
�1 Supported by European Union’s Seventh Framework Programme (FP7) under grant agreement no. 615688 (PRIME)

On the Practical Computational
Power of Finite Precision RNNs for

Language Recognition
Gail Weiss, Yoav Goldberg, Eran Yahav

GRU < LSTM (!?)

Current State

• RNNs are everywhere

• We don’t know too much about the differences between
them:

• Gated RNNs are shown to train better, beyond that:

• “RNNs are Turing Complete”?

!2

Turing Complete?

!3

Turing Complete?

!4

unreasonable assumptions!

 1993 Proof:

1. Requires Infinite Precision:
 Uses stack(s), maintained in certain dimension(s)
 Zeros are pushed using division (using g = g/4 + 1/4)
 In 32 bits, this reaches the limit after 15 pushes

2. Requires Infinite Time:
 Allows processing steps beyond reading input
 (Not the standard use case!)

Turing Complete?

!5

unreasonable assumptions!

TURING

TARPIT!

 1993 Proof:

1. Requires Infinite Precision:
 Uses stack(s), maintained in certain dimension(s)
 Zeros are pushed using division (using g = g/4 + 1/4)
 In 32 bits, this reaches the limit after 15 pushes

2. Requires Infinite Time:
 Allows processing steps beyond reading input
 (Not the standard use case!)

What happens on
 real hardware

and real use-cases?

!6

Real Use

• Gated architectures have the best performance

• LSTM and GRU are most popular

• Of these, the choice between them is unclear

!7

Main Result

!8

We accept all RNN types can simulate DFAs

 We show that LSTMs and IRNNs can also count

And that the GRU and SRNN cannot

Power of Counting

!9

In NMT:

LSTM better at capturing target length

Practical

Power of Counting

!10

In NMT:

LSTM better at capturing target length

Practical

Theoretical

Finite State Machines vs Counter Machines

• Similar to finite automata, but also maintain k counters

• A counter has 4 operations: inc/dec by one, do nothing,
reset

• Counters are observed by comparison to zero

K-Counter Machines (SKCMs)

!11

Fischer, Meyer, Rosenberg - 1968

+

Counting Machines
 and Chomsky Hierarchy

!12

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

!13

anbn

Palindromes

 Chomsky Hierarchy and SKCMs

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

!14

anbn anbncn

Palindromes

 Chomsky Hierarchy and SKCMs

!15

anbn anbncn

Palindromes

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

 Chomsky Hierarchy and SKCMs

!16

anbn anbncn

Palindromes

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

 Chomsky Hierarchy and SKCMs

 Chomsky Hierarchy and SKCMs

!17

anbn anbncn

Palindromes

Regular Languages (RL)

Context Free Languages (CFL)

Context Sensitive Languages (CSL)

Recursively Enumerable Languages (RE)

SKCMs cross the Chomsky Hierarchy!

?

Summary so Far

• Counters give additional formal power

• We claimed that LSTM can count and GRU cannot

• Let’s see why

!18

Summary so Far

• Counters give additional formal power

• We claimed that LSTM can count and GRU cannot

• Let’s see why

!19

Popular Architectures

!20

GRU LSTM

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft = σ(Wf xt + Uf ht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

Popular Architectures

!21

GRU LSTM

zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft = σ(Wf xt + Uf ht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate
vectors

update functions

zt ∈ (0,1)
rt ∈ (0,1)
h̃t = tanh(Whxt + Uh(rt ∘ ht−1) + bh)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

Popular Architectures

!22

GRU LSTM

ft ∈ (0,1)Wf xtdfsfsfddgdg
it ∈ (0,1)Wixtddgdgsfsdfs
ot ∈ (0,1)Woxtddgdgsdfsfd
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

gates

candidate
vectors

update functions

!23

LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − zt) ∘ h̃t

ft ∈ (0,1)Wf xtaaaaaaaaaa
it ∈ (0,1)Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

GRU

Popular Architectures

gates

candidate
vectors

update functions

!24

LSTM

ft ∈ (0,1)Wf xtaaaaaaaaaa
it ∈ (0,1)Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

!25

LSTM

ft ∈ (0,1)Wf xtaaaaaaaaaa
it ∈ (0,1)Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

Interpolation

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

!26

LSTM

ft ∈ (0,1)Wf xtaaaaaaaaaa
it ∈ (0,1)Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

Interpolation

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!

