

Extracting Commonsense Properties from Embeddings with Limited Human Guidance

Property Comparison from Embeddings (PCE model)

Yiben Yang, Larry Birnbaum, Ji-Ping Wang and Doug Downey July 18, 2018

Northwestern University

Table of contents

- 1. Motivation
- 2. Method
- 3. Experiment
- 4. Demo

Motivation

Commonsense Property Comparison Task

Is an **elephant bigger** or **smaller** than a **mouse**? Is **Ferrari** more **expensive** or **cheaper** than **beer**?

Problem Definition

Three-way task:

$$P(L|O_1, O_2, Property), L \in \{ \langle , \rangle, [\rangle \}.$$

Four-way task:

$$P(L|O_1, O_2, Property), L \in \{ \boxed{<}, \boxed{>}, \boxed{\approx}, \boxed{N/A} \}.$$

Learning Commonsense Knowledge from Text?

Challenges:

- **Reporting bias** [Gordon and Van Durme 2013]: Commonsense knowledge is rarely **explicitly** stated.
- Large knowledge dimensions: Property specified by adjectives: large, heavy, fast, rigid, etc. Creating training examples and building separate models on each type of property requires expensive labeling efforts. Handling unseen properties during the test phase (zero-shot prediction)?
- Language variation: An ideal model should be able to take flexible natural language inputs.

Learning Commonsense Knowledge from Text?

Can we build an efficient commonsense comparison model with word embedding inputs only?

Method

Categorical Linear Regressions

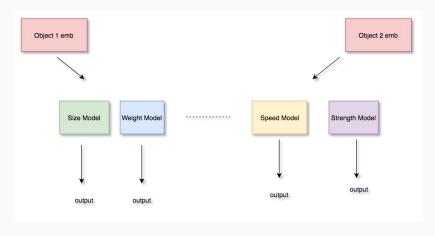
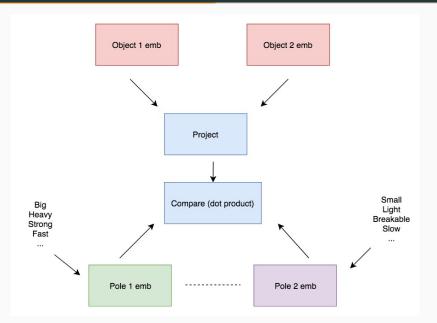


Figure 1: Creating a softmax regression model for each property.

Our PCE model



Experiment

Data

- VERB PHYSICS (5 physical properties) [Forbes and Choi 2017]
- PROPERTY COMMON SENSE (32 commonsense properties)

Results: Supervised Performance

Model	Test							
Model	size weight stren		stren	rigid	speed	overall		
Majority	0.51	0.55	0.52	0.49	0.50	0.51		
F&C	0.75	0.76	0.72	0.65	0.61	0.70		
PCE(LSTM)	0.80	0.79	0.76	0.71	0.71	0.76		
PCE(GloVe)	0.76	0.75	0.71	0.68	0.68	0.72		
PCE(Word2vec)	0.76	0.76	0.73	0.68	0.66	0.72		

Table 1: Supervised accuracy on the VERB PHYSICS data set. PCE outperforms the F&C model from previous work.

Results: Zero-shot Prediction

Model			Test		
Model	size	weight	stren	rigid	speed
Random	0.33	0.33	0.33	0.33	0.33
Emb-Similarity	0.37	0.53	0.48	0.43	0.35
PCE	0.74	0.73	0.70	0.62	0.58

Table 2: Accuracy of zero-shot learning on the VERB PHYSICS data set(using LSTM embeddings).

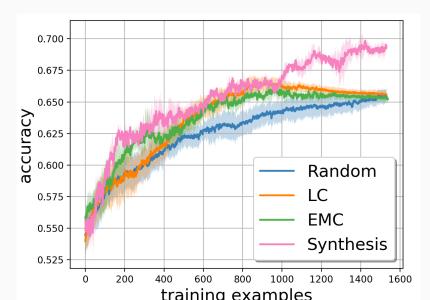
Results

Model	Test
Random	0.25
Majority Class	0.51
PCE(GloVe)	0.63
PCE(Word2vec)	0.67
PCE(LSTM)	0.67

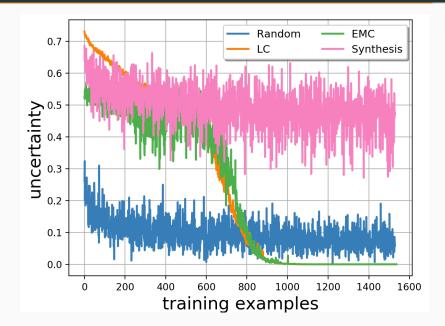
Table 3: Accuracy on the four-way task on the PROPERTY COMMON SENSE data.

Synthesis Active Learning

Want further reduce labeling effort?



Active Learning



Demo

Demo

http://thor.cs.northwestern.edu:1959/