I f (the recurs ive calls to UNIFYl

success fully returned for all
shared arcs)

, , , this check i s actually unnecessary
then

FORWARD-DAG (DAG2 , DAG1 , : temporary) ;
DAGl . comp-arc-mark : ==

*unify-global-counter * ;
DAGl . comp-arc-list NEW
return ' *T * ;

function COPY-DAG-WITH-COMP-ARCS (dag-underef) ;
DAG : == DEREFERENCE-DAG (dag-underef) ;
i f (DAG . copy is non-empty

and
DAG . copy-mark == *unify-global-counter *)

then return the content o f DAG . copy;
; ; ; i . e . existing copy

e l se if (DAG . type == : atomic)
COPY : == CREATE-NODE () ;
COPY . type : ==· : atomic ;
COPY . arc- l ist : == DAG . arc- list ;

; ; ; this is an atomic value
DAG . copy : == COPY;
DAG . copy-mark

* 0n{fy-global-counter* ;

1 67

end;

and
DAG . comp-arc-mark

unify-global-counter)
then

for all COMP-ARC in
'- DAG . comp-arc-list do

NEWARC : ==

COPY-ARC-AND-COMP-ARC (COMP-ARC) ;
push NEWARC i_nto °COPY . arc-list ;

DAG . copy : == COPY
DAG rc6py-mark *uni fy-global-counter * ;
return COPY;

function COPY-ARC-AND-COMP-ARC (input-arc)
LABEL label of input-arc ;
VALUE : == COPY-DAG-WITH-COMP-ARCS

(value of input-ar�) ;
return a new arc with LABEL and VALUE ;
end ;

The functions Complementarcs(dagl ,dag2) and Inter­
sectarcs(dagl ,dag2) are the same as in Wroblewski's ·algorithm and retum the set-difference (the arcs with
labels that exist in dagl but not in dag2) and intersec­
tion (the arcs with labels that exist bpth in dagl and
dag2) respectively. Dereference-dag(dag) recursively
traverses the forwarding link to return the forwarded
node. In doing -so, it checks the forward-mark of the
node and if the forward-mark value is 9 . (9 represents
a permanent forwarding link) or its· value matches the
currenf value of *unify-global-counter*, then the func-

. tion returns the forwarded node; otherwise it simply
returns the input node. Forward(dagl , :dag2, :forward:7
type) puts (the pointer to) dag2 in the forward field of
dagl . If the keyword in the function call is :temporary,

· the current value of the *unify-global-counter* is writ­
ten in the forward-mark field of dagl . If the keyword
is :permanent, 9 is written in the forward-mark field of
dag 1 . Our algorithm itself does not require any perma-
· nent forwarding; however, the functionality is added
because the grammar reader module that reads the path
equation specifications into dag feature�structures uses
permanent forwarding to m�rge the additional gram­
matical specifications into a graph structure9 • The tern-

9We have been using Wroblewski 's algorithm for the uni­
fication part of the parser and thus usage of (permanent)

porary forwarding links are necessary to handle reen­
trancy and loops. As soon as unification (at any level
of recursion through shared arcs) sue:c;eeds, a tempo­
rary forwarding link is made from dag2 to dag 1 (dag 1
to dag2 if dagl is of type :bottom). Thus, during unifi­
cation, a node already unified by other recursive calls
to unify 1 within the same unify0 call has a temporary
forwarding link from dag2 to dag·l (or dagl to dag2).
As a result, if this node becomes an input argument
node, dereferencing the node causes dag 1 and dag2
to become the same node and unification immediately
succeeds. Thus a subgraph below an already unified
node will not be checked more than once even if an
argument graph has a loop. Also, during copying done
subsequently to a successful unification, two arcs con­
verging into the same node will not cause over copying
simply because if a node already has a copy then the
copy is returned. For example, as a case ·that may cause
over copies in other schemes for dag2 convergent arcs,
let us consider the case when the destination node has
a corresponding node in dagl and only one of the con­
·vergent arcs -has a corresponding arc in dagl . This
destination node is already temporarily forwarded to
the node in dagl (since the unification check was suc­
cessful prior to copying). Once a copy is created for
the corresponding dag 1 node and recorded 1n the copy
field of dagl , every time a convergent arc in dag2 that
needs to be copied points to its destination node, deref­
erencing the node returns the corresponding node in
dagl and since a copy of it already exists, this copy is
returned. Thus no duplicate copy is created1 0 �

As we just saw, the algorithm itself is simple. The
basic control structure of the unification is similar to
Pereira's and Wroblewski's unifyl . The essential dif­
ference between our unify 1 and the previous ones is
that our unifyl is non-destructive. It is because the
complementarcs(dag2,dagl) are added to the comp­
are-list of dagl and not into the arc-list of dagl . Thus,
· as soon as we increment the global counter, the changes
made to dagl (i.e., addition of complement arcs into
C()mp-arc-list) vanish. As long as the comp-arc-mark
value matches that of the global counter the content of
the comp-arc-list can be considered a part of arc-list
and therefore, dagl is the result of unification. Hence
the name quasi-destructive graph unification. In order
to create a copy for subsequent use we only need to

forwarding links is used by the grammar reader module.
10<;::opying of dag2 arcs happens for arcs that exist in dag2

but not in dagl (i.e., Complementarcs(dag2,dagl)). Such
arcs are pushed to the comp-arc.a.list of dagl during unify!
and are copied into the arc-list of the copy during subsequent
copying. If there is a loop or a convergence in arcs in dagl
or in arcs in dag2 that_ do not have corresponding arcs in
dagl , then the mechanism is even simpler than the one dis­
cussed here. A copy is made once, and the same copy is
simply returned every time another convergent arc points to
the original node. It is because arcs are copied only from
either dag 1 or dag2.

1 68

make a copy of dagl before we increment the global
counter while respecting the content of the comp-arc­
list of dagl .

- Thus instead of calling other unification functions
(such as unify2 of Wroblewski) for incrementally cre­
ating a copy node during a unification, we only need -
to create a copy after ·unification� Thus, . if unifica­
tion fails no copies are made at all (as in [Karttunen,
1986] 's scheme). Because unification . that recurses
into shared arcs carries qo burden of incremental copy�
ing (i.e., it simply checks if nodes are compatible), as
the depth of unification increases (i.e., the graph gets
larger) the speed-up of our method should get conspic­
uous if a unification eventually fails. if all unifica­
tions during a parse are going to be successful, our
algorithm should be as fast as or slightly slower than
Wroblewski's algorithm1 1 • Since a _parse that does not
fail on a single unification is unrealistic, the gain from
o·ur scheme should depend on the amount of unification
failures that occur during a unification. As th� number
off ailures per parse increases and the graphs that failed
get larger, the speed-up from our algorithm should be­
come more apparent. Therefore, the characteristics of
our _algorithm seem c:lesirable. In the next section, we
will see the actual results of experiments which com­
par:e . our unification algorithm to Wroblewski 's algo­
rithm (slightly modified to handle variables and ·1oops
that are required by our HPSG based grammar).

3. Experiments

'Unifs ' represents the total number of unifications
during a parse (the number of calls to the top-level
'unify-dag', and not 'unifyl '). 'USrate' represents the
ratio of successful unifications to the· total number of
unifications. We parsed each sentence three times on
a Symbolics 3620 using both unification methods and
took the- shortest elapsed time for both methods ('T'
represents our scheme, 'W' represents Wroblewski 's
algorithm with .a modification to -handle loops' and
variables12). _ Data structures are the same for both

' .
11 It may be slightly slower; because our unification re-

curses twice on a graph: once to unify and once to copy,
whereas in incremental unification schemes copying is per­
formed during the same recursion as unifying. Additio·nal
bookkeeping for incremental · copying_ during unify2 may
slightly offset this, however.

12Loops can be handled in Wroblewski's algorithm by
checking whetfier an arc with the same label already exists
when arcs are added to. a node. And if such an arc already
exists, we destructively unify the node which is the destina­
tion of the existing arc with the node which is. the destination
of the arc being added. If such an arc do�s not exist, we
simply add the arc. · ([Kogure, 1989]). Thus, loops can be
handled very cheaply in Wroblewski's algorithm. H_andling
variables in Wroblewski's algorithm is basically the same as
in our algorithm (i.e., Pereira's scheme), and the addition of

sent # - Unifs USrate Elapsed time (sec t Num of Copies Num of Conses .
T w T w T w

1 6 0 . 5 1 . 0 6 6 1 . 113 85 107 1231 · 1 4 5 1 ,
2 1 0 1 0 . 3 5 1 . 8 97 . 2 . 8 9 9 1 4 1 8 2 2 8 5 1 5 1 6 6 2 3 8 3 6
3 24 0 . 33 1 . 2 0 6 · 1 . 2 90 1 2 9 2 2 0 1 7 3 4 . 2 6 4 4
4 7 1 0 . 4 1 3 . 3 4 9 4- . 1 02 ' 1 63 5 2 1 5 1 1 7 13 3 2 2 9 4 3
5 3 0 5 0 . 3 9 12 . 1 5 1 1 7 . 30 9 5 5 2 9 9 0 92 5 7 4 0 5 9 3 0 3 5
6 5 9 0 . 3 8 1 . 2 5 4 1 . 6 0 1 6 0 8 9 9 7 6873 1 0 7 ,63
7 6 0 . 3 8 1 . 0 1 6 1 . 03 0 8 5 1 0 7 1 1 7 5 1 3 9 5
8 8 1 0 . 3 9 3 . 4 9 9 4 . 4 52 1 7 8 0 2 4 0 6 1 8 7 1 8 2 4 978
9 4 8 0 0 . 3 8 1 8 . 4 02 3 4 . 653 94_6 6 1 5 7 5 6 · 9 69 8 5 1 672 1 1
1 0 5 5 5 0 . 3 9 2 6 . 933 4 7 . 22 4 . 1 1 7 8 9 1 8 822 1 1 9 6 2 9 1 8 99 97
1 1 1 0 9 0 . 4 0 4 . 5 92 5 . 4 33 " 2 0 4 7 2 9 1 3 2 1 8 7 1 3 0 5 3 1
1 2 4 2 8 · O . 3 8 13 . 72 8 2 4 . 3 5 0 7 933 133 63 8 1 5 3 6 1 3 5 8 0 8
13 5 5 9 0 . 3 8 1 5 . 4 8 0 4 2 . 3 5 7 9 9 7 6 1 7 7 4 1 1 02 4 e 9 1 8 0 1 6 9
1 4 52 0 . 3 8 1 . 97 7 2 . 4 1 0 7 4 5 94 1 8272 1 0 2 92
1 5 7 7 0 . 3 9 3 . 5 7 4 . 4 . 68 8 1 5, 90 2 1 3 7 1 69 4 6 224 1 6
1 6 7 7 0 . 3 9 3 . 65 8 4 . 4 3 1 1 5 90 2 1 3 7 1 6 9 4 3 224 1 3

Figure 2 : Comparison of our algorithm with Wroblewski's ·

unification algorithms· (cxc·ept for additional fields .for
a f!Ode in our algorithm, Le., comp-arc-list, comp-arc­
mark, and forward-mark).- Same functions are used to
interface with Barley's parser and the same subfunc­
tions are used wherever possible (such as creation and
access of arcs) to minimize the differences that are not
purely algorithmic. 'Number of copies ' represents the
number of nodes created during each parse (and does
not include the number of arc structures that are cre­
ated during a parse). 'Number of conses' represents the
amount of structure words consed during a parse. This ·
number represents the real comparison of the amount
of space being consumed by each unification algorithm ·
(including added fields for nodes in our algorithm and
arcs that are created in b_oth algorithms).

We used Barley's parsing algorithm for the experi­
ment. The Japanese grammar is based on HPSG anal­
ysis ([Pollard and Sag, 1987]) coverjng phenomena
such as coordination, case adjunction, adjuncts, con:.
trol, slash categories, zero-pronouns, interrogatives,
WH constructs, and some pragmatics (speaker, hearer
relations, politeness, etc.) ([Yoshimoto and Kogure;
1989]). The· grammar covers many of the important
linguistic phenomena in conversational Japanese. The
grammar graphs which are converted from the. path
equations contain 2324 nodes. We used 16 sentences
from a sample telephone conversation dialog which
range from very short sentences (one word, i.e., iie
'no') to relatively long ones (such as soredehakochi­
rakarasochiraniiourokuyoushiwoookuriitasliimasu 'In
that case, we [speaker] will send you [hearer] the reg­
istration fotm.). Thus, the number of unifications per
sentence varied widely (from 6 to over 500).

this functionality can be ignored in terms of comparison to
our algorithm. Our algorithm does not require any additional
scheme to handle loops in input dags.

1 69

4. Discussion:

4.1. Comparison to Other Approaches

The control structure of our algorithm is identical to
that of [Pereira, 1985] . However, instead of stor-
. ing changes to the argument dags in the environment
we store the changes - in the dags themselves non­
destructively. Because we do not use the environment,
the log(d) overhead (where d is the nurriber of nodes
in a dag) associated with Pereira's scheme that is re­
quired during nod� access (to assemble the whole dag
from the skeleton and the updates in the environment)
is avoided in our· scheme. We share the principle of
storing changes in a restorable way with [Karttunen,
1986] 's reversible unification and copy graphs only

, after a successful unification. Karttunen originally
introduced this scheme in order to replace the less
efficient structure-sharing implementations ([Pereira,
1985], [Karttunen and Kay, 1985]) . In Karttunen's
method13 , whenever a destructive change is about to
be made, the attribute value pairs14 stored in the body
of the node are saved into an array. The dag node struc-

. ture itself is also saved in another array. These values
are-restored after the top level unification is completed.
(A copy is made prior to the restoration operation if
the unification was a successful one.) The difference
between Karttunen's method and ours is that iri our al­
gorithm, one increment to the global counter can invali­
date all the changes made-to nodes, while in Karttunen 's
algorithm each node in the. entire argument graph that ·
has been destructively modified must be restored sep-

13The discussion of Kartunnen 's method is based on the
D-�ATR implementation on Xerox machines ([Karttunen,
1986]).

141.e., arc structures: 'label' and 'value' pairs in our
vocabulary.

arately by retrieving the attribute-values saved in an
array and resetting the values into the dag strµcture
skeltons saved · in another array. In both Karttunen 's
and our algorithm, there will be a non-destructive (re­
versible; and quasi-destructive) saving of intersection
arcs that may be wasted when a subgraph of a partic­
ular node ·successfully unifies but the final unification
fails due to a failure in some other part of the argument
graphs. This is not a problem in our method because the
temporary change made to a node is performed as push­
ing pointers into already' existing structures (nodes) and
it does not require entire I y new structures to be created
and dynamically allocated memory (which was neces­
sary for the copy (create-node) operation).15 [Godden,
1990] presents a method of using lazy evaluation in
unification which seems to be one successful . actual­
ization of [Karttunen and Kay, 1985h lazy evaluation
idea. One question about lazy evaluation is that the ef­
fici�ncy of lazy evaluation varies depending upon the
particular hardware and ·prograniming language envi­
ronment. For example, in CommonLisp, to attain a
lazy evaluation, as soon as a function is delayed, a clo­
sure (or a structure) needs to be created receiving a dy-
namic allocation of memory (just as fo cr�ting a copy
node). Thus, there is a shift of memory and associated
computation consumed from making copies to making
closures. In · terms of memory cells saved, although
the lazy scheme may reduce the total number of copies
created, if we corisider the memory consumed to create
closures, the saving may be �ignificantly canceled. In
terms of speed, since delayed evaluation requires addi­
tional bookkeeping, how schemes such as the one in­
troduced by [Godden, 1990] would compare with non­
lazy incremental copying schemes is an open question.
Unfortunately' Godden offers a comparison of his algo­
rithm- with one that uses a full copying method

.
(i.e. his

Eager Copying) which is already significantly slower
than ·Wroblewski's algorithm. H:owever, no compari­
son is offered with prevailing_unification schemes such
as Wroblewski 's. With the complexity for lazy evalu­
ation and the memory consumed for delayed closures
added, it is hard to estimate whether lazy unification
runs considerably faster than Wroblewski 's incremen­
tal copying scheme.

Finally, when we consider parallelization of unifi­
cation algorithms, it seems that . the quasi-destructive
unification scheme is more suitable for parallelization

15 Although, in Karttunen 's method it may become rather
expensive if the arrays require resizing during the sav.ing op­
eration of the subgraphs. This is another characteristic of
Kartunnen 's method that two arrays �eed to be originally al­
located memory. If the allocated arrays are too big then we
will be wasting the unused cells, if it is too small, then there
will be array resizing operations during unification which can
be costly. Because amount of destructive operations during
unifications vary significantly sentence to sentence, deter­
mining the ideal initial array size for Kartunnen 's method is
not trivial.

1 70

than the past methods. Whert we parallelize graph uni-
. fication, the concurrent recursive calls into shared arcs
should 1:)e the element contributing to the speed up. On
the other hand, that may require synchronization be�
tween parallel recursive processes which in tum may
undermine the speed up .element due to parallelization.
Also, concurrently accessing shared data (i.e., global
variables, etc.) causes lockiunlock synchronization on
the global memory location and that also undermines
the effect of parallelization. These two problems s�m
particularly applicable to incremental copying schemes
(such as [Wroblewski, 1987] and [Godden, 1990]) be- .
cause there may be multiple simultaneous write opera­
tions on a copy when recursive calls to the shared arcs at
each level return successfully. Our algorithm does not
suffer from this simultaneous write lock/unlock prob­
lem because there will be no write operation to a node
during unification checks (i.e., no writing is performed
until the unification of entire argument dags actually
succeeds 16) .

In terms of simultaneous writes to shared global ·
variaqles, Both structure sharing schemes and the re­
versible unification seem vulnerable to this problem
because values are stored into global data and the con­
current processes must lock and unlock. these global
locations every time they access the data. For exam­
ple, Karturinen 's reversible unification scheme requires
two global arrays to store the original feature-value
pairs · and the dag node cells. When parallel recursive
unification calls into shared arcs are performed· and
node values are saved into the arrays concurrently, the
processes need to be queued (lock/unlock synchroniza­
tion) to access the arrays17 • The same problem wUl be
caused during writes to 'copying environments ' in the
lazy unification scheme. Our algorithm does not suffer
from simultaneous writes to global shared variable �im­
ply because 1) no saving is.performed at all 2) changes
are local. Instead of saving original values, changes
are recorded distributedly (locally) into each node that

161n our current parallel implementation ([Tomabechi and
Fujioka, ms]), · the quasi-des·tructive addition of intersection
arcs to a node does not occur until all parallel recursive
calls into subgraphs succeed. This can be performed with­
out any harm because 1) any addition to tlie comp-arc-list is
harmless until actual copying is performed after a success- .
fol unification; 2) additions to comp-arc-list are performed
only once per node and therefore, this will not cause the .
lock/unlock problem due to multiple simultaneous write op­
erations. · H�wever, the addition of temporary forwarding
links needs to wait until the top-level unification success­
fully returns.

17Depending on parallel machine architectures and oper­
ating system implementations, simultaneous read/read and
read/write may not be problems, however, simultaneous
write/write is normally inherently problematic and needs to
be synchronized. Simultaneous write/write into· save arrays
is inevitable if we parallelize Kartunnen 's scheme because
writing to arrays (i.e., both feature-value pair array .and the
dag cell array) must occur during the save operation.

is being quasi-destructively modified. Therefore, there
will be no-global shared data associated-with the saving
of original dag values. Changes are simply nullified by ,
the increment on the global counter and therefore no
saving operation is necessary. Overall, we have seen in
our experiments (reported in [Tomabechi and Fujioka,
ms]) that our algorithm recorded about .75 percent of
effective parallelization rate (meaning that the 75 per­
cent of unifications into shared arcs were parallelly per­
formed both horizontally -and vertically) ([Tomabechi
and Fujioka, msJ 1 8).

5. Conclusion

The algorithm introduced in this paper runs signifi­
cantly faster than Wroblewski's algorithm using Bar­
ley's parser and an HPSG based grammar developed
at A1R. The gain comes from the fact that our algo-
rithm does not create any over copies or early copies.
In Wroblewski 's algorithm, although over copies are
essentially avoided, early copies (by our definition)
are a significant problem because ah.out 60 percent of
unifications result in failure in a successful parse in
our sample parses. The additi.onal set-difference oper­
ation required for incremental copying during unify2
may also be contributing to the slower speed of Wrob­
lewski 's algorithm. Given that our sample grammar is
relatively small, we would expect that the difference
in the performance between the incremental copying
schemes and ours will expand. as the grammar size
increases and both the number of failures1 9 and the
size of the wasted subgraphs of failed unifications be­
come larger. Since our algorithm is essentially paral­
lel, parallelization is one logical choice to pursue fur­
ther speedup. Parallel processes can be continuously
created as unifyl rectirses deeper and deeper without
creating any copies by simply looking for a possible
failure of the unification (and preparing for successive
copying in case unification succeeds). So far, we have
completed a preliminary implementation on a shared
memory parallel hardware with about 75 percent of
effective parallelization· rate. With the simplicity of
our algorithm and the ease of implementing it (com­
pared to both incremental copying scherries and lazy
schemes), combined with the demonstrated speed . of
the algorithm, the algorithm could be a viable alter­
native to existing_ unification algorithms used in the
existing parsing schemes as well as a part of future
parsing systems.

18Please refer to this paper for detail of parallel . quasi­destructive unification algorithm and experiments using the_ · algorithm.
19For example, in our large-scale speech-to-speech tran·s­lation system under development, the USrate is estimated to be under 20%, i.e., over 80% of unifications are estimated to be failures.

1 71

ACKNOWLEDGMENTS

The author would like to thank Aldra Kurematsu,
Tsuyoshi Morimoto, Hitoshi Iida, Osamu . Furuse,
Masaaki Nagata, Toshiyuki Takezawa and other mem­
bers of A1R. Thanks are also due to Margalit Zablu­
dowski for comments on the final version of this paper
and Takako Fujioka for assistance in implementing the
parallel version of our algorithm.

Appendix: Implementation

The unification algorithms, Earley parser and the ·
HPSG path equation to graph converter ptograms are
implemented in Common Lisp on a Symbolics ma­
chine . . The preliminary parallel version of our uni­
fication algorithm· is currently implemented on a Se­
quent Symmetry closely coupled shared-memory par­
allel machine with 15 CPUs running Allegro CLiP
parallel CommonLisp based ort a micro-tasking par­
allelism using light-�eight processes.

References
[Godden, 1990] Godden, K. "LazyUnification" InProceed­ings of ACL-90. 1990. [Karttunen, 1986] Karttunen, L Development Environment for Unification-Based Grammars. ,Report CSLI-86-61 . Center for the Study of Language and_Information, 1986. [Karttunen, 1986] Karttunen, L .. "D-PATR: A Development Environment for Unification-Based-Grammars". In Pro­ceedings of COLING-86. -1986. [Karttunen and Kay� 1985] Karttunen, L. and Kay, M. "Structure Sharing with Binary Trees". In Proceedings of ACL-85. 1985. [K.asper, i987] Kasper, R. "A Unification M�thod for Dis­junctiveFeatur�Descriptions". InProceedingsof ACL-87. 1987. [Kogure, 1989] Kogure, K.' A Study on Feature Structures and Unification.ATR TechnicalReport. TR-1-0032. 1988. [Pereira,)985] Pereira, F. "A Structure-Sharing Represen­.tation for Unification-Based Grammar Formalisms". In . Proceedings of ACL-85. 1985. [Pollard and Sag, 1987] Pollard, . C. and Sag, A. . Information-based Syntax and Semantics. Vof 1, CSU, " 1987. [Tomabech·i and Fujioka, ms] Parallel Quasi-Destructive Graph Unification. Manuscript (in print as ATR Technical Report). [Yoshimoto and Kogure, 1989] Yoshimoto, K. and Kogure, K. Japanese Sentence Analysis by means of Phrase Struc­ture _Grammar. ATR Technical Report. TR-1-0049. 1989. [Wroblewski, 1987] Wroblewski, D/'Nondestructive Graph Unification" In Proceedings of AAAl87. 1987.

Unification Algorithms for Massively Parallel Computers*
Hiroaki Kitano

Center for Machine Translation NEC Corporation
2- 1 1-5 Shibaura, Minato-ku

Tokyo, 108 Japan
Carnegie Mellon University
Pittsburgh, PA 15213 U.S .A.

hiroaki@cs.cm u.edu

ABSTRACT

This paper describes unification algorithms
for fine-grained massively parallel comput­
ers. The algorithms are based on a par­
allel marker-passing scheme. The marker­
p�sing scheme in our algorithms carry only
bit-vectors, address pointers and values. Be­
cause of their simplicity, our algorithms can
be implemented on various architectures of
massively parallel machines without loosing
the inherent benefits of parallel computation.
Also, we describe two augmentations of uni­
fication algorithms such as multiple unifi­
cation and fuzzy unification. Experimental
results indicate that our algorithm attaines
more than 500 unification per seconds (for
DAGs of average depth of 4) and has a linear
time-complexity. This leads to possible im­
plementations of massively parallel natural
l�guage parsing with full linguistic analy­
sis.

1. Introduction
This paper describes unification algorithms using par­
alle! marker-passing scheme. The purpose of this pa­
p_er 1s to show parallel unification algorithms which are
simple enough to be implemented by massively parallel
machines, and have some novel features.

Unification is a basic operation in computational lin­
guistics. However, this operation is known to be com­
putationally expensive, and thus is considered a major
bottleneck in improving the performance of natural lan­
�uage processing systems. A search for efficient algo­
�thms has been conducted by many researchers involv­
mg parallel algorithms such as [Yasuura, 19841. How­
ever, theoretical lower-bound was shown by [Dwork
et. al., 1984] that unifiability is log-space complete for
P. This leads to [Knight, 1989] 's conclusion that use
?f massively parallel machines will not significantly
improve the speed of unification. Then, why do we
propose a parallel unification? We have three major
reasons.

First, although theoretical limitation for speed up
*This work has been supported in part by the National

Science Foundation under grant MIP-90/09109.

1 72

bas been shown for full unification, parallelization of
unification actually improves performance of the en­
tire system. This improvement of performance is a
clear benefit for practical natural language processing
systems, in particular for tasks like spoken language
processing where real-time processing is essential. In
addition, we propose parallel unification algorithms
which attained a time-complexity of o(D) where D
is a depth of the deepest path in DAGs to be uni­
fied. We achieved this by assuming all disjunctions
are pre-expanded into several DAGs so that each pair
of DAGs does not contain disjunctions, and so that
higher parallelism can be maintained through out the
unification process. This is a reasonable assumption
when we implement unification on massively parallel
machines, where the basic implementation strategy is a
memory-intensive approach allowing time-complexity
to be converted into space-complexity. Thus, although
we do not discover faster full unification with disjunc­
tion, we discovered a means to substantially speed up
unification on the massively parallel machines.

Second, we designed our algorithm for massively
parallel machines where each processor has relatively
low processing capability. We only require each pro­
cessing unit to have some basic operations and the capa­
bility to pass bit-markers, pointers to other processing
units, and numeric values. This design decision aims at
the accomplishment of two things - development of
practical unification algorithms for massively parallel
computers such as SNAP [Moldovan et. al. , 1989] and
Connection Machine [Hillis, 1985], and development
of algorithms for specialized unification hardware such
as unification chips or unification co-processors. Func­
tionalities of massively parallel machines· are severely
limited due to the weak processing capability of each
unit. Advantages of massively parallel machines for
semantic processing, such as contextual priming, are
widely recognized. However, in implementing seri­
ous natural language parsers, unification operation is
essential. Unfortunately, we have not seen any algo­
rithm which assumes low processing capability of each
processor in massively parallel machines. Although
some machines support high-level language, such as
C or lisp, automatic parallelization does not gu�an­
tee efficiency of actual operations. Thus, designing
unification algorithms for massively parallel machines
has great impact on exploring maximum potential of
these machines for natural language processing. One
other reason is that, by assuming each processor has

Figure 1 : PU Class Nodes and PU s

low computation power, our algorithms could be im­
plementable as unification co-processor boards using
numbers of less-powerful processors. A possibility for
such a compact acceralator would be the clear benefit
for the natural language community.

Third, our algorithms can easily entail some novel
features such as multiple unification and fuzzy uni­
fication. These features have not been considered
in past unification literature. It can also incorporate
typed unification. Multiple unification is a unifica­
tion between more than two trees or DAGs. Our al­
gorithms enable this scheme without undermining its
performance. Fuzzy unification allows unification of
on-unifiable DAGs; but assigns a cost of violations.
This would be useful for applications such as spoken
language processing where handling of ungrammatical
input is essential, because subtle ungrammaticalities
can be overlooked.

2. Architecture, Representation and
Notations

2.1. Architecture
We assume a parallel architecture where numbers of
processing units are interconnected. The Processor
Unit (PU) is a basic element of the system. It has its
own processing capability and memory. This can be
physical or logical, but, of course, we assume each
unit is actually implemented as hardware. The Pro­
cessor Unit Class (PUC) is a class of PUs which has
several PUs as instances of the PUC. For each PUC,
one PU is assigned to manage instances of the class.
Figure 1 illustrates relations between PUCs and PUs.
PUC-1 has instances PU�lA and PU-lB, and PUC,.2
has instances PU-2A and PU-2B. This relation will be
established when DAGs are loaded onto the unification
co-processor.

We assume each PU's memory is is composed of a bit
markers register, value register, and pointer memory for
fan-in connections, fan-out connections, and address
registers.
2.2. Represenation of Tree and DAGs
Trees or DAGs are represented as PUs and their con­
nections. Each arc and node is assigned to each PU.
Figure 2 shows how trees and DAGs are represented

1 73

((A (B a lpha)
(C b et a)))

beta

Figure 2: Representation of Nodes and Arcs

using PUs. In Figure 2, PUs are represented as square.
Lines represent directed arcs. PUs in the middle of arcs
represent labels of arcs. Each PU is connected by an
Arc-to type link. When mapping feature structures on
PUs, all PUs representing tree-0 or DAG-0 are marked
with a marker 0, and all PUs representing tree-1 or
DAG-1 are marked with a marker 1 . PUs representing
values have a marker V, and that of features have a
marker F. Root PU s have a marker R.
2.3. Notations
The following notations will be used in describing al­
gorithms:

PU(a,b, ... ,z) : PU with specific markers set. PU(l ,S,V)
means that the PU has marker 1 , S, and V. N ega­
tion can be used. For example, PU (1 ,S ,-V) means
PU has marker 1 and S set, but not V. Unspecified
markers are don't care markers. Predicates can be
used to specify conditions.

&PU(a,b, ... ,z) : Address of PU which satisfies condi­
tions specified.

Propagate: Propagation of markers through Arc-to
link forward, i.e. direction from root to edge.

Back-Propagate: Propagation of markers through
Arc-to link backward, i.e. direction from edge
to root. This should not be confused with back­
propagation in connectionist learning.

P-Address: Variable which can. propagate or back­
propagate an address of a PU.

The following instruction set will be used:

Propagate (Marker, Origin, Destination, Initial­
action, Intermediate-action, Final-action):
Propagate marker from origin to destination. Be­
fore propagation starts, do initial-action. At each
PU during propagation, do intermediate-action,
and at the destination PU, do final-action. In some
special cases, destination is specified as 1 . This
means that markers are propagated only for one
traverse.

Back-Propagate (Marker, Origin, Destination,
Initial-action, Intermediate-action, Final­
action): Back-propagation version of propagate
instruction.

Mark(Marker,PU): Set marker to PUs. When PU is
not specified (i.e. Mark(V)), the mark operation
is performed to a current PU.

Set(Variable,Value) : Set operator set a value spec­
ified in the second argument to the variable
specified in the first argument. For example,
Set(P-Address,&PU) sets an address of current
PU to P-Address.

Connect(Arc-type,Origin,Destination): Create link
of arc-type between origin and destination.

