KyotoEBMT System Description for the 2nd Workshop on Asian Translation

John Richardson

Raj Dabre Chenhui Chu

Fabien Cromières Toshiaki Nakazawa Sadao Kurohashi

Outline

- Overview of the system
- Improvements since WAT2014
- Results for WAT2015
- Conclusion

Overview of Kyoto-EBMT

KyotoEBMT Overview

- Example-Based MT paradigm
 - Need parallel corpus
 - Few language-specific assumptions
 - still a few language-specific rules
- Tree-to-Tree Machine Translation
 - Maybe the least commonly used variant of x-to-x
 - Sensitive to parsing quality of both source and target languages
 - Maximize the chances of preserving information
- Dependency trees
 - Less commonly used than Constituent trees
 - Most natural for Japanese
 - Should contain all important semantic information

KyotoEBMT pipeline

- Somehow classic_pipeline
 - 1- Preprocessing of the parallel corpus
 - 2- Processing of input sentence
 - 3- Decoding/Tuning/Reranking
- Tuning and reranking done with kbMira
 - seems to work better than PRO for us

Other specificities

- <u>No "phrase-table"</u>
 - all translation rules computed on-the-fly for each input
 - cons:
 - possibly slower (but not so slow)
 - computing significance/ sparse features more complicated
 - pros:
 - full-context available for computing features
 - no limit on the size of matched rules
 - possibility to output perfect translation when input is very similar to an example
- <u>"Flexible" translation rules</u>
 - Optional words
 - Alternative insertion positions
 - Decoder can process flexible rules more efficiently than a long list of alternative rules
 - some "flexible rules" may actually encode >millions of "standard rules"

Other specificities

- <u>No "phrase-table"</u>
 - all translation rules computed on-the-fly for each input
 - cons:
 - possibly slower (but not so slow)
 - computing significance/ sparse features more complicated
 - pros:
 - full-context available for computing features
 - no limit on the size of matched rules
 - possibility to output perfect translation when input is very similar to an example
- <u>"Flexible" translation rules</u>
 - Optional words
 - Alternative insertion positions
 - Decoder can process flexible rules more efficiently than a long list of alternative rules
 - some "flexible rules" may actually encode >millions of "standard rules"

Improvements since WAT2014

- Our system is <u>very</u> sensitive to parsing errors
- Continuous improvements to
 - Juman
 - KNP
 - SKP
- Added support for parse forests
 - (compact representations)

Forest Input

- A partial solution to the issues of Tree-to-Tree MT
 - Can help with parsing errors
 - Can help with syntactic divergences
- In WAT2014,
 - we used 20-best input parses
 - n-best list of all inputs merged and reranked
- Now, with forest:
 - an exponential number of input parses can be encoded
 - the selection of parses is done during decoding

- System is also very sensitive to alignment errors
- We used to correct alignments by using dependency trees (Nakazawa and Kurohashi, 2012)
- Now we further improve them with Nile (Riesa et al., 2011)

Alignment Improvements

- Used Nile (Riesa et al., 2011) to improve the alignment
 - As suggested by (Neubig and Duh, 2014)
 - Require us to parse into constituent trees as well
 - Ckylark parser for Japanese (Oda+, 2015)
 - Berkeley Parser for Chinese/English
- Nile becomes the third element of an alignment pipeline

- Many small improvements
 - Better handling of flexible rules
 - Bug fixes
- 10 new features
 - alignment score
 - context similarity score based on word2vec vectors
 - ...

