A Study of Reuse and Plagiarism in Speech and Natural Language Processing Papers

Joseph Mariani¹, Gil Francopoulo², Patrick Paroubek¹ ¹LIMSI-CNRS, ²Tagmatica

Objectives

- Study the practices of the NLP (Spoken, Written and Sign Language) community regarding reuse and plagiarism
 - Check whether there is a *meaningful* difference in taking the verbatim raw word strings compared with applying natural language processing methods to detect possible cases of reuse and plagiarism?

NLP4NLP Corpus

- Presently conduct large scholar analysis of NLP domain
 Production, Collaboration, Citation, Innovation
- NLP4NLP: 34 sources over 50 years (1965-2015)
- Major conferences (ACL, IEEE-ICASSP, ISCA-Interspeech, ELRA-LREC, etc.) and Journals (IEEE-TASLP, CL, SpeechCom, CSAL, LRE, etc.)
- 558 Venues (conferences) / Issues (journals)
- 65,003 documents
- 48,894 Authors
- 270 MWords

NLP4NLP Corpus

short name	# docs	format	long name	language	access to content	period	# venues
acl	4264	conference	Association for Computational Linguistics Conference	English	open access *	1979-2015	37
acmtslp	82	journal	ACM Transaction on Speech and Language Processing	English	private access	2004-2013	10
alta	262	conference	Australasian Language Technology Association	English	open access *	2003-2014	12
anlp	278	conference	Applied Natural Language Processing	English	open access *	1983-2000	e
cath	932	journal	Computers and the Humanities	English	private access	1966-2004	39
cl	776	journal	American Journal of Computational Linguistics	English	open access *	1980-2014	35
coling	3813	conference	Conference on Computational Linguistics	English	open access *	1965-2014	21
conll	842	conference	Computational Natural Language Learning	English	open access *	1997-2015	18
csal	762	journal	Computer Speech and Language	English	private access	1986-2015	29
eacl	900	conference	European Chapter of the ACL	English	open access *	1983-2014	14
emnlp	2020	conference	Empirical methods in natural language processing	English	open access *	1996-2015	20
hlt	2219	conference	Human Language Technology	English	open access *	1986-2015	19
			IEEE International Conference on Acoustics, Speech and Signal				
icassps	9819	conference	Processing - Speech Track	English	private access	1990-2015	26
ijcnlp	1188	conference	International Joint Conference on NLP	English	open access *	2005-2015	
inlg	227	conference	International Conference on Natural Language Generation	English	open access *	1996-2014	
isca	18369	conference	International Speech Communication Association	English	open access	1987-2015	28
jep	507	conference	Journées d'Etudes sur la Parole	French	open access *	2002-2014	5
lre	308	journal	Language Resources and Evaluation	English	private access	2005-2015	1:
lrec	4552	conference	Language Resources and Evaluation Conference	English	open access *	1998-2014	9
ltc	656	conference	Language and Technology Conference	English	private access	1995-2015	
modulad	232	journal	Le Monde des Utilisateurs de L'Analyse des Données	French	open access	1988-2010	23
mts	796	conference	Machine Translation Summit	English	open access	1987-2015	1!
muc	149	conference	Message Understanding Conference	English	open access *	1991-1998	5
naacl	1186	conference	North American Chapter of ACL	English	open access *	2000-2015	11
			Pacific Asia Conference on Language, Information and				
paclic	1040	conference	Computation	English	open access *	1995-2014	19
ranlp	363	conference	Recent Advances in Natural Language Processing	English	open access *	2009-2013	3
sem	950	conference	Lexical and Computational Semantics / Semantic Evaluation	English	open access *	2001-2015	8
speechc	593	journal	Speech Communication	English	private access	1982-2015	34
tacl	92	journal	Transactions of the Association for Computational Linguistics	English	open access *	2013-2015	
tal	177	journal	Revue Traitement Automatique du Langage	French	open access	2006-2015	10
taln	1019	conference	Traitement Automatique du Langage Naturel	French	open access *	1997-2015	19
			IEEE/ACM Transactions on Audio, Speech and Language				
taslp	6612	journal	Processing	English	private access	1975-2015	41
tipster	105	conference	Tipster DARPA text program	English	open access *	1993-1998	:
trec	1847	conference	Text Retrieval Conference	English	open access	1992-2015	24
Total incl. duplicates	67937			-		1965-2015	57
Total excl. duplicates	65,003					1965-2015	558

Definitions

- "Self-reuse": copy & paste when the source of the copy has at least one author who belongs to the group of authors of the text of the paste and when the source is cited.
- "Self-plagiarism": copy & paste when the source of the copy has at least one author who belongs to the group of authors of the text of the paste, but when the source is not cited.
- "Reuse": copy & paste when the source of the copy has no author in the group of authors of the paste and when the source is cited.
- "Plagiarism": copy & paste when the source of the copy has no author in the group of the paste and when the source is not cited.