Other instructions such as Create-Node(a,b, ... ,z),
ln(P-Address, From-Address), Equal(P-Address,
&PU), and GLB-Search(...) will be explained in sec­
tions where they are used. In some cases, if-then­
else control sequence is used for ease of understand­
ing. However, obviously, this can be implemented
using logical bit-marker operations such as (AND
1 2 4) followed by a propagation instruction, such
as Propagate(P-Address,PU(4),PU(V)). This case,
(AND 1 2 4) is a logical operation that set marker 4
when markers 1 and 2 exist. This instruction sequence
should be read as: if there are PUs such that PU(l,2),
then propagate(P-Address,PU{l ,2),PU(V)).

3. Pseudo-Unification
Pseudo-unification or tree-unification is a unification
between trees [Tomita and Knight, 1988]. The ad­
vantage of using pseudo-unification, instead of full­
unification (or graph-unification), is that it can be im­
plemented easier (less resource requirements and a sim­
pler algorithm) and faster than full.:.unification. Yet,
practically, pseudo-unification can cover a substantial
range of linguistic phenomena. Actually, KBMT-89
[Nirenberg et. al., 1989] (a knowledge-based ma­
chine translation system based on LFG, and devel­
oped at the Center for Machine Translation at Carnegie
Mellon University) was implemented using pseudo-
unification.
3.1. The Algorithm
The algorithm which we describe in lhis section
accounts for all non-disjunctive cases of pseudo­
unification. Tree-0 and Tree- 1 �e unified (figure 3).
Our algorithm for destructive tree unification consists
of three parts:

1 . Shared Node Detection
2. Failure Detection
3 . Merging

3.1.1. Shared Node Detection

The goal of the shared node detection stage, or the
common feature detection stage, is to set S markers to
all nodes that are shared between trees. Step 1 carry
out this stage.

1 74

Figure 3(a) shows the initial state of trees loaded
into a PU network. First of all, an address of a PUC
of a root PU of the tree-0 is set to P-Address. Then,
P-Address is propagated until it gets to a PU which has
V marker set. During this propagation, Check-Shared
is conducted at each PU which P-Address traverses
through. &ISA(Root) returns an address of the PUC of
the Root PU. By the same token, &ISA(PU-0) returns
an address of the PUC of the PU-0. The result is shown
in 3(b). All shared PUs are indicated by solid circles.
Some important markers on each PU are shown in
brackets, but some markers are ignored due to diagram
space.

3.1.2. Failure Detection

Next, we would like to detect conflicts. We assume
that if two different value units are linked to the PUs
both under the same PUC, and the PU is a shared arc
unit, then unification should fail. Step 2 and 3 carry
out this stage.

Back-Propagate starts from terminal nodes which
are not shared. The purpose of this back-propagation
is to identify pre-terminal PU s which are Arcs. In case
of Figure 3, tree-0 and tree-I are unifiable.

3.1.3. Merging

Since unifiability is assured in the failure detection
stage, all we need is to merge two trees. Step 4, 5, 6,
and 7 carry out this stage.

Back-propagation is used to search PUs which un­
shared leaves should be connected to. Figure 3(c)
indicate PUs involved in this process. Propagation
starts from PU(l ,V,-S) and goes up until it meets a PU
which is shared. These PUs are places where unshared
branches should be connected. Next, propagate an ad­
dress of ea'ch PUs for one traverse� Now, relevant PUs
have an address of PUs which should be connected.
Connect a PU with markers P-Address, 0, and B and
a PU with markers P-Address, 1 , and T with Arc-to.
Propagate marker O from PU with P-Address, 0, and
B. As a result, we get a unified tree consisting of PUs
marked with 0.

4. Full-Unification

Although pseudo-unification does quite a good job
in most practical cases, there are cases where graph­
unification is necessary. Lack of the re-entrance in
the pseudo-unification forces grammar writers to sub­
divide their grammar rules to cope with various cases
of re-entrance because re-entrant structure must be ex­
panded to trees. This section presents full-unification
(destructive version).

1 : Propagate(P-Address, Root, PU(V), Set(P-Address,&ISA(Root)), Check-Shared, nil)
Check-Shared: If there is a PU (PU-1), under the same PUC, such that PU(l ,In(P-Address, From-Addresses)),
then Mark(S), Mark(S,PU-1), and Set(P-Address,&ISA(PU-0)), else abort propagation.

2: Back-Propagate(PT,PU(V,-S),1 ,nil,nil,Mark(PT))
3: If there is a PU such that PU(PT,S), then unification is a failure.
4: Back-Propagate(P-Address,PU(l ,V,-S),PU(S), Set(P-Address, &PU(l ,V,-S)), nil, Mark(B,PU(S,P-Address)))
5: Propagate(P-Address, PU(B), 1, Set(P-Address,&PU(B)), nil, Mark(1j)
6: Connect(Arc-to, PU(P-Address,0,B), PU(P-Address, 1 ,n)
7 : Propagate(0, PU(0,B), PU(V), nil, Mark(0), Mark(0))

Table 1 : Pseudo-Unification Algorithm

4.1. The Algorithm
In full-unification, we only need to add merging of
arcs which is not covered in the pseudo-unification
algorithm.

1. Shared Node Detection Stage
2. Failure Detection Stage
3. Merging Stage
4. Arc Merging Stage

DAG-0 and DAG-1 are unified (figure 4). In figure
4(a), shared nodes are detected and indicated by solid
circles. Figure 4(b) and (c) shows the merging stage.
In figure 4(b) top and bottom PU s are marked and then
merged in figure 4(c). Up to this point, we can sim­
ply apply algorithms presented for pseudo-unification.
However, in unifying DAGs, we must take into account
the existence of unshared arcs which are in between
shared PUs that are not handled in the merging stage
in the pseudo-unification algorithm. An arc merging
stage merges such arcs into the DAG. The algorithm
presented here covers most of practical cases of non­
disjunctive graph unification, but there are some cases
which the algorithm does not provide correct result.
However, even in such cases, a simple post-processing
can modify the graph to provide correct results.
4.1.1. Arc Merging

The arc merging stage for the destructive graph unifi­
cation is shown in table 2. For all nodes with marker F
and 1 , but not S, propagate marker E. Propagation stops
when it arrives at a node marked S. Back-Propagate
P-Address until it arrives at a node with S. For all
nodes which have S and P-Address, mark B. Propa­
gate marker B for one traverse, and mark destination
node with T. Connect a node with markers P-Address,
0, and B and a node with markers P-Address, I, and
T with Arc-to. Propagate marker 0 from a node with
P-Address, 0, and B .

5. Nondestructive Unification
So far we have been discussing destructive unification
algorithms where represented feature structures are de-

1 75

stroyed in the process of unification. Obviously, this
would be problematic because (I) it destroys the orig­
inal feature structure even when the feature structure
needs to have its unifiability examined against more
than one feature structure, and (2) destructive unifica­
tion involves over-copying and early-copying [Wrob­
lewski, 1988]

In this section, we further extend algorithms pre­
sented so far, and present a nondestructive graph uni­
fication algorithm. To implement the nondestructive
graph unification, new nodes and arcs need to be cre­
ated by assigning them on empty PUs. Instead of
passing only P-Address, as we have been using so far,
we pass P-Address and N-Address (an address of the
newly assigned PU). Given two DAGs, the algorithm
in table 3 creates a new DAG as a result of unification.

Figure 5, 6 and 7 show intermediate processes.
DAG-0 and DAG-I are unified and result in DAG-2.
Figure 5 is a state after the shared node is detected.
Solid circles indicate PUs for shared nodes. In fig­
ure 6, all unifiable branches of DAG-0 and DAG-I
are merged to DAG-2 to create New DAG-2. In fig­
ure 7 intermediate arcs are merged into DAG-2, and
create Final DAG-2. One big difference between non­
destructive graph unification and destructive unifica­
tion is that, in nondestructive unification, new PUs are
assigned when unifiable subgraphs from DAG-0 and
DAG-1 are merged into DAG-2, whereas destructive
unification is simply marked with O at the merging pro­
cess. For this reason, Append-New-Node assigns a
new PU for each node merged to DAG-2, and connects
it to existing DAG-2 structure. Then, pointers to the
merged PU in DAG-2 and an equivalent PU in DAG-0
or DAG-1, are propagated so that the next PU can be
connected to them.

6. Typed Unification

The 'Ip-terms proposed in [Ait-Kaci, 1984] are similar
to the feature structure, but the functor is retained.
This provides a filter under ·unification because two
feature structures with incompatible functors cannot
be unified. When a conflict is detected, it is resolved
by finding the greatest lower bound (GLB) of two items

Tree-0 Tree-I DAG-0 DAG- I
RO[O,F] R[S]
A[O,F] A

AN[S] CN[S]

B E[S] D[S] E[S) DN[S]
a EN[S] G

B[O,F] B[l ,F] F
a[O,V] ,B[O,V] a[l ,V]

/3 (a) (a) Tree-0 Tree- I DAG-0 DAG-I
RO[O,F,S]

t
R[S]

A[O,F,S] A
AN[S] CN[S)

�l•�� B E[S] D[S)
DN[S]

a EN[S,B] G
B[O,F,S] C[O,F] F
a[O,V,S /3[0,V] a[l ,V,S

/3
(b) (b) Tree-0 Tree-I DAG-0 DAG-I
Rl [l,F,S,9] R[S]
A[l,F,S] A

AN[S]
B D[S] E[S] DN[S]

B[O,F,S] a G

a[O,V,S /3[0,V] a[l,V,S (c) (c) Tree-0 Tree- I DAG-0 DAG-I
RO[O,F,S,B] R[S)
A[O,F,S] A

AN[S,B
B D[S] E[S) DN[S,B

B[O,F,S]
a G[f,B]

a[O,V,S ,B[O,V] a[l,V,S (d) (d) Tree-0 Tree- I
Rl [l ,F ,S,9 ,BJ

A l ,F,S

B

B[O,F,S] a

a[O,V,S /3[0,V] a[l ,V,S (e) (e)
Figure 3: Pseudo-Unification Figure 4: Graph Unification

1 76

DAG-0 DAG-1
R[S]
A
AN[S] CN[S)
B E[S] D[S]

E[S] DN[S]
EN[S) G
F

f3

DAG-2 New DAG-2
R[S]

�

S]

AN[S] e CN[S]
E[S]

EN[S]

Figure 5: Nondestructive Graph Unification: Detect Shared Nodes

DAG-0 DAG-1
R[S]
A
AN[S,B CN[S)
B[T] E[S] D[S]

E[S] DN[S]
EN[S,B] G
F[T]

f3

DAG-2 New DAG.:2
R[S)

�

R[S)
C[S]

AN[S,B]e CN[S] AN[S]
D[S] E[S] B

EN[S,B] er

Figure 6: Nondestructive Graph Unification: Merge

1 77

DAG-0 DAG- 1
R[S,B]
A[T,BJ
AN[S,T CN[S]
B E[S] D[S] E[S) DN[S,B
er EN[SJ G[T,B]

F

f3

DAG-2 New DAG-2
R[S,B]

AN[Sr1 B
a

Figure 7: Nondestructive Graph Unification: Merge Internal Arcs

8: Propagate(E,PU(F,1 ,-S),PU(S),nil,nil,Mark(E))
9: Back-Propagate(P-Address, PU(E), PU(S), Set(P-Address,&PU), Set(P-Address,&PU), Mark(B))
10: Propagate(P-Address, PU(B), 1, Set(P-Address,&PU), nil, Mark(T))
1 1 : Connect(Arc-to, PU(P-Address,0,B), PU(P-Address,l ,T))
12: Propagate(0, PU(P-Address,0,B), PU(V), nil, Mark(0), Mark(0))

Table 2: Arc Merging Stage in Destructive Graph Unification
1 : Propagate(P-Address N-Address, Root, PU(V), Set(P-Address,&ISA(Root)) Set(N-Address,&ISA(New-Root)),

Check-Shared, nil)
Check-Shared: If there is a PU (PU-1), under the same PUC, such that PU(l ,In(P-Address,From-Addresses)),
then Mark(S), Mark(S,PU-1), Set(P-Address,&ISA(PU-0)), Create-Node(2,S,N-Address),
Connect(Arc-to,PU(N-Address),PU(2,S,N-Address)), and Set(N-Address,&PU(2,S,N-Address)),
else abort propagation.

2: Back-Propagate(PT,PU(V,-S),1 ,nil,nil,Mark(PT))
3: If there is a PU such that PU(PT,S), then unification is failure.
4: Back-Propagate(P-Address, PU(l ,V,-S), PU(S), Set(P-Address,&PU(l ,V,-S)), nil, Mark(B,PU(S,P-Address)))
5: Propagate(P-Address, PU(B), 1 , Set(P-Address,&PU(B)), nil, Mark(T))
6: Propagate(P-Address N-Address, PU(B), PU(V), Set(P-Address,&PU(2,P-Address), Append-New-Nodes, nil)

Append-New-Nodes: If a cuurent PU is PU(0,-S) or PU(l ,-S),
then Create-Node(2,N-Address), Connect(Arc-to,PU(P-Address),PU(2,N-Address)),
Set(N-Address,&PU(2,N-Address)), and Set(P-Address,&PU(2,P-Address)),
else abort propagation.

7 : Propagate(E, PU(F,1 ,-S), PU(S), nil, nil, Mark(E))
8: Back-Propagate(P-Address, PU(E), PU(S), Set(P-Address,&PU), Set(P-Address,&PU), Mark(B))
9: Propagate(P-Address, PU(B), 1 , Set(P-Address,&PU), nil, Mark(T)}
10: Propagate(P-Address N-Address, PU(B), PU(E), Set(P-Address,&PU(2,P-Address), Append-New-Nodes,

Connect(Arc-to,N-Address,PU))
Table 3 : Non-destructive Graph Unification Algorithm

in the taxonomic hierarchy. One way of implementing
this scheme is to incorporate a search of hierarchy at
the shared node detection. Perform the instructions
shown in table 4 immediately after the shared node
detection stage:

GLB-Search is a special instruction where propa­
gation of markers start from nodes with V markers
set but not S markers, and P-Address is propagated
through ISA hierarchy downward. At each PU during
the traversal, the current PU's address is set to GLB­
Address, and it is propagated through ISA link upward.
When GLB-Address arrives at a PU with V marker set
but not S marker, it means there are GLB between the
origin PU and the destination PU. Now, GLB-Search is
conducted backwards, starting from the previous des­
tination PU. This gives an address of the GLB PU to
the originated PU. Thus, both PUs have an addres of
the GLB PU. When one PU (PU-a) is under the other
PU's (PU-b) ISA hierarchy, a GLB PU should be PU­
a. Using the same mechanism, an address of PU-a is
given to both PUs. However, this time GLB-Address
propagation is not involved since GLB-PU itself is a
destination PU. At the merging stage, PUs represent­
ing GLB should be merged instead of PUs in DAG-0
or DAG-I (when GLB is one of the PU in DAG-0 or
DAG-1 , the PU in these DAGs can be merged). This

1 78

can be done by using pointers to the GLB PUs propa­
gated to PUs in DAG-0 and DAG-1 . This mechanism
enables typed unification.

7. Augmenting Unification
7 .1. Fuzzy Unification
Traditionally, unification has been a logical operation,
and thus, its failure resulted in hard rejection. We pro­
pose an alternative scheme called a fuzzy unification
or a soft rejection unification. Contrary to the tradi­
tional unification which only returns nil when failed, a
new unification scheme returns a partially unified fea­
ture structure and a value which indicates the degree
of failure. In the soft rejection unification, each arc
is assigned with a value which is accumulated when
unification in its subgraph was failed. Meanings of the
value can vary depending upon application and spe­
cific implementation. It can be a cost of violation or a
probability measure of which violation will happen.

Unification operation with such property is signifi­
cant for many applications which require robust pars­
ing. For example, speech input processing requires in­
tegrated processing of a speech recognition module and
linguistic parsing in order to limit the scope of search
(reduce perplexity) which in tum improves recognition

Typed 1 : GLB-Search(P-Address GLB-Address, PU(V,-S), PU(V), Set(P-Address,&PU) Set(GLB-Address,&PU),
Set(GLB-Address,&PU), nil)

Typed 2: GLB-Search(P-Address GLB-Address, PU(V,-S,P-Address), PU(V), Set(P-Address,&PU)
Set(GLB-Address,&PU), Set(GLB-Address,&PU), nil)

Typed 3: Mark(S, PU(Equal(P-Address,&PU)))

Table 4: Type Checking in Typed Unification

rate. While spoken language inherently involves erro­
neous sentences, use of the traditional hard-rejection­
type unification cannot be applied as it is - parsing
needs to proceed even with minor syntactic failures.
Some relaxation techniques have been proposed for
detecting and overlooking minor errors by allowing
some of the constraints to be ignored. However, tradi­
tional relaxation methods require multiple unification
operations to check against sets of constraint equations,
resulting in substantial overhead against conventional
unification-based parsing. In addition, these relaxation
methods did not assign weights or the probability that
certain violations will happen. This would have ad­
verse effects in reducing perplexity, because all possi­
ble errors are granted or predicted with equal weights.
Since the likelihood of certain violations happening can
be statistically obtained, providing a priori probabil­
ity of such violations would help improve recognition
rate.

For example, in a sentence John want to attend the
conference. Although John and want cause violation
in the third-person-present-singular constraint, we do
not want that parse to be aborted since its semantics can
be easily recovered in a post-processing. However, we
want to add a cost to such parse so that if a speech
recognition module provided two word hypotheses of
want and wants. John wants . . . would be selected as a
most probable hypothesis.

This extension is. trivial in our algorithm. The failure
detection stage is revised as seen in table 5.

ADD-value adds values of markers at the root node.
Alternatively, more sophisticated computation, instead
of ADD, can be used to determine the degree of unifi­
ability.

7.2. Multiple Unification

Traditionally, unification has been defined as an oper­
ation between between two DAGs; it takes two DAGs
and returns a unified DAG or nil when failed. We
extend this notion and propose multiple unification -
unification of more than two DAGs. This extension
would benefit processing of linguistic analysis which
uses N'-branching trees where N > 2. Although such N­
branching trees have been commonly used in liguistic
analysis, unification operations to directly handle these
analyses have not been proposed. Multiple-unification
would unify feature structures propagated from each

1 79

branch of trees simultaneously, and result in a consid­
erable reduction in computational cost. This would
benefit, particularly, parsing of Japanese where each
case-marked NP can be subcategorized by VP at the
top-level.

In our algorithm, multiple-unification is handled
simply by assigning M markers for each tree or DAG
identification where binary unification uses only mark­
ers O and 1 . The algorithm itself should be changed by
re-locating the failure detection stage to the end of the
entire process, so that all merging is completed when
failure detection is performed:

1. Shared Node Detection Stage
2. Merging Stage
3. Arc Merging Stage
4. Failure Detection Stage

Since unifiability of DAGs must be tested for all
combinations, it is more efficient to merge first rather
than to test unifiability N (N-1)/2 times before the merg­
ing stage.

8. Efficiency of the Algorithm

8.1. A Brief Complexity Analysis

The algorithm is efficient. Let's assume that we have
DAGs with N nodes, depth D and width W. Shared
node detection stage requires . propagation of markers
from roots to each value node. Since this can be done
in parallel, computational cost is approximately D x
(P + CSH) whereas P is a time required for propa­
gation of a marker for one depth, and CSH is a cost
for detecting wether two nodes has a same PUC. In
the failure detection stage, back-propagation of mark­
ers for one travarsal backward is requried. The cost is
P. The merging stage requires 2 x D x P + P at worst
cases. The arc merging state costs 3 x D x P+ P at worst
cases. Thus, in total, 6 x D x P + 3 x P + C + CSH x D
is the computational cost of the full unification in our
algorithm with 2N-1 processors. Thus, in rough esti­
mation, a complexity of the algorithm is of order of
O(D). When the number of processors (M) is less than
2N-1 , efficiency might degrade depending upon allo­
cation of nodes onto processors. If we can allocate
nodes in a same path to one processor, we only require

2: Back-Propagate(PT, PU(V,-S), 1 , nil, nil, Mark(P'I))
3: If there is a PU with PT and S, then Back-Propagate(Value, PU(PT,S), PU(R), nil, nil, ADD-Values)

Table 5: The failure detection stage of the fuzzy unification

W processors to maintain the efficiency close to the es­
timation above. This is because a marker-propagation
in the same path is sequential. However, W processor
condition may degrade its efficiency due to synchro­
nization required for marker-propagation at arc merg­
ing and branching crossing processor boundary. The
worst case of W processor condition is 0(D :N), but, of
course, this can be easily avoided by designing mem­
ory allocation optimally. When unification failed, then
the computational cost is D x P (cost for shared node
detection) and P (cost for failure detection). Let S be
a success rate of the unification (which is usually be­
tween 40% to 20%), expected computational costs will
be: S x (D x (6 x P + CSH) + 3 x P + C) + (1 - S) x
(D x (P + CSH) + P)

8.2. Experimental Results

We have implemented our algorithms on a simulator
for a fine-grained parallel machine which assumes ac­
tual computation time for each instruction. To unify
the DAGs shown in figure 4, the destructive graph
unification took 1957 micro seconds (510 unification
per second). The rate of performance degradation is
about 330 micro seconds for each additional depth.

Table 6 shows numbers of each instruction exe­
cuted, and computational cost in one example of the
unification operation. Statistics clearly show that the
shared node detection stage is the most computation­
ally expensive. Particularly, the extensive numbers of
address propoagation and bit check operation are two
major causes of the computational cost. The estimated
time for propagating an address for one traverse is set
to 15 micro seconds, which can be reduced to 3 micro
seconds on SNAP architecture, thus attining substantial
speed up. Algorithms described in this paper has been
implemented on the SNAP massively parallel computer
as a part of the joint project between Carnegie Mellon
University and University of Southern California.

9. Conclusion

This paper described unification algorithms using
marker-passing. We only assumed passing of bit­
markers, pointers to PUs, and values. Operations re­
quired for our unification algorithms are simple and
easily implementable in massively parallel machines
which use numbers of processing units with a rela­
tively low-processing capability. Actually, operations
and marker-passing schemes assumed in this paper are
readily available in actual massively parallel machines
such as SNAP [Moldovan et. al., 1989] .

1 80

The algorithms are simple. It requires passing of
bit-markers and addresses to PUs for conventional uni­
fications. Despite its simplicity, our algorithms cover
all non-disjunctive cases of unification of trees and
most practical cases of unification of graphs. How­
ever, investigations should be conducted to identify
a class of graphs which our algorithms can and can­
not handle. Should a class of graphs which can be
handled by our algorithms cover a class of graphs ap­
pearing in natural language processing, our algorithms
can be a very powerful scheme of parallel unification
processing. Typed-unification, originally proposed by
[Ait-Kaci, 1984] , can be naturally incorporated in our
algorithms since our algorithms are based on marker­
passing which is originally proposed for an intersection
search. Conformity with lattice search is obvious.

The algorithms are efficient on massively parallel
machines. Even in nondestructive_graph unification, it
requires only nine propagations and back-propagations
and some checking instructions. For the graphs with
depth D, unification should be done at 6 x D x P +
3 x P + C + CSH x D whereas P is a time required
for propagation of a marker for one arc traverse, C is
a total cost of condition checks, and CSH is a total
cost for detecting whether two nodes has a same PUC.
Thus, the complexity is of orderof O(D). The processor
requirement is linear to the size of graphs. This simple
estimation indicates that our algorithm would be fast
enough for practical applications.

Novel features such as multiple-unification and
fuzzy unification adds new dimensions to our unifi­
cation algorithms. Also, our unification algorithms are
easily augmented for typed unification. In practical
cases, needs for unification of more than two feature
structures are commonly observed, yet this has not
been proposed in the past. Use of multiple-unification
reduces the amount of copying and thereby improves
performance. Fuzzy unification would be a very use­
ful concept for applications such as spoken language
processing. Instead of rejecting at the detection of
unification failure, the fuzzy unification adds a cost
of violation in such cases, and allows processing of
violated hypotheses to proceed. Where application
domains inevitably involve ungrammatical inputs, the
fuzzy-unification would be a powerful extension to the
traditional unification approach.

Acknowledgement

The author would like to thank Hitoshi Iida, Hideto
Tomabechi, Dan Moldovan, and members of the SNAP

Propagate Propagate Bit Address Store Time
Stage Markers Address Check Check Address (micro-seconds)
Shared Node Detection 0 74 157 15 0 1778
Failure Detection 1 0 4 0 0 30
Merge 0 2 14 0 2 108
Internal Arc Merge 0 2 8 0 2 78
Total 1 78 183 15 4 1994

Table 6: Number of Instructions at each stage of unification

project for discussions, and Masaru Tomita and Jaime
Carbonell for their supports.

References
[Ait-Kaci, 1984] Ait-Kaci, H., A Lattice Theoretic Ap­proach to Computation Based on a Calculus of Par­tially Ordered Type Structures, Ph.D. Thesis, Uni­

versity of Pennsylvania, 1984.
[Dwork et. al., 1984] Dwork, C., Kanellakis, P. and

Mitchell, J., "On the Sequential Nature of Unifica­
tion," Journal of Logic Programming, vol. 1, 1984.

[Hillis, 1985] Hillis, D., The Connection Machine,
The MIT Press, Cambridge, 1985.

[Knight, 1989] Kevin, K., "Unification: A Multi­
Disciplinary Survey," ACM Computing Surveys, Vol. 21 , Number 1 , 1989.

[Moldovan et. al., 1989] Moldovan, D., Lee, W., and
. Lin, C., SNAP: A Marker-Propagation Architecture for Knowledge Processing, University of Southern
California Technical Report CENG 89-10, 1989.

[Nirenberg et. al., 1989] Nirenberg, S. (Ed.), Knowledge-Based Machine Translation, Center for
Machine Translation Project Report, Carnegie Mel­
lon University, 1989.

[Pollard and Sag, 1987] Pollard, C. and Sag, I., An Information-based Syntax and Semantics, Volume
1 ., Chicago University Press, 1987.

[Tomita and Knight, 1988] Tomita, M. and Kevin, K.,
"Pseudo-Unification and Full Unification," CMU­
CMT-88-MEMO, 1988.

[Wroblewski, 1988] Wroblewski, D., "Nondestruc­
tive Graph Unification," in Proceedings of AAAl-88,
1988.

[Yasuura, 1984] Yasuura, H., "On Parallel Computa­
tional Complexity of Unification," in Proceedings of the International Conference on Fifth Generation Computer Systems, 1984.

1 81

UNIFICATION-BASED DEPENDENCY PARSING
OF GOVERNOR-FINAL LANGUAGES

(Hyuk-Chul Kwon)

Dept of Computer Science
College of · Natural Science, Pusan National U,:iiversity

30 changjun-dong, Keumjung-ku, Pusan 609-735, Republic of Korea
Phone : 82-051-510-2218(office)
Phone : 82-051-556-6223(home)

E-mail : hckwon @ cosmos.kaist.ac.kr
Fax : 82-051-510-1792

(Aesun Yoon)

Dept. of French
College of Cultural Sciences, Pusan National University

30 changjun-dong, Keumjung-ku Pusan 609-735, Republic of Korea

ABSTRACT

This paper describes a unification­
based dependency parsing method for
governor-final languages. Our method
can parse not only projective sentences
but also non-projective sentences. The
feature structures in the tradition of the
unification-based formalism are used for
writing dependency relations. We use a
structure sharing and a local ambiguity
packing to save storage.

This paper was supported in part by
NON DIRECTED RESEARCH FUND,
Korea Research Foundation, 1989

I. Introduction

The parsers . of phrase structure
grammars face troubles for parsing free
word order languages in following
respects.

First, t�ey require a large size of gram -
matical rules for parsing free word order
languages. Second, the free word order
often results in discontinuous con­
stituents(Covington, 1988). A phrase­
structure tree of a sentence with
discontinuous constituents would have
c ro s s ing b ranche s . Thi s cross ing
branches can not be represented by con­
ventional context free rules. Third, free
word order languages feature very rich
sy s t ems o f m orphologi cal mark­
ings(Kwon, 1990). Word arrangements

1 82

and morphological markings are ob­
viously contingent on relations between
wordforms rather than on constituen­
cy(Mel' cuk, 1988).

One approach to parse free word
order languages is the principle-based
parsing(Berwick, 1987). The other ap­
p roa ch i s t h e dependency pars­
ing(Mel' cuk, 1988).

This paper describes a unification­
based dependency parsing method for
governor-final(head-final) languages
like Korean and Japanese. We develop
the parsing method with special refer­
ence to Korean but the method can be
adapted directly to Japanese parsing.
Korean and Japanese are relatively free
word order languages(Kwon, 1990). Al­
though their word order is free except
that dependents always precede their
governor, word order variations lead to
different emphasis on the topic and the
focus. In contrast, their morpheme order
is fixed at the level of words.

In Korean and Japanese, it is quite
natural to drop any arguments including
a subject and an object if they can be
recovered through the context. Null sub­
jects are also found in Italian and
Spanish(Moon, 1989) . Null arguments
make it much harder to parse Korean and
Japanese using phrase structure gram­
mars. Because dependency grammars
analyze syntact ic s tructure as the
relationships between ultimate syntactic
units(i.e, morpheme, part of speech), de­
pendency parsers can easily parse sen­
tences with null arguments.

1 83

This paper follows the grammatical
fo rmal i sm o f M e l ' cuk (1 98 8) , but
modifies i t for computational efficiency
and Korean specific characteristics. We
try to parse not only projective sentences
but also non-projective sentences. Fea­
ture structures in the tradition of unifica­
tion-based grammars are used for writing
dependency relations. But unification
operation is modified for parsing non­
projective sentences. A structure sharing
and a local ambiguity packing is used to
save storage.

II. Dependency Relations and Fea­
ture Structures

Mel'cuk differentiates three depend­
ency relations : morphological depend­
ency, syntactic dependency and semantic
dependency(Mel'cuk, 1988).

The syntactic dependency is binary
relations between wordforms, which are
anti-symmetric, anti-reflexive and anti­
transitive. The syntactic relations are
represented by arcs : X - > Y: where X
governs Y; X is called the governor of Y;
and Y is called the dependent of X. The
syntactic relations are best represented
by a connected directed labeled graph.

Mel' cuk gives additional restrictions
on the syntactic structure. First, a syntac­
t ic structure contains exact ly one
node(root) that does not depend on
another node. Second, in a syntactic
structure, no node may simultaneously
depend on two or more other nodes. The
syntactic structure becomes a rooted
tree, specifically a D-tree by these two
restrictions.

In Korean and Japanese, there are two
different morphemes : free(content)
morphemes and bound(function) mor­
phemes. Bound morphemes include
postpositions and verbal endings. A free
morpheme can depend on another mor­
pheme directly. But a bound morpheme
can depend on another morpheme after
it governs other morphemes. This means
that the leaf nodes of the D-tree are al -
ways free morphemes.

We use feature structures in the tradi­
tion of unification-based grammars for
writing dependency relations(Sells,
1985).

governor relation dependent

[cat : postposition] case-marking [cat : noun]

[cat : verb-stem} actant �car_: po�tpo�tion]
attr1but1ve : -
coordinative :

[cat : verbal-ending] modal-marking (cat : verb-stem}

[cat : noun] attributive tt .= po_stpOsition
j ttr1but1ve : +

[cat : noun] coordinative
�

at : �s�sition
) oordmat1ve : +

< Table I>

< Table 1 > shows parts of the
government pattern of Korean. As
Korean and Japanese are governor-final
languages, dependents always precede
their governors . But there are no
precedence relations between depend­
ents in general.

[ex : .. John"']
cat : noun
animate : +

(!ex : "'Susan"']
cat : noun
animate : +

cat : pos�sit�on �
x : "' i"'

J
case : nominative
bound : +

�:a� ; ���si�o
� r

e
: ==::�stem

� [

e
:/:e�l-endin

� case : accusative subcat->subj,obj} modal : declarativ
bound : + ubj : [animate : + bound : +

< Dictionary 1 >

< Dictionary 1 > is a sample Korean
dictionary. The feature "bound" is used to
d i fferentiate between bound mor­
phemes and free morphemes. When a
bound morpheme governs another mor­
pheme, the value of "bound" become
"nil". As ''bound" is not controlled by the
unification operation, the change of the
value of "bound" does not destroy the
monotonicity of the unification. More
explanation will be found in chapter III.