!27

LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

ft ∈ (0,1)Wf xtaaaaaaaaaa
it ∈ (0,1)Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

Interpolation

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

Popular Architectures

Bounded!

!28

LSTM

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

ft ∈ (0,1)Wf xtaaaaaaaaaa
it ∈ (0,1)Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct = ft ∘ ct−1 + it ∘ c̃t

ht = ot ∘ g(ct)

Interpolation Addition

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

Popular Architectures

Bounded!

!29

LSTM

ft ≈ 1Wf xtaaaaaaaaaa
it ≈ 1Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b
ct ≈ ct−1 + c̃t

ht = ot ∘ g(ct)

Interpolation Addition

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!

!30

LSTM

ft ≈ 1Wf xtaaaaaaaaaa
it ≈ 1Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ≈ 1ac

b

ct ≈ ct−1 + 1
ht = ot ∘ g(ct)

Interpolation Increase by 1

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!

!31

LSTM

ft ≈ 1Wf xtaaaaaaaaaa
it ≈ 1Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ≈ − 1ac

b

ct ≈ ct−1 − 1
ht = ot ∘ g(ct)

Interpolation Decrease by 1

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!

!32

LSTM

ft ≈ 1Wf xtaaaaaaaaaa
it ≈ 0Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b
ct ≈ ct−1+c̃t

ht = ot ∘ g(ct)

Interpolation Do Nothing

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!

!33

LSTM

ft ≈ 0Wf xtaaaaaaaaaa
it ≈ 0Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct ≈ 0ct−1 + c̃t

ht = ot ∘ g(ct)

Interpolation Reset

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!

!34

LSTM

ft ≈ 0Wf xtaaaaaaaaaa
it ≈ 0Wixtaaaaaaaaaa
ot ∈ (0,1)Woxt(tanh)aaaa
c̃t ∈ (−1,1)ac

b

ct ≈ 0ct−1 + c̃t

ht = ot ∘ g(ct)

Interpolation Reset

ct = ft ∘ ct−1 + it ∘ c̃t

GRU

zt ∈ (0,1)
rt ∈ (0,1)
h̃t ∈ (−1,1)
ht = zt ∘ ht−1 + (1 − z) ∘ h̃t

Popular Architectures

Bounded!
Can Count!

Other Architectures

!35

SRNN IRNN

ht = σh(Whxt + Uhht−1 + bh) ht = max(0,Whxt + Uhht−1 + bh)

Other Architectures

!36

SRNN IRNN

ht = σh(Whxt + Uhht−1 + bh) ∈ (0,1) ht = max(0,Whxt + Uhht−1 + bh)

Bounded!

Other Architectures

!37

SRNN IRNN

ht = σh(Whxt + Uhht−1 + bh) ∈ (0,1) ht = max(0,Whxt + Uhht−1 + bh)

Bounded!
keep/reset

+0 / +1

(subtraction in parallel, also increasing, counter)

{

Other Architectures

!38

SRNN IRNN

ht = σh(Whxt + Uhht−1 + bh) ∈ (0,1) ht = max(0,Whxt + Uhht−1 + bh)

Bounded!

(subtraction in parallel, also increasing, counter)

{

Can Count!
keep/reset

+0 / +1

So:

• LSTM can count!