Definitions

	Source paper is quoted	Source paper is not quoted
At least one author in common	Self-Reuse	Self-Plagiarism
No author in common	Reuse	Plagiarism

Each year: Papers of the focus borrowing papers of the search space (same year or previous years: Backward study)

Search Space Focus	NL	P4NLP (Same year	or previous ye	ars)
	Self-Reusing	Self-Plagiarizing	Reusing	Plagiarizing
Year1				
Year2				
Year3				

Each year: Papers of the focus being borrowed by papers of search space (same year or following years: Forward study)

Search Space Focus	NLI	P4NLP (Same year o	or following ye	ars)
	Self-Reused	Self-Plagiarized	Reused	Plagiarized
Year1				
Year2				
Year3				

Algorithm

- Based on comparison of word sequences, had to be optimized:
- For each pair of documents D1 of the focus (LREC) and D2 of the search space (NLP4NLP), consider
 - 1. either raw text
 - 2. or text after LP (Tagparser [Francopoulo 2007] with Global Atlas + LRE Map)
 - Hyphen variations
 - Caesura
 - Upper/lower cases
 - Plurals
 - Orthographic variations (British English versus American English)
 - Spelling errors
 - Abbreviations (BNC versus British National Corpus)
- Compare 2 texts D1 / D2 using sliding windows of (5-7) lemmas (excluding punctuations)
- Compute a similarity overlapping score [Lyon et al 2001] between documents D1 and D2, with (a variant of) the Jaccard similarity coefficient
 - Score (D1,D2) = #shared windows / #union (D1 windows, D2 windows)
- Filter the pairs of documents D1 / D2 according to a threshold of (0.03-0.04) (3-4% coverage) to retain only significantly similar pairs

Raw text versus LP

Strategy	Backward study document pairs#	Forward study document pairs#	Backward + forward document pairs# after duplicate pruning
1. Raw text	438	373	578
2. Linguistic processing (LP)	559	454	736
Difference (LP-raw)	121	81	158

Tuning Parameters

- Windows: 7 words
- Jaccard similarity coefficient
- Similarity threshold: 0.04 (4%)
- + Number of shared windows > 50

Example of IEEE ICASSP 2001

Self-Reusing

icassps2001	19	i00_3518.pdf icassps2000-293.pdf icassps2000-206.pdf taslp2000-25.pdf i00_1401.pdf i00_3794.pdf icassps2000-21.pdf	icassps2001-14.pdf icassps2001-172.pdf icassps2001-35.pdf icassps2001-231.pdf icassps2001-231.pdf icassps2001-207.pdf icassps2001-207.pdf icassps2001-61.pdf icassps2001-61.pdf icassps2001-35.pdf icassps2001-212.pdf icassps2001-273.pdf icassps2001-273.pdf icassps2001-79.pdf icassps2001-79.pdf icassps2001-71.pdf icassps2001-193.pdf icassps2001-142.pdf icassps2001-17.pdf	0.135 0.132 0.116 0.087 0.084 0.084 0.083 0.075 0.067 0.067	couple363 couple480 couple530 couple560 couple575 couple675 couple938 couple982@ couple983@ couple994 couple1099 couple1251 couple1261@ couple1399@	46	e01 2837. e01 0295. e99 1567. w01-0510. e01 0885. e01 0987. e01 0987. e01 0629. taslp2001 e01 1273. e01 0591. e01 2595. i98 0590. e01 2359. e01 1181. P98-1035. e01 1027. taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 taslp2001 trec2000-li
		icassps2000-56.pdf	icassps2001-142.pdf	0.060	couple1399@		<u>H01-1003.</u>
							trec2000-li sdr00.pdf
							<u>i98_0047.p</u> e01_1883.p