(1) John - i Susan - u1
SM OM

(2) Susan-ul John-i po-da

po - da
VS VE

(see) (DEC)

< SM : Subject Marker,OM :Object Marker,
VS : Verb Stem, VE : Verbal Ending, DEC :
D EClarative >

In (1) and (2), the subject marker("i")
governs "John" and the obj e ct
marker("ul") governs "Susan" . "Po"
governs both the nominative construc­
tion ("John-i") and the accusative con­
struction ("Susan-ul") . Because of no
dependency between "J ohn-i" and
"Susan-ul", there is no precedence rela­
tion between them. "da" governs "John-i
Susan-ul po". As a result, both (1) and (2)
are grammatical sentences and they have
the same meaning as "John sees Susan".

1 84

(3) John-i Bill-kwa Susan-ul po-da

Although "kwa" is a postposition, it
can depend on a verb stem or a noun, but
not both: When it depends on a verb
stem, its meaning is "with". But its mean­
ing is "and" if it depends on a noun.
< Dictionary 2 > shows the lexical infor-
mation of "kwa".

cat : postpos!tio� �
ex : "kwa"

�
case : comm1tat1v
bound : _+

cat : pos�siti�n
�ex : "kwa" j

case : COnJUOCtlV

oordinative : +
bound : +

< Dictionary 2 >

�

ex : "eui"

]
cat : postpositio
case : possesive
ttributive : +
bound : +

. '

From < Table 1 > and < Dictionary
2 > , we conclude that (3) has two dif­
ferent interpretations.

I

N

i

o
m

R

ComR
1 fccR

(3') John -1 Bill -kwa Susan -ul po -da
(John sees Susan with B ill)

I
NomR

j_ _e� fAccR7 I

(3") John -i B il l -kwa Susan -ul po -da
(John sees Susan and B ill)

< NomR : Nom i native Relat ion, AccR : Accusative
R , ConjR : Conjunctive R, ComR :Co m m i native R>

But (4) has only one interpretation.

1 85

!

N

fAcc�mR

(4) John-i Susan-ul B ill-kwa po-da

(John sees Susan with B ill)

< Table 1 > and < Dictionary 2 >
also show that the possessive · postposi­
tion "eui(of)" only depends on a noun.

The subcategorization of a verb gives
additional constraints on the depend­
ency relations. The subcategorization is
used for a case assignment, the decision
of null arguments and a filter on govern­
ing patterns. When a subject and an ob-:
ject are topicalized, the subject marker
and the object marker are replaced to
topic markers.

[

TopR

n
(5) John-un Susan-ul po-da

1M

r
No m R

[TOpR
J
1 .

(6) John-i Susan-un po-da
TM

< 1M :Topic Marker, TopR : Topical R >

Postpositions do not provide the suf­
ficient information for the case assign -
ment of topicalized constructions in (5)
and (6).

In (5), "po" governs the topicalized
construction and the accusative con-. B b II II b struct10n. ut ver stem po su -
categorizes both a subject and an object.
So, the noun of the topicalized construc­
tion is the subject of (5). (5) and (6) have
the same meaning as (1) except that the
subject and the object are topicalized
respectively.

In Korean, the noun of a nominative
construction is always the subject of a
verb, and the noun of an accusative con­
struction is the object of a verb, but not
vice-versa. Therefore, we separate the
case marking operation and the case as ­
signment operation. The case of a topi­
calized construction is assigned when a
verb stem is governed by a verbal ending.

(7) John- i Su san-ul po-ass - da - k o malha - da
VE VE VE V S VE

(past) (DEC) (COMP) (say) (DEC)
<COMP : COMPiementizer>

The decision of null arguments also
requires the subcategorization. As the �
verb stem "malha" subcategorizes a sub­
ject and a complementizer("ko"), and
"po" subcategorizes a subject and an ob­
ject, two subjects are required in (7). But
there is only one nominative construc­
tion. The nominative construction can be
governed by "po" or "malha", but not
both. As a result, we can conclude that
one subject is dropped. (7) has two dif­
ferent interpretations as below.

1NornR7
t_ Lcc_jl_

L
Actl

(7') John- i Susan-ul po - ass da-ko malha-da
(? says that John saw Susan)

r---
NomR

l C
c
l

(T') John-i Susan-ul po-ass-da-ko malha - da
(John says that ? saw Susan)

< ? : nu l l argu ment, ActR : Actant Relat ion >

Another constraints are required to
parse the constructions with numerals of
Korean and Ja panes e.

rr:31
(8) i) sajen se kwon(three d ictionaries)

N O U N DET N O U N
(d ict ionary)(three)B ook .Form

+o:i
i i) -;- k won (three book- l i ke material s)
i i i) * sajen k won(not a l lowed)
iv) * se sajen kwon(not al lowed)

< " kwonH : a u n i t for count ing book- l i ke materia l s,
DET : determ iner, ModR : Modi ficative Relat ion,
C lassR : Class if icative Relation>

"kwon" is a noun but a bound mor­
pheme. We call it an incomplete noun.
"kwon" can govern a numeral and a noun
but there are restrictions in the govern­
ing order. "kwon" can govern a noun only
after it governs a numeral, but the op­
posite i s not true. This additional
precedence restrictions can be formu­
lated as < Table 2 > and < Dictionary
3 > .

governor re lation dependen t

[cat : no u n] mod i ficative [cat:detJ

[

' : n o u n j
m od i f ier classi ficative [cat: nou nj

l ex :de t
[numera l : +

< Table 2 >

1 86

[::: :: ��::
n

" l class if ier :
[i s-a : book]

bound : +

< Dict ionary 3 >

The second row of < Table 2 > shows
that a noun which is modified by a
numeral (determiner) can govern a
noun. The dictionary also shows that
"kwon" is an incomplete noun and is a
unit for counting books._ There is a mor­
phological dependency between "kwon"
and "sajen". The above shows how our
system deals with the morphological de­
pendencies and additional precedence
restrictions using feature structures.

III. Parsing Projective Sentences and
Structure Sharing

Using dependencies for parsing
natural languages, the projectivity is an
extremely important property of the
word order. A sentence is called projec­
tive if and only if the arcs of dependency
l ink s s at i s fy fa l lowing res tric­
tions(Mel'cuk, 1988).

(i) No arc crosses another arc

(ii) No arc covers the root of D-tree

Although most sentences of natural
languages are projective, there exist
several types of non-projective senten­
ces. Non-projective sentences have dis­
continuous constituents. This chapter
gives a parsing algorithm for projective
sentence s . The algo rithm will be
modified for non-projective sentences in
the next chapter.

1 87

The algorithm scans a sentence from
left-to-:-right for searching a governor. If
a governor is found, it tries to make all
the dependency links between the gover­
nor and the constructions whose head is
the morpheme which immediately
precedes the governor. The term head is
used in the sense of top node of a con -
struction as Mel'cuk(1988).

In a projective sentence, a governor
can govern a wordform if and only if the
governor governs directly or indirectly all
the wordforms between them. Let
< m1,m2, ... ,mn > be an ordered list of
morphemes. If · mi governs mj and mj
governs mk, then mi indirectly governs
mk. The morpheme mi can govern Illj if
and only if all the morphemes between
mj and mi are governed directly or in­
directly by mi where j < i. A head governs
directly or indirectly all the other mor­
phemes in a construction.

Our parsing strategy is as follows.

First) The parser gets a morpheme mi
from the lexical analyzer until an end-of­
sentence marker is encounted.

Second) The parser searches construc­
tions whose head is mi-1. When there
exist dependency relations between mi
and some of them, the parser generates
new constructions and stores them in the
queue.

Third) When some constructions exist
in the queue, the parser gets one of them
from the queue. Otherwise, goto first) .
Let that construction contain all the mor­
phemes from mj to mi where j < i and mi
is its head. The parser searches construe-

tions whose head is mj-1. When there
exist dependency relations between mi
and some of them, the parser generates
new constructions, stores them in the
queue and repeats third) .

We implement the algorithm by chart.
< Fig. 1 > shows the architecture of a
Korean parser which runs at Apollo
workstations.

<Fig . I >

The parser joins one dependent to
one governor at a time. Each edge has a

- starting point and an ending point.

N SP EP Constn1ction Remark

I 0 I arumdap

2 0 2 (arumdap.n)

3 2 3 Mary

4 0 3 [[arumdap,n),Mary] beautiful Mary

5 0 4 (([arumdap,n],Mary],eui] of beautiful Mary

6 2 4 [Mary, eui] of Mary

7 4 5 chinku

8 2 5 [[Mary,eui],chinku] friend of Mary

9 0 5 ((([arumdap,n],Mary],eui],chinku] friend of beautiful Mary

1 0 0 5 ([[arumdap,n],Mary,eui]) ,chinku) beautiful friend or Mary

<Table 3>

0 2 3 4 5

I b b b b b 0
(9) arumdap - n Mary - eui chinku

AS VE PP[poss] NOUN
(i s beautiful) (COMP) (of) (friend)

<AS : Adjective Stem, VE : V erb E nd ing,
PP[poss] : Possesive Postpo s i t ion>

< Table 3 > shows the content of the
pool while (9) is parsed. (9) means "a/the
friend of Mary who is ·beautiful" and has
two different interpretations as (#9) and
(# 10). < Fig .2 > shows the state of the
pool when "chinku" is processed.

1 88

I # 11 #21

#1 #2

lexical
analyzer

front,rear

(i)

front rear

i �
#5 #6 #7

(ii)

front rear

I # I I "2 I . . . I "5 I "61 #? I #B I# 9 J
(iii)

t r
. . . #5 #6 #7 #8 #9

#1 0 �

(iv)

<Fig. 2> The state of the pool

(i) is the pool after processing "arum­
dap-n Mary-eui". As the inactive edge
pool is empty, the parser gets "chinku"
from the lexical analyzer as (ii). When
the processing of (#7) is finished, the
pool become (iii). (iv) shows the pool
when {#10) is generated. As bound mor­
phemes ("n","eui") can not depend on
other morphemes by themselves, it is not
necessary to store bound morphemes at
the pool.

Tqe storage for parsing grows ex­
ponentially as ambiguities are increased�
We use a structure sharing(Tomita,
1 986) and a local ambiguity pack­
ing(Shieber, 1986) to save storage. Al­
though the order of the features is not
important in the unification formalism,
we always place the "bound" feature first.

dcp l(ov

<Fig. 3>

< Fig. 3 > shows that {#8) shares the
structures of {#6) and {#7). {#6) shares
the structure of "eui" except for the
"bound" feature. As the "bound" feature
is excluded, the monotonicity of the
unification is not destroyed.

We state that two or more subtrees
represent a local ambiguity if they have
the same starting point and the same en-

1 89

ding point and if their top nodes are the
same wordform. That is, (#9) and {#10)
of the < Table 3 > represent a local am­
biguity. If a sentence has many local am­
biguities, the total ambiguities would
grow exponentially. To avoid this, we use
a technique called local ambiguity pack­
ing which is suggested by Tomita(1986).

SP EP constructions

1 0 1 "arumdap"

2 0 2 [#1 1 ,,n,,]

3 2 3 "Mary,, .

4 0 3 [#2 I #3]

5 0 4 [#4 I "eui"]

6 2 4 [#3 I "eui"]

7 4 5 "chinlrn"

8 2 5 [#6 I #7]

9, 1 0 0 5 [OR([#2,#6],#5)1#7]

[[#2,#6] 1#7] = [#21#8] = #1 0

<Table 4>

< Table 4 > is the content of the
pools after (9) is parsed with a structure
sharing and a local ambiguity packing.
#(9, 10) in < Table 4 > is the result of the
local ambiguity packing of (#9) and
{#10) in < Table 3 > .

IV. Parsing Non-Projective Sen­
tences

Non-projective sentences give serious
difficulties in parsing natural languages.

But almost all languages have some sorts
of non-projectivity(Mel'cuk, 1988).

There are two types of non-projec­
tivity in Korean. The first one is related
to the feature co-occurrence where the
dependency links do not pass over the
sentence boundary.

lrNomR �

1 [cccR
r"

1
�

I 0) John - i kulko Susan-ul po - ji an - da
ADV VS VE AVS VE (negative) (see) (not) (DEC)

(John never see Susan)

< *("'kulko .. - .. an") = never, A VS :Auxiliary Verb Stem,
ADV :ADVerb>

"kulko" is used only in negative senten -
ces. In (10), "po" governs "John-i" and
"Susan-ul", but the auxiliary verb stem
"an" governs "kulko" and "po-ji". "kulko"
can be placed anywhere before "an" at
(10).

In a non-projective sentence, a gover­
nor can govern a wordform al though the
governor does not govern directly or in­
directly some wordforms between them.
This is one of the greatest obstacles for
parsing non-projective sentences by our
parsing method.

To overcome this problem, we intro ­
duce a new type feature called a co-oc­
cu rre nce feature . A co-occurrence
feature-value is represented as ["fn" : c
''v"], where "fn" is a feature name and "v"
is a value. ["fn" : c "v"] means that its
governor must have the feature-value
["fn" : ''v"] .

[negative : c +] cat : adverb l ex : " ku l ko"
legative : +] cat : aux-verb-stem lex : "an"

<D ictionary 4 >
1 90

governor Re lation Dependent
[cat : ve rb - ste m] temporary (negat i ve : "

J cat :adverb
lcat:aux-verb-stem J modif icative [negative : , +] lex : ,,.an,,. cat :adverb
[cat:aux-verb-stem] modificative [cat:verbal -end i ng]

<Table 5>
The first row of < Table 5 > shows

that a verb stem temporarily governs an
adverb which has [negative : c +] . When
the verb stem depends on a construction
which has [negative : +] and the depend­
ency does not pass over the sentence .
boundary, the temporary depende·ncy
link is removed and a new dependency
link between the adverb and the con -
struction is connected. Two construc­
t i ons a re no t unified when the i r
dependency is temporary. We handle the
co-occurrence feature similar to the
"bound" feature.

modificative

I cat :adv j •'

I lex: •kulko• VI

(i) (i i)

<Fig . 4>

When "an" governs "po-ji", a new link
between "an" and "kulko" replaces the
temporary link between "po" and "kulko".
It is important that [negative: c +] is
removed in (ii). If some co-occurrence
features remain after the parsing, the
sentence is incorrect.

The other type of non-projectivity oc­
curs by non-local dependencies. Some
constructions which are the dependents
of an embedded verb can be placed at
outer sentences in Korean. We can also
find non-local dependencies in Fin­
nish(Karttunen, 1986).

j[dccR
NomR

_LmR ci
(1 I) S u sa n � J o h n� Tom-i po -ass -da-ko malha -da

(J o h n sa y s that Tom saw Susan)

As stated above, "po" subcategorizes a
subject and an object, and "malha" sub­
categorizes a subject and a complemen­
tizer. (1 1) has the cross arcs because

"J h • 11 d II II "malha" governs o n-1 an po
governs "Susan-ul".

Karttunen shows that this problem
can be solved by functors with a floating
type in Finish(Karttunen, 1986). The
same framework also works in Korean.
The framework can yield more than one
results, but most of them are only accept ­
able at extraordinary situations. There­
fo re , ou r sys te m strengthens the
framework as a construction can be com­
bined only with the nearest verb stem
which can govern it when there is no
projective governor of it.

1 91

V. Conclu·sion

We have shown a unification-based
dependency parsing method for gover­
nor-final languages like Korean and
Japanese. Feature structures in the tradi­
tion of unification-based grammars have
been used for writing dependency rela­
tions. Our method can parse non-projec­
ti ve sentences as well as projecitve
sentences.

We implement a Korean parser by the
method presented in this paper using C
language. The first version parser only
used a structure sharing. But the current
version uses a structure sharing and a
local ambiguity packing. The local am­
biguity packing saves about 35 % of
storage for parsing sample sentences.

More efficient structure sharing
method and the dictionary structure are
under study. We plan to use our method
for parsing fixed word order languages.

Reference

[1] Berwick, R. C. 1987 Principle-Based
Parsing, A.I. T.R. No. 972, MIT AI Lab.

[2] Covington, M. A. 1988 Parsing Vari ­
able Word Orde r Langu age with
Unification-Based Dependency Gram­
mar, ACMC Research Report 01-0022,
University of Georgia.

[3] Hel lwig , P . 1 986 D ependency
Unification Grammar, Proc. of Colling
86, pp.195-198.

[4] Karttunen, L. 1989 Radical Lexi­
calism, Alternative Conceptions of
Phrase Structure, The University of
Chicago Press., pp44-65.

[5] Kashket, M. B. 1987 A Government­
Binding Based Parser for Warlpiri, TR
993, MIT AI Lab.

[6] Kwon, H., Yoon, A., Kim, Y. 1990 A
Korean Analysis System Based on
Unification and Chart, Proc. of Pacific
Rim International Conference on Artifi­
cial Intelligence '90, pp251-256.

[7] Mel'cuk, I.A. 1988 Dependency Syn­
tax : Theory and Practice, State of
University of New York Press.

[8] Moon, G. 1989 Ph.D.Diss.,The Syntax
of Null Arguments with Special Refer-

- ence to Korean, The University of Texas
at Austin.

[9] Sato, P. T. 1988 " A Common Parsing
Scheme for Left- and Right-Branching
Languages," J. of Computational Lin­
guistics, Vol. 14, No. 1, pp.20-30.

[10] Sells, P. 1985 Lectures on Contem­
porary Syntactic Theories, CSLI.

[1 1] Shieber,S.M et al. 1986 A Compila­
tion of Papers on Unification-Based
Grammar Formalisms : Part II, Report
No. CSLI-86-48

1 92

[12] Tomita, M. 1986 Efficient Parsing
for Natural Language, Kluwer Academic
Pub.

February 15, 1991

Session B

Pearl : A Probabilistic Chart Parser*

J,

D avid M . Magerman
CS Department

Stanford Universi ty
Stanford , CA 9430.5

ma.german @cs.sta.nford .edu

Abstract This paper describes a natural language pars­ing algorithm for unrestricted text which uses a pr:obability-based scoring function to select the "best" parse of a sentence. The parser , Pearl , is a time-asynchronous bottom-up cha.rt parser with Earley-type top-down prediction which pur­sues the highest-scoring theory in the chart, where the score of a theory represents the extent to which the context of the sentence predicts that interpre­tation . This parser differs from previous attempts at stochastic parsers in that it uses a richer form of conditional probabilities based on c6ntext to pre­dict likelihood. Pearl also provides a framework for incorporating the results of previous work in part-of-speech assignment , unknown word mod­els , and other probabilistic models of linguistic features into one parsing tool , interleaving these techniques instead of using the traditional pipeline architecture . In preliminary tests , Pearl has been successful at resolving part-of-speech and word (in speech processing) ambiguity, determining cate­gories for unknown words , and selecting correct parses first using a very loosely fitting covering grammar. 1

Introduction All natural language grammars are ambiguous . Even t ightly fitting natural language grammars are ambigu­ous in some ways . Loosely fitting grammars , which are necessary for handling the variability and complexity of unrestricted text and speech , are worse. The stan­dard technique for dealing with this ambiguity, pruning *-This ·work was partially supported by DARPA grant No. N0014-85-K0018 , ONR contract No. N00014-89-C-0l 71 by DARPA and AFOSR jointly under grant No. AFOSR-90-0066, and by ARO grant No. DAAL 03-89-C0031 PRI . Special thanks to Carl Weir and Lynette Hirschman at Unisys for their valued input, guidance and support . 1 The gramm ar used for our experiments is the string grammar used in Unisys' PUNDIT natural language un­derstanding system.

Mitchell P. Marcus
CIS Department

Univers i ty of Pennsylvania.
Philadelphia. , PA 1 9 1 04

mitch@linc.ci s . upenn .edu

grammars by hand, i s painful , time-consuming, and usually arbitrary. The solution which many people have proposed is to use stochastic models to train sta­tistical grammars automatically from a large corpus . Attempts in applying statistical techniques to nat­ural language parsing have exhibited varying degrees of success. These successful and unsuccessful attempts have suggested to us that : • Stochastic techniques combined with traditional l in­guistic theories can (and indeed must) provide a so­lution to the natural language understanding prob­lem. • In order for stochastic techniques to . be effective, they must be applied with restraint (poor estimates of context are worse than none(S]) . • Interactive , interleaved architectures are preferable to pipeline architectures in NLU systems, because they use more of the ava.ilable · information in the decision-making process. We have constructed a stochastic parser , Pearl , whi�h is based on these ideas. The development of the Pearl par�er is an effort to combine the statistical models developed recently into a single tool which incorporates all of these models into the decision-making component of a parser. While we have only attempted to incorporate a few simple sta­tistical models into this parser , Pearl is structured in a way which allows any number of syntactic, semantic, and other knowledge sources to contribute to parsing decisions . The current implementation of Pearl uses Church's part-of-speech assignment trigram model , a simple probabilistic unknown word model , and a con- . ditional probability model for grammar rules based on part-of-speech trigrams and parent rules . By combining multiple knowledge sources and using a chart-parsing framework , Pearl attempts to handle a number of difficult problems. Pearl has the capa­bility to parse word lattices , an ability which is useful in recognizing idioms in text processing, as well a.s in speech processing. The parser uses probabilistic train­ing from a corpus to disambiguate between grammati­cally acceptable structures , such as determining prepo-

1 93

si t. i on al ph rase at.Lach men 1. a 1 1 d con.i 1 1 1 1 c t ion scope. F i­
naJ ly , Pearl mai n t .ai ns a we l l-formed subs t. r i ng table
w i t. b in i t.s ch art . to a l low for part ia l parse retrieva l . Par­
t i al parses are 1 1 se f'1 i l both for error-message generation
and for p roccssi ng 1 1 1 1 gra111 1 nat. i cal or i ncomplet.e _ sen­
ten ces .

Jn p re l i m i n ary t.cs t.s , Pearl has shown promising re­
su l t.s i n hand I i ng pa rt-of-speech assignment , preposi­
t ional p h rase at. t.ac l 1 1 nen t , an d unknown word catego­
rization . Trai ned 0 1 1 a corpus of 1 1 00 sentences fr0111
the Voyager d i rec t. ion-find i ng systern3 a.nd usi ng the
str i 1 1 g grammar fron1 the P UNDIT Language Under­
stand ing Syst.ern , Pearl correctly parsed 35 out of 40 or
88% of senten ces select.eel from Voyager sentences not
used in the trai n i ng data. We will describe the details
of this experiment l ater .

In this paper , we will fi rst explain our contribu­
tion to the stochast ic models which are used in Pearl :
a context-free grammar with context-sensitive condi­
tioi1al probab-il it ies . Then , we wrll describe the parser's
arch i tecture and the parsing algorithm. Finally, we
wi l l give the resu l ts of some exp'eriments we performed
using Pearl which explore its capabil ities.

Using Statistics to Parse

Recent work i nvolving context-free and context­
sensi t ive probabil istic grammars provide little hope for
the success of processing unrestricted text using proba­
bilistic techniques . Works by Chitrao and Grishman[3]
and by Sharman , J el inek , and· Mercer(14] exhibit ac­
curacy rates lower than 50% using s-upervised train­
ing. Supervised training for probabilistic CFGs re­
quires parsed corpora, which is very costly in time and
man-power[2] .

In our i nvestigations, we have made two observations
which attempt to explain the lack-lust.er performance
of statistical parsing techniques:

• Simple probabil istic CFGs provide general informa­
tion about how likely a construct is going to appear
anywhere in a sample of a language. This average
l ikelihood is often a poor estimate of probability.

• Parsing algorithms which accumulate probabilities
of parse theories by simply multiplying them over­
penalize infrequent constructs .

Pearl avoids the first pitfall by using a context­
sensitive conditional probab ility CFG , where context
of a theory is determined by the theories which pre­
dicted it and the part-of-speech sequences in the input
sentence. To address the second issue, Pearl scores
each theory by using the geometric mean of the con­
textual conditional probabilities of all of the theories
which have contr ibuted to that theory. This is equiva­
lent to using the sum of the logs of these probabilities.

2 Specia.l thanks to Victor Zue at MIT for the use of the
speech d ata from MIT's Voyager system .

CFG wit h context-sensit ive conditional
probabilit ies
Jn a very large parsed corp 1 1 s of Engl ish t.ex t , one
fi n ds that the most. freq uently occurr ing noun phrase
structure in the text is a noun phrase containing a
determiner fol lowed by a noun . Simple probabilistic
CFCs dictate that. , given this information , "determiner
noun" should be the most likely interpretation of a
noun phrase.

Now, consider only those noun phrases which oc­
cur as subjects of a sentence. In a given corpus, you
might find that pronouns occur just a5 frequently as
"determiner noun" s in the subject position . This type
of information can ea5ily be captured by conditional
probabitities.

Finally, assume that the sentence begins with a pro­
noun followed by a verb. In this case, it is quite clear
that , while you can probably concoct a sentence which
fits this description and does not have a pronoun for
a subject , the first theory which you should pursue is
one which makes this hypothesis.

The context-sensitive conditional probabilities which
Pearl uses take into account the immediate parent of
a theory3 and the part-of-speech trigram centered at
the beginning of the theory.

For example, consider the sentence:

My first love was named Pearl .
(no subliminal propaganda intended)

A theory which tries to interpret "love" as a verb will
be scored based on the part-of.:.speech trigram "adjec­
t ive verb verb" and the parent theory,. probably "S --1-

NP VP." A theory which interprets "love" as a noun
will be scored based on the trigram "adjective noun
verb." Although lexical probabilities favor "love" as
a verb , the conditional probabilities will heavily favor
"love" as a noun in this context.4

Using the Geometric Mean of Theory
Scores

According to probability theory, the likelihood of two
independent events occurring at the same t ime is the
product of their individual probabilities. Previous sta­
t istical parsing techniques apply this definition to the
cooccurrence of two theories in a parse, and claim that
the likelihood of the two theories being correct is the
product of the probabilities of the two theories.

3The parent of a theory is defined as a. theory with a
CF rule which contains the left-hand side of the theory.
For instance, if "S - NP VP" and "NP _. <let n" are two
grammar rules, the first rule can be a parent of the second ,
since the left-hand side of the second "NP" occurs in the
right-hand side of the first rule.

4 1n fact , the part-of-speech tagging model which is also
used in Pearl will heavily favor "love" as a noun. We ignore
this behavior to demonstrate the benefits of the trigram
conditioning.

1 94

This appl ication of probabil i ty theory ignores two v i tal observations a.bout the domain of statisti cal pars­i ng : • Two constructs occurring in the same sentence a.re not necessarily independent (and frequently are not) . If the independence assumption is violated , then the product of individual probabilities has no meaning with respect to the joint probabil ity of two events . • Since statistical parsing suffers from sparse data, probability estimates of low frequency events wil l usually be inaccurate estimates. Extreme underesti­mates of the likelihood of low frequency events will produce misleading joint probability estimates . From these observations, we have determined that esti­mating joint probabilities of theories using individual probabilities is · too difficult with the available data. We have found that the geometric mean of these prob­ability estimates provides an accurate assessment of a theory's viability.
The Actual Theory Scoring Function In a departure from standard practice, and perhaps against 'better judgment , we will include a precise description of the theory scoring function used by Pearl. This scoring function tries to solve some of the problems noted in previous attempts at probabilistic parsing[3] [14]: • Theory scores should not depend on the length of the string which the theory spans. • Sparse data (zero-frequency events) and even zero­probability events do occur� and should not result in zero scoring theories. • Theory scores should not discriminate against un­likely constructs when the context predicts them. The raw score of a theory, 0 is calculated by taking the product of the conditional probability of that the­ory's CFG rule given the context (where context is a part-of-speech trigram and a parent theory 's rule) and the score of the trigram: SCraw (0) = P (rules l (PoP1P2) , ruleparent)sc(PoP1P2) Here, the score of a trigram is the product of the mutual information of the part-of-speech trigram, 5 PoP1P2 , and the lexical probability of the word at the location of P1 being assigned that part-of-speech P1 . 6 In the case of ambiguity (part-of-speech ambiguity or multiple parent theories) , the maximum value of this product is used. The score of a partial theory or a com­plete theory is the geometric mean of the raw scores of all of the theories which are contained in that theory.

5The mutual information of a part-of-speech trigram, · d fi d t b 'P(PoPI P2) 1 · t pop1p2 , IS e ne o e P(poxp2)P(pi) , w 1ere x IS any par -of-speech. See [4] for further explanation.
6 The trigram scoring function actually used by the parser is somewhat more complicated than this.

Theory Length Independence]'h is scor ing func­t ion , al though heu r istic in derivation , prov ides a. method for evaluat ing the value of a theory, regard less · of i t.s length . When a ru le is first predicted (Earley­sty le) , its score is just its raw score , which represents how much the context. pred icts it. However, when the parse process hypothesizes interpreta.t.ions of the sen­tence which reinforce this theory, the geometri c mean of a.I I of the ra.w scores of the rule 's subtree is ·used , representing the .overall li-kelihood of the theory given the context of the sentence. L ow-frequency Events Although some statistical natural language applications employ ·backing-off es­timation techniques(l2] (5J to handle low-frequency evei1ts, Pearl uses a very simple estimation technique , reluctantly attributed to Church[8] . This technique estimates the probability of an event by adding 0 .5 to every frequency count.7 Low-scoring theories will be predicted by the Earley-style parser. And , if no other hypothesis is suggested , these theories will be pursued . If a high scoring theory advances a theory with a very low raw score, the resulting theory's score will be the geometric mean of all of the raw scores of theories con­tained in that theory, and thus will be much higher than the low-scoring theory's score. Example of Scoring Function As an example of how the conditional-probability-based scoring function handles ambiguity, consider the sentence Fruit flies like a banana. in the domain of insect studies. Lexical probabilities should indicate that the word "flies" is more likely to be a plural noun than an active verb. This information is incorporated in the trigram scores. However, when the interpretation S --+ . NP VP is proposed , two possible NPs will be parsed, NP --+ noun (fruit) and NP --+ noun noun (fruit flies) . Since this sentence is syntactically ambiguous, if the first hypothesis is tested first, the parser will interpret this sentence incorrectly. However, this will not happen in this domain. Since "fruit flies" is a common idiom in insect studies , the score of its trigram , noun noun verb , will be much greater than the score of the trigram, noun verb verb . Thus, not only will the lexical probability of the word "flies/verb" be lower than that of "flies/noun," but also the raw score of "NP --+ noun (fruit)" will be lower than
7 We are not deliberately avoiding using all probabil­ity estimation techniques, only those backing-off tech­niques which use independence assumptions that frequently provide misleading information when applied to natural language.

1 95

that of "NP - noun noun (fru i t fl i es) , " beca 1 1 se of the
d i fferen t. ial between t. he tr igram scores .

So, " N P ----;. noun J l O U ll " wi l l be used fi rsi. t.o adva 1 1 ce
t.h e "S ----;. . N P VP" nde. Fmther , even i f t. h ;) parser
advances hoth NP hypotheses , the "S -'- N P . VP"
ru le usi i1g "N P ----;. noun noun'' wi l l have a h igher score
than the "S - N P . VP" ru le using "NP - noun . "

Interleaved Architecture in Pearl
The i nterleaved architectu re implemented in Pearl pro­
vi des many ad vantages over the trad i t ional pipeline
architectur e , but it also introduces cer t.a.i n risks. De­
cisions a.bout word and pa.rt-of-speech amhigu ity can
be delayed until syntactic processing can disambiguate
them . And, using the appropriate score combination
functions, the scoring of ambiguous choices can direct
the parser towards the most likely interpretation effi­
ciei1tl/ . · ·

· · .
. Howe�er, with these delayed decisions comes a vastly
�nla.rged search space . The effectiveness of the parser
depends on a mc:1jority of.the theories having very low
scores based on either 1,mlikely syntactic structures or
low scoring input (such. as ' iow scores from a speech
reGognizer or low lexical probabil ity) . In exp.eriments
we have performed , this has been the case . .

The Parsing Algorithm
Pearl is a time-a.synchronous bottom-up chart parser
with Earley-type top-down prediction . The signifi­
cant difference between Pearl and non-probabilistic
bottom-up parsers is th�t instead of completely gener­
ating all grarnmatical interpretatiops of a word string ,
Pearl , pursues the N highe�t-scoring incomplete theo­
ries iii the chart at ea.eh· pass. However, Pearl . parses without pruning. Although it is only advancing the N
highest-scoring incomplete theories , it retains the lower
scoring theories in its· agenda.. If the h igher scoring
theories do not generate viable alternatives , the lower
scoring theories· may be used on subsequent passes .

