Abdelrahman Sadallah


2025

pdf bib
What Makes Cryptic Crosswords Challenging for LLMs?
Abdelrahman Sadallah | Daria Kotova | Ekaterina Kochmar
Proceedings of the 31st International Conference on Computational Linguistics

Cryptic crosswords are puzzles that rely on general knowledge and the solver’s ability to manipulate language on different levels, dealing with various types of wordplay. Previous research suggests that solving such puzzles is challenging even for modern NLP models, including Large Language Models (LLMs). However, there is little to no research on the reasons for their poor performance on this task. In this paper, we establish the benchmark results for three popular LLMs: Gemma2, LLaMA3 and ChatGPT, showing that their performance on this task is still significantly below that of humans. We also investigate why these models struggle to achieve superior performance. We release our code and introduced datasets at https://github.com/bodasadallah/decrypting-crosswords.

pdf bib
Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph
Roman Vashurin | Ekaterina Fadeeva | Artem Vazhentsev | Lyudmila Rvanova | Daniil Vasilev | Akim Tsvigun | Sergey Petrakov | Rui Xing | Abdelrahman Sadallah | Kirill Grishchenkov | Alexander Panchenko | Timothy Baldwin | Preslav Nakov | Maxim Panov | Artem Shelmanov
Transactions of the Association for Computational Linguistics, Volume 13

The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.

2024

pdf bib
ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic
Fajri Koto | Haonan Li | Sara Shatnawi | Jad Doughman | Abdelrahman Sadallah | Aisha Alraeesi | Khalid Almubarak | Zaid Alyafeai | Neha Sengupta | Shady Shehata | Nizar Habash | Preslav Nakov | Timothy Baldwin
Findings of the Association for Computational Linguistics: ACL 2024

The focus of language model evaluation has transitioned towards reasoning and knowledge-intensive tasks, driven by advancements in pretraining large models. While state-of-the-art models are partially trained on large Arabic texts, evaluating their performance in Arabic remains challenging due to the limited availability of relevant datasets. To bridge this gap, we present ArabicMMLU, the first multi-task language understanding benchmark for the Arabic language, sourced from school exams across diverse educational levels in different countries spanning North Africa, the Levant, and the Gulf regions. Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region. Our comprehensive evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models. Notably, BLOOMZ, mT0, LLama2, and Falcon struggle to achieve a score of 50%, while even the top-performing Arabic-centric model only achieves a score of 62.3%.