Self-Plagiarizing

e01_2837.pdf	Introposoor and par	0.101	<u>000p10550</u>
e01_0295.pdf	icassps2001-168.pdf	0.169	couple376
	icassps2001-14.pdf	0.163	couple405
e99 1567.pdf	icassps2001-33.pdf	0.151	couple466
W01-0510.pdf	icassps2001-33.pdf	0.145	couple506
e01_0885.pdf	icassps2001-158.pdf	0.138	couple537
e01_0987.pdf	icassps2001-82.pdf	0.117	couple669@
e97_0051.pdf	icassps2001-02.pdf	0.117	couple005
e01_0629.pdf			-
taslp2001-79.pdf	icassps2001-99.pdf	0.109	couple743
e01 1273.pdf	icassps2001-193.pdf	0.100	couple820@
e01 0591.pdf	icassps2001-24.pdf	0.096	couple868@
e01 2595.pdf	icassps2001-101.pdf	0.092	couple899@
i98_0590.pdf	icassps2001-114.pdf	0.085	couple960
e01_2359.pdf	icassps2001-79.pdf	0.081	couple1010
	icassps2001-79.pdf	0.076	couple1080
i00 4556.pdf	icassps2001-79.pdf	0.076	couple1085
e01 1181.pdf	icassps2001-182.pdf	0.076	couple1087
P98-1035.pdf	icassps2001-33.pdf	0.075	couple1101
e01_1027.pdf	icassps2001-160.pdf	0.074	couple1117
taslp2001-39.pdf	icassps2001-207.pdf	0.073	couple1136
H01-1003.pdf	icassps2001-18.pdf	0.060	couple1400
csal2000-16.pdf	icassps2001-33.pdf	0.060	couple1406
trec2000-limsi-	· ·	0.000	-
sdr00.pdf	icassps2001-71.pdf		couple1568
i98_0047.pdf	icassps2001-265.pdf	0.051	couple1661
e01 1883.pdf	icassps2001-44.pdf	0.050	couple1669
	icassps2001-55.ndf	0.049	counle1702

Example of IEEE ICASSP 2001

Example of similarities between 2 papers (couple 18)

taslp1999-27.pdf

the data on a frame base level and ignore the continuous dynamics of the signal within a state An alternative approach is segmental modeling where the basic modeling unit is not a frame but a phonetic unit this family of models relax both the stationarity and the independence within a state assumptions of standard HMM s in this section we review major variants of segmental models A more detailed survey of segmental models can be found in 20 Goldberger et al Segmental modeling 265 Deng et al 1 used a regression polynomial function of time to model the trajectory of the mean in each state A similar model was suggested by Gish and Ng 9 for a keywords spotting task in that model the observation vectors within a state are generated according to such that is set to zero at the beginning of the state and then incremented with each new incoming frame are state dependent vector parameters and is a zero mean Gaussian with a state dependent diagonal covariance matrix the case corresponds to standard HMM this model assumes that the frames within a state are independently although not identically distributed Russell and Holmes 12 14 23 and Gales and Young 67 extended the model suggested by Deng by assuming a parametric segmental model with random coefficients that are sampled once per segment realization therefore the mean trajectory is a stochastic process instead of a fixed parameter more precisely this model is defined by 1 and by the PDF s of and in the second stage we create the observations by sampling along the parametric curve that was determined in the first stage this sampling is carried out with the PDF of Diagonal covariance Gaussian PDF s are typically attributed to and in addition is assumed to have zero mean the model parameters can be normalized according to the segment length in order to achieve better performance and to simplify the parameter estimation 10 Kenny et al 15 have used a state conditioned linear prediction coefficients LPC model to remove correlation between successive observation vectors i the observation vectors within a state are generated according to where are diagonal matrices so that a LPC model applies to each component of the vector A disadvantage of the model is that it assumes stationarity within a state the two approaches of 1 and 15 were unified and generalized in 2 Digalakis 4 proposed a dynamical system model which generalizes the Gauss Markov model 2 to a Kalman filter framework by assuming noisy observations the special case where the hidden Gauss Markov process is assumed to be constant was named target state model the target state model is similar to the model proposed by Russell 23 therefore the dynamical system model can also be considered a generalization of the hidden constant Gaussian mean target state model several authors have proposed nonparametric segment models A major advantage of nonparametric models is that they are not sensitive to the shape of the feature trajectory that needs to be approximated consequently they are also not sensitive to the segment partitioning problem that was explained in Section II and demonstrated in Fig. 2 for a horizontal line parametric approximation on the other hand nonperametric models might