• Reranking

- Previously used features:
 - 7-gram language model
 - RNNLM language model
- Now also using a Neural MT based bilingual Language Model

Bilingual Neural Network Language Model

- Combine Neural MT with EBMT
- We use the state-of-the-art model described by (Bahdanau et al., 2015)
 - Model seen as a Language Model conditionalized on the input
- Remarks:
 - Processing Japanese and Chinese as sequences of characters gave good results
 - No need to limit vocabulary (~4000/6000 characters for J/C)
 - Avoid segmentation issues
 - Faster training
 - Neural MT models alone produced bad translations
 - eg. Character BLEU for C->J almost half that of KyotoEBMT
 - Reranking performances saturates before MT performances 30

Reranked BLEU/ NeuralMT char-BLEU vs Epochs for J->C

- <u>Improved working methods</u> (that matters!)
 - automatic nightly testing for variations in BLEU/ assertion errors/ memory leaks
- Overall improvements across all the pipeline
- Estimating the global contribution of each element is tough, but here are the final results, ...

Results

	Reranking	BLEU	RIBES	HUMAN
J->E	NO	21.31 (+0.71)	70.65 (+0.53)	16.50
	YES	22.89 (+1.82)	72.46 (+2.56)	32.50
E->J	NO	30.69 (+0.92)	76.78 (+1.57)	40.50
	YES	33.06 (+1.97)	78.95 (+2.99)	51.00
J->C	NO	29.99 (+2.78)	80.71 (+1.58)	16.00
	YES	31.40 (+3.83)	<mark>82.70</mark> (+3.87)	12.50
C->J	NO	36.30 (+2.73)	81.97 (+1.87)	16.75
	YES	38.53 (+3.78)	<mark>84.07</mark> (+3.81)	18.50

	Reranking	BLEU		RIBES	HUMAN
J->E	NO	+0.71		70.65	-7
	YES	+1.82		The various improvements lead to good changes in BLEU. Almost +4 BLEU for the JC/CJ	
E->J	NO	+0.92			
	YES	+1.97			
J->C	NO	+2.78		80.71 (+1	
	YES	<u>+3.83</u>		<mark>82.70</mark> (+3.87)	12.50
C->J	NO	+2.73		81.97 (+1.87)	16.75
	YES	<u>+3.78</u>		<mark>84.07</mark> (+3.81)	18.50

	Rerank			HUMAN
	Mystery! Only for J->C, we find that reranking decreased			16.50
J->	Human Evaluation score. (While still improving BLEU/RIBES)			32.50
	No		EU/RIBES)	40.50
E->J	YES	33.06 (+1.97)	78.95 (+2.99)	51.00
	NO	29.99 (+2.78)	80.71 (+1.58)	16.00
J->C	YES	31.40 (+3.83)	<mark>82.70</mark> (+3.87)	12.50
	NO	36.30 (+2.73)	81.97 (+1.87)	16.75
C->J	YES	38.53 (+3.78)	84.07 (+3.81)	18.50

	Reranking	BLEU	RIBES	HUMAN
J->E	NO	21.31 (+0.71)	70.65 (+0.53)	16.50
	YES	22.89 (+1.82)	72.46 (+2.56)	32.50
E->J	NO	30.69 (+0.92)	76.78 (+1.57)	40.50
	YES	33.06 (+1.97)	78.95 (+2.99)	51.00
J->C	NO	29.99 (+2.78)	80.71 (+1.58)	16.00
	YES	31.40 (+3.83)	<mark>82.70</mark> (+3.87)	12.50
C->J	NO	36.30 (+2.73)	81.97 (+1.87)	16.75
	YES	38.53 (+3.78)	<mark>84.07</mark> (+3.81)	18.50

Code is available and Open-sourced

- Version 1.0 released
 - 1 year after version 0.1
 - 2 years after development started
- Downloadable at: <u>http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/</u>
- GPL Licence

Conclusion

- KyotoEBMT is a (Dependency) Tree-to-Tree MT system with state-ofthe-art results
- Open-sourced (<u>http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/</u>)
- Improvements across the whole pipeline lead us to close to +4 BLEU improvements
- Some future works:
 - Make more use of the target structure
 - Use of deep learning features in the decoder
 - eg. as in (Devlin et al., 2014)
 - ...

Thank you!