The parsing algorithm begins with the input word
lattice . An n x n cha.rt is allocated , where n is the
length of the longest word string in the lattice. Lexical
rules for the input word lattice are inserted into the
chart . Using Earley-type prediction , a sentence is pre..:

dieted at the beginning of the sentence , and all of the
theories which are predicted by that initial sentence .
are inserted into the chart . These incomplete theo­
ries a.re scored according to the context�sensltive con­
dit ional probabilities and the trigram part-of-speech
model . The incomplete theories a.re tested in order by
score , until N theories a.re advanced .8 The resulting
advanced theories are scored and predicted for, and
the new incomplete predicted theories are scored and

8 We believe that N depends OJI the perplexity of the
gramm ar used , but for the string grammar used for our
experiments we used N =3. For the purposes of training, a
higher N should be used i n order t.o generate more parses.

added to the chart . Th is_ process cont i nues u n ti l an
comp lete parse tree is det ermined , or u n ti l the parser
decides , heurist i cal ly, t.hat. it should not cont. i 11 1 1 e . The
heuristics vve used for determi n ing that no parse ca.n
be foun d for an inpu t are based on the h ighest scor ing
incomplete theory in the cha.rt , the number of passes
the parser has made; and the size of the chart . ·

Pearl's Capabi lities

Besides using statistical methods to gi.1 ide the· parser
through the parsirig sea.rch space , Pearl also performs
other functions which are crucial to robustly processing
u nrestricted natural language text and speech . Handling Unknown Words . Pea:rl uses a very sim:..

ple probabilistic unknown ·word model to hypothesize
categories · for unknown words. When word which is
unknown to the system's lexicon , the word is assumed
to be any one of the open · class categories . The lexical
probability given a category is the probabi l ity of ' that
category �c�urring in the training corpus . Idiom Processing and Lattice Parsing _ Since the
parsing search space can be simplified by recognizing
i dioms , Pearl allows the input string to include idioms
that span more than one word in the sentence. This is
accomplished by viewing the input sentence as a word
lattice instead of a word string. ' Since idiOms tend to be
unambiguous with respect to pa.rt-of-speech, they are
generally favored over processing the individual words
that make up the idiom, since the scores of rules con­
taining the words will tend to be)ess than 1 , while
a syntactically appropriate, unambiguous id1om will
have a score of close to 1 .

The abi lity to parse a sentence with multiple word
hypotheses . and word boundary hypotheses makes
Pearl very useful in the domain of s·poken language
processing. By delaying decisions about \vord selection
but maintaining scoring information from a. speech rec­
ognizer , the parser cari use grammatical information in
word selection without slowing the spe.ech recognition
process. Because of Pearl 's . interleaved architecture,
one could easily incorporate scoring information from
a · speech recognizer into the set of scoring functions
used in the parser . Pearl could also provide feedback
to the speech recognizer about the grammaticality of
fragment hypotheses to guide the recognizer's search. Partial Parses The ma.in advantage of cha.rt-based
parsing over other parsing algorithms is th3:t the parser
can also recognize well-formed substrings within the
sentence in the course of pursuing a complete parse .
Pearl takes full advantage of this characteristic . Once
Pearl is given the input sentence , it awaits instructions
as to what type of parse should be attempted for this
input . A standard parser automatically attempts to
produce a sentence (S) spanning the entire input string.
However, if this fails , the semantic interpreter might be
able to derive some meaning from the sentence if given

1 96

non-overlapp ing noun , verb , and preposi tional phrases . If a sentence fai ls to parse , requests for partial parses of the input string can be made by specifying a range which the parse t ree shou l d cover and the category (NP, VP, etc .) . The ability to produce partial parses allows the sys­tem to handle mu lt i p le sen tence inputs . In both speech and text processing, it is d ifficult to know where the end of a sentence is . For instance, one cannot reli­ably determine when a speaker terminates a sentence in free speech . And in text processing, abbreviations and quoted expressions produce ambiguity about sen­tence termination . When this ambiguity exists, Pearl can be queried for partial parse trees for the given in­put , where the goal category is a sentence. Thus, if the word strin'g is actually two complete sentences, the parser can return this information. However , if the word string is only one sentence; then a complete parse tree is returned at little extra cost .
Trainability · One of the major advantages of the probabilistic parsers is trainability. The conditional probabilities used by Pearl are estimated by using fre­quencies from a large corpus of parsed sentenc�s. The parsed sentences must be parsed using the grammar formalism which the Pearl will use. Assuming the grammar is not recursive in an un­constrained way, the parser can be trained in an unsu­pervised mode. This is accomplished by running the parser without the scoring functions , and generating many parse trees for each sentence. Previous work9 has demonstrated that the correct information from these parse trees will be reinforced, while the incorrect substructure will not. Multiple passes of re-training us­ing frequency data from the previous pass should cause the frequency tables to converge to a stable state. This hypothesis has not yet been tested. 1 0 An ·alternative to completely unsupervised training is to take a parsed corpus for any domain of the same language using the same grammar, and use the fre­quency data from that corpus as the initial training material for the new corpus . This approach should serve only to minimize the number of unsupervised passes required for the frequency data to converge.

Preliminary Evaluation While we have not yet done extensive testing of all of the capabilities of Pearl , we performed some simple tests to determine if its performance is at least con­sistent with the premises upon which it is based. The test sentences used for this evaluation are not from the 9This is an unpublished result , reportedly due to Fu­jisaki at IBM Japan.
10 In fact, for certain grammars , the frequency tables may not converge at all, or they may converge to zero, with the grammar generating no parses for the entire corpus. This is a worst-case scenario which we do not anticipate happening.

t raining data on wh i ch t . l i c parser was trained . Us ing Pearl 's context-free gra mmar , these t .est sen t.cnces pro­duced an average of (5L1 parses per sentence , w i th some sente1� ces procluc i 1 1 g ove r 100 parses .
U nknown Word Part-of-speech
Assignrnent To· determine how Pear l l 1 an d Jes 1 1 1 1 kn0\vn words, we removed five words from t.he lexicon , i, kno·w: tee, de­scribe, and station, and tr ied to parse the 40 sample sentences using the sim ple unknown word model pre­viously described . In this test , the pron01m , i, was assigned the cor­rect part-of-speech 9 of 10 times i t. occurred in the test sentences. The nouns, tee and station, were correctly tagged 4 of 5 times . And the verbs, know and describe, were correctly tagged 3 of :3 times .

pronoun 90% noun 80% verb . 1 00% overa l l 89%
Figure 1 : Performance on Unknown Words in Test Sen­tences

While this accuracy is expected for unknown words in isolation, based on the accuracy of the part-of­speech tagging model , the performance is expected to · degrade for sequences of unknown words.
Prepositional Phrase Attachment Accurately determining prepositional phrase attach­ment in general is a difficult and weli-documented problem. However, based on experience with several . different domains, we have found prepositional phra:5e attachment to be a domain-specific phenomenon for which training can be very helpful . For. instance, in the direction-finding domain , from and to prep.ositional phrases generally attach to the preceding verb and not to any noun phrase . This tendency is captured in the training process for Pearl and is used to guide the parser to the more likely attachment with respect · to the domain . This · does not mean that Pearl will get the correct parse when the less l ikely att�chment is correct; in fact , Pearl will invariably get 'this case wrong. However , based on the premise that this is the less likely attachment , th is will produce more correct analyses than incorrect . And, using a more sophisti­cated statistical model , this performance can easily be improved . Pearl 's performance on prepositional phrase attach­ment was very high (54/.55 or 98 .2% correct) . The rea­son the accuracy rate was so high is that the direction­finding domain is very consistent in i t 's use of individ­ual prepositions. The accuracy rate is not expected to be as high in other domains, al though it certainly

1 97

shou l d be h igher than 50% and we wou l d expect i t to
be great.er t.han 75 % , a.I t.hough we have not. performed
a11y r igoro 1 1 s t.cst.s on other domains to verify this .

P repos i t.io11 from
A C C I I racy Ha.Le n (1

to

F igme 2 : Acc u racy Rate for Preposi tional Phrase At­
tach mcnt, by Preposition

Overall Parsing Accuracy
The 40 test sentences were parsed by Pearl and the _
h ighest scoring parse for each sentence was compared
to the correct parse produced by PUNDIT. Of these 40
sentences , Pearl produced parse trees for 38 of them,
and :35 of these parse trees were equivalent to the cor­
rect parse produced by Pundit , for an overall accuracy
rate of 88%.

l'vlany of the test sentences were not difficult to parse
for existing parsers, but most had some grammatical
ambigui ty which would produce mul tiple parses. In
fact, on 2 of the 3 sentences which were incorrectly
pai·sed , Pearl produced the correct parse as well , but
the correct parse did not have the highest score.

Of the two sentences which did not parse , one used
passive voice, which only occurred in one sentence in
the training corpus . While tl�e other sentence,
How can I get from caf e sushi to Cambridge
C ity Hospital by walking

did not produce a parse for the entire word string, it
could be processed using Pearl 's partial parsing capa­
bility. By accessing the chart produced by the failed
parse attempt , · the parser can find a parsed sentence
containing the first eleven words, and a prepositional
phrase containing the final two words. This informa­
tion could be used to interpret the sentence properly.

Future Work

The Pearl parser. takes advantage of domain-dependent
information to select the most appropriate interpreta­
tion of an input. However , the statistical measure used
to dis.ambiguate these interpretations is sensitive to
certain attributes of the grammatical formalism used,
as well as to the part-of-speech categories used to la­
bel lexical entries. All of the experiments performed on
Pearl thus far have been using one grammar, one part.­
of-speech tag set , and one domain (because of avai-1-
ability constraints) . Future experiments are planned
to evaluate Pearl 's performance on different domains,
as well as on a general corpus of Engl ish , and on dif­
ferent grammars, including a grammar derived from a
manually parsed corpus.

Future work should also investigate Pearl 's perfor­
mance on speech data. By incorporating the speech
recogn i zer 's acoustic score i nto the parser 's scoring

fu nction , one cou l d i nvestigate the parser 's a:bi] i ty to
select the appropriate word strings from an N-best. l i st
of a speech recogn i zer's out.pu t. . . · ·

Conclusion
The probabil ist ic parser which we have described pro­
vides a platform for exploiting the useful i nforma­
tion ma.de available by statisti cal models in a manner
which is consistent with existing grammar formalisms
and parser designs . Pearl can be trained to use any
context-free grammar , accompanied by the appropri­
ate t raining material . And, the parsing . algorithm is
very similar to a standard bottom-up algorithm, with
the exception of using theory scores to order the search .

More thorough testing is necessary to measure _
Pearl 's performance in terms of parsing accuracy, pa.rt.­
of-speech assignment , unknown word categorizat ion , ·
idiom processing capabilities , and even word selection
in speech processing. With - the exception of word se­
lection , preliminary tests show Pearl performs · these
tasks with a high degree of accuracy. But , in the ab­
sence of precise performance estimates , we still ptopose
that the architectm;e of this parser is preferable to tra­
ditional pipeline architectures . Only by using an inter­
leaved architecture can a speech recognizer efficiently ·
make use of corriplex grammatic-al information to select
from among hypothesized words .

References

[1) Ayuso, D . , Bobrow , R. , et . al . 1990. Towards Un-
. derstanding Text with a Very Large Vocabulary.
In Proceedings of the June 1990 DARPA Speech
and Natural Language Workshop . Hidden Valley,
Pennsy 1 vania.

[2) Bril l , E . , Magerman, D . , Marcus, M . , and San­
torini , B . 1990 . Deducing Linguistic Structure
from the Statistics of Large Corpora. In Proceed­
ings of the June 1990 DARPA Speech and Natural
Language Workshop. Hidden Valley, Pennsylva­
ma.

[3] Chitrao, M. and Grishman, R. 1990 . Statisti­
cal Parsing of Messages. In Proceedings of the
June 1 990 DARPA Speech and Natural Language
Workshop . Hidden Valley, Pennsylvania.

[4) Church , - K . 1988. A Stochastic Parts Program
and Noun Phrase Parser for Unrestricted Text . In
Proceedings of the Second Conference on Applied
Natural Language Processing. Austin , Texas.

[5) Church , K. and Gale, W . 1990. Enhanced Good­
Turing and Cat-Cal : Two New Methods for Es­
timating Probabilities of English Bigrams. Com­puters, Speech and Language.

[6) Church , K . and Hanks , P. 1989. Word Association
Norms, Mutual Information,· and Lexicography. In
Proceedings of the 27th Annual Conference of the
Association of Computational Linguistics.

1 98

(7] Fano, R. 1 96 1 . Transmiss·ion of lnf orm ai'ion . New York , New York : :MIT Press . (8] Gale, W . A. and Church , K . 1 9�)0 . Poor Estimates of Context are \Vorse than None. In Proceedings of the June 1 990 DARPA Speech and Natural Language \•Vorkshop. Hidden Valley, Pennsylva­nia. (9] Hindle, D. 1988 . Acquiring a Noun Classification from Predicate-Argument Structures . Bell Labo­ratories. [1 0] Hindle, D . and Rooth , l\tl . 1 990 . Stru ctural Ambi­guity and Lexical Relations. In Proceed ings of the J une 1 990 DARPA Speech and Natural Language Workshop . Hidden Valley, Pennsylvania. [1 1] Jelinek , F. 1 985 . Self-organizing Language Mod­eling for Speech Recognition . IBM Report. (1 2] Katz , S. M. 1 987. Estimation of Probabilities from Sparse Data for the Language Model Compo­nent of a Speech Recognizer . IEEE Transactions
on Acoustics, Speech, and Signal Processing, Vol.
ASSP-35, No. 3. (1 3] Seneff, Stephanie 1 989 . TINA. In Proceedings of the August 1 989 International Workshop in Pars­ing Technologies. Pittsburgh , Pennsylvania. (14] Sharman, R. A. , Jelinek , F. , and Mercer , ·R. 1 990 . In Proceedings of the June 1 990 DARPA Speech and Natural Language Workshop. Hidden Valley, Pennsylvania.

1 99

LOCAL SYNTACTIC CONSTRAINTS

Jacky Herz and Mori Rimon (1

The Computer Science Department The Hebrew University of Jerusalem, Giv'at Ram, Jerusalem 9 1 904, ISRAEL
ABSTRACT

A method to reduce ambiguity at the level of word tagging, on the basis of local syntactic con­straints, is described. Such "short context" con­straints are easy to process and can remove most of the ambiguity at that level, which is otherwise a source of great difficulty for parsers and other applications in certain natural languages. The use of local constraints is also very effective for quick invalidation of a large set of ill-formed inputs. \Vhile in some approaches local con­straints · are defined manually or discovered by processing of large corpora, we extract them directly from a grammar (typically · context free) of the given language. We focus on deterministic constraints , but later extend the rnethod for a probabilistic language model.

1 . Introduction: Local Constra ints
and their Use

Let S = w., . . . , WN be a sentence of length N, {Wi} being the words composing the sentence. Ideally, a lexical-morphological analyzer can assign to each word ITT a unique tag ti , expressing its grammatical characteristics (typi­cally part of speech and features) . The unique tag image t1 , • • • , tN of S could then serve as input to NLP applications, including - but not limited to - parsing.

1 The first author is also affiHated with the Open University.

In reality, however, vV; may have more than one interpretation, hence ti is not uniquely defined. Examples for ambiguity at this level in · English are nouns (both in singular and _in plural forms) which can_ be often interpreted at word-level as verbs; words ending with "ing" which are ambig­uous between tentative readings as a progressive verb, a gerund and an adjective; etc . Hebrew, our main language of study, poses a much greater difficulty, because of the complexity of its morpho-syntax - and the "terse" nature of the vowel-free writing system. In modem written Hebrew, nearly 60% of the words in running texts are ambiguous with respect to tagging, and the average number of possible readings of words in a running text is found to to be 2.4 (See [Francis 82] for data on English) .2 In addi­tion, in many cases the morphological analysis of a Hebrew word yields a - sequence of tags rather than a single tag, and different interpreta­tions may be mapped to sequences of different lengths (similar phenomena may be found in other Semitic languages and in Romance lan­
guages where cliticization occurs) . This is in fact a different order of the ambiguity issue. Consider as an example the written_, character string VRD (111) , which can be interpreted in Hebrewas:

[Noun J (11 vered 11
' = · a rose)

o r : [Adj J (11 varod " = rosy)
or : [Conj , Verb J (11 v - red 11 = and descend) .

We will refer to a sequence of M tags (M 2=: N) which is a legal (per word) tag image corre­sponding to the sentence S = W1, . . . , WN , as a path. The number of potentially valid paths can

The second author's main affiliation is the I B M Scientific Center, Haifa, Israel.
Please address e-mail correspondence to: rimon@hujics .B ITN ET rimon@haifasc3 . I INUS1 . I B i\11 .COM

2 The degree of ambiguity is obviously affected by the grain of the tagging system (the level of detail of the tag set).

200

be exponential in the length of the sentence if all words are ambiguous. A parser will reduce this number to the minimum feasible. But we are interested in · quicker, even if not perfect methods to reduce the number of valid paths and word­level ambiguity.3
This paper describes a method to reduce tagging ambiguity, based on local syntactic constraints . A local constraint of length k on a given tag t is a rule disallowing a sequence of k tags from being in the Short Context of t. Intuitively, a Short Context with length k of a tag t in a given sentence S, denoted by SC(t ,k), is its right or left tag environment. Before giving the fonnal defi­nitions, let us mention that short context methods of one form or another are not new. They can be found in papers such as [Beale 88] , [Choueka 85] , [DeRose 88] , [Katz 85] , [Lozinskii 86] , [l\larcus 80] , [Marshall 83] - to name a f cw. Our approach differs in various aspects, but mainly in the manner by which short context constrains are defined and identi­fied. In the next chapter we · will . show how the constraints are . retrieved directly from a grammar of the language, establishing a finite state mech­anism which approximates the grammar.
To start with a more formal treatment of the short context notion, let us first add to the sen­tence S two special "words": "$ < ", denoting "Start" as the beginning of sentence marker, and " > $", denoting "End" at the end of sentence. These markers are also added to the tag image of the sentence.
We can now look at the resolution of ambiguity as a graph searching problem. As an example, suppose we have a sentence with three words, A B C, and assume that the initial tagging output of the lexical analyzer is the following (rather unlikely for English, but quite realistic for Hebrew) : for A : for B : for C :

[verb] o r [det , noun] [pron] or [adv] [conj , adj] or [noun]

Then we can look at SG, the Sentence Graph, which is a directed graph where arcs represent all a-priori possible locai paths:
A B C

/'verb "'-. ,;ro
x
n ?conj -> adz $ y"

, �>$
\ / ·"'..:.i � noun / det -> noun -> adv --> Every path from "$ < " to " > $" represents a possible interpretation of S as a stream of tags. Note that invalidating even · a small number of arcs from SG reduces rapidly the number of pos­sible paths.

As said above, we use local constraints to remove invalid arcs, and to finally arrive at the Reduced Sentence Graph.
Let T be the set of all possible tags - the tag set. The Right Short Context of length n of a tag t is defined by: SCr (t , n) for t i n T and for n=0 , l , 2 , J . . .

t z I z i s i n T* , }
I z I = n or } I z I < n i f " >$ " i s t he l as t tag i n z , } and tz i s a va l i d sequence o f tags } The Left Short Context of length n of a tag t is denoted by SCI (t ,n) , and is defined in a sym­metric way.

The definition of "validity" of tag sequences can vary. In our approach validity will be relative to a given formal grammar of the language, not to independent linguistic intuitions. This will be elaborated in the next chapter.
The Right (or Left) Positional Short Context i is the same as SCr (t,n) (or SCI (t ,n)), but with the restriction that t may start only in position i in a sentence (or, in fact, in the tag image of a sentence) . We denote the Right Positional

3 ;\;ote that the two sub-goals of the tagging ambiguity problem - reducing the number of paths and reducing word-level possibi lities - are not identieal. One can easily construct sample sentences where each word is two-way ambiguous, hence the sentence has 2N potential paths, of which only two are valid, while still keeping all word­level ambiguity.

201

Short Context of length n of a tag t in position i by PSCr (t,n,i) ; similarly, PSCl (t,n;i) denotes the Left Positional Short Context of length n of a tag t in position i.
The examples in this paper will ref er to the Right Short Context (positional and non-posi­tional) of length 1 . This is done mainly for the sake of clarity, but empirically it seems that even the limited set of · constraints which · · can be expressed in these terms is powerful enough to invalidate many arcs in the Sentence Graph, thus resolving a great deal of the tagging ambi­guity. See also a comment to that effect in [Marshall 83] .
ln the ideal case, by removing arcs from the graph on the basis of local constraints, the reduced sentence graph will contain the one and only globally valid path from Start ("$ <") to End f' > $") . In such cases, all tag assignments are also uniquely determined. But there may be cases where several paths survive the short context tests, not only because there exist more than one legal syntactic analysis, but due to the fact that even illegal analyses at the sentence level may conform to local constraints. This means that some of the words may still have ambiguous tag assignments, and, if followed by parsing, the parser will have to rule out the (hopefully few) impossible combinations. There is another interesting case, where no path at all exists after reduction. · This signifies ah illegal input sentence; hence a quick and effective means to invalidate (at least part of the) illegal inputs.
The probabilistic model, which will be discussed in chapter 4, suggests a different scheme for reducing the sentence graph. Here arcs are not necessarily removed, but rather evaluated for rel­ative plausibility. Only high probable overall path(s) through the graph will be selected.
2. Extracting Local Constraints

from a Grammar

If a formal grammar G exists for the language L, then, by definition, i t contains all the syntactic knowledge about L. As such, it also contains the knowledge about Short . Contexts. However,

202

most of this knowledge is not explicit; for example, boundary conditions (the adjacency of a final tag in a constituent phrase with the initial tag of the following phrase) are not explicitly stated in a phrase structure grammar; they have to be extracted to be used for preliminary screening of lexical and morphological ambigui­ties as described above.
In the following we will assume that an unre·- · stricted context-free phrase structure grammar (CFG), G, exists for the given language;L. Later we will discuss other grammars too. We will use the following notations:
T = The set of Terminal symbols (the tag-set) $ < = The sentence start terminal > $ = The sentence end terminal V = The set of Variables (non-terminals)
S = The root variable for derivations P = Production rules of the form A -- > a , where A is in V, a is in (V U T) *

For technical purposes, we will substitute every grammar rule of the form S -- > a with an equivalent rule S -- > $ < a > $, thus adding the two special terminals mentioned above to T.
We will now revise the definitions of Short Context from chapter 1 , relative to the · given grammar G. The rules in G are the only source for determining the validity of tag sequences.
The Right Short Context of length n of a ter­minal t (tag) relative to the grammar G is defined by:

r SC (t , n) for t i n T and for n=0 , l , 2 , 3 . • . G
tz I z i s i n T * , } I z I = n or } I Z I < n i f ">$ " i s t he l as t tag i n z , } and t here ex i sts a deri vat i on of the } form : S ==> a t z p } where a and p are i n (V U T) * } The Left Short Context of length n of a terminal t (tag) relative to the grammar G is defined in a similar way, and is denoted by:
l SC (t , n) for t i n T and for n=0 , l , 2 , 3 . . .
G

For short context with n = l , it is useful (and natural) to define:
r nex t (t) = { z I t z bel ongs to SC (t , 1) } G The Right Positional Short Context of length n of a tag t in position i, relative to the gramrriar G, is defined by:

r PSC (t ,, n , i) for t i n T , n=0 , l , 2 , 3 , . . . , i >0 G
t z I z i s i n T* , } l z l = n or } I z I < n , i f 11 > S II i s t he l as t t a.g i n z , } a nd t here �x i sts a deri vation o f t h e } form : S ==> a t z /J } where a and fJ are i n (V U T) * } and t i s i n t he i - t h pos i t i on i n a } tag - i mage of a sentent i a l form o f S }

The Left Positional Short Context is defined in a similar way and denoted by:
PSC (t , n , i) G

The following is a procedure to compute the function next(t), from a CFG. Without loss of generality, one may assume that this CF.G has no inaccessible symbols, has no useless symbols and is e-free, i .e . has no rules of the form V -- > the empty string. [Aho 72] describes efficient algorithms to achieve this normal form.
We find the next(t) set by examining P, the rules of G :4 1 . I f t here i s a ru l e i n P of t he form : A - -> a t x fJ a n d x i s i n T , t h en x i s i n next (t) . 2 . I f t here i s a ru l e i n P of the form : A - -> a t B /J and B i s i n V , t h en t h e set f i rst (B) i s a s ubset o f next (t) .

3 . I f . t h ere i s a rul e i n P o f t h e form : A - -> a t t hen the set fol l ow (A) i s a s ubset o f next (t) .
The computational complexity of the con­struction of the set next(t) . depends, on the complexity of computing the first and follow set. There are well known algorithms to fi.ndi these sets from a given CFG. The complexity of follow(t) is exponential in the size of the look ahead window, which is the length of the context. This is another reason to limit the con­text s to really short ones (although note that the extraction of constraints from the grammar is a one-time preprocessing phase, hence the per­formance issue is not critical) .
To conclude this chapter, we borrow the concept of event dependency from probability theory, just to offer the following view on short context constraints. The events being concat­enation of tags, the short context · basically defines independent constraints, while in the full grammar the dependent constraints are expressed. This distinction is particularly apparent in SCr(t , l) or SCl(t , l) , wher-e "events" only apply to a pair of neighbors; as the context gets longer, the constraints become more dependent and closer to the full grammar. The metaphorical description above gets especially interesting when a statistical dimension is added to the model (see chapter 4) . There, indeed, SC(1) considers independent probabilities of possible neighbors, where a full probabilistic grammar is supposed to look at the dependent events of tag concatenation along the full sen­tence.
It is therefore clear that the Short Context tech­nique will license more sentences than a grammar would; or, from a dual point of view, it will invalidate only part of the impossible com­binations of tag assignment . SCr(t ,2) will have a closer fit coverage than SCr(t , l) , and only in SCr(t ,N) (where N is the finite length of a given sentence) the licensing power will be identical to the weak generative capacity of the full grammar

4 The functions "first" and "follow"' are used here much like in standard parsing techniques for both programming
languages and natural languages; see [Aho 72] as a general reference.

203

(see illustration) . However, SCr(t,N) has only
the time complexity of a finite automaton
(beware space complexity, though) . The (theore­
tical and empirical) rate of convergence of the
finite approximation is an interesting and impor­
tant research topic. If indeed for ·a rather small
number M, SCr(t, M) provides most of the
licensing power of a given full grammar, then the
performance promise of short context methods
is consequential for a variety of applications (cf.
[Church 80]) . As mentioned before, it appears
that even SCr(t, 1) can drastically reduce the
a-priori polynomial number of tag sequences,
typically to a number linearly proportional to
the length of the sentence.

3. An Example

Consider the following "toy grammar" · for a
small : fragment of English (a variant of the basic
sample grammar in [Tomita 86]) .

The tag set includes only: n (noun), v (verb), det
(determiner) , adj (adjective) and prep (preposi-
_tion) . The context free grammar G is:

S - -> $< NP VP >$
NP - -> det n
NP - -> n
NP - -> adj n
NP - -> det adj n
NP - -> NP PP
PP - -> prep NP
VP - -> V NP
VP _ .:.> VP PP

G is a slightly mo�ified version of a standard
grammar, where the special symbols "$ < " (start)
and " > $" (end) are added.

To extract the local constraints from this
grammar, we first compute the function next(t)
for every tag t in T, and from the result sets we

204

obtain the graph below, showing valid moves in
the short context of length 1 (validity is, of
course, relative to the given toy grammar) :

r
The SC (t , 1) Graph

G

$<
� det 7- . .

X� l_ \ V

�

--,-, -·---�Tv---_-,l'-· - prep

The table of valid neighbors is derived directly
from the graph:

r
SC (t , 1) Tab l e

G

$< det
$< n
$< adj

prep det
prep n
prep adj

V det
V n
V adj

adj n
det adj
det n
n V

n prep
n >$

This table describes the closure of next(t) for
all terminals in G.

Of special interest is the complement of the
SC(t , l) table, relative to T2 . Here, information
about terminal pairs which can never appear in a
legal sentence is represented. Such a table may
be used by grammar developers to test a
grammar, presenting small "checklist tests" which
are easy to make.

From the SC(t, l) graph above we can now
extract information about the Positional
PSC(t, l ,i) possibilities. This is done by tracing
the way from "$ < " forward. The Positional
Short Context tables are the following:

r
PSC (t , 1 , i)

G

Pos i t i on : 0 - - -> 1 1 - - -> 2
$< det det n
$< n · det adj
$< adj n prep n V n >$ adj n

2 - - -> 3

n V n prep n >$ prep det prep n prep adj
V det V n v adj adj n

3 - - -> 4
V n prep det adj

Note that from positions 3- > 4 on, the table gets identical to the general SC(t, 1) table (the closure) .
Another useful information one can obtain from the SC(t , l) graph is the inverse of the tables above - the Positional SC that may be allowed when going from the end of a sentence back­wards. This is, in fact , the Positional Left Short Context . What has to be done to create the tables is to invert every arc in the SC(t, 1) graph. Other than that, the procedure is the same. It is interesting to note that in our example the closure appears later when scanning the sentence backwards - from right to left .
A final technical comment before showing the operation on a sample sentence: When the short context of distinct occurrences of the same terminal is different , it is useful to distinguish between them using an index. This will add more information about the PSC when tracing the Sentence Graph.
Let us now consider the following sentence :
"All old people like books about fish."
The chart below shows the Reduced Sentence Graph - the original Sentence Graph from which

invalid arcs (relative to the PSC tables) were removed.5
pas i t ion : -5 0 1 2 3 -4

4
- 3 -2 - 1

ALL OLD PEOPLE L I KE BOOKS ABOUT F I SH

det-,adj ➔ n � v � n -;)prep-.> n

0

I' "-� "� II /' � $½ n n �v prep 1/ v�adj v >$
\� / 1' · adj /

/

:..i n

We are left with four valid paths through the sentence, out of 256 a-priori possible paths (256 . = 2*2*2*4*2*2*2). Two paths represent legal syntactic interpretations (of which one is "the intended" meaning) . The other two are locally valid but globally invalid (having either two verbs or no verb at all, in contrast to the grammar). SCr(t ,2) would have invalidated one of the wrong two .
Note that in this particular example the method was quite effective in reducing sentence-wide interpretations (for applications like parsing) , but it was not very good in individual word tagging disambiguation.
Finally, let us emphasize that , while it is not trivial to construct an interesting example in English to demonstrate all the above, in Hebrew, even relative to a grammar similar to the above, it is hard to find a written sentence without con­siderable ambiguity. Moreover, as mentioned earlier, Hebrew poses tagging ambiguity of a second order, where different-length tag sequences may be assigned to a single given word. But in graph terms, it only means that a certain sequence of tags can be represented as a sequence of linked vertices in SG, the sentence graph. Hence "second order ambiguity" does not present a problem to our method.

5 Th� sentence is analyzed here relative to the limited tag set of the sample grammar. Depending on the tag set, the
lex1con and the grammar, the level of ambiguity (and the results i� this particular case) may be different.