Icassps2001-123.pdf

according to this frame independence assumption the joint observation probability can be rewritten as $\prod \prod \cong TT$ gopggoopgop although the frame independence assumption is clearly inappropriate for speech sounds the standard HMM in practice has worked extremely well for various types of speech recognition tasks review of Research efforts ON frame Correlation modeling under maximum likelihood Ml criteria the performance of a HMM based system relies on how well the HMMs can characterize the nature of real speech for this reason various approaches have been tried to take account of frame correlation for more realistic modeling these efforts are generally known by the name of frame correlation modeling the family of segment models tries to directly express speech feature trajectories the basic modeling unit is not a frame but a phonetic unit this family of models relaxes both the stationarity and the independence assumptions within a standard HMM state while they seem to be successful in extracting dynamic cues for speech recognition under a suitable trajectory assumption they are not based on widely available HMM technology Deng et al 6 used a regression polynomial function of time to model the trajectory of the mean in each state A similar model was suggested by Gish and Ng 7 for a keyword spotting task Russell and Holmes and Gales and Young 8 extended the model suggested by Deng by assuming a parametric segmental model with random coefficients that are sampled once per segment realization therefore the mean trajectory is a

Self Reuse-Plagiarism

- 12,493 cases (18% papers) : no manual checking
 - 4% to 97% overlapping
 - In 61% of the cases, authors do not quote the source paper
 - 130 papers have both the same title and the same list of authors
 - 205 papers have the same title
- Some specific cases (largest similarities)
 - Republishing the corrigendum of a previously published paper
 - Republishing a paper with a small difference in the title and one missing author in the authors' list
 - Same research center described by the same author in two different conferences, with an overlapping of 90%
 - 2 papers presented by the same author in 2 successive conferences, the difference being primarily in the name of the 2 systems being presented, that have been funded by the same project agency in 2 different contracts, with an overlapping of 45%

