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Errors made by keyphrase extraction systems

37%Over-generation errors

27%

Infrequency errors

12%

Redundancy errors

10%

Evaluation errors

[Hasan and Ng, 2014]
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Motivation

I Most errors are due to over-generation
I System correctly outputs a keyphrase because it contains an important word, but
erroneously predicts other candidates as keyphrases because they contain the same word

I e.g. olympics, olympic movement, international olympic comittee

I Why over-generation errors are frequent?
I Candidates are ranked independently, often according to their component words

I We propose a global inference model to tackle the problem of over-generation errors
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Proposed method

I Weighting candidates vs. weighting component words
I Words are easier to extract, match and weight
I Useful for reducing over-generation errors

I Ensure that the importance of each word is counted only once in the set of keyphrases
I Keyphrases should be extracted as a set rather than independently

I Finding the optimal set of keyphrases→ combinatorial optimisation problem
I Formulated as an integer linear problem (ILP)
I Solved exactly using off-the-shelf solvers
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ILP model definition

I Based on the concept-based model for summarization [Gillick and Favre, 2009]
I The value of a set of keyphrases is the sum of the weights of its unique words

Word weights

olympic(s) = 5
game = 1

100-meter = 2
dash = 2

Candidates

Olympics
Olympic games
100-meter dash

Olympic games
100-meter dash

5 + 1 + 2 + 2 =10

Olympics
100-meter dash

5 + 2 + 2 =9

Olympics
Olympic games

5 + 1 =6
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ILP model definition (cont.)

I Let xi and cj be binary variables indicating the presence of word i and candidate j in
the set of extracted keyphrases

max
∑
i

wixi ← Summing over unique word weights

s.t.
∑
j

cj ≤ N ← Number of extracted keyphrases

cjOccij ≤ xi, ∀i, j ← Constraints for consistency∑
j

cjOccij ≥ xi, ∀i Occij = 1 if word i is in candidate j
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ILP model definition (cont.)

I By summing over word weights, the model overly favors long candidates
I e.g. olympics < olympic games < modern olympic games

I To correct this bias in the model
1. Pruning long candidates
2. Adding constraints to prefer shorter candidates
3. Adding a regularization term to the objective function
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Regularization

I Let lj be the size, in words, of candidate j , and substrj the number of times cj occurs
as a subtring in other candidates

max
∑
i

wixi − λ
∑
j

(lj − 1)cj
1 + substrj

I Regularization penalizes candidates made of more than one word, and is dampened for
candidates that occur frequently as substrings

low λ ���; ����; ���; �����; ����
mid λ ��; ���; ��; ���; ��
high λ �; �; �; �; �
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Experimental parameters

I Experiments are carried out on the SemEval dataset [Kim et al., 2010]
I Scientific articles from the ACM Digital Library
I 144 articles (training) + 100 articles (test)

I Keyphrase candidates are sequences of nouns and adjectives

I Evaluation in terms of precision, recall and f -measure at the top N keyphrases
I Sets of combined author- and reader-assigned keyphrases as reference keyphrases
I Extracted/reference keyphrases are stemmed

I Regularization parameter λ tuned on the training set
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Word weighting functions

I TF×IDF [Spärck Jones, 1972]
I IDF weights are computed on the training set

I TextRank [Mihalcea and Tarau, 2004]
I Window is sentence, edge weights are co-occurrences

I Logistic regression [Hong and Nenkova, 2014]
I Reference keyphrases in training data are used to generate positive/negative examples
I Features: position first occurrence, TF×IDF, presence in first sentence
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Baselines

I sum : ranking candidates using the sum of the weights of their component
words [Wan and Xiao, 2008]

I norm : ranking candidates using the sum of the weights of their component words
normalized by their lengths

I Redundant keyphrases are pruned from the ranked lists
1. Olympic games
2. Olympics
3. 100-meter dash
4. · · ·
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Results

Top-5 candidates Top-10 candidates

Weighting + Ranking P R F P R F

TF×IDF + sum 5.6 1.9 2.8 5.3 3.5 4.2
+ norm 19.2 6.7 9.9 15.1 10.6 12.3
+ ilp 25.4 9.1 13.3† 17.5 12.4 14.4†

TextRank + sum 4.5 1.6 2.3 4.0 2.8 3.3
+ norm 18.8 6.6 9.6 14.5 10.1 11.8
+ ilp 22.6 8.0 11.7† 17.4 12.2 14.2†

Logistic regression + sum 4.2 1.5 2.2 4.7 3.4 3.9
+ norm 23.8 8.3 12.2 18.9 13.3 15.5
+ ilp 29.4 10.4 15.3† 19.8 14.1 16.3
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Results (cont.)

Top-5 candidates Top-10 candidates

Method P R F rank P R F rank

SemEval - TF×IDF 22.0 7.5 11.2 17.7 12.1 14.4
TF×IDF + ilp 25.4 9.1 13.3 14/20 17.5 12.4 14.4 18/20

SemEval - MaxEnt 21.4 7.3 10.9 17.3 11.8 14.0
Logistic regression + ilp 29.4 10.4 15.3 10/20 19.8 14.1 16.3 15/20
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Example (J-3.txt)

TF×IDF + sum (P = 0.1)
advertis bid; certain advertis budget; keyword bid; convex hull landscap; budget optim
bid; uniform bid strategi; advertis slot; advertis campaign; ward advertis; searchbas
advertis

TF×IDF + norm (P = 0.2)
advertis; advertis bid; keyword; keyword bid; landscap; advertis slot; advertis cam-
paign; ward advertis; searchbas advertis; advertis random

TF×IDF + ilp (P = 0.4)
click; advertis; uniform bid; landscap; auction; convex hull; keyword; budget optim;
single-bid strategi; queri
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Conclusion

I Proposed ILP model
I Can be applied on top of any word weighting function
I Reduces over-generation errors by weighting candidates as a set
I Substancial improvement over commonly used word-based ranking approaches

I Future work
I Phrase-based model regularized by word redundancy
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Thank you

florian.boudin@univ-nantes.fr
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