205

4; Extensions

The method described above can be extended to be useful in a variety of situations other than those presented. In this chapter we briefly discuss several such extensions.
We already demonstrated how effective and effi­cient word tagging and path reduction can be used in a pre-parsing filter. We also mentioned applications (e .g. some types of proof-reading aids) which do not call for full parsing, but require "stand alone" tagging disambiguation and can benefit from fast recognition of many illegal inputs . On the other hand, for other applica­tions, one may think of incorporation of short­context techniques directly into a parser. In such an environment , when the parser is about to test a hypothesis concerning the existence of a con­stituent, it will first check if local constraints do not rule out that hypothesis . The motivation is the same as that beyond different techniques combining top-down and bottom-up consider­ations. To render the method more effective distinctions should be made between identicai tags (terminals, categories) appearing in different constituents (phrase types) . The p�ocess · of extracting local constraints from the grammar can be changed to account for the required dis­tinction (e.g. by indexing) .
Another direction for extensions is to go beyond the model of straightforward context free gram­mars. The same process will hold as long as the short context can be easily computed from the grammar. The following are two such examples. l . [Black 89] describes a process of trans­forming certain feature grammars into a finite state machine. The transition arcs in such a machine provide the full information required to construct our PSC tables . 2 . Even when no efficient parser exists, L(SC) may still be easy to recognize. [Shamir 74] proved that testing membership in the family of the so-called context-free pro­grammed languages is NP-complete; never­theless, extracting local constraints from such grammars is easy. In fact, the recogni­tion of L(SC) only depends on the existence of a formal grammar, not a parser. We now turn to discuss a probabilistic language

206

model, and see how short context considerations can be extended to account for probabilistic con­straints.
In the probabilistic environment , adjacent tags are not only valid (1) or invalid (0), but are allowed in any given probability between O and 1 . This model may be more realistic for NLP systems which process real-life texts, where some phenomena happen more frequently than others. The Short Context tables will therefore have to include weights.
We will first assume that a probabilistic context free grammar, such as described by [Fujisaki 89] , [Wright 89] and others, exists for the given language. In a probabilistic CFG, rules are labeled by probability estimators. Typically, the sum of probabilities is I for all production rules sharing the same left hand side. The probability of a sentential form is computed from all estima­tors of the rules used in the process of deriva­tion.
The probabilistic tables of the (Positional) Short Context can be extracted from such a grammar in various ways. The most natural (but not trivial!) method requires attachment and carrying over of probabilities through the procedure for calculating next(t) , described in chapter 2. · Another method to assign a probability to a tag pair [t l ,t2] , in a sentence image of n tags, could be based on evaluation of "dummy sentences" having t 1 and t2 in positions i and i + I respec­tively, and "wild card" entries elsewhere. But, since the probabilities attached to rules in . the probabilistic CFG were most likely drawn from a corpus, it may make sense to calculate the . short context information directly from the corpus, in parallel to the calculation of rule probabilities for the grammar. This is done by a simple counting of tag pairs appearing in suc­cessful analyses. To achieve a more natural nor­malization of statistical values, it may be better to define the weight of a tag pair in positions (i, i + 1) in a sentence relative to all other possible tag pairs in the same positions. The method can be generalized for longer sequences of adjacent tags.
Similarly to the way a probabilistic CfG is con­structed - by first defining the deterministic rules

and then attaching weights to rules - we can draw deterministic local constraints from a grammar and later assign relative frequency values to entries in the short context tables. Given. a new sentence, one can first filter out all deterministically invalid arcs and only then eval­uate paths in the reduced graph (where arcs are ·1abeled with frequency estimators) for relative plausibility.
The resulting graph is similar to the notion of "span" in [Marshall 83] and [DeRose 88] . [DeRose 88] describes an efficient algorithm to find a plausible path in such graphs. The only difference is that our approach does not require unambiguous words to bound the scope of disambiguation - in' our case the "$ < " and ,; > $" markers will define a sc9pe of the full sentence.
Note that if no probabilistic grammar exists for the language,_ and even if there is no formal context free grammar available at all, but some operational parser is available, probabilistic con­straints can still be drawn from a corpus. The process will involve· analysis of sentences by the given parser, and counting of tag pairs (or longer tag sequences) present in ' successful analyses.6 At the end of the corpus analysis, there will be a group of arcs for which the counter is still O (or below a given threshold) . This may happen either because the arcs are indeed invalid - such arcs can be now removed completely from the tables (thus embedding, in fact, the deterministic method within the framework of the probabi­listic one); or they may represent a marginal syn­tactic phenomenon in the text domain of the given corpus (here practical considerations will determine the decision whether to keep or to delete such arcs from the Short Context tables) .
In this model it may be more convenient not to use probabilities, but rather to assign to each arc a rank, representing the complement of the counter relative to the largest one found. The larger the rank is; the less frequent (hence less

plausible) is the corresponding arc.
A labeled sentence graph SG will now be created for input sentences, using these ranks. From this labeled graph, only the most probable path from start ($ <) to end (> $) is selected. For that, we suggest the algorithm by [Dijkstra 59] , which efficiently finds the shortest weighted path between two vertices in a directed graph. In principle, one may want to identify more than the one most probable path, e .g. if the second best is also highly ranked. For that different (and more complex) algorithms are needed.
Note that the acquisition from a corpus described above brings - the model very close to the corpus-based M-gram model, applied at; the level of parts of speech; see [Katz 85] , [Atwell 88] , [Marshall 83] , for accounts of related methods.
To conclude this chapter, we note that one may consider construction of deterministic grammars from corpora. Here the rules themselves will be · defined based on data found in the text . Such grammars tend to be very large (cf. [Atwell 88]) . Part of the reason is the grain of the tag set : such grammars might be inflated by the creation of "families" of very similar rules, not being able to recognize a generalization over similar tags. Another reason is in the distribution of rules (phrase structure) - only a small number of rules apply in a significant number of sample sen­tences, while most of the rules were derived from single examples. The performance efficiency of parsers (deterministic or probabilistic) based on such methods will greatly suffer from the large size of the grammar. But for the processing of local constraints, the size of the grammar is not terribly important. Once the preprocessing phase has been completed, the actual testing of con­straints is not badly aff �cted by the size of the constraints tables, thus making the local con­straints approach effective in such an environ­ment as well.

6 I t may not be absolutely required that only cases appearing in correct analyses are counted. Data resulting from wrong analyses may turn to be statistically insignificant, relative to real and frequent phenomena. cf. [Dagan 90].

207

5. Final Remarks

\Ve have not attempted a rigorous discussion of the performance gains expected \\Then applying tagging disambiguation in a pre-parsing filter and/or in the parsing process i�self. The question is not easy. It strongly depends . on the parsing technique, on one hand, ,and on the degree of ambiguity at the -given language (as reflected in a given grammar) , on the other hand. Naive bot­tom-up parsers, which assume a single combina­tion of tags in each analysis pass against the grammar, can certainly benefit, by drastically reducing the exponential number of passes needed a-priori in cases of heavy ambiguity. Other · more sophisticated parsing techniques (cf. [Kay 80] , for example) , can also save in compu­tational complexity, by taking earlier decisions on inconsistent tag assignments and/or by requiring a smaller grammar. The detailed anal­ysis here is not simple . But it seems that, although the constraints are drawn only from the grammar, and as such they are somehow expressed (explicitly or implicitly) and will take effect during parsing, the different order of com­putation and the restriction to finite-length con­siderations are sources for considerable time savmg.
Another important question concerns properties of the grammar that help build an effective filter of tentative paths. The grain of the tag set is such a significant factor. A better refmed tag set helps express more refined syntactic claims, but it also gives rise to a greater level of tagging ambiguity. It also requires a larger grammar (or longer lists of conditions on features, attached to phrase structure rules, which we here assume to be already reflected in the rules themselves) , hence a larger set of local constraints . But these constraints will be much more specific and therefore more effective in resolving ambiguities. A rigorous analysis of this issue will help under­stand better what makes an effective disambigu­ator. An important point to make is that our method guarantees uniformity of the tag set used for the filter and for any parser acting upon the given grammar, thus making it useful in a variety of environments.

208

Acknowledgements

M. Bahr and E. Lozinskii gave us helpful com­ments and suggestions on earlier drafts of this paper. We gratefully acknowledge their contrib­ution.
References

[Aho 72] Alfred V. Aho and Jeffrey D. Gllman. The Theory of Parsing, Translation and
Compiling. Prentice-Hall , 1 972-3.
[Atwell 88] Eric S . Atwell and Clive Souter. Experiments with a Very Large Corpus-based Grammar. Proc. of the I 5th int' 1 conference of
the ALLC, Jerusalem, June 1988.
[Beale 88] Andrew David Beale. Lexicon and Grammar in Probabilistic Tagging of Written English . Proc. of the 26th Annual Meeting of the
A CL, Buffalo NY, 1988. [Black 891 Alan. W. Black. Finite State Machines from Feature Grammars. Proc. of the
1st International Parsing Workshop, Pittsburgh, June 1 989.
rchoueka 8?) Yaacov Choueka and· Serge Lusignan. Disambiguation by Short Contexts.
Computers in the Humanities, no . 3, Vol. 1 9, July 1 985.
[Church 80] Kenneth W. Church. On Memory Limitations in Natural Language Proc­essing. MSc thesis, MIT. 1 980.
roeRose 88} Steven J . DeRose . Grammatical Category Disambiguation by Statistical Opti­mization. Computational Linguistics, _ 1 4/ 1 , Winter 1 988. [Dagan 90] ldo Dagan and Alon ltai. Proc­essing Large Corpora for Reference Resolution. Proc. of tfie 13th COL/NG conference, Helsinki, 1 990. [Dijkstra 59] Edsgar W. Dijkstra. A Note on Two Problems in Connection With Graphs.
Numerische Mathematik, 1 , pp. 269-27 1 .
[Francis 82] W . Nelson Francis and Henry Kucera. Frequency Analysis of English Usage:
Lexicon and Grammar, Houghton-Miffi.in, 1 982. rFujisaki 89] T. Fujisaki, F. Jelinek, J. Cooke, E. Black, T. Nishimo. A Probabilistic Parsing Metohd for Sentence Disambiguation. Proc. of
the I st International Parsing Workshop, Pitts­burgh, June 1 989. [Greene 71] Barbara Greene and Gerald Rubin. Automated Grammatical Tagging of English. Technical Report, Brown Urnversity,

1 97 1 .

[Katz 85] Slava Katz. Recursive M-gram Lan­
guage Model via Smoothing of Turing Formula.
l B1vl Technical Disclosure Bulletin, 1 985.

[Kay 80] Martin Kay. Algorithm Schemata
and Data Structures m Syntactic Processing.
Report CSL-80- 1 2, 1 980. Reprinted in Readings
in Natural Language Processing, Grosz, Sparck­
Jones and Webber (eds.) , Morgan Kaufman,
1 986.

[Lozinskii 86] Eliezer L. Lozinskii and Sergei
Nircnburg. Parsing in Parallel. Comp. Lan­
guages, UK, Vol 1 1 , No. 1 , pp 39-5 1 , 1 986.

[Marcus 80] Mitchell P. Marcus. A Theory of
Syntactic Recognition for Natural Language, The
MIT Press, 1 980.

209

[Marshall 837 Ian Marshall. Choice of Gram­
matical W ora-Ciass Without Global Syntactic
Analysis: Tagging Words in the LOB Corpus.
Computers in the Humanities, Vol. 1 7, pp.
1 39- 1 50 , 1 983.

rshamir 74] Eli Shamir and Catriel Beeri.
Checking Stacks and Context Free Programmed
Grammars Accept P-complete Languages. Proc.
of the 2nd Colloq. on A utomata languages and
programming, Lecture Notes in Computer
Science, Vol. 1 4, pp 27-33, 1 974.

. [Tomita 867 Masaru Tomita. Efficient Parsing
for Natura[Language, Kluwer Academic Pub. ,
1 986.

rwright 89] J. H. Wright and E. N. Wrigley.
Probabilistic LR Parsing for Speech Recogni­
tion. Proc. of the I st International Parsing
Workshop, Pittsburgh, June 1 989.

STOCHASTIC CONTEXT-FREE GRAMMARS
F,OR ISLAND-DRIVEN PROBABILISTIC PARSING

Anna Corazza(*) , Renato De Mori(**) , Roberto Gretter(*) , Giorgio Satta(*)

(*) Istituto per la Ricerca Scientifica e Tecnologica,
38050 Povo di Trento (Italy)

(**) School of Computer Science, McGill University,
3480 University str, Montreal, Quebec, Canada, H3A2A 7

ABSTRACT

In automatic speech recognition the use of lan­guage models improves performance. Stochastic language models fit rather well the uncertainty created by the acoustic pattern matching. These models are used to score theories corresponding to partial interpretations of sentences. Algorithms have been developed to compute probabilities for theories that grow in a strictly left-to-right fash­ion. In this paper we consider new relations to compute probabilities of partial interpretations of sentences . We introduce theories containing a gap corresponding to an uninterpreted signal segment. Algorithms can be easily obtained from these re­lations. CoIIJ.putational complexity of these algo­rithms is also derived.
1 INTRODUCTION

The aim of Automatic Speech Understanding (ASU) is to process an utte!ed sentence, determin­ing an optimal word sequence along with its inter­pretation. The success of such a process depends on the formal system we use to model natural lan­guage. There is strong evidence that stochastic regular grammars (for example . Markov Models) do not capture the large-scale structure of natu­ral language. In very recent years, there has been a growing interest toward more powerful stochas­tic rewriting systems, like stochastic context-free grammars (SCFG's; see among the others [Wright and Wrigley 89] , [Lari and Young 90] , [Jelinek et al. 90] and [Jelinek and Lafferty 90]) . Stochas­t ic grammars fit naturally the uncertainty created by the (pattern matching) acoustic search process ;

2 1 0

moreover SCFG's give syntactic prediction capa­bilities that are stronger than the Markov Models. Further motivations for this approach are reported in [Lari and Young 90] a�d [Jelinek et al. 90] .
In ASU we are interested in generating partial interpretations of a · spoken sentence called theo­ries. We score them in terms of their likelihood· L(A, th) = O(Pr(A I th) Pr(th)) , 1 where Pr(A I th) is the probability that theory th derives the acoustic signal segment A and Pr(th) is the prob­ability of the obtained theory. The most pop­ular parsers used in Automatic Speech Recogni­tion (ASR) generate and expand theories starting from the left and then proceeding rightward . In this case, the best theories already obtained can drive the analysis of the right portion of the in­put, restricting the class of possible next preter­minals in order to maximize the probabilities of the new extended theories. For ASU , especially for dialogue systems, it may be useful to consider parsers that are "island-driven" . These parsers fo­cus on islands, that is words of particular semantic relevance which have been previously hypothesized with high acoustic evidence. Then they proceed outward, working in both directions. Island-driven approaches have been proposed and defended in [Woods 81] and [Giachin and Rullerit 89] ; in [Stock et al. 89] the predictive power of bidirectional pars­ing is also discussed. None of the parsers proposed in these works uses a stochastic grammar.

. In this paper we consider the problem of scor­ing partial theories in the island-driven approach. An important quantity is Pr(th) , i .e . the proba­bility that a SCFG generates sequences of words
1 We write f(x) = O(g(x)) whenever there exist con­

stants c, x > 0 such that f(x) > c g(x) for every x > x.

(islands) separated by gaps. The gaps are portions of the acoustic signal that are still uninterpreted in the context of th. We develop a theoretical frame­work to compute Pr(th) in the case th contains islands and gaps.
2 NOTATION AND

DEFINITIONS

In this section definitions related to Stochastic Context Free Grammars (SCFGs) are introduced , along with the notation that will be used through­out this paper.
An SCFG . is · defined as a quadruple G8 = (N , :E , P, S) , where N is a finite set of nontermi­nal symbols , :E is a finite set of terminal symbols disjoint from N , P is a finite set of productions of the form H -+"et, H E N, a E (:E U N)* , and S E N is a special symbol called start symbol. ·Each pro­duction is associated with a probability, indicated with Pr(H � a) . The grammar G8 is proper if the · following relatio� holds:

L , Pr(H - a) = 1, H E N. (1)
or E (EuN)•

An SCFG G8 is in Chomsky Normal Form (CNF) if all productions in G8 are in one of the followi_ng forms:
H - FG H - w , H , F, G E N , w E :E . (2)

For reasons discussed in [Jelinek et al. 90] it is useful to have the SCFG in CNF; in the following we will always refer to SCFGs in CNF.
The derivation of a string by the grammar G8 is usually represented as a parse (or derivation) tree, whose nodes indicate the productions employed in the derivation itself. It is also possible to associate with each derivation tree the probability that it was generated by the grammar G 8 • This proba­bility is the product of the probabilities of all the rules employed in the derivation.
Given a string z E :E* , the notation H < z > , H E N , indicates the set of all trees with root

21 1

H generated by G 8 and spanning z . Therefore Pr(H < z >) is the sum of the probabilities of these subtrees, i .e . · the probability that the string z has been generate.cl by G 8 starting from symbol H. We assume that the grammar G 8 . i� consistent [Gonzales and Thomason 78]. This means that the following condition holds:2

L Pr(S < z >) = 1 . (3)
zeE•

From this hypothesis it follows that a similar con­dition holds for all nonterminals.
A possible application of an island driven parser to a task of ASU is the following. O n the basis of a previously obtained theory (partial interpre­tation) u = Wi . . . Wi+p and of some non-syntactic knowledge, predictions can be made for words not necessarily adjacent to u. This introduces a gap within the theory that · represents a not yet rec­ognized part of the input sentence. Then further syntactical and acoustical analyses will try to fill in the gap. The gap will be then filled by further syntactical and acoustical analysis. · Therefore we will deal with theories that can be represented as follows:

th : w ; . . . w ; + p xl · · · Xm Wj · · · w j+q Yl · · · Yk · · ·

or ux(m) v y<•) (4)

where Wi . . . Wi+p = u and Wj . . . Wj+q = v indi­cate strings of already recognized terminals (i, j >
0 , p, q 2:: O, j > i+p) while xi . . . Xm = x(m) , m 2:: 0 and Y1 . . . Yk . . . = y(•) stand for gaps with speci­fied length m (x(m)) or (finite) unspecified length (x(*)) . We will also indicate a gap with x meaning that either x = x(m) or x = x(•) . In our notation,
i and j are position indices, p and q are shift in­dices, m indicates a (known) gap length and k, h are used as running indices . F inally, �• represents the set of all strings of finite length over �, while �m , m 2:: 0 is the set of all strings in �• of length m.

2The normalization property expressed in (1) above
guarantees ·that the probabilities of all (finite and infinite)
derivations swn to one, but the language generated by the
grammar only corresponds to the subset of the finite deriva­
tions, whose probability can be less than one.

We studied both the cases in which gap x has specified or unspecified length (see [Corazza et al. 90]) . In practical cases, it is possible to estimate from the acoustic signal the probability distribu­tion of the number of words filling the gap. Since this makes more significant the case in which the gap length is specified, in this work we will fo­cus our attention on theories of the form x = ux(m) vy(*) .
3 PARTIAL DERIVATION

TREE PROBABILITIES

For the calculation of the probability
Pr(S < uxvy(*) >), called prefix-string-with-gap

probability, we use some quantities already intro­duced by other authors, like the inside probability
Pr(H < u >) [Baker 791 , [Lari and Young 90] , [Jelinek e t al. 90] or the prefix-string pro bability
Pr(H < ux >) [Jelinek and Lafferty 90] . In [Je­linek and Lafferty 90] an algorithm is proposed for the computation of the latter probability in the case of unspecified gap length (Pr(H < ux(*) >)) . We sketch here a similar algorithm for the cases in which the gap length equals m.
3.1 Prefix-string and Suffix-string

probabilities

In the case of a known length gap x(m) , a prefix­string probability Pr(H < ux(m) >) can be com­puted on the basis of the following relation. Since Gs is in Chomsky Normal Form, if lux(m) I > 1 then H must directly derive two nonterminals G1 and G2 . According to the way the string uxC m) can be divided into two parts spanned by G1 and G2 respectively, one can distinguish two different situations : in the first one , G1 spans just a proper prefix of u and G2 spans the remaining part of u and the gap; in the second one, G1 entirely spans u plus a possible prefix of the gap. Based on these cases, the following relation can be established :
Pr(H < ux< "") >) = L Pr(H - G1 G2)[

G 1 G2

p- 1

L Pr(G1 < w ; . . . w ;+k >) x
k = O

21 2

,n - 1 + L Pr(G1 < uxik) >) Pr(G2 < x�
1n- k) >)]. (5)

k=O

Note that gap x(m) has been split into two shorter
(k) d (m- k) B . 1 · . gaps x 1 an x2 • y a recursive app 1cat1on of (5) , prefix-string probabilities can be computed using both the following initial condition:3

Pr(H < w ; x(O) >) = Pr(H - w;) (6)

and the gap pro babilities Pr(H < x (m) >) , which are the sum of the probabilities of all trees with root H and yield of length m. Gap probabilities can be recursively computed as follows:
Pr(H < x(1n) >) = L Pr(H - G1 G2) X a 1 ,a2 eN

m - 1

X L Pr(G1 < x(j) >) Pr(G2 < x(1n - i) >) , m > 1 .

i= l

Pr(H < x<1) >) = L Pr(H - w);
weI:

(7)

(8)

In a similar way we can define Pr(< xv >) as the suffix-string pro bability; its computation can be easily obtained from expressions that are sym­metrical with respect to the ones employed for the prefix-string probability. Details are not pursued here.
We introduce now two probabilities that will be useful in calculating the prefix-string-with­gap probability: the gap-in-string probability

Pr(H < uxv >) and the island probability
Pr(H < xvy(*) >) .
3 .2 Gap-in-string probabilities

For the gap-in-string probability computation we can distinguish three independent and mutually
3By convention, x<0) is the null string e, i.e. the string

whose length is zero.

exclusive cases, according to the position of the boundary between the two parts df string uxv spanned by the two children G1 and G2 of H. The first word of the string spanned by G2 can belong to the initial string u = wi . . . wi+p , to the gap x or to the final string v = Wj . . . Wj+q · In the case of known length gap one gets:
Pr(H < w ; . . . w ;+ px(m) Wj . . . wi+ q >) =

= L Pr(H - G1 G2)[

+

+

G 1 G2

p- 1

L Pr(G1 < Wi . . . w ;+ k >) x

k=O

m

L P�G 1 < ux�k) >) Pr(G2 < x�m- k) v >) +
k=O
g- 1

L Pr(G 1 < ux(m) Wj . . . wi+ k >) X

k= O (9)
The inner summations in (9) contain products of already defined probabilities, along with terms that can be computed recursively with the following ini­tial condition (p = q = 0) :

Pr(H < w ; x(m) Wj >) = L Pr(H - G1 G2) X

G 1 ,G2

X I: Pr(G 1 < w ; x�
k) >) Pr(G 2 < x�

m
-

k) Wj >){10)

lc = O

3 .3 Island probabilities

As for the gap-in-string case , the island probabil­ity computation involves three cases, depending on the position of the first word of the string spanned by G2 with respect to the island v = Wj . . . Wj+q . The three sets of strings generated in the three cases above are probabilistically independent, but not disjoint in the case of unspecified length gap. Due to this fact, in such a case one must also con- . sider the probability products, then obtaining a quadratic system of equations. On the other hand, the following relation is obtained for the case of m-length gap :

21 3

Pr(H < x(m) Wj . . . Wi+q Y(•) >) = L Pr(H - G1 G2)[
G 1 ,G2

k=l

g - 1

+ L Pr(G 1 < X(m) Wj . . . Wj+Jc >) X

k=O

X Pr(G2 < wi+ k + l . . . Wj+qY(•) >) + + P r(G1 < X(m) Wj . . . Wi+q Y�•) >) X

X Pr(G2 < y�•) >)] (1 1)

where the term Pr(G2 < y�•) >) equals 1 . Using the definition of QL(H => G1 G2) given in [Je­linek and Lafferty 90] one can solve the recursion in (1 1) in the same way the recursive equation for the prefix-string probability is solved there, obtain­ing:
Pr(H < x(m) Wj . . . w;+9yC•) >) =

in which:
= L QL (H ⇒ G1 G2)C . .,,,31 (G1 , G2)

m = L Pr(G1 < x�k) >) x
k=l

q- 1

+ L Pr(G1 < x(m) w; . . . w;+ k >) X

k=O

(12)

The term Cxvy (G1 , G2) contains a summation of products between gap probabilities and island probabilities over a left gap shorter than x , along with a summation of products between suffix­string probabilities (with known length gap) and prefix-string probabilities (with unspecified length gap) . Equation (13) can be solved recursively, with the initial condition (x<0) = c:) :

g - l

. Cvy(G1 , G2) = L Pr(G1 < w; . . . W;+k >) x
k=O

(14)

3.4 Prefix-string-with-gap probabil­
ities

An expression for the prefix-string-with-gap prob­ability Pr(H < ux<m) vy<*) >) can now be obtained directly from the four cases where the boundary between the two children of H belongs to u , to the gap x, to the island v or to the final gap y:
Pr(H < W i . . . w i+ px("') w; . . . w;4q yC •) >) =

= L Pr(H _;, G1 G2)[
G 1 ,G2
p- 1
L Pr(G 1 < Wi . . � wi+ k >) x
k=O

,n

+ L Pr(G 1 < ux�k) >) Pr(G2 < x�rn- k)v yC •) >) +
k = O
q-1

+ L Pr(G 1 < ux<"') w; . . . w;+ k >) x
k = O

X Pr(G2 < W;+k+ l . . . w;+ q y< •) >) +

+ Pr(G1 < ux< "') v y�•) >) Pr(G2 < y�•) >)]. (15)

Solving the recursion in (15) in the same way as for (1 1) , one obtains:

where:

Pr(H < Wi . . . wi+ p x("') w; . . . W;+ q Y(•) >) =

= L QL (H =? G1 G2)Du.rvy(G1 , G2) (16)
G 1 ,G2

Du:cvy(G1 , G2) =

p- 1
L Pr(G1 < Wi . . . wi+ k >) x

k=O

2 1 4

,n

+ L Pr(G 1 < ux�") >) Pr(G2 < x�;.,.- k) vyC •) >) +
k=O
q-1

+ L Pr(G1 < ux< "'>w; . . . W;+ k >) x

k=O

As for previous computations in this section, equa­tion (17) consists of summations over products of already defined probabilities along with a recursive term Pr(G2 < Wi+k+l . . . Wi+pX(m) v.y(*) >) which can be computed starting with the initial condition
(p = 0) :

+

,n L Pr(G1 < WiX�k) >) Pr(G2 < x�rn- k) vy(•) >) +
k=O
q-1
L Pr(G 1 < WiX(rn) Wj . . . w;+k >) X

k=O

4 COMPLEXITY
EVALUATION

Based o n the relation presented i n the last sec­tion, algorithms for the computation of the prob­abilities defined there can be developed strightfor­wardly. In the present section we discuss the com­putational complexity for the cases of major inter­est (details about the derivation of the complexity expressions are simple but tedious, and therefore will not be reported here) . The assumed model of computation is the Random A ccess Machine, taken under the uniform cost criterion (see [Aho et al. 74]) . We are mainly concerned here with worst­case time complexity results.
We will indicate with IPI the size of set P, i .e. the number of productions in G3 • All the probabil­ities defined in Section 3 depend upon the grammar 03 , strings u and v and the lengths of gaps x and

y. Table 1 summarizes worst-case time complexity for sets of these probabilities.

computed set time complexity
island probabilities 1 . {Pr(H < x(m) Wj . . . Wj+qY(*) >) I H E N}
prefix-string-with-gap probabilities 2 . {Pr(H < Wi . • . Wi+pX(m) Wj . . . Wj+q Y(*) >) I H E N}
one word extension for island probabilities 3 . {Pr(H < x(m) Wj • . . Wj+q ayC*) >) I H E N} 4. {Pr(H < x<m-l) awj . . . Wj+qY(*) >) I H E N} O(IPI max{q2 , m� }) O(IPI max{m2 q , mq2 })
one word extension for prefix-string-with-gap probabilities 5 . {Pr(H < Wi . . . Wi+pX(m) Wj . . . Wj+q ay(*) >) I H E N} O(IPI max{p2 , q2 , m2 , (m + q)p}) O (IPI max{p2q , pq2 , p2m, pm2 }) 6 . {Pr(H < Wi . . . Wi+pX(m-l)aWj . . . Wj+qY(*) >) I H E N}

Table 1 : Worst-case time complexity for the computation of the probabilities of some sets of theories. Symbol a E :E indicates a one word extension of a theory whose probability had already been computed.
Both island and prefix-string-with-gap probabil­ities require cubic t ime computations (rows 1 and 2) . Rows 3 to 6 account for cases in which one have to compute the probability of a theory that has been obtained from a previously analyzed the- · ory by means of a single word extension. In these cases, using a dynamic technique, one can d ispense from the computation of elements already involved in the calculation of the previous theory. One word extension on the side of the unlmown length gap yC *) costs quadratic t ime both in the case of island and prefix-string-with-gap probabilities. The one word extension on the side of the known length gap x(m) costs cubic t ime. This asymmetry can be j ustified observing froin (15) that the addit ion of · a single word between a string and a bounded gap forces the reanalysis of a quadratic number of new subterms. Note that this is also true for well known dynamic methods for CFG recognition (e.g. the CYK algorithm [Younger 67]) : one word change in the middle part of a string implies a cubic-time whole recomputation in the worst-case. In fact there is an interesting parallelism between those methods, the Inside algorithm and the methods d iscussed here (see [Corazza et al. 90] for a d iscus­sion) .

5 DISCUSSION

A framework has been developed t o score par-

21 5

t ial sentence interpretations in ASU systems. Gen­eral motivations for modeling naturall anguage by SCFG 's can be found in [Jelinek et al. 90] , while the importance of scoring measures that are com­patible with island-driven strategies has been al­ready pointed out in [Woods 81] . In the present section we discuss major advantages of the studied approach and possible applications of the derived framework.
We are mainly interested in sentence interpre­tation systems. Even if semantical and pragmati­cal predictive models are not defined , we can rely on high-level · heuristic information sources. This knowledge can be used to predict words on the base of previous partial interpretations. Predic­tions may be words not adjacent to the stimulat­ing segments. These words can be recovered us­ing word-spotting techniques.4 Thus, the only way to employ the available heuristic information is to parse sentences in a d iscontinuous way. This means that the parser has first to find an island and then to fill the gap between the stimulating segment and the island itself. This technique produces partial analyses that are interleaved by gaps and that can be scored using our method .
4 Word-spotting techniques allow one t o find occurences

of one (or more) given word in a speech signal. In these sys­
tems there is a trade off between "false alarms" and "missing
words" that can be controlled by a threshold obtained from
training speech.

The framework introduced in this paper can also be used to predict words adjacent to an already rec­ognized string and to compute the probability that the first (last) word x1 (xm) of a gap is a certain symbol a E I;. This new word will extend the cur­rent theory. Words adjacent to an existing theory can be hypothesized by selecting the word(s) which maximize the prefix-string-with-gap probability of the theory augmented with it. Instead of comput­ing these probabilities for all the elements in the dictionary, it is possible to restrict this expensive process to the preterminal symbols (as in [Jelinek and Lafferty 90]) . The approach discussed so far should be compared with standard lattice parsing techniques, where no restriction is imposed by the p�rser on the word search space (see , for example [Chow and Roukos 89] and the discussion in [Moore et al. 89]) .
Our framework accounts fo r bidirectional expan­sion of partial analyses; this improves the predic­tive capabilities of the system. In fact , bidirec­tional strategies can be used in restricting the syn­tactic search space for gaps surrounded by two par­tial analyses. This point has been discussed in [Stock et al. 89] for cases of one word length gaps. We propose a generalization to m-length gaps and to cases where partial analyses _ do not represent only complete parse trees but also partial deriva­tion trees.
As a final remark, notice that the proposed framework requests the SCFG to be in Chomsky normal form. Although every SCFG G3 can be cast in CNF, such a process may result in quadratic size expansion of G3 , where the size of G3 is roughly proportional to the sum of the length of all pro­ductions in G3 • The proposed framework can be easily generalized to other kinds of bilinear forms with linear expansion in the size of G3 (for example the canonical two form [Harrison 78]) . This con­sideration deserves particular attention because in natural language applications the size of the gram­mar is considerably larger than the input sentence length.

References

[Aho et al. 74] A.V.Aho, J .E.Hopcroft and J .D .Ullman: "The Design Analysis of Com­puter Algorithms" , Addison-Wesley P ub­lishing Company, Reading, MA, 1 97 4.