Similarity Scores Self Reuse-Plagiarism

Self Reuse-Plagiarism

Used Using	ad	acmtslp	alta	anlp	cath	cl	coling	conll	csal	eacl	emnlp	He	Susseci	erleephi	ijcnlp	inlg	isca	jep	Ire	lrec	ltc	modulad	mts	muc	naacl	paclic	ranlp	wes	speechc	tacl	tal	tain	taslp	tipster	trec	Total used	Total usinç	Difference	
acl	22	8	1	4	8	136	78	25	5 3	1 2	28	3 8	35	29	31	7	48	0	20	71	4	0	19	1	51	8	5	26	1	2	0	0	24	4	9	863	625	238	acl
acmtslp	1	0	0	0	0	0	0)	2 (J	U	2	3	2	0	b	0	1	1	0	0	0	0	2	0	0	1	0	1	0	0	2	0	0	24	93		acmtslp
alta	3	0	2	0	0	1	5)	1	2	5	0	0	1	0	4	. 0	0	4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	4	33	14	19	alta
anlp	7	0	0	1	3	5	8	1		1	2	1	4	0	0	0	1	0	0	5	0	0	1	0	2	1	0	0	0	0	0	0	0	2	5	50	50		anlp
cath	1	0	0	1	7	2	0) ()	0	1	0	1	0	0	0	C	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	18	50	-32	cath
Cl	9	0	0	4	3	0	4	. ()	2 4	4	3	1	0	0	0	l	0	2	5	0	0	0	0	0	1	0	4	0	0	0	0	0	0	0	42	433	-391	
coling	74	10	3	8	- 7	62	19	24	1	7 1:	5 4	3 2	.9	8	24	- 7	42	0	14	90	4	0	9	2	33	12	5	25	3	0	0	0	12	6	5	632	500	132	coling
conll	26	1	1	1	1	20	18	8	3	5 (6 1	6 1	1	2	14	2	2	. 0	2	10	1	0	3	0	7	0	5	13	0	1	0	0	3	0	0	179	151		conll
csal	3	-	0	0	0	4	4	- 2	2	7 ()	3	2	20	1	0	35	0	2	7	0	0	0	0	0	0	0	2	6	0	0	0	13	0	0	111	643	-532	
eacl	16	2	0	2	5	31	12	. 6	6	3	1	8 1	3	3	1	2	ç	0	0	21	1	0	1	0	13	1	1	4	0	0	0	0	5	0	1	162	130	32	eacl
emnlp	103	2	2	1	2	44	52	26	5 1	8	9 1	6 3	80	14	47	1	27	0	5	29	0	0	7	0	22	2	1	19	0	3	0	0	20	1	5	508	355		emnip
hit	83	12	0	5	3	48	48	11	4	2 14	4 3	3 2	22	29	30	2	104	. 0	4	26	1	0	13	2	6	1	0	9	8	0	0	0	25	1	19	607	476	131	hlt
icassps	16	5	0	0	0	3	4	1	13	0 4	4	7 2	21 2	262	2	0	1005	0	0	19	0	0	2	0	14	2	0	0	65	0	0	0	746	0	3	2311	2160	151	icassps
ijcnlp	27	6	1	0	0	3	29	10)	7	23	4 1	8	2	4	3	7	0	5	19	3	0	9	0	13	4	8	3	0	0	0	0	4	0	1	222	237	-15	ijcnlp
inig	1	0	0	1	1	6	5	2	ź	0.	3	1	3	0	1	2	4	. 0	1	6	0	0	1	U	4	0	0	0	0	U	0	0	1	0	0	49	35		inig
ISCA	56	23	0	2	0	13	45) (31	7 10	J 2	5 11	6 15	531	10	4	879	0	10	133	19	0	12	0	38	6	0	1	233	0	0	0	669	0	5	4157	2460	1697	Isca
jep	0	0	0	0	0	0	0) ()	0	0	0	0	0	0	0	C	10	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	16	18		jep
Ire	2	1	0	0	0	2	3) ()	0	0	0	1	0	0	0	2	0	2	6	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	22	146	-124	Ire
Irec	58	3	0	2	6	16	80	l t	5 1	3 1	5 1	0 1	1	16	10	2	72	0	52	67	12	0	6	0	11	11	4	12	5	2	0	0	6	1	3	524	660	-136	Irec
Itc	4	0	0	0	0	0	0)	0	J	U	0	0	2	0	15	0	1	35	10	0	2	0	0	6	6	1	4	0	0	0	0	0	0	86	/1	15	ltC
modulad	0	0	0	0	0	0	0) ()	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	modulad
mts	13	0	0	0	0	2	9	2	2	0	2	9 1	0	3	9	0	ç	0	2	20	2	0	8	0	8	5	2	1	1	0	0	0	2	0	0	119	109	10	mts
muc	2	0	0	2	0	2	3)	0	1	U	7	0	0	0	C	0	0	0	0	0	0	10	1	0	0	0	0	0	0	0	0	18	1	47	28	19	muc
naacl	46	10	0	2	1	24	30	Ī	1	2 1	1 2	2	5	15	22	3	30	0	3	16	1	0	9	0	3	0	0	9	1	0	0	0	8	0	3	293	251	42	naacl
paclic	4	0	0	0	1	0	12	1		1	1	1	0	2	8	0	3	0	5	18	7	0	3	0	0	21	7	1	0	0	0	0	1	0	0	97	85	12	paclic
ranlp	3	2	0	0	0	0	2	2 4	ļ	4	2	2	1	0	7	0	C	0	2	19	5	0	2	0	1	2	4	2	1	0	0	0	0	0	1	66	54	12	ranlp
sem	25	2	0	0	0	1	16	12	ł	4	1 1	2 1	2	0	8	0	C	0	13	12	1	0	1	0	8	1	4	53	0	0	0	0	0	0	1	195	188	1	sem
speechc	0	0	0	0	0	1	1	() 1	1 (J	0	4	17	0	0	48	0	0	2	0	0	0	0	0	0	0	0	1	0	0	0	17	0	0	102	344	-242	speechc
tacl	1	1	0	0	0	0	0) ()	0)	2	0	0	0	0	C	0	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	7	9	-2	tacl
tal	0	0	0	0	0	0	0) ()	0	0	0	0	0	0	0	C	5	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	18	59	-41	
taln	0	0	0	0	0	0	0) ()	0	0	0	0	0	0	0	C	3	0	0	0	0	0	0	0	0	0	0	0	0	53	9	0	0	0	65	22	43	taln
taslp	0	5	0	0	0	0	1	1	1	3 (J	1	4 1	197	0	0	103	0	0	2	0	0	1	0	2	0	0	0	15	0	0	0	49	0	0	394	1610	-1216	taslp
tipster	3	0	0	3	0	0	6	0	J	0	J	1	5	0	0	0	C	0	0	2	0	0	0	13	1	0	0	0	0	0	0	0	0	2	1	43	65	-22	tipster
trec	10	0	4	11	2	1	6	i ()	2	21	1 3	32	7	3	0	5	0	0	10	0	0	0	0	10	0	1	1	0	0	0	0	2	24	287	431	362	69	trec
Total using	625	93	14	50	50	433	500	151	64	3 13	35	5 47	6 21	60	237	35	2460	18	146	660	71	0	109	28	251	85	54	188	344	9	59	22	1610	65	362	12493	12493	0	

