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Objective

What geometric properties of an embedding space are important for
performance on a given task?
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Objective

What geometric properties of an embedding space are important for
performance on a given task?

@ Understand utility of embeddings as input features.

@ Provide direction for future work in training and tuning embeddings.
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Embedding space?

In NLP, the term embedding is often used to denote both a map and (an
element of) its image.

Definition
We define an embedding space as a set of word vectors in R
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Geometric properties?

We consider the following attributes of word embedding geometry:
@ position relative to the origin;
o distribution of feature values in R
o global pairwise distances;

@ local pairwise distances.
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Our approach

Ablation Study

We transform the embedding space such that we expose only a subset of
the stated properties to downstream models.

position relative to the origin;
distribution of feature values in RY:

(]
(]
o global pairwise distances;
o

local pairwise distances.
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Cosine distance embedding (CDE)
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Specs:
@ Activation function: RelLU;
@ pos.relative to-the origin
° EpOChS: 50; @ distribution-of features
e d = embedding dimension (300); @ global distances
@ local distances
e |V|* = distance vector dimension (10* most

frequent words).
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Nearest neighbor embedding (NNE)
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Hierarchy of transformations
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@ Ordering is with respect to number of properties ablated.
@ We include a random baseline of meaningless vectors.
@ Arrow length does not mean anything.

@ Transformations are applied independently to the original embeddings.
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Embeddings and Tasks

Standard benchmark embeddings:
@ Word2Vec on Google news;
@ GloVe on common crawl;
o FastText on WikiNews.

Testing:
@ 10 standard intrinsic tasks.

@ 5 extrinsic tasks (embeddings plugged into a downstream machine
learning model).
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Tasks

Intrinsic Tasks Extrinsic Tasks
@ Word Similarity and Relatedness @ Relation classif. on
via cosine distance SemEval-2010 Task 8
e WordSim353 .
. @ Sentence-level sentiment

e SimLex-999 . . .
o RareWords polarity classif. on MR movie
o RG65 reviews
o MEN @ Sentiment classif. on IMDB
o MTURK reviews

o Word Categorization @ Subj./Obj. classif. on Rotten
e AP Tomatoes snippets
e BLESS
o Battig ® SNLI
o ESSLLI
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Results - intrinsic tasks

1M 300-d WikiNews vectors with subword information

@ We see the lowest performance
on thresholded-NNE.

@ Largest drop in performance at
CDE (written as distAE on the

graph).
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performance as well.
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Results - extrinsic tasks

1M 300-d WikiNews vectors with subword information
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Discussion

@ Drop due to CDE likely associated with the importance of locality in
embedding learning.

@ With thresholded-NNE, high out-degree words are rare words,
introducing noise during node2vec's random walk.
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Takeaways

@ We find that in general, both intrinsic and extrinsic models rely
heavily on local similarity, as opposed to global distance information.

@ We also find that intrinsic models are more sensitive to absolute
position than extrinsic ones.

@ Methods for tuning and training should focus on local geometric
structure in RY.
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Questions.

Questions?

github.com/0SU-slatelab/geometric-embedding-properties
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