21 6

[Baker 79] J .K.Baker: "Trainable Grammars for Speech Recognition" , Proceedings of the Spring Conference of the Acoustical Society of America, 1979 . [Chow and Roukos 89] Y.L .Chow and S .Roukos: "Speech Understanding Using a Unification Grammar" , P roceedings of the IEEE In­ternational Conference on Acoustic , Speech and Signal P rocessing, 1989, Glasgow, Scot­land. [Corazza et al. 90] A.Corazza, RDeMori, R.Gretter and G .Sat ta: "Computa-tion of P robabilities for an Island-Driven Parser" Technical Report SOCS 90-19 , Mc Gill University, MONTREAL, Quebec, H3A 2A7 CANADA. Also as Technical Re­port TR9009-01 , IRST, Trento, Italy, 1990. [Giachin and Rullent 89] E.P.Giachin and C.Rullent: "A P arallel P arser for Spo­ken Natural Language" , Proceedings of the Eleventh InternatioI).al Joint Conference on Artificial Intelligence, 1989, Detroit, Michi­gan USA, pp . 1537-1542 . [Gonzales and Thomason 78] R.C.Gonzales and M.G.Thomason: "Syntactic Pattern Recog­nition" , Addison-Wesley P ublishing Com­pany, Reading, MA, 1978 . [Harrison 78] M .A.Harrison: "Introduction to Formal Language Theory" , Addison­Wesley P ublishing Company, Reading, MA, 1978 . [Jelinek et al. 90] F .Jelinek J .D.Lafferty and R.L.Mercer: "Basic Method of Probabilis­tic Context Free Grammars" , · Internal Re­port, T.J .Watson Research Center, York­town Heights, NY 10598 , 85 pages. [Jelinek and Lafferty 90] F.Jelinek and J .D.Lafferty: "Computation of the Prob­ability of Initial Substring Generation by Stochastic Context Free Grammars" , In­ternal Report , Continuous Speech Recog­nition Group, IBM Research, T.J .Watson Research Center , Yorktown Heights, NY 10598 , 10 pages. [Lari and Young 90] K.Lari and S .J .Young: "The Estimation of Stochastic Context-Free Grammars using the Inside-Outside Algo­rithm" Computer Speech and Language, vol .4, n . 1 , 1 990 , pp.35-56

[Moore et al. 89] R.M.Moore F .Pereira and H .Murveit: "Integrating Speech and Nat­ural Language Processing" , Proceedings of the Speech and Natural Language Work­shop, 1 989 , Philadelphia, Pennsylvania, pp.243-247.
[Stock et al. 89] O.Stock R.Falcone and P.Insinnamo: "Bidirectional Chart: A Po­tential Technique for Parsing Spoken N atu­ral Language Sentences" Computer Speech and Language, vol .3 , n.3 , 1989, pp.219-237.
[Woods 81] W.A.Woods: "Optimal Search Strate­gies for Speech Understanding Control" Artificial Intelligence, vol . 18 , n .3 , 1 98 1 , pp.295-326.
[Wright and Wrigley 89] J .H .Wright and E .N . Wrigley: "Probabilistic LR Pars­ing for Speech Recognition" International Workshop on Parsing Technologies, P itts­burg, PA, pp. 105-1 14.
[Younger 67) D.H .Younger: "Recognition and Parsing of Context-Free Languages in Time n3" Information and Control, vol. 10 , 1967 , pp. 189�208.

2 17

February 1 5 , 1 991

Session C

Substring Parsing

for Arbitrary Context-Free Grammars

Jan Rekers Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands email: rekers@cwi.nl
Wilco Koorn Programming Research Group, University of Amsterdam P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

Abstract

A su bstring recognizer for a language L determines whether a string s is a substring of a sentence in L, i . e . , substring-recognize(s) succeeds if and only if 3v , w : v sw E L. The algorithm for sub­string recognition presented here accepts general context-free grammars and uses the same parse tables as the parsing algorithm from which it was derived. Substring recognition is useful for non­correcting syntax error recovery and for incremen­tal parsing. By extending the substring recognizer with the ability to generate trees for the possible contextual completions of the substring, we obtain a substring parser, which can be used in a syntax­directed editor to complete fragments of sentences .
1 Introduction

A recognizer for a language L determines whether a sentence s belongs to L. A substring recognizer performs a more complicated job, as it determines whether s can be part of a sentence of L. A recently developed substring recognition al­gorithm [4) uses an ordinary LR parsing algo­rithm with special parse tables. For ordinary pars­ing, this parsing algorithm is limited to LR(l) grammars , but the more complicated nature of substring recognition limits it to bounded-context grammars (see Section 3) . In Section 4 we describe a substring recognition
Partial support received from the European Communi­

ties under ESPRIT project 2177 (Generation of Interactive
Programming Environments II - GIPE II) and from the
Netherlands Organization for Scientific Research - NWO,
project Incremental Program Generators.

21 8

algorithm that does not suffer from this drawback. It accepts general· context-free grammars and uses the same parse tables as the ordinary parser. Our algorithm is based on the pseudo-parallel parsing algorithm of Tomita [17) , which runs a dynami­cally varying number of LR parsers in parallel and accepts general context-free grammars . In Sec­tion 5 we extend the su bstring recognizer into a substring parser that generates trees for the pos­sible completions of the substring.
2 Applications

2 . 1 Syntax error recovery

In its simplest form, a parser stops at the first syn­tax error found. If it has to find as many errors in the input as possible , it can try to correct the error in order to continue parsing. Spurious er­rors are easily introduced, however, if the parser makes false assumptions about the kind of error encountered. Substring parsing can be . used ·to implement noncorrecting syntax error recovery. If an �rdi­nary parser detects a syntax error on s.ome sym­bol, the substring parser can be started on the next symbol to discover additional syntax errors . Using this method , it is not necessary to let the parser make any assumption about how to correct the error, or to let it skip input until a trusted symbol is found. Richter defines noncorrecting syntax error re­covery with the aid of su bstring parsing and inter­val analysis in a formal framework [15] . He proves that his technique does not generate spurious er­rors , but is not explicit about its implementation .

He notes , however, that there are difficulties in keeping the substring parser deterministic due to a limitation on the class of grammars accepted. Our technique could be useful here , as it imple­ments the required substring analysis for general context-free grammars.
2 . 2 Completion tool

In Section 5 we will show how the substring rec­ognizer can be extended so that it generates parse trees for the possible completions of a substring. As the total number of p'ossible completions will often be infinite , only generic completions are gen­erated . A syntax-directed editor could use these to corn plete fragments of sentences in accordance with the grammar used, or to guess the continua­tion of what the user is typing.
2 .3 Incremental parsing

Another application for substring parsing is in in­cremental parsing. Incremental parsing can be performed by attaching parser states to tokens (3 , 1 , 18] . Afte·r a modification has been made, the parser is restarted in a saved state, at a point in the text just before the modification . Pars­ing stops when the parser reaches a token after the modification in an old configuration (if ever) . These methods are very good as to minimizing the amount of recomputation after a modification, but require a huge amount of memory for storing the states of the parser (parse stacks with partial parse trees as elements) . Ghezzi and Mandrioli present an alternative technique for incremental parsing. (7, 8] If the string xxzyy is modified to xxzyy, where x and y have length k, with k the look-ahead used by the parser, then the parse trees previously gen­erated for x and y are still valid :iJter the modi­fication. All subtrees previously generated for x and y can thus be abbreviated by their top non­terminals, which minimizes the length of the string to be reparsed . This technique is both time and space efficient , but is not applicable to general context-free parsing as it requires a fixed look­ahead. In our particular case, we need incremental parsing in a syntax-directed editor that uses the Tomita parser. By running a varying number of LR-parsers in parallel , the Tomita parser adjusts its look-ahead dynamically to the amount needed , and is thus not limited to an a priori known k . Incremental parsing can also b e achieved in an-

21 9

other manner: after a modification has been made in the text , find the substring s1 belonging to the smallest subtree that contains the modification in the stored parse tree . If the type of this subtree is
T and s' can be parsed as a tree of type T, replace the old subtree by the new one . If s1 fails to parse, it may be the case that the modification intro­duced a syntax error, or that the subtree has been chosen too small . These two cases must be distin­guished, as the incremental parser proceeds in a different way in each case. A su bstring parser can provide a hint as to which of the two possibilities is actually the case . If the substring parser fails on
s', the modification will be syntactically incorrect in any context , and an error message can be given. If the substring parser succeeds, a larger subtree is chosen and parsing is retried . This can be more time consuming than remembering parser states, but the amount of memory needed is far less . We consider using this scheme in the syntax-directed editor GSE [11) , but it has to be investigated fur­ther as a lot of work is still performed twice.
3 Related work

Cormack [4] describes a substring parse tech­nique for Floyd's class of bounded context or BC(l , 1) grammars [6] , and implements the sub­string parser Richter mentions [15] . A grammar is BC(l , 1) if for every rule A : := a, if some sentential form contains aab where a is derived from A then
O'. is derived from A in all sentential forms contain­ing aab. This class is smaller than LR(1) . The solution of Cormack consists in using an ordinary LR automaton, but a special parse table construc­tor. The sets of items generated do not only con­tain items of the form A : := a./3 but also "suffix items" of the form A : := · · · ./3 . These suffix items denote partial handles whose origins occur before the beginning of the input . The generated parse tables are deterministic , provided that the gram­mar is BC(l , l) . This substring parser is used for noncorrecting error recovery in a parser for Pascal. The BC(l , 1) limitation on the grammar caused problems in the definition of Pascal, which where alleviated by permitting the parse table generator to rewrite the grammar if necessary. Lang describes a method for parsing sentences containing an arbitrary number of unknown parts of unknown length [12] . The parser produces a fi­nite representation of all possible parses (often in­finite in number) that could account for the miss­ing parts. The implementation of this method is

based on Earley parsing [5] , as is the Tomita algo­rithm we use in our own substring parser. The ba­sic idea of Lang's method is that "in the precence of the unknown subsequence *, scanning transi­tions may be applied any number of times to the same computation thread, without shifting the in­put stream." This process terminates, as parsers in the same state are joined and the number of states is finite . This method is very elegant and powerful, and can be used as a su bstring parser {by providing it with the string "*s*") . We will not use it , however, as it is more general than what we need. Whether it would be · �flicient enough for interactive purposes is unclear. Snelting presents a technique to complete the right-hand side ·of unfinished sentences [16] (also see Section 5 .2) .

4 Substring Recognition

4.1 Tomita parsing

We base the implementation of our substring parser on Tomita's algorithm. This algorithm runs several simple LR parsers in parallel. It starts as a single· LR parser, but, if it encounters a conflict in the parse table , it splits in as many parsers as there are conflicting possibilities. These indepen­dently running sim pie parsers are fully determined by their parse stack. When two parsers have the same state on top of their stack, they are joined in a single parser with a forked stack. A reduce ac­tion which goes back over a fork in a parse stack, splits the corresponding parser again into two sep­arate parsers . If a parser hits an error entry in the parse table, it is killed by removing it from the set . of act�ve parsers . The possibility to run several parsers in parallel makes the Tomita algo­rithm very well suited for substring parsing. For a full description of the Tomita parsing algo­rithm we refer .to Tomita [17] , to Nozohoor-Farshi who corrected an error in the algorithm concerning e:-productions [13] , or to Rekers who extended the algorithm to the full class of context-free gram­mars by including cyclic grammars1 [14] . For a detailed explanation of LR parsing [2, eh . 4. 7] is recommended.
1 Grammars in which A�A is a possible derivation

220

4.2 The grammar

The grammar for which our substring recognition algorithm works should be reduced in such a way that it does not contain non-terminals that can­not produce any terminal string or f. These non­terminals can be identified easily, and all rules in which they appear should be removed from the grammar. This clean-up operation does not affect the language recognized. [9 , p . 73-76] Useless symbols and unreachable rules do not influence substring parsing as these are ignored by the parse table generator. . This is due to the fact that LR parse tables are generated top-down, starting with the start symbol of the grammar, and that useless symbols and unreachable rules are , by definition, unreachable from the start sym­bol.
4.3 The algorithm

If we have to determine whether a string so · · · Sn is a substring of a sentence in a language L, we start the substring recognition process by generating, for each state directly reachable under so , a parser with this state on its stack. These parsers will process s1 · · · Sn . We will show how an individual parser processes an action, but we will not discuss the management of the different parsers , as this is done in the same way as in ordinary Tomita parsing. The parser · . obtains an action from the parse table with the state on top of its stack and with input symbol
Sk . This can be a shift, error or reduce-action, and is processed in the following manner:

• A (shift state') -action is processed as in normal parsing: state' is pushed on �he stack and the parser is ready to process Sk+i ·
• An (error) -action removes the parser from the set of active parsers .
• A (reduce A ·: := o:,B)-action is processed as fol­lows:

If there are at least lo:,B I + 1 ·entries on the parse stack the reduce action is per­formed as in normal parsing: lo:,BI entries are popped off the stack, and the parse· ta­ble is consulted, with the state remaining on top of the stack and A, to obtain a state to push on the stack again. The parser is now ready to continue the processing of S k .

If there are only I.B I entries on the stack, only f3 has been recognized of A : := o:.{3; a lies before so and should produce (a part of) a prefix of s0 • This is possible , as all non-terminals in o: can produce some ter­minal string, and all terminals in o: triv­ially do. So the reduction A : := 0:./3 may be performed. The states which can be reached directly by a transition under A are the states where parsing may continue. For each -of these valid states a new parser is started with that state on the -stack. These parsers .all pr.oceed to . process sk . If there are exactly la.B I P.ntries on the stack, so · · · s1c-1 reduces to 0:./3, but the context in which A is to .be used is un­known . This is handled in the same way as the previous case.
If there are no parsers left alive after the .process­ing of sn , the substring parser fails. If there are parsers left , these are currently recognizing rules A : := o:.,B, of which (a part of) o:. has been rec­ognized . As every .B can produce some termi­nal string, tfrese rules can all he finished . This means that the su bstring parser 'Succeeds if there are parsers remaining :after the processing oI 'Sn .

4.4 The parse table generator ·

The su bstring parser is controlled by the same parse table as our ordinary ·parser. To '.generate this parse table we use an extended versio� of the lazy and incremental parser ·generator IPG [10] . The extension concerns the need of the substring ·parser to -know all states which can be reached by a transition under a 'given symbol. This function needs global information about the parse table, which means -that the whole parse table must be known. As a consequence, the lazy aspect of IPG cannot be exploited here and the parse table is al­ways fully expanded. The expanded :parse table can also be used by the ordinary parser, of course.
·5 Substring Parsing

We extend the substring recognizer into a sub­string parser by .generating parse trees for stib­strings. The possible parse trees for a substring s are the parse trees of all sentences vsw for which
vsw E L holds. To limit the number of comple­tions we allow v and w to consist both of terminals and non- terminals, and we generate a parse tree,

221

START : := Stat START : := Exp Stat : := if Exp then Stat Stat : := if Exp then Stat else Stat Stat : := Id := Exp Exp : := Id -Exp : := Int Exp : := Exp + Exp Exp : := Exp * Exp Exp : := (Exp)
Figure 1 : A grammar

START

I Stat
/ I � if Exp then
/ I "-. Exp + Exp

/ I "-. I (Exp 2 Int(5)

Sta:t
/ -1 � if Exp then ·Stat

;Figure 2: A completion of ") + 5 t·hen if"
corresponding to a sentential form o-1 s0-2 , only when the frontier of each of its subtrees cont.ains -at 1least -one symbol of ·s ; i .e . , we do not gener­,a;te subtrees whose frontier lies -entirely. within u1 ·or 0-2 . The trees that w.e .generate, are t'he ·most general trees, .as it is not possible to replace any of their subtrees by a non-terminal such that the ;frontier ,still contains s ,as a substiing. Even so, th-e number of completions can still be infinite. In Section 5 :2 we will discuss how to limit this num­·ber still forth er. ·For the grammar of F�gure 1 -and the string ") + ·5 ·then ·if" , a possible completion is the sen­tential form

if ·(Exp) -+ 5 then if ;Exp then Stat
s

whose parse tree is given in ·Figure 2. To distin­guish the leaves of s from those of o-1 and u2 , th� former are .underlined.
5 .1 Generating the completions of a

substring

LR parsers generate parts of parse trees during ,a reduction step. On reducing A : := a, the parse stack contains the subtrees created for o: . These

are assembled in a new node of type A and the subtree created in this way is pushed on the stack. In the substring parser ordinary reductions are treated in the same way. If the rule A : := a/3 is reduced with only nodes for /3 on the stack, however, additional nodes are created for a. In this way, the parse trees for the possible prefixes of s are created. Parse trees for postfixes of s are created in the same way: after processing s the parser has to finish all rules which are in the process of being recognized. These are the rules in the kernel of the current state of the parser. If only a has been seen from a rule A : := a/3, the rule is reduced and additional nodes are created for /3. It can even be the case that only f3 has been recognized from a rule A : := a/31, . and that nodes must· be created for both a and ,·.
5 .2 Further reduction of the num-

ber of possible completions

By producing only parse trees that are most gen­eral, the number of possible completions is re­duced, but it is often still too large and not even always finite. We propose the following rules to limit this number still further:
1 . The parse trees generated are kept as compact as possible by disallowing derivations of the form A/4a.A, A/4a.A,8, and A/4A/3, where only A has actually been recognized and all el­ements of a and /3 would produce elements in

CT1 or CT2 . Clearly, such derivations can be re­peated infinitely often . They are undesirable as they only enlarge 0-1 or 0-2 . For example , the substring ") : + 5 then if" also has a possible completion if Exp + (Exp) + 5 then if Exp then Stat �
� s � whose parse tree is given in Figure 3. In this tree a subtree for the rule Exp : := Exp + Exp has been inserted in the prefix. 2 . The number of possible sentential forms for which parse trees are generated is now finite, but these can still have infinitely many parse t rees as the grammar may be cyclic. Rekers de­scribes how to parse and generate parse graphs for cyclic grammars [14) . The cycles generated in this graph can be removed by his routine remove-cycles. This results in a finite number of most general completions.

222

START

I Stat
/ I � if Exp then Stat
/ I "' / I � Exp + Exp il

/ I "' I Exp + Exp Int(5)
/ I "'-(Exp)

Exp then Stat

Figure 3 : · Another possible completion of ") + 5 then if"
3. In the generation of the postfixes of s a choice can be made for the "simplest" completion. That is , if a substring can be completed ac­cording to both A : := 0:/3 and A : := a,, and

l/3 1 < 1 , 1 , we prefer A : := a/3. In the exam­ple of Figure 2 this rule forbids the choice of the "if-then-else" rule , as the "if-then" rule al­ready applies . Snelting's rule "prefer reduce items over shift items" [16) is similar to ours. It can also be formulated as : if completion ac­cording to both A : := a and B : := a:1 (1 =/= t:) is possible , then prefer A : := a. We consider our rule more appropriate , as we take the case of /3 being non-empty but shorter than , into account as well , and we only make the choice if the two rules reduce to the same non-terminal. Otherwise , the rule A : := a might be preferred over B : := a.1, whereas the environment in which the substring is completed needs a tree of type B.

6 Measurements

Our first measurement compares the -substring rec­ognizer with the Tomita recognizer from which it was· derived t.o learn the additional costs of sub­string parsing. 1 We have taken a grammar of about twenty rules and sentences of increasing length. These were parsed by the Tomita rec_ognizer first. The result­ing parse times are indicated in . Figure : 4 with a ."•" . Next , the same strings minus a randomly chosen prefix were given to the substring parser.
1 The measurements were performed on a SUN Spare

station. The programs were written in Lisp. The time used
by the lexical scanner has not been taken into account.

0 .4 substring recognizer 0 o : 0 • : recognizer 0 0 .3 0 •
0 •

0 0 -• • time 0 .2 0 0 • (in seconds) • 0 •
0 • •

0 • 0 . 1 •
0 o O • • • 0 .0 0 100 200 300 400 500 number of tokens Figure 4: C�mparison of the substring recognizer with an ordinary one

1 . 5 •Id
•lnt •) •lnt •lnt •(1 .0 •lnt time ..

•1 • [
' (in seconds) 0 .5 •if •if

eld
•lnt

• [

•begin

•Id . .) •Id •lnt
•lnt

•else · ·-

eld •Id •Id

•end •<

• := •else
0 . 0 -+----,------,-----.----.....------,-----.-

0 5 10 15 20 25 30 randomly selected substring Figure 5 : Time needed by the substring parser on Pascal sentences of 100 tokens
The required times are indicated in Figure 4 with a "a" . It turns out that the substring parser has a moderate overhead with respect to the normal
parser. This overhead can be interpreted as the time needed for the su bstring parser to get on the "right track" . As Figure 5 shows, the variations in this overhead are caused by the random cutting of the string. For some strings it takes longer than for others to determine of which language construct it can -be a su bstring. The larger the grammar is , the more alternatives are available and therefore the higher the variation . In Figure 5 we compared the time taken by the substring parser on 30 randomly chosen parts of Pascal sentences of 1 00 tokens. The dots indi­cate the amount of time needed and they are at­tributed with the first symbol of the substring. These measurements show that sentences starting with a token that can appear in many differents contexts, like "Id" or ") " , take more time to recog­nize than sentences starting with a disambiguating token like " : =" or "else" .

223

7 Conclusions

The adaptation of the Tomita algorithm to sub­string parsing results in a very elegant and power­ful algorithm. The main advantage of the fact that it accepts- general context-free grammars and uses ordinary LR parse tables is that substring parsing can now be applied in a very general manner, in­stead of only to carefully written grammars and at the cost of an extra generation phase. Substring parsing is slower than ordinary pars­ing, but this will not be a serious drawback for its application as an error recovery technique or as a completion tool . The use of the substring parser in incremental parsing, however, has to be inves­tigated further.
Acknow ledgments

We would like to thank Nigel Horspool , who sug­gested to extend our implementation of the To­mita algorithm to substring parsing. Two years

after this discussion we finally saw the need for such a technique and started a serious investiga­tion. Next , we are grateful to Paul Hendriks who pointed out a valuable simplification in the treat­ment of incomplete reductions in the substring parser, and to Jan Heering for his careful reading of earlier versions of this paper.
References

[1] R. Agrawal and K.D. Detro. An efficient in­cremental LR parser for grammars with ep­silon productions. Acta Informatica, 19 :369-376, 1983.
[2] A .V. Aho, R. Sethi , and J.D. Ullman. Compilers. Principles, Techniques and Tools. Addison-Wesley, 1986.
[3] A. Celentano. Incremental LR parsers . Acta Informatica, 10 :307-321 , 1978 .
(4] G.V. Cormack. An LR substring parser for noncorrecting syntax error recovery. In Pro­ceedings of the SIGPLAN'89 Conference on Programming Language Design and Imple­mentation, pages 161-169, 1989. Appeared as SIGPLAN Notices 24(7) .
(5] J . Earley. An efficient context-free parsing algorithm. Communications of the A CM, 13(2) :94-102, 1970.
(6] R.W. Floyd. Bounded context syntactic anal­ysis. Communications of the A CM, 7(2) :62-67, 1964.
(7] C. Ghezzi and D . Mandrioli. Incremental parsing. A CM Transactions on Programming Languages and Systems, 1 (1) :58-70, 1979 .
[8] C. Ghezzi and D. Mandrioli. Augmenting parsers to support incrementality. Journal of the A CM, 27(3) :564-579, 1980.
(9] M.A. Harrison. Introduction to Formal Lan­guage Theory. Addison-Wesley, 1978.

(10] J . Heering, P. Klint , and J . Rekers. Incre­mental generation of parsers. In Proceedings of the SIGPLAN'89 Conference on Program­ming Language Design and Implementation, pages 179-191 , 1989. Appeared as SIGPLAN Notices 24(7) .

224

(1 1] J .W.C. Koorn. GSE: A generic text and structure editor. Programming Research Group, University of Amsterdam , to appear.
(12] B. Lang. Parsing incomplete sentences . In Proceedings of the Twelfth International Con­ference on Computational Linguistics, pages 365-371 , Budapest , 1988. Association for Computational Linguistics.
(13] R. Nozohoor-Farshi. Handling of ill-designed grammars in Tomita's parsing algorithm. In Proceedings of the International Parsing Workshop '89, pages 182-192, 1989 .
(14] J . Rekers. Parsing for cyclic grammars. Cen­trum voor Wiskunde en Informa.tica (CWI) , Amsterdam, in preparation.
(15] H. Richter. Noncorrecting syntax error re­covery. A CM Transactions on Programming Languages and Systems, 7(3) :478-489 , 1985.
[16] G . Snelting. How to build LR parsers which accept incomplete input. SIGPLAN Notices, 25(4) : 51-58, 1990.
(17] M. Tomita. Languages. 1985 .

Efficient Parsing for Natural Kluwer Academic Publishers ,
(18] D. Yeh . On � ncremental shift-reduce parsing. BIT, 23(1) :36-48, 1983.

PARSING WITH RELATIONAL UNIFICATION GRAMMARS

Kent Wittenburg
Bellcore Visiting Researcher

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759
Arpanet: Kent@mcc.com

Phone: (51 2)338-3626
Fax: (51 2)338-3600

ABSTRACT

In this paper we present a unification­
based grammar formalism and parsing algo­
rithm for the purposes of defining and
processin.g non-concatenative languages. In
order to :encomp_ass langu3:ge� that are. charac­
terized by relations beyond simple _stnng con­
catenation we introduce relational con­
straints into a linguistically-based unification
grammar formalism -_and extend bottom-up
chart parsi!1g II?-ethods: This wor� is currently
,being apphe.d _m the mterpretat10n of hand­
sketched mathematical expressions and struc­
tured flowcharts on -notebook computers and
interactive worksurfaces.

l. INTRODUCTION
In the MCC Interactive Work Surface

Project, we _have been applying a langu�ge
:perspective to .the problem of conne_ctmg
meaning to graphical and sketched media on
both the input and the .output side of h�m�n­
machine interfaces. The technology 1s m­
itially being applied to the problem of recog­
nition of liana-sketched input through tlie
"electronic paper" interface of notebook col!l­
puters and worksurfaces (Avery 1988; Martm
et al. 1990). Our first applications are inter­
·preters for math express10ns and structured flowcharts. Subsequent applications will in­
clude interpretation of sketched designs (e.g. ,
engineering or architectural laY,ou_ts or plB;ts)
in such a way that the semantic mformabon
can ·be made available for subsequent
database update and querying, intelligent ad­
visin_g creation of dynamic prototypes, etc.
On tli� output side� we �xpect that the in';erse
connection of unaerlymg data to a VIsual
vocabulary will enabl-=: easy-to-use �ools for
conne�tip� .the s�man�1cs of underlymg data
to dynamic graphical displays.

Figure 1 -1 shows a visualization of a
derivation in two-dimensional space. Such
derivations can be produced by grammars
which describe languages whose sentences are
objects situated in a two-dimensional space as
long as the gram�ars can specify_ relational,
in the most obVIous case positional, con-

225

Figure 1-1: Derivation in 2D space
straints among the objects. Such constrain�s,
and their resolution, are beyond the capacity
of structurally-based unification grammars
and parsing methods developed. for langu_ages
of strings. The purpose of this paper 1s to
present the framework of Relational Unifica­
tion Grammar (RUG), which · is capable of
describing such languages, and then to extend
bottom-up chart-parsing methods to work
with these grammars. The algorithm
presented here is motivated by the need to
process input . increment�lly: We e�pect to
derive benefit m our ap_p�1cabon dom8:ms fr�m
processing each symbol m the order m which it is created by a user. Such a parser allows
for suggesting possible continuations for the
user as well as determining c�rre�tness of tI1e
input so far. Temporal ordenng !mposes sig­
nificant demands on our parser smce we can­
not enumerate the input based on spatial · con­
siderations for example, a top-down left-to­
right trave�sal. Such a normaliz�tion o� or­
dering has usually been assumed m p�ev10us
applications of grammar-b_ased parsmg to
visual domains (e.g. , Tomita 1989 ; Chang
1988).

2. GRAMMARS
Parallel to Helm and Marriott (1 990), who

are investigating visual languages in the logic
programming tradition, we . adopt _a
unification-based grammar formalism that 1s
augmented with constraints necessary to in­
corporate relations beyond string concatena­
tion into the declarative specification of a lan­
guage. Unification itself then must be �x­
panded to incorporate. some form of con�tramt
solving, an area of active research m logic pro­
gramming.

Our approach is to extend the fami1y of
PATR unification-based grammar formalisms
(Shieber 1 986, 1 989). Instead of strings, we
assume the terminals of our grammar to be
what we will call icons, objects that are as­
sociated with a set of attributes such as <X,Y>
coordinates extent, arid colori each of whose
value rang�s is finite. The ru es of the gram­
mar, besides specifyi�g a variety �f syn�a�tic
and semantic constramts for use m derivmg
sentences of the language, also specify rela­
tional constraints among icons that may re­
quire arbitrary computation to determine
satisfaction.

Although �� will not at�emp� to gi"ye a
rigorous defimtion of �he �mficat10n basis of
our grammars here, it will nevertheless be
useful to note properties of some of the at­
tributes, values, and relational c9nstraints ap­
pearing in the grammar. B�s1des the_ c�s­
tomary PATR gramma_r machmery cons1stmg
of a vocabulary of attribute labels L and con­
stant values C, lexical and nonlexical pr9duc- ·
tions P and a start category (see Shieber
1 989), ;_ relational unification _grammar RUG
is--disti1;1guished by the tu_ple (�,:E,I), where N
is a fimte set of (nontermmal) icon type sym­
bols 1: is a finite set of (terminal) icon type
symbols, I is an infinite set of spatially located
icons each of which has a type E N u 1:, and R
is a finite set of relations in I.

The rules of the grammar cont_ain the f�l­
lowing elements, whose left-_hand �ides we will
consider unordered for the time bemg.

Head Arg1 . . . Argn ➔ Result

Since �e are focusing on analysis here rather
than generation, the arrow in the rule
skeleton is interpreted as "reduces to" rather
than "rewrites as". Each rule must have . a
head and a result, and there may be zero or
more arguments. Although there is nothing
essential from a formal point of view about
our use of the funct10nal terms head,
argument, and result in rules, it �s a .conven­
tion to guide grammar construction that we
find perspicuous.

Each of the elements of the production has
at least the following structural constraints:

226

syntax e N u :E
icon e I

The syntax attribute must take as value ele­
ments from the set N u L. Although in fact
we allow for syntactic characterizations to be
arbitrarily complex, we need a designated fea­
ture somewhere in the structure to be able to
instantiate and refer to the types of icons as­
sociated with both terminal and nonterminal
symbols. HE:re we will use th_e . syntax at­
tribute for this purpose. In addition, each of
these rule elements has an icon attribute
whose values are taken from I. In practice, the
icon value may be a unique name for an icon
instance.

Additionally every rule that is !1,0t unary
is required to have. a set . of relationa� _con­
straints with certam additional conditions.
Let us tum to an example in order to clarify
the use of relational constraints. · Following is
an example of a rule from the domain of math­
ematics expressions. It is a rule th�t forms
vertical infix expressions such a_s fractions� as­
signing an appropriate semantics for �va1ua­
tion of the expression. The syntactic and
semantic structural constraints appear first ·
followed by the relational constraints.
Rule 1 Vertical inf"ixat'ion:

Head Arg1 Arg2 ➔ Result

<Head icon> = X
<Arg

1
icon> = Y

<Arg
2

icon> = Z
<Head syntax> = Vert-infix-op
<Arg

1
syntax> = Formula

<Arg
2

syntax> = Formula
<Result syntax> = Formula
<Head sem> = <Result sem pred>
<Arg1 sem> � <Result sem argl>
<Arg2 sem> = <Result sem arg2>

<Result icon> = composition (X Y Z)
above (Y X)
below (Z X)
wider-than (X Y)
wider-than (X Z)

The first of the relational constraints,
which involves composition, defines the icon of
the rule mother as a function of the icons of
the rule daughters. _In practice, thi� relation
may involve summation of the boundmg boxes
of the daughter icons for do�ains �uch as
math expressions, or concatenation of hne seg­
ments in diagra� domains . . The othe: rela­
tions impose pos1t10nal and size C?nstrau�.ts on
the icons involved in the production. Smtable
definitions of above and below in the mat!i
domain incorporate adjacency as wel� as po�1-
tion. The particulars of such r_elations will
differ across grammars and domams.