• GRU cannot

• Counting gives greater computational power

!39

Empirically

!40

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

LSTM GRU

Trained , (on positive examples up to length 100)anbn

Activations on :a1000b1000

Empirically

!41

GRU:
• Took much longer to train
• Did not generalise even within training domain

• begin failing at n=39 (vs 257 for LSTM)

• Did not learn any discernible counting mechanism

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

LSTM GRU

Trained , (on positive examples up to length 100)anbn

Activations on :a1000b1000

Empirically

!42

GRU:
• Took much longer to train
• Did not generalise even within training domain

• begin failing at n=39 (vs 257 for LSTM)

• Did not learn any discernible counting mechanism

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

LSTM GRU

Trained , (on positive examples up to length 100)anbn

Activations on :a1000b1000

Empirically

!43

GRU:
• Took much longer to train
• Did not generalise even within training domain

• begin failing at n=39 (vs 257 for LSTM)

• Did not learn any discernible counting mechanism

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

LSTM GRU

Trained , (on positive examples up to length 100)anbn

Activations on :a1000b1000

Empirically

!44

Activations on :

LSTM GRU

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

Trained , (on positive examples up to length 50)anbncn

a100b100c100

Empirically

!45

Activations on :

LSTM GRU

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

(a) anbn-LSTM on a1000b1000 (b) anbncn-LSTM on a100b100c100

(c) anbn-GRU on a1000b1000 (d) anbncn-GRU on a100b100c100

Figure 1: Activations for LSTM and GRU networks for anbn and anbncn. The LSTM has clearly learned
to use an explicit counting mechanism, in contrast with the GRU.

We show that in the input-bound, finite-
precision case, there is a real difference between
the computational capacities of the LSTM and the
GRU: the LSTM can easily perform unbounded
counting, while the GRU (and the SRNN) can-
not. This makes the LSTM a variant of a k-counter
machine (Fischer et al., 1968), while the GRU re-
mains finite-state. Interestingly, the SRNN with
ReLU activation followed by an MLP classifier
also has power similar to a k-counter machine.

These results suggest there is a class of formal
languages that can be recognized by LSTMs but
not by GRUs. In section 5, we demonstrate that for
at least two such languages, the LSTM manages
to learn the desired concept classes using back-
propagation, while using the hypothesized control
structure. Figure 1 shows the activations of 10-
d LSTM and GRU trained to recognize the lan-
guages anbn and anbncn. It is clear that the LSTM
learned to dedicate specific dimensions for count-
ing, in contrast to the GRU.

2 The RNN Models

An RNN is a parameterized function R that takes
as input an input vector xt and a state vector ht�1

and returns a state vector ht:

ht = R(xt, ht�1) (1)

The RNN is applied to a sequence x1, ..., xn by
starting with an initial vector h0 (often the 0 vec-
tor) and applying R repeatedly according to equa-
tion (1). Let ⌃ be an input vocabulary (alphabet),
and assume a mapping E from every vocabulary
item to a vector x (achieved through a 1-hot encod-
ing, an embedding layer, or some other means).
Let RNN(x1, ..., xn) denote the state vector h re-
sulting from the application of R to the sequence
E(x1), ..., E(xn). An RNN recognizer (or RNN

acceptor) has an additional function f mapping
states h to 0, 1. Typically, f is a log-linear classi-
fier or multi-layer perceptron. We say that an RNN

recognizes a language L✓ ⌃⇤ if f(RNN(w)) re-
turns 1 for all and only words w = x1, ..., xn 2 L.

Elman-RNN (SRNN) In the Elman-RNN (El-
man, 1990), also called the Simple RNN (SRNN),
the function R takes the form of an affine trans-
form followed by a tanh nonlinearity:

ht = tanh(Wxt + Uht�1 + b) (2)

Elman-RNNs are known to be at-least finite-
state. Siegelmann (1996) proved that the tanh can

GRU:
• Took much longer to train
• Did not generalise well

• begin failing at n=9 (vs 101 for LSTM)

• Did not learn any discernible counting mechanism

Trained , (on positive examples up to length 100)anbncn

a100b100c100

Conclusion

!46

GRUSRNN
Trainability

LSTMIRNN

Conclusion

!47

GRUSRNN
LSTMIRNN

Practical Expressivity

Trainability

Take Home Message

!48

Don’t fall in the Turing Tarpit!

Architectural Choices Matter!
and result in actual differences in expressive power

Thank You

!49

GitHub repository:
 https://github.com/tech-srl/counting_dimensions

Google Colab (link through GitHub as well):

 https://tinyurl.com/ybjkumrz

