A Supplemental Material

Table 1 presents the effect of hyperparameters.

A.1 Decoding Sentences vs. Decoding
Sequences

Given that the encoder takes a sentence as input, de-
coding the next sentence versus decoding the next
fixed length window of contiguous words is con-
ceptually different. This is because decoding the
subsequent fixed-length sequence might not reach
or might go beyond the boundary of the next sen-
tence. Since the CNN decoder in our model takes a
fixed-length sequence as the target, when it comes
to decoding sentences, we would need to zero-pad
or chop the sentences into a fixed length. As the
transferability of the models trained in both cases
perform similarly on the evaluation tasks (see rows
1 and 2 in Table 1), we focus on the simpler predict-
all-words CNN decoder that learns to reconstruct
the next window of contiguous words.

A.2 Length of the Target Sequence T’

We varied the length of target sequences in three
cases, which are 10, 30 and 50, and measured the
performance of three models on all tasks. As stated
inrows 1, 3, and 4 in Table 1, decoding short target
sequences results in a slightly lower Pearson score
on SICK, and decoding longer target sequences
lead to a longer training time. In our understanding,
decoding longer target sequences leads to a harder
optimisation task, and decoding shorter ones leads
to a problem that not enough context information is
included for every input sentence. A proper length
of target sequences is able to balance these two
issues. The following experiments set subsequent
30 contiguous words as the target sequence.

A.3 RNN Encoder vs. CNN Encoder

The CNN encoder we built followed the idea of
AdaSent (Zhao et al., 2015), and we adopted the
architecture proposed in (Conneau et al., 2017).
The CNN encoder has four layers of convolution,
each followed by a non-linear activation function.
At every layer, a vector is calculated by a global
max-pooling function over time, and four vectors
from four layers are concatenated to serve as the
sentence representation. We tweaked the CNN en-
coder, including different kernel size and activation
function, and we report the best results of CNN-
CNN model at row 6 in Table 1.

Even searching over many hyperparameters and
selecting the best performance on the evaluation
tasks (overfitting), the CNN-CNN model performs
poorly on the evaluation tasks, although the model
trains much faster than any other models with
RNNs (which were not similarly searched). The
RNN and CNN are both non-linear systems, and
they both are capable of learning complex com-
position functions on words in a sentence. We
hypothesised that the explicit usage of the word
order information will augment the transferability
of the encoder, and constrain the search space of
the parameters in the encoder. The results support
our hypothesis.

The future predictor in (Gan et al., 2017) also ap-
plies a CNN as the encoder, but the decoder is still
an RNN, listed at row 11 in Table 1. Compared to
our designed CNN-CNN model, their CNN-LSTM
model contains more parameters than our model
does, but they have similar performance on the eval-
uation tasks, which is also worse than our RNN-
CNN model.

A.4 Dimensionality

Clearly, we can tell from the comparison between
rows 1,9 and 12 in Table 1, increasing the dimen-
sionality of the RNN encoder leads to better trans-
ferability of the model.

Compared with RNN-RNN model, even with
double-sized encoder, the model with CNN de-
coder still runs faster than that with RNN decoder,
and it slightly outperforms the model with RNN
decoder on the evaluation tasks.

At the same dimensionality of representation
with Skip-thought and Skip-thought+LN, our pro-
posed RNN-CNN model performs better on all
tasks but TREC, on which our model gets similar
results as other models do.

Compared with the model with larger-size CNN
decoder, apparently, we can see that larger encoder
size helps more than larger decoder size does (rows
7,8, and 9 in Table 1).

In other words, an encoder with larger size will
result in a representation with higher dimensional-
ity, and generally, it will augment the expressive-
ness of the vector representation, and the transfer-
ability of the model.

B Experimental Details

Our small RNN-CNN model has a bi-directional
GRU as the encoder, with 300 dimension each di-

Encoder Decoder Hrs | SICK-R SICK-E s1814 | “ORP | gor tREC
type dim type dim (Acc/F1)
Dimension of Sentence Representation: 1200
CNN 600-1200-300 20 | 0.8530 82.6 0.58/0.56 | 75.6/82.9 | 82.8 89.2
RNN 2x300 CNN' 600-1200-300 21 | 0.8515 82.7 0.58/0.56 | 75.3/82.5 | 82.9 852
* CNN(10) 600-1200-300 11 | 0.8474 82.9 0.57/0.55 | 74.2/81.6 | 82.8 88.0
CNN(50) 600-1200-300 27 | 0.8533 82.5 0.57/0.55 | 74.7/82.2 | 81.5 86.2
RNN 2x300 | RNN 600 26 | 0.8530 82.6 0.51/0.50 | 74.1/81.7 | 81.0 89.0
CNN 4x300%| CNN 600-1200-300 8 0.8117 80.5 0.44/0.42 | 72.7/80.7 | 784 85.0
RNN 2x300 CNN 600-1200-2400-300 28 | 0.8570 84.0 0.58/0.56 | 74.3/81.5 | 82.8 88.2
CNN 1200-2400-300 27 | 0.8541 83.0 0.59/0.57 | 74.3/82.2 | 82.9 89.0
Dimension of Sentence Representation: 2400
RNN 2x600 | CNN 600-1200-300 25 | 0.8631 83.9 0.58/0.55 | 74.7/83.1 | 83.4 90.2
RNN 2x600 | RNN 600 32 | 0.8647 84.2 0.52/0.51 | 74.0/81.2 | 842 87.6
CNN 3x800% | RNN 600 8 0.8132 - - 71.9/81.9 86.6
Dimension of Sentence Representation: 4800
RNN 2x1200\ CNN 600-1200-300 34 | 0.8698 85.2 0.59/0.57 | 75.1/83.2 | 84.1 92.2
Skip-thought (Kiros et al., 2015) 336 | 0.8584 82.3 0.29/0.35 | 73.0/82.0 | 82.0 92.2
Skip-thought+LN (Ba et al., 2016) 720 | 0.8580 79.5 0.44/0.45 - 829 884