Reuse and Plagiarism

- 261 cases : manual checking
- Reuse
 - 12 have a least one author in common, but with a somehow different spelling and should therefore be placed in the "Selfreuse" category.
- Plagiarism
 - 25 have a least one author in common, but with a somehow different spelling, and should therefore be placed in the "Selfplagiarism" category
 - 14 correctly quote the source paper, but with variants in the spelling of the authors' names, of the paper's title or of the conference or journal source, or correctly citing the source paper but forgetting to place it among the references, and should therefore be placed in the "Reuse" category.

Variants in Spelling Authors' Name

- Non-Linear Probability Estimation Method
 Used in HMM for Modeling Frame Correlation
 - Qing Guo, Fang Zheng, Jian Wu, and Wenhu Wu (ISCA-Interspeech 1998)
- An New Method Used in HMM for Modeling Frame Correlation
 - Guo Qing, Zheng Fang, Wu Jian and Wu Wenhu (IEEE-ICASSP 1999)

Variants in Spelling References

- Quoted Reference: Graham W. (2007) "an OWL Ontology for HPSG" proceeding of the ACL 2007 demo and poster sessions, 169-172.
- Correct Reference: Graham Wilcock (2007), "An OWL Ontology for HPSG"
- Quoted Reference: Li Liu, Jianglong He, "On the use of orthogonal GMM in speaker verification"
- Correct Reference: Li Liu and Jialong He, "On the use of orthogonal GMM in speaker recognition"

Reuse and Plagiarism

- After manual corrections: 224 cases (0.33% of papers)
 - 4% to 42% overlapping
 - In 52% of the cases, authors do not quote the source paper
 - This results in 117 possible cases of plagiarism (0.17%):
 - The copying paper cites another reference from the same authors of the source paper (typically a previous reference, or a paper published in a Journal) (46 cases)
 - Both papers use extracts of a third paper that they both cite (31 cases)
 - Authors of the two papers are different, but from same laboratory (typical in industrial laboratories or funding agencies) (11 cases)
 - Authors of the two papers previously co-authored papers (typically as supervisor and PhD student or postdoc) but are now in different laboratories (11 cases)
 - Authors of the papers are different, but collaborated in the same project which is presented in the two papers (2 cases)
 - The two papers present the same short example, result or definition coming from another source (13 cases)
 - Only 3 remaining cases of possible plagiarism: same paper as a patchwork of 3 other papers, while sharing several references with them.