In anticipation of the bottom-up parsing algorithm wliich we will present shortly, there
is an additional requirement which we will
impose on the form of grammar productions
and their relational constraints. Given that
there are no positional constraints implied by
the rule skeletons, it is useful for the parser to
be driven by appropriate relational con­
straints from individual rules for its basic rule
matching operations. Thus we distinguish the
class of relations that drive the matching ac­
tion of the parser from those that operation­
ally serve as constraints on proposed matches.
Positional constraints such as above are more
appropriate for driving parsing than size con­
straints such as wider-than. We will assume
that each grammar distinguishes a class of
positional constraints for this purpose.1 Fur­
thermore, we will refer to the maximal rela­
tional domain (R domain) over which posi­
tional relations hold. Many grammars will
restrict their positional constramts to adjacent
elements--in this case, adacency defines the R
domain for that grammar.

Our requirement on rule wellformedness
is that there be some ordering of the daughter
elements in productions as follows : Condition 1: An ordering of rule daughter elements is well-formed iff. for every element but the first, a positional constraint exists between that element and an element appearing earlier in the ordering.

An intuitive understanding of the reason
for Condition 1 can be reached by considering
the ordering <Arg1 , Arg2, Head>, correspond-
ing to the order <numerator, denominator,
divide-line> in a fraction expression, from
Rule 1 . Suppose the parser has matched the
numerator element and is in the position of
seeking candidates for its next match, the
denommator element. Since there are no posi­
tional constraints in the rule that involve the
icon associated with the instantiated
numerator, the parser has no way to constrain
the candidates for its next matcli. One would
of course like to confine the search to only
those objects which meet· appropriate posi­
tional constraints from the gi:ammar. On the
face of it, the parser would have to consider
every icon in the space as a possible instan­
tiation of the denominator term in our ex-·
ample and could not rule any of these
branches out on the basis of relational con­
straints until the divide-line had been
matched.

1 It will also simplify our exposition
slightly if we assume that the icon variable for
every argument al?pears as the domain term
of at least one positional constraint. For this
reason, we use both above and below in Rule
1 , even though the same constraints could be
stated with just one of these relations.

227

Fortunately, this condition on the form of rules can be determined off-line, and we as­
sume that a particular ordering of the ele­
ments of a rule is prespecified that meets this
condition. For the purposes of this paper, we
will assume that daughter elements of rules
are to be matched in the order in which they
are given in the rule definitions, implying that
rules will be matched head-first. 2

As a final note, lexical productions are
defined traditionally as in P ATR grammars
with the difference that instead of strings, the
terminal vocabulary is taken from the set of
icon type symbols L. That is , lexical entries
are pairs of the form <er, <l>>, where er is a
member of the set of terminal icon symbols :E
and <I> is an RUG formula containing struc­tural attributes found in the individual ele-·
ments of rules. For example, here is a pos­
sible lexical entry for a lin� representing divi­
sion:
horizontal-line :

<syntax> = vert -infix-op
<icon> = X
<sem> = divide

Note the that icon attribute i s uninstantiated
in the lexicon. It will be instantiated with an
actual icon instance (or a reference to one)
during lexical lookup.

An example of a simple grammar. may· be
found in - Section 4, where we s�ow a parse
trace.

3. PARSING
In this section we give an account of a

data-driven, tabular parsing algorithm that
uses the grammar formalism ·described above.
The algorithm we describe is technically a
recognition algorithm, thou�h it is easy to ex- _
tend it to a _parsing algorithm through the
standard methods available in the literature
(Aho and Ullman 1972). Tabular parsing
methods (e.g. , Earley 1970) and closely related
chart parsing methods (Kaplan 1973; Kay
1980) have in common the use of a grammar
table (or chart) that stores all complete and
partially matched constituents, indexing them

2Aithough the parsing algorithm we dis­
cuss matclies the elements of rules deter­
ministically, algorithms such as Satta and
Stock's (Satta and Stock 1989), which match
rules in variable orders starting with the
head, could be adapted to these grammars if
any and all orderings meet Condition 1 . One
would, however have to add the overhead
necessary to check for the J?OSsibility of
achieving the same rule match m more than
one order.

to spans of the input string. The tables are
used both to merge equivalent constituents
over the same input into a single entry, thus
avoiding combinatorics, and also to propose
candidates for rule applications, given that
adjacent entries in the tables are tied directly
to adjacent substrings in the input.

Two approaches have been employed
previously to apply tabular parsers in visual
language domains . The first is to convert
visual input data into a one-dimensional
string form and use conventional string-based
parsing methods. According to Fu (1974)1 the
linear-conversion approaches have "not oeen
very effective in describing two- or three­
dimensional · patterns". The second approach
is to extend conventional parsing tables to
directly represent regions over a spatial
domain rather than spans over an input
strinjJ, Tomita (1 989) has extended the Earley
algorithm and his own LR methods in this
manner. Such an option ties a parser to the
particulars of the spatial concatenation opera­
tions allowed in the grammar since the
makeup of the table itself will be affected by
the set of relations permitted in the visual
space.

in contrast, out approach is to redistribute
the functions ·exp�-cted from a parsing table
a·cro·ss two modules•. One, dis·cussed in detail
here, inc-orporates the parsing table and its
constituent entries. From these data struc­
tures one can determine the input which a
constituent dominates in order to check for
equivalent table entries and successful output;
however, one cannot from these structures
alone determine the candidates for extending
constituent coverage through rule applica­
tions. The module called the spatial relations
analyzer, which keeps its own set of data
structures, is necessary to discover new icon
candidates for incorporating into rule applica­
tions. We hope that this overall conceptual
design will become clear in the descriptions
and examples which follow.

We assume an unordered set of s�atially
located icons as input to the parser. The cor­
re_ctness and completeness of the algorit�m
will not be affected by any temporal ordenng
of the input, bu:t, for that reason, we can
process the icons incremental1y, in the order
m which they appear through the interface.

Definition 1: A cover, defined
with respect to entries (partial or
complete grammatical constituents)
in the parse table, is the subset of
icons in the input set that an entry
dominates .

Covers are necessary for determining
equivalence of constituents and success for the
parse. The goal of parsing will be to produce
any and all consitutents covering the initial
input set that are labeled with the start sym­
bol of the grammar.

228

Note that a cover need not be contiguous
in a temporally determined input sequence.
However, contiguity of a cover in the two­
dimensional space will be enforced to the ex­
tent that the gi:ammar uses spatial relations
that subsume adjacency.

Definition 2: A category is
defined to be a P ATR formula that is
either a (partially) instantiated
production as defined in Section 2 or
else a PATR formula with instan­
tiated features syntax and icon.

Categories are (partial) instantiations of
rules, rule results, or lexical categories. In the
algorithm descriptions which follow, we will
assume the convention of referring to relevant
features of categories with the notation [head,
arg 1 . . . argn, result] in the case of partial rule
instantiations and [sy_ntax, icon] in the case of
rule result or lexical instiantions. We will
also refer to individual rule elements at times
with the convention [syntax, icon, rels], where
rels is a sorting of all relational constraints in
the rule that contain the eleineht's icon in ei­
ther the domain or range term.

Definition 3: A state is defined
to be a triple
[category, n·ext-arg, cover], where
hext-arg ref ets to an arg i . . .j of cate­
gory, possibly empty.

States ate .the parser's representation of a
constituent. States are said to be active if
next-atg is nonempty, implying that the cate­
�ory is �n i!}complete . const��uent, or inactive
1f next-arg 1s empty, rmplymg that the c-ate­
gqcy is a co:mple�e constitu�nt. A�ti�e. states
will have partial rule mstanbabons as
cate·gories ·i inactive states will have instantia­
tions of ru e results or lexical items.

Definition 4: A trigger, defined
with respect to active states, is any
(instantiated) icon appearing in the
range term of a positional constraint
whose domain term is the next-arg's
icon variable.

That is, consider an active state that fits
the category schema

Head . . . Arg
j

. . . ➔ Result

<Head icon> = Icon1
<Arg

:,
icon> = X

(Reli X Iconl)

and whose next arg is Argj. Ico:n1 will be a
trigger for this active state since it appears ih
the range term of a positional constraint
together with the next-ar�s icon as d_omain.
Note that we do define tnggers to be mstan­
tiated icon instances, not icon variables.

In some cases there may be more than one
t�i_gger icon defined for an active ,-state. Con­
sider an active state whose category matches
the following schema

Head . . . Argj . . . Arg
lt

. . . ➔ Result
<Head icon> = Icon1
<Argj icon> = Icon2
<Arg

lt
icon> = X

(Relh X :Icon1)
(Rel1 X Icon2)

and whose next-arg is Argk. Both Icon1 and
Icon2 are triggers for this state. In such a
situation the parsing algorithm, which uses
triggers to index active states in the parse
tal:ile, needs only one trigger. We arbitrarily
choose among them.

Before turning to the parsing algorithm it­
self, we need one final definition. Lexical
lookup, which produces states with instan­
tiated cate_gories associated with incoming
icons, is defined next.

Definition 5: The function
Lex(ical lookup), from the set of
icons to a set of pairs consisting of a
state and its icon index, is defined as
follows:

Lex (X) = { (s= [category , ni l , { X }) , i =X) I
category = a l exical entry i ndexed by
i con-type (X) and whose < i con> i s
uni fied with X }

This function represents lexical lookup
and state instantiation. Given an icon, it ,uses
the icon's type SY1J!bol to consult the lexicon.
With the . set of categories the lexicon
produces, it then initializes the data struc­
tures for placing inactive states onto the parse
table. In so doing, it unifies the icon itself
with the icon variable of the category. The
cover of the category will be the unary set con­
sisting of the icon again. The index 1s an icon
which will be used to index the state in the
parse table. In the algorithm presented here,
all lexically instantiated state·s will be
inactive--the index for inactive states will be
the icon for which the state represents a com­
plete constituent.
Algorithm 1 Main loop

Assume an input set of spatially located
icons W and an agenda set A1 initially empty.
Develop a table T whose entries are state sets
indexed by icons. -

229

whi le A nonempty or there exi st i cons
remai ning to be proce s sed i n W do :

choose one o f the two fol l owing act i ons :
for some i con X in W do (1)

for each pai r (s , i) i n Lex (X) do
add (s , i) to set A

ext ract any pair (2)
(s= [category , next-arg, cover) , i)

from the set A;
insert s i n table T1 ;
apply each o f the fol l owing
procedure s , i n any o rder , to s :

end whi l e ;

propose (s)
expand (s)
complete (s)

i f there exi s t s an s
[category , next -arg, cover) in T such that
cover = W, next -arg = empty , and the label
of category = start ,

then succeed;
e l se fai l .

The basic algorithm chooses arbitrarily
among two actions as long as there are
remaining data to do either action. Action (1)
processes a single arbitrary icon from the in­
put set. It creates state-index pairs to be
placed in set A--this set, in chart parsing, cor­
responds to an agenda of pending actions. Ac­
tion (2) chooses an arbitrary state:index pair
from the agenda. It inserts the state into the
parse table and then generates more pairs for
the agenda by applying the three ·procedures
propose expand, and complete in any order.
The indices for states in the parse table are
icons. As will become evident in the
procedures that follow, the index for active
states is a trigger icon for that state; for in­
active states, it is the icon associated with the
highest dominating nonterminal.
Procedure 1 Propose
I f state s= [category , ni l , cove r] i s inact ive ,
then for every product i on p i n i

such· that the category o f s
uni fies with head e l ement o f p ,

create a new pa i r
(s ' = [category ' , next-arg, cove r') , index)
as fol l ow s :

i f there are no argument s in p
then category ' : : = re sult o f p ­

next -arg : : = ni l
cover ' : : = cover
i ndex : : = i con of category ;

e l se category ' : : = p
next-arg = � = arg1 o f p
cove r ' : : = cover ·
i ndex : : = a t rigger i con o f s ' ;

add pair t o A unl e s s an equivalent pa i r
al ready exi st s .

The propose procedure _applies to inactive
states. It proposes new constituents through
trying to unify the category of an inactive .
state against the head terms of the rule set.
Successful unifications will result in new
states that will be active or inactive depending
on whether the rule is unary or not. Active
states have a next-arg pointing to the first ar­
gument of the rule to be matched; inactive
states have a null next-arg. The index of a
new state will be the icon associated with the

newly unified category if the state is inactive,
or a trigger icon if the state is active.

The condition that new states are added
only if there is not an equivalent state already
in A is a necessary (but not sufficient) con­
dition for keeping the algorithm polynomial.
This is a familiar move for all On3 bounded
context-free parsing algorithms. We will not
elaborate here on questions of computational
complexity, but suffice it to say we assume a
definition of equivalence of <state, index>
pairs--they are equivalent if their covers and
indices are equal and if their categories and
advancement are equivalent. A parsing algo-:­
rithm, rather than just a recognition algo­
rithm such as the one we are discussin� here,
would need to keep track of these eqwvalent
states in order to recover the full set of parse
trees.3

The fact that this algorithm pro_poses new
rules for matching only when head elements
of rules are discovered is part of the formula
for making this algorithm "head-driven". It
would be possible to use the _predictive power
of the partially matched beaned constituents ·
to filter out useless argument constituents. In
the basic data-driven algorithm we discuss
here, however, we do not actually make use of such top-down predictive machinery.
Procedure 2 Expand
I f st ate s= [category , next-arg, cover]

with next-arg= [synt ax , Y , re l s] i s act ive ,
then for some t ri gger i con X i n a rel at i on

(rel Y X) in rel s , (1)
for every i con Z i n the space such that
(rel Z X) =True , (2)

then for every i nact ive state
s ' = [category ' , ni l , cover '] indexed
by Z ,
i f category ' uni fi e s with next-arg (3)

then (advance s s ') ,
add re su l t i ng pai r (s ' ' i) to set A
unless an equivalent st ate exi st s .

The expand procedure is used to advance
an actiye state across its next argument by
finding inactive states that match the con­
straints of that argument as specified in the
partially instantiated rule. Finding the can­
aidate mactive states is the crux of the mat­
ter. They must (a) be associated with icons
that meet the relational constraints of the ar­
gument, and (b) have categories that uni£>-' with the structural constaints of the rule s
next argument. We use the partially instan­
tiated relational constraints, relying on our
spatial relations module; as a means of find­
ing the icons that meet the spatial require­
ments. This particular feature of the algo­
rithm is necessary given that we are not rely-

3The issue of equivalence and state merg­
ing is nontrivial for unification grammars.
See Shieber (1985).

230

ing on ou_r parse table to provide us with, say,
adjacent icons.

The procedure begins with a tri�ger icon
for an active state. Recall Definition 4 for
triggers ; line (1) of the procedure essentially
restates it. Given a trigger icon, line (2) looks
in the physical space for any icons in the trig­
gering relation. The ones it finds will then lie
candidates for the icon to be associated with
the next-arg. The remaining steps find any
inactive states associated with the icon in
question and then check that the structural
features of these states as well as any remain­
ing relational constraints are consistent with
�he i:ule's requireni�nts . . (B_oth CO!}dit�ons are
1mphed by the · umfication step m lme (3).)
Any states that satisfy these conditions will be combined with the orginal active state,
producing a new state tliat covers more ter­
ritory.
Procedure 3 Complete
I f st ate

s= [category= [syntax , Y] , ni l , cove r]
i s i nact ive ,

then for every i con X fal l i ng within the
l ocal R domain w . r . t . i con Y, (1)
for every act ive state
s ' = [category ' , next -arg , cover '] that is
i ndexed by X as t r i gger , (2)

i f next-arg o f s ' uni fi e s w i th category ,
then (advance s s ') ,
add result ing pai r (s ' ' i) t o set A
unle s s an equ ivalent st ate exi st s .

The complete procedure is defined with
respect to inactive states. The basic operation
is to look for active states for which this new
inactive state can serve as a next argument,
and then advance any such active states with
respect to the inactive state. It operates just
like the expand procedure once the candidate
states are found. The differences lie in how
one finds candidate active states given an in­
active state, rather than the reverse.

As is indicated in line (1) 1 the procedure
depends on a· notion of locality in the space in .
order to find the initial set of icons that is
used to begin the search. · If the R domain
were characterized by adjacency, the proce­
dure would map over each of the icons that
were adjacent to the icon associated ·with the
new inactive state. We do not, however, rule
out the possibility that the locality of spatial
relations may be aefined otherwise.

Line (2) then consults the parsing table to
find active states indexed by the locally re­
lated icons. Recall that active states are in­
dexed by trigger icons. Thus these states will
be the ones which the original inactive state
may combine with. Further steps are the
same as in expand.

Procedure 4 Advance
Given act ive st ate s= [category , next -arg , cover]

with next-arg= [syntax , Y , (rel X)]
and i nact ive st ate
s ' = [category ' , ni l , cover '] ,

create a st ate s ' ' with i ndex i as fol l ows :

easel : i f category has no further argument s ,
then create a pai r
(s " = [category " , ni l , cover "] , i)

where category ' ' : : = result o f category ,
cover ' ' : : = cover ' Union cover .
i : : = i con o f category ' ' .

case2 : i f category has furthe r argument s ,
then create a pai r
(s ' ' = [category ' ' , next -arg' , cover ' '] , i)

where category ' ' : : = category ,
next -arg' : : = next -arg + 1 ,
cover ' ' : : = cover ' Uni on cover ,
i : : = i con trigger for s ' ' .

Advance takes an active state s and an in­
active state s' which has already been unified
as the next-arg for s, and it returns a new
state/index pair. The new state resulting from
advancement will be either inactive or activeJ. depending on whether the final argument or
the active state has been matched or not. The
creation of an inactive state, shown in easel ,
sets the new state's category to the result­
cate�ory of the active state. Its index will be
the icon newly formed from the composition
relation that holds between the icon of the
result and the icons of the rule daughters.
The creation of active states involves an ad­
vancement of the next-arg pointer. These
states are indexed by a trigger icon. In both
cases, the cover for the new state will be the
union of the covers of the original states .

4. EXAMPLE
Here we give a example of a grammar for

simple fractions and a parse trace of the
bottom-up algorithm described above. Rule 1
is repeated for convenience. The trace will
refer to the rules and lexical entries by num­ber and omit the details of the internal rule
elements. When nil appears in the next-arg
position of a state, it is an indication that the
category of the state corresponds to the in­
stantiated result element of completed rules
or the categories of lexical entries .

231

Rules

1 Vertical inf"'ixation:

Head Arg1 Arg2 ➔ Result

<Head icon> = X
<Arg1 icon> = Y
<Arg

2
icon> = z

<Head syntax> = Vert-infix-op
<Arg1 syntax> = Formula
<Arg2 syntax> = Formula
<Result syntax> = Formula
<Head sem> = <Result sem pred>
<Arg1 sem> = <Result sem argl>
<Arg2 sem> = <Result sem arg2>

<Result icon> = composition (X Y Z)
above (Y X)
below (Z X)
wider-than (X Y)
wider-than (X Z)

Lexicon

2 floating-point-no:
<syntax> = Formula
<icon> = X

<sem> = (numerical-value X)

3 horizontal-line:
<syntax> = vert-infix-op
<icon> = X
<sem> = divide

Let us assume the input to be the icons

arranged as shown. We will note them as
<5>, <h-Jine>� and <2>, respectively, in the
trace which fo1lows. We have to pick an order
for processing these input icons. Arbitrarf!y,
we will J)rocess the icons top to bottom. We
also will be faced with the choice between Ac­
tions 1 or 2 of main loop. Again, arbitrarily, _
we'll choose Action 2 (processing items in set
A) over action 1 (processin� another input
icon) whenever there are are items in set A to
process. Lastly, the al�orithm gives us the
freedom of ordering the items we choose from
set A. We will process each of these items in
the order in which they were put into A.

The algorithm will produce states in the
order shown below:

1 . s1 =[2,nil, { <5>}] is added at T <5>
through Action 1 of main loop . .

2. s2=[3 ,nil , {<h-Iine>}] is added at
T <5> through Action 1 of main
loop. 3 . s3=r[l ,arg1 , {<h-line>}] is added at
T <h-line> through procedure
propose.

4. s4=ll ,arg2, {<h-Iine>,<5>)] is
added at T <h�line> through proce­
dure expand, advancing s3 with
s1 .

5. s5=[2,nil , {<2>}] is added at T<2>
through Action 1 of main loop.

6. s6=[1 ,nil, {<h-Iine>,<5>,<2>}] is
added at T «5><h-linc><2»
through procedure complete, ad­
vancing s4 with s5.

7. The procedure halts with suc­
cess, s6 satisfying the conditions.

5. RELATED WORK
We first compare related work in grammar

form.alis�s followed by related approaches to
parsmg visual languages .

Of other visual grammar frameworks we
are aware of, our proposal differs in the fol­
lowing two respects :

1 . The functional role of heads and
arguments. Characteristic of the linguistic
roots of our approach, we assign the functional
roles of head and arguments to elements in
the rule body. What motivates this move?
First, we assume that these syntactic roles bear a close, if not one-to-one, relationship to
predicates and arguments in the semantics.
In our opinion such a commitment makes it
easier to coordinate incremental syntactic and
semantics processing important in the parsing
of visual interface languages,, and it also tends
to produce grammars that nave more mean­
ingful and tran_�parent syntactic and semantic
constituents. We are not aware of any such
committrnent in competing visual grammar
approaches that do discuss semantics.
Second, assuming that heads of phrases tend
to offe: constra�nts on _the syntactic and
semantic P:operbes of their arguments, it be­
comes possible to take advantage of the prun­
ing power of these constraints through the use
of head-driven parsin_g and generation al­
gorithms (Kay 1989; Satta ana Stock 1 989·
Shi�ber et al. 1989). '

2. The domain of spatial relations. As
wi th Helm and Marriott (1 990), our formalism
a11ows the grammar to state any number of
re_latjonal constr:aints a_mong any elements
w1thm the domam of a smgle rule. While the

232

formalism used by Anderson (1 968) differs in several other respects, he too allows spatial
relations to be stated over such a domain. Un­
like Golin and Reiss (1 989), we do not
presume that it is possible to state constraints
among elements arbitrarily distant in a
derivation tree. Unlike the most recent gram­
mars of the SIL-ICON �stern (Crimi et al.
1 989), we do not confine the expres sion of spa­
tial constraints to a single relation among
pairs of elements that are adjacent in a rule
body. In our opinion, most visual languages
in practice, complex mathematics formulae
among them, need the additional expressive­
nes s of our formalism over the latter group of
proposals .

As for parsing, the algorithm we have out­
lined is unique among visual language par­
sers,, as far as we know, in allowing_for max­
imally flexible enumeration. We have
motivated thi s design feature in the context of
our goal to . provide parsing tools and help
facilities for interface languages, where tem­
poral ordering of the input cannot be assumed
to match systematic spatial enumeration
procedures .

The other distinguishing feature of the
parsing algorithm is its disassociation of the
parse table from any particular set of spatial
relations used by the grammar. We take this
to be a strength in that the algorithm is thus
extremely general, although we concede that
without exploring the .spatial component more
fully we cannot provide a complete solution to
any particular visual language domain · nor
can we determine the computational com­
plexity of our algorithm. The crux of our ap­
proach is to propose a particular form of in­
dexing of the grammar table that makes use
of icons and icon sets (covers). In future work
�e will explor� the c_omplexity of this algo:
nthm when paired with sets of assumptions
regarding the spatial relations assumed by
the grammar.

6. CONCLUDING REMARKS
This paper · concentrated on basic rule

proposing and combining methods rather than
oil particular treatments· of visual relations
and representations. We expect to have more
to say on these topics in future work. Other
areas we expect to follow up on include the
problem of nonm.onotonicity inherent in allow­
mg users to edit or alter their input, the
problem of offering help to users in an in­
cremental parsing situation, and various
problems associated with reversin� the gram­
mars shown here in connection with genera­
tion of visual output from the semantics of un­
derlying data.

Although we have been applying Rela­
tional Umfication Grammars in graphical
domains, there is reason to suppose that such
extensions of unification grammars may prove

useful for natural languages as well. In par­
ticular, using relations such as case and
gender agreement in place of left- and right­
adjacency as the foundation for grammatical
description may prove superior for so-called free word order languages. We expect that
the parsing algorithm presented here would
apply in such cases.

7. ACKNOWLEDGEMENTS
This work has been carried out under the

sponsorship of the MCC Human Interface
Laboratory, directed by Bill Curtis. The paper
is to a large extent a revision and extension of
an earlier __ paper coauthored with Louis
Weitzman (Wittenbu� and Weitzman 1990)1 who together with Jim Talley has workea
closely with the author in developing the con­
cepts· and building the systems discussed here.
Other colleagues I wish to thank include Rich
Cohen for his comments on early versions of
this paper and for his support of the HITS
blackboard technologies used in our im­
plementations, Chinatsu Aone for discussions
on the rule formalism, and Gale Martin and
Jay Pittman of the neural net character recog­
nition �oup for getting me involved in this
project m the first place.

REFERENCES

Aho, Alfred V. , and Jeffrey D. Ullman. 1 972.
"The Theory of Parsing, Translation, and
Compiling," Prentice Hall.

Anderson, Robert H. 1 968. "Syntax-Directed
Recognition of Hand-Printed Two­
Dimensional Mathematics," in M. Klerer
and J. Reinfelds (eds .), Interactive Sys­
tems for Experimental Applied Math­
ematics, Academic.

Avery, James. 1 988. "Interactive Worksurface:
An Interface Paradigm for Sketchable
Things," MCC tech report no. ACA­
Hl-127-88.

Chang, Shi-Kuo. 1988. "The Design of a Visual
Language Compiler," in Proceedings of
the 1 988 IEEE Workshop on Visual Lan­
guages, October 10-12, Pittsburgh, PA.

Crimi, C. , A. Guercio, G. Tortora, and
M. Tucci. 1 989. "An Intelligent Iconic
System to generate and to interpret
Visual Languages," in Proceedings of the
1989 IEEE Workshop on Visual Lan­
guages, October 4-6 1989, Rome, Italy.

Fu, K.S. 1 974. Syntactic Methods in Pattern
Recognition. Academic.

233

Golin, Eric J., and Steven P. Reiss. 1 989.
"The Specification of Visual Language
Syntax," in Proceedings of the 1 989 IEEE
Workshop on Visual Languages, October
4-6 1 989, Rome, Italy.

Helm, Richard, and Kim Marriott. 1 990.
"Declarative Specification of Visual Lan­
guages," in Proceedings of the 1990 IEEE
Workshop on Visual Languages, October
4-6, Skokie, Illinois.

Kay, Martin. 1980. "Algorithm $chemata and
Data Structures in Syntactic Processing,"
Xerox Palo Alto Research Center, tech
report number CSL-80-12.

Kay, Martin. 1989. "Head-Driven Parsing," in
Proceedings of the International
Workshop on Parsing Technologies, 28-31
August 1989, Pittsburgh, PA, Carnegie
Mellon.

Kaplan, Ronald. 1 973. "A General Syntactic
Processor," in R. Rustin (ed.), Natural
Language Processing, pp. 193-241 , New
York: Algorithmics.

Martin, Gale, James Pittman, Kent Witten­
burg, Richard Cohen, and Tom Parish.
1990. Sign Here, Please: State of the Art,
Computing without · Keyboards. BYTE
magazine, July 1990.

Satta, Georgio, and Oliviero Stock. 1989.
"Head-Driven Bidirectional Parsing: A
Tabular Method," in Proceeding� of the
International Workshop on Parsing Tech­
nologies, 28-31 August 1 989, Pittsburgh,
PA, Carnegie Mellon.

Shieber, Stuart. 1989. Parsing and Type In­
ference for Natural and Computer Lan­
guages, Technical note 460, SRI Inter­
national.

Shieber, Stuart. 1986. An Introduction to
Unification-Based Approaches lo Gram­
mar. Center for the Study of Language
and Information, Stanford University.

Shieber, Stuart. 1985. Using Restriction to
Extend Parsing Algorithms for Complex­
Feature-Based Formalisms. In Proceed­
ings of the 23rd Meeting of the Associa­
tion for Computational Linguistics, 8-12
July 1 985, University of Chicago.

Shieber, Stuart, Gertjan van N oord, Robert
Moore, and Fernando C. N. Pereira. 1989.
"A Semantic-Head-Driven Generation Al­
gorithm for Unification-Based For­
malisms," in Proceedings of the 27th An­
nual Meeting of the Association for Com­
putational Linguistics, 26-29 June 1989,
Vancouver.

Tomita, Masaru. 1 989. "Parsing 2-
Dimensional Language," in Proceedings
of the International Workshop on Parsing
Technologies, 28-31 August 1989, Pitts­
burgh, PA, Carnegie Mellon.

Wittenburg, Kent, and Louis Weitzman. 1990.
"Visual Grammars and Incremental
Parsing for Interface Languages," in
Proceedings of the 1990 IEEE Workshop
on Visual Languages, October 4-6,
Skokie, Illinois.

234

PARSING 2-D LANGUAGES WITH POSITIONAL GRAMMARS

Gennaro Costagliola and Shi-Kuo Chang

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

gencos@speedy .cs. pitt.edu
Phone: (4 1 2) 624-8836
FAX: (41 2) 624-8465

ABSTRACT

In this paper we will present a way 10 parse two-dimensional
languages using LR parsing tables. To do this we describe
two-dimensional (positional) grammars as a generalization of
the context-free string grammars. The main idea behind this is
to allow a traditional LR parser to choose the next symbol to
parse from a two-dimensional space. Cases of ambiguity are
analyzed and some ways to avoid them are presented. Finally,
we consrruct a parser for the two-dimensional arithmetic
expression language and implement it by using the tool Yacc.

INTRODUCTION
One of the latest approaches in parsing 2-D languages has

been presented by Tomita in [37), where he introduces a 2-D
Chomsky Normal Form grammar and constructs extensions to
the two-dimensional case of Earley• s and LR parsing algo­
rithms.

In this paper, we present an extension of a context-free
grammar by explicitly describing the positional relations
between the elements (terminals and non-terminals) in the right
hand-side of each production rule of the grammar. As these
relations can be very general, the resulting grammar can be
seen as a generalization of Tomita's 2-D Chomsky Normal
Form grammar where only horizontal and vertical relations are
allowed.

The resulting parser for such a positional grammar is con­
structed by simply adding a column to the LR parsing table.
This column contains the position of the next symbol to be
shifted, for each state. Unlikely from the 2-D LR parsing algo­
rithms given in [37] , our parser slightly modifies the original
LR parsing algorithm, so that the tool Y ace can be easily used
to construct a two-dimensional parser for a positional gram­
mar.

Furthermore, we analyze cases of ambiguity, give some
ways to avoid them and then present a general methodology to
parse two-dimensional patterns applying it to the case of the
two-dimensional arithmetic expressions.

Many other approaches have been proposed till now in
high dimensional syntactic pattern representation and recogni-

tion. Each of them is based on the particular data structure used
for representing the pictures: a string,- an array, a tree, a graph,
and a plex.

One of the first approaches is given by a traditional string
grammar in which more general relations (HOR, VER,
ABOVE, LEFT, etc.), other than concatenation, are allowed
among primitives in the pattern [2, 8, 16] . Shaw, by attaching a
"head" and a "tail" to each primitive, has used four binary
operators for defining binary concatenation relations between
primitives. A context-free string grammar is used to generate
the resulting Picture Description Language (POL) [16, 3 1] .

Another interesting approach using a string grammar, has
been given in [5] where each primitive has associated spatial
attributes.

A simple two-dimensional generalization of string gram­
mars is to extend grammars for one-dimensional strings to
two-dimensional arrays [23, 28, 35, 38]. The primitives arc the
array elements and the relation between primitives is the two­
dimensional concatenation.

Pf alz and Rosenberg have extended the concept of string
grammar to grammars for labeled graphs called webs
[1 6, 17, 26, 27, 29] . These grammars were originally suggested
as a syntactical formalism for data structure useful in image
analysis. An application of graph languages for describing
scenes is of frequent occurrence in the literature dealing with
image processing, whereas the use of graph grammars for pat­
tern recognition is rare (for this purpose tree grammars are
applied inste� [3, 17, 18 , 22, 30, 32]). Difficulties concerning
building a syntax analyzcr for graph grammars are causes of
�is situation. Recently, however, parsing methods_ for a par­
ocular kind of graph grammar have been proposed, and an
efficient parsing, close to the parsing efficiency of tree
languages, has been obtained [1 5, 2 1 , 33).