Table 1: Architecture Comparison. As shown in the table, our designed asymmetric RNN-CNN model
(row 1,9, and 12) works better than other asymmetric models (CNN-LSTM, row 11), and models with
symmetric structure (RNN-RNN, row 5 and 10). In addition, with larger encoder size, our model
demonstrates stronger transferability. The default setting for our CNN decoder is that it learns to
reconstruct 30 words right next to every input sentence. “CNN(10)” represents a CNN decoder with the
length of outputs as 10, and “CNN(50)” represents it with the length of outputs as 50. “” indicates that
the CNN decoder learns to reconstruct next sentence. “%” indicates the results reported in Gan et al. as
future predictor. The CNN encoder in our experiment, noted as “§”, was based on AdaSent in Zhao et al.
and Conneau et al.. Bold numbers are best results among models at same dimension, and underlined
numbers are best results among all models. For STS14, the performance measures are Pearson’s and
Spearman’s score. For MSRP, the performance measures are accuracy and F1 score.

rection, and the large one has 1200 dimension
GRU in each direction. The batch size we used
for training our model is 512, and the sequence
length for both encoding and decoding are 30. The
initial learning rate is 0.0005, and the Adam opti-
miser (Kingma and Ba, 2014) is applied to tune the
parameters in our model.

C Results including supervised
task-dependent models

Table 2 contains all supervised task-dependent
models for comparison.

References

Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016.
Layer normalization. CoRR, abs/1607.06450.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised

learning of universal sentence representations from
natural language inference data. In EMNLP.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li,
Xiaodong He, and Lawrence Carin. 2017. Learning
generic sentence representations using convolutional
neural networks. In EMNLP.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Skip-thought vectors.
In NIPS.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In IJCAI.

Model Hrs| SICK-R SICK-E STS14 MSRP | TREC MR CR SUBJ MPQA SST
Measurement r Acc. rip Acc./F1 Accuracy

Unsupervised training with unordered sentences

ParagraphVec 4 - - 0.42/0.43 72.9/81.1 | 594 602 669 763 70.7 -
word2vec BOW 2 0.8030 78.7 0.65/0.64 72.5/81.4 | 83.6 77.7 798 909 883 79.7
fastText BOW - 0.8000 77.9 0.63/0.62 72.4/81.2 | 81.8 765 789 91.6 874 7838
SIF (GloVe+WR) - 0.8603 84.6 0.69/ - -/- - - - - - 82.2
GloVe BOW - 0.8000 78.6 0.54/0.56 72.1/80.9 | 83.6 78.7 785 91.6 87.6 79.8

SDAE 72 - - 0.37/0.38 73.7/80.7 | 784 746 78.0 90.8 86.9 -
Unsupervised training with ordered sentences - BookCorpus

FastSent 2 - - 0.63/0.64 72.2/80.3 | 76.8 70.8 784 88.7 80.6 -

FastSent+AE 2 - - 0.62/0.62 71.2/79.1 | 80.4 71.8 76.5 88.8 81.5 -
Skip-thought 336 | 0.8580 82.3 0.29/0.35 73.0/82.0 | 922 76,5 80.1 936 87.1 820
Skip-thought+LN 720 | 0.8580 79.5 0.44/0.45 - 884 794 831 937 893 829

combine CNN-LSTM - 0.8618 - - 76.5/83.8| 92.6 77.8 82.1 93.6 894 -
small RNN-CNN¥ 20 0.8530 82.6 0.58/0.56 75.6/829 | 89.2 77.6 803 923 87.8 828
large RNN-CNN+t 34 0.8698 85.2 0.59/0.57 75.1/83.2| 922 79.7 819 94.0 88.7 84.1
Unsupervised training with ordered sentences - Amazon Book Review
small RNN-CNN¥ 21 0.8476 82.7 0.53/0.53 73.8/81.5| 84.8 833 83.0 947 882 878
large RNN-CNN+t 33 0.8616 84.3 0.51/0.51 75.7/82.8| 90.8 853 86.8 953 89.0 883
Unsupervised training with ordered sentences - Amazon Review

BYTE m-LSTM | 720 0.7920 - - 75.0/82.8| - 869 914 946 885 -
Supervised training - Transfer learning

DiscSent 8 - - - 75.0/ - 87.2 - - 93.0 - -
DisSent Books 8 - 0.8170 81.5 - -/ - 872 829 814 932 900 80.2

CaptionRep BOW 24 - - 0.46/0.42 - 722 619 693 774 708 -

DictRep BOW 24 - - 0.67/0.70 68.4/76.8 | 81.0 76.7 787 90.7 87.2 -
InferSent(SNLI) <24| 0.8850 84.6 0.68/0.65 75.1/82.3 | 88.7 799 84.6 921 89.8 833
InferSent(AIINLI) <24| 0.8840 86.3 0.70/0.67 76.2/83.1| 83.2 81.1 863 924 90.2 84.6

Table 2: Related Work and Comparison. As presented, our designed asymmetric RNN-CNN model
has strong transferability, and is overall better than existing unsupervised models in terms of fast training
speed and good performance on evaluation tasks. “{”’s refer to our models, and “small/large” refers to
the dimension of representation as 1200/4800. Bold numbers are the best ones among the models with
same training and transferring setting, and underlined numbers are best results among all transfer learning
models. The training time of each model was collected from the paper that proposed it.