Similarity Scores Reuse/Plagiarism

Reuse and Plagiarism

Used Using	acl	acmtslp	alta	anlp	cath	G	coling	conll	csal	eacl	emnlp	hlt	icassps	ijcnlp	inlg	isca	jep	Ire	Irec	ltc	modulad	mts	muc	naacl	paclic	ranlp	sem	speechc	tacl	tal	taln	taslp	tipster	trec	Total used	Total usinç	Difference	
acl	1	0	0	0	1	1	1 2	2	2 0	() 4		3 0	1	3 (2	0	0	1	1	C	0 0		1 1	1	1	3	0	0	0	0 0	0	0	0	28	7		acl
acmtsip	0	0	U	0	0	() (U	0	(0 0	(J U	() (0	0	0	l	0 0	ί	0 0	(J 0	Ĺ	0	0	0	0	0	0 0	0	0	0	0	0		acmtslp
alta	0	0	U	0	0	C) (U	0	(0 0	(J U	() (0	0	0	C	0 0	ί	0 0	(J 0	Ĺ	0 0	0	0	0	0	0 0	0	0	0	0	0	0	alta
anlp	0	0	0	0	0	() (0) 0	() 0	(0 0	() (0	0	0	() 0	C	0 0	(0 0	() 0	0	0	0	0	0 0	0	0	0	0	0		anlp
cath	0	0	0	0	0	(0 0	0	0 0	(0 0	(0 0	(0 0	0	0	0	(0 0	C	0	(0 0	(0 0	0	0	0	0	0	0	0	0	0	2	-2	cath
Cl	0	0	U	0	0	C	J 1	0	0	(1		1 0	1		0	0	0	4	0	U	1	(J 1	Ż	2 0	0	0	0	0	0	0	0	0	12	5		Cl
coling	0	0	U	0	1	C) (0	0 0	(0 0	-	2 1	ĺ	I C	2	0	0	Ż	2 0	U	0 0		1 1	1	0	2	0	0	0	0 0	1	0	0	15	1	8	coling
conll	0	0	0	0	0	(0 0	0) 0	() 2	(0 0	() (0	0	0	() ()	C	0 0	(0 0	() 0	1	0	0	0	0	0	0	0	3	5	-2	conll
csal	0	0	0	0	0	() (0) 0	() 0		1 1	() (3	0	0	() 0	C	0 0	() 1	1	0	0	0	0	0	0 0	0	0	0	7	6	1	csal
eacl	0	0	0	0	0	(0 0	0	0 0	(0 (1	2 0	() (0	0	0	() 0	C	0 0	(0 0	(0 (0	0	0	0	0 0	0	0	0	2	2	0	eacl
emnip	0	0	U	0	0	Ż	2 0	2	2 0		1		2 0	(J (0	0	0	(0 0	U	1	(J 2	. (0 0	0	0	0	0	0	0	0	2	13	15	-2	emnip
hlt	2	0	0	0	0	1	1 0	1	1	(2		1 1	Ĺ	1 (2	0	0	() 1	C	1	() (1	0	0	0	0	0	0 0	0	0	2	17	17	0	hlt
icassps	0	0	0	0	0	(0 0	0) 1	() 1		2 3	() (32	0	0	() 0	C	0 0	() 2	() 0	0	2	0	0	0 0	5	0	0	48	37	11	icassps
ijcnlp	0	0	0	0	0	(0 0	0	0 0	(0 ((0 0	() (0	0	0	() 0	C	0 0	(0 0	1	1	0	0	0	0	0	0	0	0	2	9	-7	ijcnlp
inig	0	0	U	0	0	C	J U	0	0	(0 0	(J U	() (0	0	0	C	0 0	ί	0	(J U	(0 0	0	0	0	0	0	0	0	0	0	0	0	inig
isca	0	0	0	0	0	1	1 1	0) 1	(0 0		1 18		1 (7	0	0	1	1	C	0 0	(J 1	(0 0	0	0	0	0	0 0	3	0	0	36	70	-34	isca
jep	0	0	0	0	0	() (0) 0	() 0	(0 0	() (0	0	0	() 0	C	0 0	(0 C	() 0	0	0	0	0	0 0	0	0	0	0	0	0	jep
Ire	0	0	0	0	0	(0 0	0) 0	() 0	(0 0	() (0	0	0	() ()	C	0 0	(0 0	() 0	0	0	0	0	0 0	0	0	0	0	1	-1	Ire
Irec	0	0	0	0	0	(J (0	1	() 2	(ן 1	() (1	0	0	(0 0	C	0 0	(J 0	(1	0	1	0	0	0 0	0	0	1	8	8	0	Irec
Itc	0	0	U	0	0	C	J U	0	0	(J U	(JU	(J (0	0	0	C	0 0	C	0 0	(JU	(0 0	0	0	0	0	0	0	0	0	0	4	-4	ltc
modulad	0	0	C	0	0	(0 0	0) 0	() 0	(0 0	() (0	0	0	() 0	C	0 0	(0 0	() 0	0	0	0	0	0	0	0	0	0	0	0	modulad
mts	1	0	0	0	0	(0 0	0) 0	() 0		1 0	() (1	0	0	() 0	C	0 0	(0 0	1	0	0	0	0	0	0 0	0	0	0	4	3	1	mts
muc	1	0	0	0	0	(J 1	0	0 0	(0 0	(J (() (0	0	0	(0 0	C	0 0		1 0	(0 0	0	0	0	0	0 0	0	0	0	3	3	0	muc
naacl	1	0	U	0	0	C	J U	0	1	(ן 1		1 1	() (1	0	0	(0 0	U	0	(J 1	Ż	2 0	0	0	0	0	0	0	0	0	9	10	-1	naacl
paclic	0	0	0	0	0	(0 0	0) 0	() 0	(0 0	·	1 (0	0	0	() 1	C	0 0	() O	() 0	0	0	0	0	0 0	0	0	0	2	10	-8	paclic
ranlp	0	0	0	0	0	(0 0	0) 0	() 0	(0 0	() (0	0	0	() 0	C	0 0	(0 0	() 0	0	0	0	0	0 0	0	0	0	0	3	-3	ranlp
sem	0	0	U	U	U	(J 2	. U	0	(J U	(JU	(J (0	0	0	L L	J U	U	0	(JU	L L	0	T	0	0	0	0	U	U	0	3	1	-4	sem
speechc	0	0	U	0	0	C	J U	0	0	(0 0	(J U		n t	2	0	0	L C	0 0	C	0		J U	(0	0	0	0	0	0	1	0	0	4	5	-1	speechc
tacl	0	0	U	0	0	C	J U	0	0	(0 0	(J U	(J (0	0	0	l (0 0	C	0		J U	(0	0	0	0	0	0	0	0	0	0	0	0	tacl
tal	0	0	0	0	0	(0 0	0	0	(0 0	(0 0	() (0	0	0	() 0	C	0 0	(0 0	() 0	0	0	0	0	0	0	0	0	0	0	0	tal
taln	0	0	0	0	0	(0 0	0) 0	() 0	() (() (0	0	0	() 0	C	0 0	() O	() 0	0	0	0	0	0 0	0	0	0	0	0	0	taln
tasip	0	0	U	0	0	1	J (0	1	<u> </u>	0	(J 10	(J C	16	0	0	L () U	C	0		J U	(0	0	2	0	0	0	0	0	0	30	10	20	tasip
tipster	0	0	U	0	0	1	J (0	0	(J U	(J	(J C	0	0	0	L () U	C	0		J U	(0	0	0	0	0	0	0	2	0	2	2	0	tipster
trec	1	0	0	0	0	() (0	0	() 1	() 1	() (1	0	1	() 0	C	0 0	(0 0	() 0	0	0	0	0	0 0	0	0	8	13	13	0	trec
Total using	7	0	0	0	2	Ę	5 7	5	6	2	2 15	1	7 37		9 (70	0	1	8	3 4	C	3	3	3 10	10) 3	7	5	0	0	0	10	2	13			0	