Based on an idea in the work of Narasimhan [24] , Feder
[14) has formalized a "plex" grammar which generates
languages with terminals having an arbitrary number of attach­
ing points in order to connect to other primitives or sub­
patterns. The primitives of the plex grammar are called N­
Attaching Point Entities (NAPEs). Plex structures defined by a
plex grammar may be viewed as a hypergraph, with each
NAPE corresponding to a hypcredge. Therefore this kind of
plex grammar is a more general model than that of graph gram-

235

mar. Until recently, however, very little was known about the
parsing method for plex grammars. Recently, a parsing method
has been developed (25] to achieve more efficient parsing of
plex grammars, by adapting Earley parsing algorithm, (1 3] .

The paper is organized as follows. In Section 2 the posi­
tional grammar is defined, and some examples are given. In
Section 3 the extension of the LR parser, named positional LR
(pLR) parser, is prescnte.d along with a description of the pLR
parsing tables and of the parsing algorithm. In Section 4 con­
siderations of ambiguity are given along with the construction
of a pLR parser for the arithmetic expression grammar. In Sec­
tion 5 we present the general methodology for parsing 2-D
languages generate.d by a positional grammar. The conclusions
are in Section 6.

POSITIONAL GRAMMARS
The parser we are .going to present recognizes pictorial

languages generate.d by positional grammars.

Definition 2.1
A context-free positional grammar PG can be represente.d

by a six-tuple (N, T, S, P, POS, PE) where:

. N is a finite non-empty set of non-terminal symbols,
T is a finite non-empty set of terminal symbols,
N n T = 0,
S e N is the staning symbol,
P is a finite set of productions
POS is a finite set of positional relation identifiers
POS n (N u T) = 0,
PE is an evaluation rule

Each production in P has the following form:

m � 1

where A e N, each ai is in N u T and each RElj is in POS. I

Each positional relation REli gives infonnation about the
relative position of ai + 1 with respect to a; . In the following,
the words "positional grammar" will always refer to a context­
free positional grammar.

While in a string grammar the only possible positional
relation_ is the string concatenation, in a positional grammar
other positional relations can be define.d and then use.d for
describing high dimensional languages. When parsing, this
positional information will be useful for letting the scanner
know where the next symbol to parse is.

Some simple examples of positional relations on a Carte­
sian plane:

String concatenation or adjacent horizontal concatenation
AHOR = ((p 1 , pi) : p 1 and p 2 are pictures horizontally con-

catenate.d with alignment of their centroids }

Adjacent vertical concatenation
A VER = ((p 1 , pi) : p 1 and p 2 are pictures vertically con-

catenate.d with alignment of their centroids }

Upper horizontal concatenation
UHOR = { (p 1 , p i) : p 1 and p 2 are pictures horizontally con­

catenate.d with alignment of the centroid of p 1 and
the up-most element of p 2 }

Horizontal concatenation
HOR = { (p 1 , p 2) : p 1 and p 2 are pictures and location(p 1) =

(x , y) and location' (pi) = (x' , y') and the position
(x' , y') is feasible and x' > x }

Vertical concatenation
VER = { (p 1 , p 2) : p 1 and p 2 are pictures and location(p 1) =

(x , y) and location' (p 2) = (x' , y') and the position
(x' , y') is feasible and y' < y and x' s x }

where a picture is a spatial arrangement of one or more
. symbols, location(p) is a function returning the position of a
symbol of the picture p and a feasible location is a location that
has not been made unfeasible by another symbol or by the side
effect of an evaluation rule, as it will be seen in the following.

Definition 2.2
An evaluation rule PE is a function whose input is a

string

P 1 REL 1 P2 REL2 · · · REL,,.-1 Pm m � 1

where each Pi is a picture and each REli is a positional rela­
tion; its output is a picture whose elements p 1 , p 2. . . . , Pm are
dispose.d in the space such that

<Pi , p·i +l) e REli 1 � i � m - 1 .

The evaluation of the positional relations is meant to be
sequential from left to right. As side effects can be generated
for any evaluation, an evaluation rule is simple if no side
effects are involved. I

A possible side effect of the evaluation of a relation is co
make certain positions in the space unfeasible. As the evalua­
tion is sequential, each evaluation inherites the side effects
generate.d by the previous evaluations.

Some examples of applications of the simple evaluation
rule follow:

PE("a . b . c . d") = a b e d

a
PE("a VER b HOR c") = b C

a
PE("a AVER b") = b

where the positional relations ' . ' , VER , HOR and AVER are
defined as above.

The following definitions are understood to be with respect to a
particular positional grammar G.

236

We write TT => l: if there exist �. r, A, 11 such that TT =
r M, A ➔ 11 is a production and l: = r11�.

We write n =>* l: (l: is derived from TT) if there exist
strings flo, Il 1 · · · n,,. (m 2: 0) such that

n = no => n1 => • . . => n,,. = 1:
The sequence flo , n,,. is called a derivation of l: from

n. A positional sentential form is a string n such that S =>*
n. A positional sentence is a positional sentential fonn with
only terminal symbols. A pictorial f onn is the evaluation of a
positional sentential fonn. A picture is a pictorial fonn with
only terminal symbols. The pictorial language defined by a
positional grammar L(G) is the set of its pictures.

Some examples of positional grammars:

2. 1) The following grammar generates the strings of the fonn
a · · · ab · · · b with equal number of a's and b's.

N = { S }
T = { a, b }
POS= { . }
PE is the simple evaluation rule
p = {

S := a . S . b I a . b
}

The positional operator . is defined as above. A posi­
tional sentence of this grammar is: a . a . a . b . b . b and
the corresponding picture is: aaabbb.

This example shows that every context-free string
language can be represented by a positional grammar.

2.2) The following grammar generates an upper-right corner
with variable length of the edges.

N = { Comer, IIl.,ine, VLine }
T = (dot}
S = Comer
POS= (UHOR , AHOR , AVER }
PE is the simple evaluation rule
p = {

Comer := fil.,ine UHOR VLine
IIl.,ine := fil.,ine AHOR dot I dot
VLine := VLine A VER dot I dot
}

where UHOR , AHOR and AVER are defined as above.
A positional sentence of this grammar is:

dot AHOR dot AHOR dot AHOR dot UHOR dot AVER
dot AVER dot AVER dot

Replacing dot with the character '. ' , the corresponding
picture is:

2.3) The following grammar generates two-dimensional
arithmetic expressions using the binary operations addi­
tion and division:

237

N = {E, T, F}
S = E
T = { +, hbar , (,), id }
POS= (HOR , VER }
PE is the evaluation rule defined below
p = {

E := E HOR + HOR T I T
T := T VER hbar VER F I F
F := ·c HOR E HOR) I id
}

The evaluation rule is so defined (see Figure 2. 1):
PE(p 1 HOR p i.):

The evaluation of HOR will give coordinates (x, y)
to location(p 1) and (x', y ') to location(p 2) such that
(p 1 , p2) e HOR . Moreover it will make unfeasible
each position belonging to any of the following
sets:
{ (x, y1) : y S y1 S m}
{ (x 1 , yi) : x < x 1 < x' and O S y2 S m}
{ (x ' , y3) : y' S y3 S m}
where m �1 is an upper bound on the y-coordinate
in the two-dimensional space.

PE(p 1 VER p 2) :
The evaluation of VER will give coordinates (x, y)
to location(p 1) and (x ' , y ') to location(p 2) such that
(p 1 , p 2) e VER . Moreover it will make unfeasible
each position belonging to any of the following
sets:
{ (x 1 , y) : 0 S x 1 S x }
{ (x2, y 1) : 0 S x2S x and y ' < y 1 < y }
{ (x3, y') : 0 S x3 S x ' }

y ________ __,
y' t----+------t---1

X x' x' X

Figure 2. 1 . {p 1 HOR P2 l and {p 1 VER P 2 l

A positional sentence of this grammar is:
id HOR + HOR (HOR id HOR + HOR id HOR) VER hbar
VER id HOR + HOR id Replacing hbar with an horizontal bar, according to the definitions of HOR , VER and PE, there are many possible pic­tures corresponding to the evaluation of this positional sen­tence, but all of them can be mapped into the following one:

.d (id + id) .d l + ...;......-� + l
id

that is still a picture of this language.
POSITIONAL LR PARSERS Positional LR parsers (pLR parsers) are nothing else but a generalization of the .LR parsers. The model of a pLR parser is given by:

1) Input 2) Positional operators 3) pLR Parsing Table 4) pLR Parsing Program 5) Stack 6) Output as shown in Figure 3. 1 .
Input $

Stack

positional operators

pLR
Parsing Program

Figure 3 . 1 . The model of a pLR Parser
The input

Ouput

The input to a pLR parser is a spatial arrangement of tokens, or, in other words, a symbolic picture where each symbol is a token. Such an input is represented by an array w (the input tape) where each token is stored, a list Q of couples (pos , i) where pos is the spatial position of the token w[i] , and a stan­ing index that points to the first token to parse. The association between a position and a token allows us to reach a token in w each time its spatial position has been given and viceversa. The input tape is, then, no longer required to be accessed sequentially but rather, according to the positional require­ments given by the parser. In this context, the definition of the sequential end-of­string marker must be extented. In fact, the end-of-string

marker hides an operational aspect: when parsed, it signals that no symbols to parse are left. While in a sequential scanning nothing must be done other than recognizing the '$ ' character, in a non-sequential scanning such operational aspect must be made explicit Before returning an end-of-input symbol, the scanner has to check whether all the symbols have been parsed. In a pLR parser, the end-of-input marking is implemented by storing the symbol '$' in location O of the input tape, and defining the end-of-iripur operator ANY as a function whose return value is O if all the symbols in the input tape have been parsed and 'error' otherwise.
The positional operators For each positional relation we define a positional operator with the same name. Such an operator is a function that takes in input the index in the tape of the last token parsed, calcu­lates a new position and then returns the index of the next token to parse, by consulting the list Q.
Definition 3.1 Given a positional grammar PG = (N, T, S, P, POS, PE) and a relation REL e POS, then for all a, � e ·N u T such that "a REL �" occurs on the ·right hand-side of a production rule in PG, the corresponding positional operator REL is defined as follows: REL(i) = j iff i is the index in w of 'a• , the last token parsed to reduce a, and j is the index in w of 'b ' , the first token to parse to reduce �- I

Examples: 3. 1) In the grammar of Example 2.2, the corresponding operators for POS can be defined as follows: UHOR(i) = AHOR(i) = j iff location(w[i]) = (x, y) and location(wUD = (x+o, y). A VER(i) = j iff location(w[i]) = (x, y) and location(w[j]) = (x, y-0). where o is the distance between each couple of dots.
3.2) For the arithmetic expression grammar the operators HOR and VER can be defined as follow: HOR(i) = j iff location(wU]) is the highest spatial posi­tion in the first non-empty column on the right of location(w[i]). VER(i) = j iff location(wUD is the spatial position on the left of location(w[i]) such that it is the leftmost position in the first non­empty row below location(w[i]).
The Positional LR Parsing Table Besides the "action" and "goto" · columns of . an LR parsing table, . the pLR parsing table contains an additional column called "position". The positional operators SP, ANY and the names of the positional operators are the elements of this new column. SP returns the staning index given in input with the picture and ANY is the operator defined above. All the names

238

-in · the column "position" can be considered as pointers to the code implementing the operators. As the construction of the "position" column does not affect the other entries of the original LR parsing table, we can use the traditional three techniques (with some variations) for having Simple pLR, canonical pLR and LookAhead pLR parsers.
A pLR(0) item of a positional grammar PG is a produc­tion of PG with a dot at some position of the right side. A dot. however� can never be between a positional operator identifier and either a terminal or a non terminal, in this order. Thus, a production A ➔ SP X REL 1 Y REL 2 Z yields the four items:

A ➔ .SP X REL 1 Y REL 2 Z A ➔ SP X .REL 1 Y REL 2 Z A ➔ SP X REL 1 Y .REL 2 Z A ➔ _ SP X REL .1 Y REL2 Z . Intuitively, an item indicates how much of a production we have seen at a given point in the parsing process. For example, the first item above indicates that we hope next to see a pattern derivable from XYZ starting from position SP. The second item indicates that we have just seen on the input a pat­tern derivable from X and that we hope next to .see a pattei:n derivable from YZ starting from the position specified by the operator associated to REL 1 . If PG is a grammar with starting symbol S, then PG', the aug­mented positional grammar for PG, is PG with a new starting symbol S' and production S' := SP S.
Example 3.3 Let us consider the following positional grammar generat­ing an horizontal concatenation of a block of squares, an arrow and another block of squares

, (1) S := B I HOR '=> HOR B2 (2) B I := C HOR -C (3) C :=. square VER square (4) B2 := R VER R (5) R := square HOR square
Here the definition of PE is as in Example 2.3. The canonical collection of sets of pLR(0) items for this grammar follows next, along with the position values. The goto function for this set of items is shown as the transition diagram of a determinis­tic finite automaton in Figure 3.2 and the . resulting Positional LR parsing table is given in Figure 3.3.
I O : S' : = .SP S position[0] = { SP } S := .B l HOR => HOR B2 B I := .C HOR C C := .square VER square / 1 : S ' := SP S. /2 : S := BI .HOR => HOR B2 / 3 : B 1 := C .HOR C C := .square VER square
I 4 : C := square . VER square

position[l] = { ANY } position[2] = (HOR } position[3] = { HOR}
position[4] = (VER}

I 5 : S := B 1 HOR => .HOR B2 B2 := .R VER R � := .square HOR square
I 6 : B 1 := C HOR C . 1 7 : C := square VER square . / s : S := B 1 HOR => HOR B2 .
/ 9 : B2 := R . VER R R := .square HOR square / 1o : R := square _HOR square
/ 1 1 : R := square HOR square . f 12 : B2 := R VER R .

position[5] = (HOR}
position[6] = (HOR} position[?] = {HOR} position[8] = {ANY } position[9] = { VER }
position[lO] = (HOR }
position[1 1] = (VER.ANY } position[1 2] = {ANY } Note that in the construction of each closure, the posi­tional operators HOR and VER are ignored by the dot. This information is instead caught by the position array.

ANY

Figure 3.2. Transition diagram
action goto position

state
square => s s B l B2 C R 0 s4 l 2 3 SP l ace ANY

2 sS HOR 3 s4 6 HOR
4 s7 VER
s s10 8 9 HOR
6 r2 HOR
7 r3 r3 HOR
8 rl ANY
9 s10 12 VER 10 s1 1 HOR 1 1 r5 rS ANY VER 12 r4 ANY

Figure 3.3. A Simple pLR parsing table

239

Details on the algorithm for the construction of a Positional LR
parsing table can be found in (9, 10] .

The Positional LR Parsing Algorithm

The pLR algorithm is a simple extension of Algorithm 4.7 in
[1]; the only differences regard the form of the input and the
setting of the pointer to the next symbol.

The input is now given by a picture p represented by an
array of tokens w, a starting index in w, and a list Q of couples
(pos , i); the specification of a set of positional operators, and
the pLR parsing table with functions "action", "goto" and
"position" for a positional grammar PG.

Each time the pLr parser reaches a state in the recognition
of the pattern, .the next symbol to parse is determined by using
the positional operator associated to that state. As in LR pars­
ing, a same symbol cannot be considered more than once.

Details on the Positional LR parsing algorithm can be
found in (9, 10) .

Examples

3 .4) Figure 3.4 shows the parsing action, goto and position of
a canonical pLR parsing table for the following linear
positional grammar for the vertical concatenation of two
strings both of the type "c · · · cd".

(1) S := C VER C
(2) C := c AHOR C
(3) C := d

where the evaluation rule is simple when applyed to
AHOR and defined as in Example 2.3 when applied to
VER . Using the parsing table in Figure 3.4 and applying
the pLR parsing algorithm, it can be verified that the fol­
lowing picture

cccccccccccd
ccccd

is in the described language.

action
state

d $ C

0 s3 s4 1 ace
2 s6 s7
3 s3 s4
4 r3 r3
5 r l
6 s6 s7
7 r3
8 r2 r2
9 r2

goto
position s C

1 2 SP
ANY

5 VER
8 AHOR

VER
ANY

9 AHOR
ANY
VER
ANY

Figure 3 .4. A canonical pLR parsing table

3.5) Given the grammar in Example
0

3.3, using the parsing
table in Figure 3.3 and applying the pLR parsing algo­
rithm, it can be verified that the following picture

□ □

n o

=>
□ □

□ □

is accepted. In particular, note that the parser drives the
scanning of the input such that the first block is visited
by columns, and the second block by rows, according to
the productions of the grammar. All the other ways of
scanning this input are not taken into consideration.

AMBIGUITY CONSIDERATIONS

In this Section we will show that conflicts in positions can
lead to conflicts in the "action" part of the parsing table even if
it has no multiple entries.

In Section 2 we gave a two-dimensional version of the
grammar given in [1] for arithmetic expressions. We will show
now that this grammar is not pLR(1) from the fact that it has
conflicts regar�ing the position of the next symbol. Let us con­
sider the following pictorial form:

T 'd - + , id

assuming that T has already been reduced.

After reducing T, the parser has to decide whether to
choose 'hbar ' in vertical reading, or '+' in horizontal reading.
Both the alternatives are valid: if 'hbar ' is chosen, then the
parser has to shift, otherwise it has to reduce. One possibility
for avoiding this conflict is to assign priority to each positional
operator. In this example we could decide that the vertical
reading has always higher priority than the horizontal one. This
would respect the priority between 'hbar ' and '+' implicitly
given in the grammar. But, if this other example is considered

...... (T_+_id __) + id
id

the priority resolution will fail. In fact, in this case, after read­
ing T, we want to move horizontally because of the
parenthesis, and not vertically.

Another possibility for avoiding this conflict is to give a
"smart" representation of the two-dimensional pattern deriving
it from techniques of image analysis like dominancy (4, 12] .
Last but not least, we can construct an equivalent pLR(1)
grammar as it is normally done for solving conflicts in LR
parsers. Following these ideas, the pLR(1) grammar for the
arithmetic expressions has been constructed:

(0) E' := SP E
(l) E := E HOR + HOR T

240

(2) E := T (3) T := T' VER F
(4) T := F (5) F := (HOR E HOR)
(6) F := id
(7) T' := T' VER F'
(8) T' := F'
(9) F' := {HOR E HOR l
(10) F':= kl. Figure 4. 1 shows the resulting pLR(1) parsing table for this grammar. Note that the terminals id , (, and) have been duplicated as well as the non-terminals T and F. Moreover, rules (3), (4),

(5) and (6) have been duplicated in rules (7), (8), (9) and (10). The new grammar, then, has a particular section dedicated to the generation of the numerator of any division. During the recognition, this allows us to decide whether the expression to be parsed is the numerator of a division or not. In particular, the new terminals i and l mark the beginning and the end of any complex numerator, respectively, and the terminal kl. is the simple numerator.
- ICIIOII _,

s ill +) (ill l L E' E T F -r F" posiaon

0 ,1 15 116 .. I 2 4 3 9 SP

I ICC 110
(HOR
(ANY

2 r2 r2 r2 r2 HOR
3 17 15 116 .. 12 13 VER
4 r4 r4 r4 r4 HOR
5 ,1 15 116 .. 14 2 4 3 9 HOR
6 r6 r6 r6 r6 HOR
7 rlO rlO rlO rlO VE.R
8 ,1 15 16 .. 15 2 4 3 HOR
9 r8 r8 r8 r8 VE.R

10 17 s5 16 .. I I 4 3 9 HOR
1 1 rl rl rl rl HOR
12 r3 r3 r3 r3 HOR
13 r7 r7 t7 HOR
14 110 116 HOR
15 110 117 HOR

16 r5 r5 r5 r5 HOR

17 r9 r9 r9 r9 VER Figure 4. 1 . pLR parsing table for arithmetic expressions
A trace for the acceptance of the following patterns can be easily constructed

{ id + idl
id + id

i!i.
kJ. + id id

AN IMPLEMENTATION The general methodology to parse pLR languages is the following: I. Define a general data structure to represent the two­dimensional symbolic pictures. II. Define the positional relations and operators meant to relate objects in the patterns, and construct the pLR posi­tional grammar, if possible, to describe the language. III. Convert the general data structure into the input to the parser as defined in Section 3.

IV. Construct the parser. Point I requires a general data structure to represent the original symbolic picture input. This can be a matrix of sym­bols, or an iconic index, i. e., an analogous linear representa­tion based on the projections of the symbols: the 2-D string as defined in [6], or, for high dimensional symbolic patterns, the Gen_string, [1 1] . As the whole parsing model presented is extensible to the n-D case (n >2) just considering positional relations and operators for the n-dimensional space, �e will make use of the Gen_string iconic index. The characteristics of it and the algorithms to derive it from a high dimensional pattern are given in [1 1]. In the proposed implementation, each element of the Gen_string is a - token. A lexical analyzer to construct such a Gen_string can be obtained by using the same actions described above, but allowing the elements of the gen­eral data structure (another Gen_string) to be elementary items or pixels. Point II requires the construction of the pLR linear posi­tional grammar along with the positional operators. Point III requires routines for the conversion of the gen­eral data structure into an array of tokens w, a starting index in w, SP, and an association list Q of positions and tokens. In par­ticular the list Q must be implemented such that the positional operators can be executed efficiently. Finally, Point IV requires the construction of the parser. As a result of Theorem 7. 1 in[9] , this can be done by translat­ing the positional LR grammar into an LR grammar with actions and then by using the tool Yacc, [20] . As an example of the construction given in that Theorem, let us consider the the positional LR grammar for the arith­metic expressions. The resulting LR context free grammar with actions is:
(1) E := E + {HOR() } T (2) E := T (3) T := T' F
(4) T := F (5) F := ({ HOR() } E) (HOR() } (6) F := id {HOR() } (7) T':= T' F '
(8) T':= F ' (9) F ':= !. {HOR() } E l { VER() } (1 0) F ':= kJ. (VER() }

An implementation by Yacc for this grammar, using rhe Gen_string representation, has been developed at the Depart­ment of Computer Science of the University of Pittsburgh. The implementation consists of the following: The function get _gs(): the Gen_string representing a two-dimensional arithmetic expression is stored in a global data structure "gs". The Gen_string can be taken from a data­base or derived from the original pattern. The function gs _ir(): the Gen_string is converted into an internal representation (data structure "spg", and others). The functions read_hor() and read_ver(): the spatial operators HOR and VER are implemented, respectively.

241

The yacc specifications for the grammar. the functions read_hor() and read_ ver() are insened in the rules as actions. Both of them update a global variable "current" used by the function yylex() to select the next token to be par�ed. In the following, the results of the execu·tion of such specifications are given. Note that the array "spg" represents the set of tokens occurring in the expression . while the values of "cumnt" give the order in which the tokens are parsed. For each token spg[i] , the (x, y) coordinates are also given (the list
Q). In this implementation x represents the column index in left-right progression, and y the row index in top-down pro­gres�ion. Case 1

Case 2

get�sl : the input Gen_string is equivalent to (99 + 501) * . ..!.Q. 6 2 spg[O] = '"D" spg[l] = "f' spg[2] = "99" spg[3] = "+" spg[4] = "6" spg(5] = "50 1 " spg[6] = "l'.' spg[7] = "* " spg[8] = " 1 O" spg[9] = "2"

x = l x = 2 x = 3 x = 3 x = 4 x = 5 x = 6 x = 7 x = 7

y = 1 y = 1 y = l y = 2-y = 1 y = l y = 2 y = l y = 2
current = 1 2 3 5 6 4 7 8 9 0 . . . the result is �> 500
get�s2: the input Gen_string is equivalent to

8
m

-2

spg[O] = '"O" spg[l] = "(" spg[2] = "�" spg[3] = "5." spg[4] = "2" spg[5] = ")" spg[6] = "-" spg[7] = "2"

x = l y = 2 x = 2 y = l x = 2 y = 2 x = 2 y = 3 x = 3 y = 2 x = 4 y = 2 x = 5 y = 2
current = 2 1 3 4 5 6 7 0 ... the result is -> 2

CONCLUSIONS In this paper we constructed a parser for · a subclass of symbolic · pictorial languages. We showed that this class con­tains the context-free string languages and th�t a complex language like the two-dimensional arithmetic expression language can be parsed by the proposed model. - W � � showed that this class has a real nice property: the posStbility to be parsed in a very simple way by using an existing tool.

At the moment we are investigating the extension of 1,miversal parsers like Earl�y•s ([1 3]) and Tomita's ([36]) algo­rithms by applying the same technique used for extending the LR parser. Moreover we are considering applications of the model proposed to graphics and to · visual languages
([7, 12, 19, 34]). In the future we intend to extend the subclass of pictorial languages parseable by constructing more powerful parsers. A first approach regards the extension of the concept of symbol to an N-Attaching Point Entity as defined in [14] . · A second approach regards instead the possibility to have more than one positional relation between two symbols. In this way a symbol can be connected to non-adjacent symbols, too.

REF�RENCE_S . [1] A . V . Aho, R . Sethi, . . and J:'D. Ullman, Compilers, princi­
ples, techniques, and tools, Addison Wesiey, 1985.' [2] H.G. Barrow and J.R. Popplestone, "Relational Descrip­tions in picture processing," Machine Intelligence, vol. 6, pp. 377-396, 197 1 .

[3] N.S. Chang and K.S. Fu, "Parallel Parsing of Tree Languages for Syntactic Pancm Recognition," Pattern
Recognition, vol. 1 1 , no. 3, pp. 2 13-222, 1979. [4] S.-K. Chang, "A Method for the Structural Analysis of Two · Dimensional Mathematical Expressions, ' ' I nforma-
tion Sciences, vol. 2, pp. 253-272, 1970. [5] S.-K. Chang, "Picture Processing Grammar and its Appli­cations," Information Sciences, vol. 3, pp. 121_- 148, 197 1 . [6] S.-K. Chang, Q.Y. Shi, and C.W. Yan, "Iconic Indexing by 2-D strings," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. PAMI-6, no. 4, pp. 475-484, July 1984. [7] S.-K. Chang, M.J. Tauber, B. Yu, and J.S. Yu, "A Visual Language Compiler," IEEE Transactions on Software
Engineering, vol. 15, no. 5, pp. 506-525, 1989. [8] M.B. Clowes, "Pictorial Relationships - A Syntactic Approach, ' ' Machine Intelligence, vol. 4, Amer. Elsevier, New York, 1969. [9] G. Costagliola and S.-K. Chang, "Parsing Linear Pictorial Languages by Syntax-Directed Scanning,' ' submitted to
JACM.

[10] G. Costagliola and S.-K. Chang, "DR PARSERS: a gen­eralization of LR parsers," Proc. of 1990 IEEE Workshop
on Visual Languages, pp. 174- 180, Skokie, Illinois, USA, October 4-6. (1 1] G. Costagliola, G. Tonora, and T. Arndt, "A Unifying Approach to Iconic Indexing for 2-D and -3-D SGenes,' ' to
appear in IEEE Transactions on Knowledge and Data
Engineering. (12] C. Crimi, A. Guercio, G. Pacini, G. Tonora, and _ _ M.

242

Tucci, '' Automating Visual Language Generation, ' ' IEEE
Transactions on Software E,rzgineering, vol. 16 , . no. 10, pp. 1 122- 1 1 35, October 1990.

[1 3] I. Earley, "An Efficient Context-Free Parsing Algo­
rithm," Communications of the ACM, vol. 13 , pp. 94- 102,
1970.

[14] I. Feder, "Plex Languages," Information Sciences, vol. 3,
pp. 225-241 , 197 1 .

[1 5] M . Aasinski, ' 'Characteristics of edNLC-Graph Grammar
for Syntactic Pattern Recognition," Computer Vision Graphics and Image Processing, vol. 47, pp. 1-2 1 , 1989.

[1 6] K.S. Fu, Syntactic Methods in Pattern Recognition,
Academic Press, New York and London, 1974.

[17] K.S. Fu, Syntactic Pattern Recognition and Applications,
Prentice Hall, Inc. Englewood Cliffs, N.I. , 1982.

[1 8] K.S. Fu and B.K. Bhargava. "Tree Systems for Syntactic
Pattern Recognition," IEEE Trans. Comput. , vol. C-22
(12) , pp. 1089- 1099, 1973.

[19] E.J. Golin and S.P. Reiss, "The Specification of Visual
Language Syntax," Proc. of 1989 IEEE Workshop on Visual Languages, pp. 105- 1 10, Rome/Italy, October 4-6.

[20] S.C. Johnson, "Yacc: Yet Another Compiler-Compiler," tech. rep., Bell Laboratories, 1974.
[21] C.Y. Li, T. Kawashima, T. Yamamoto, and Y. Aoki,

' ' Attribute Expansive Graph Grammar for Pattern
Description and its Problem-reduction Based Process­
ing," Trans. IEICE, vol. E-7 1 (4), pp. 43 1 -440, Japan,
1988.

[22] S .Y. Lu and K.S. Fu, "Error-correcting Tree Automata
for Syntactic Pattern Recognition," IEEE Trans. Com­put., vol. C-27, pp. 1040- 1053, 1978.

[23] D.L. Milgram and A. Rosenfeld, "Array Automata and
Array Grammars,," Information Processing , vol. 7 1 , pp.
69-74, North-Holland Publ., Amsterdam, 1972.

[24] R. Narasimhan, "Syntax-directed Interpretation of
Classes of Pictures," Comm. ACM, vol. 9, pp. 166- 173,
1966.

[25] K. I. Peng, T. Yamamoto, and Y. Aoki, "A New Parsing
Scheme for Plex Grammars," Pattern Recognition, vol.
23 , no. 3/4, pp. 393-402, 1990.

[26] J. L. Pfaltz, "Web Grammars and Picture Description," Comput. Graphics Image Processing, vol. 1 , pp. 193-220,
1972.

[27] J. L. Pfaltz and A. Rosenfeld, "Web Grammars," Proc. of First Int. Joint Conf. Artif Intell., pp. 609-619, Wash­
ington, DC, May 1969.

[28] A. Rosenfeld, Picture languages: Formal Models for Picture Recognition, Academic Press, New York, San
Francisco and London, 1979.

[29] A. Rosenfeld and D. L. Milgram, ' 'Web Automata and
Web Grammars," Machine Intelligence, vol. 7, pp. 307-
324, 1972.

[30] W.C. Rounds, "Context Free Grammars on Trees," Proc. of 10th Symp. Switching and Automata Theory, p. 143,
1969.

[3 1] A.C. Shaw, "A Formal Picture Description Scheme as a
, Basic for Picture Processing Systems," Information and Control, vol. 14, pp. 9-52, 1969.

[32] Q.Y. Shi and K.S. Fu, "Efficient and Error-correcting
Parsing of (attributed and stochastic) Tree Grammars," Information Sciences, vol. 26, pp. 159- 188, 1982.

[33] Q. Y. Shi and K.S. Fu, ' 'Parsing and Translation of Attri­
buted Expansive Graph Languages for Scene Analysis, ' ' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-5, pp. 472-485, 1983.

[34] N.C. Shu, Visual Programming, Van Nostrand Reinhold
Company, 1988.

[35] G. Siromoney, R. Siromoney, and K. Krithivasan, "Array
Grammars and Kolam," Comput. Graphics and Image Processing, vol. 3, pp. 63-82, 1974.

[36] M. Tomita, Efficient Parsing for Natural Languages,
Kluwer Academic Publishers, Boston, MA, 1985.

[37] M. Tomita, ' 'Parsing 2-Dimensional Languages, ' ' Proceedings of the International Workshop on Parsing Technologies, pp. 414-424, Pittsburgh, PA. Carnegie Mel­
lon, 28-3 1 August 1989.

[38] P.S.P. Wang, ' 'Recognition of Two-Dimensional Pat­
terns," Proc. Assoc. Comput. Mach. Nat. Conf, pp. 484-
489, 1977.

243

N OTES:

