Enhancing Drug-Drug Interaction Extraction from Texts by Molecular Structure Information <u>Masaki Asada</u>, Makoto Miwa, Yutaka Sasaki

Toyota Technological Institute, Japan

Introduction

 Our target problem is the extraction of drug-drug interactions (DDIs) from biomedical texts

Introduction

- Our target problem is the extraction of drug-drug interactions (DDIs) from biomedical texts
- We investigate the use of external drug database (DrugBank) information in extracting DDIs from texts
- We especially focus on molecular structure information

Method Overview

- We obtain the representations of textual drug pairs using convolutional neural networks (CNNs) and molecular drug pairs using graph convolutional networks (GCNs)
- We concatenate text-based and molecule-based vectors

Method

DDI extraction from texts using molecular structures

- Text-based DDI representation
- Molecular structure-based DDI representation

Method

DDI extraction from texts using molecular structures

- Text-based DDI representation
- Molecular structure-based DDI representation

Method: Text-based DDI Representation

- Our model for representing textual DDIs is based on the CNN model by Zeng et al. (2014)
- We use word and position embeddings as the input to the convolution layer
- We convert the output of the convolution layer into a fixed-size textual vector

Method

DDI extraction from texts using molecular structures

- Text-based DDI representation
- Molecular structure-based DDI representation

Method: Molecular Structure-based DDI Representation

- We represent drug pairs in molecular graph structures using GCNs
- We pre-train GCNs using interacting (positive) pairs mentioned in the DrugBank and not mentioned (pseudo negative) pairs in the DrugBank

Method: Molecular Structure-based DDI Representation

Graph Convolutional Network (GCN) [Li et al. 2016]

We use GCNs to convert a drug molecule graph into a fixed size vector by aggregating node vectors \boldsymbol{h}_{v}^{T}

Method: Molecular Structure-based DDI Representation

Graph Convolutional Network (GCN) [Li et al. 2016]

We use GCNs to convert a drug molecule graph into a fixed size vector by aggregating node vectors \boldsymbol{h}_{v}^{T}

 Link mentions in text corpus to drug database entries by relaxed string matching

- Link mentions in text corpus to drug database entries by relaxed string matching
- Obtain molecular vectors via GCNs with fixed parameters

- Link mentions in text corpus to drug database entries by relaxed string matching
- Obtain molecular vectors via GCNs with fixed parameters
- Predict DDIs from concatenated textual and molecular vectors

Task Settings

SemEval2013 shared task 9.2

The data set is composed of documents annotated with drug mentions and their 4 types of interactions (*Mechanism, Effect, Advice* and *Interaction*) or no interaction

	DDI type	Train	Test
Positive	Mechanism	1,319	302
	Effect	1,687	360
	Advice	826	221
	Int	189	96
	Total	4,021	979
Negative		23,771	4,737
Total		27,792	5,716

Statistics of the DDI SemEval2013 shared task

Data for Pre-training GCNs

- We extracted 255,229 interacting (positive) pairs from DrugBank and generated the same number of *pseudo negative pairs* by randomly pairing DrugBank drugs
- We deleted drug pairs mentioned in the test set of the text corpus

Molecular Structure Features

- To obtain the graph of a drug molecule, we took as input the SMILES string encoding of the molecule from DrugBank and then converted it into the 2D graph structure using RDKit
- For the initial atom (node) vectors, we used randomly embedded vectors for atoms, i.e., *C*, *O*, *N*, ...
- We also used 4 bond (edge) types: single, double, triple, and aromatic

Differences of Labels in Text and Database Tasks

- Interacting drug pairs in database may not appear as positive instances in the text task
- Text task define 4 detailed types, while database task has one positive type. *Mechanism*

Grepafloxacin inhibits the metabolism of **Theophylline**

No relation

While the effect of **Grepafloxacin** on the metabolism of C.P.A substrates is not evaluated, in vitro data suggested similar effects of **Grepafloxacin** in **Theophylline** metabolism No relation

Training Settings

- Mini-batch training using the Adam optimizer with L2 regularization
- Word embeddings trained by the word2vec tool on the 2014 MEDLINE/PubMed baseline distribution
 - Skip-gram
 - Vocabulary size: 215k

Training Settings

Hyper-parameters

Parameter	Value
Word embedding size	200
Word position embedding size	20
Convolution window size	[3, 5, 7]
Convolution filter size	100
Hidden layer size	500
Initial learning rate	0.001
Mini-batch size	50
L2 regularization parameter	0.0001

Hyper-parameters for text-based model

Parameter	Value
Molecular vector size	50
Number of steps	4
Hidden layer size	1,000
Initial learning rate	0.001
Mini-batch size	100
Hidden layer size of NFP	50
GRU unit size of GGNN	50

Hyper-parameters for molecule-based model

Evaluation on Relaxed String Matching

- How much of drug mentions in texts are linked to DrugBank entries by relaxed string matching?
 - We lowercased the mentions and the names in the entries and chose the entries with the most overlaps
 - As a result, 92.15% and 93.09% of drug mentions in train and test
 SemEval2013 data set matched the DrugBank entries

Evaluation on DDI Extraction from Texts (SemEval2013 Shared Task)

• We observe the increase of micro F-score by using molecular structures

Analysis

Can molecular structures alone represent DDIs in texts ?

- Low F-score (23.90%)
- This might be because the drug pairs that interact can appear in the textual context that does not describe their interactions 24

Conclusions

- We proposed a novel neural method for DDI extraction using both textual and molecular information
- The molecular information has improved DDI extraction performance
- As future work, we will investigate the use of other information in DrugBank