Time Delay Publication / Reuse (1.22 years on average)

Time Delay Publication in Conferences / Reuse in Journals (2.07 years on average)

Self-Plagiarism or *Fair Use*? (Pamela Samuelson, Comm. of ACM 1994)

- Acceptable if:
 - The previous work must be restated to lay the groundwork for a new contribution in the second work,
 - Portions of the previous work must be repeated to deal with new evidence or arguments,
 - The audience for each work is so different that publishing the same work in different places is necessary to get the message out,
 - The authors think they said it so well the first time that it makes no sense to say it differently a second time.
- 30% as an upper limit in the reuse of parts of a previously published paper.
 - Only 1.3% of NLP4NLP papers go beyond this limit

Plagiarism: Right to Quote

- "National legislations usually embody the *Berne convention limits* in one or more of the following requirements:
 - the cited paragraphs are within a reasonable limit,
 - <= 10% of the copied / copying papers in France / Canada
 - Only 0.05% of NLP4NLP papers go beyond this limit
 - the cited paragraphs are clearly marked as quotations and fully referenced,
 - the resulting new work is not just a collection of quotations, but constitutes a fully original work in itself".
- the copied paragraphs must have a function in the goal of the copying paper.

Conclusions

- Produce results on the study of copy & paste operations on corpora of NLP archives of very large size, using NLP methods
 - Large number of pairwise comparisons (65,000*65,000), which still represents a practical computing limitation.
- Self-reuse and self-plagiarism are common practices (18%)
 - 40% happen on same year (no way to detect beforehand)
 - No quote of source paper in 60% of the cases (75% if same year)
 - Natural flow from conferences to journals
 - Current tendency for "salami-slicing" publications caused by the publish-and-perish demand
- Plagiarism very uncommon in the NLP community (<0.05%)
- Ethically acceptable if principles are respected

Further developments

- Process "rogeting": replacing words with synonymous alternatives
- Study the position and rhetorical structure of the copy & paste in order to identify and justify their function.
- Explore whether copy & paste is more common for non native-English speakers
 - publish first in their native language, then in English in an international conference or an international journal, in order to broaden their audience

Thank you.