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Motivation



Commonsense Property Comparison Task

Is an elephant bigger or smaller than a mouse?
Is Ferrari more expensive or cheaper than beer?



Problem Definition

Three-way task:

P(L|O4, 05, Property), L € {<][>}[=]}-

Four-way task:

P(L|Oy, 0z, Property), L € <[>} [=}[N/al}.



Learning Commonsense Knowledge from Text?

Challenges:

- Reporting bias [Gordon and Van Durme 2013]: Commonsense
knowledge is rarely explicitly stated.

- Large knowledge dimensions: Property specified by adjectives:
large, heavy, fast, rigid, etc. Creating training examples and
building separate models on each type of property requires
expensive labeling efforts. Handling unseen properties during
the test phase (zero-shot prediction)?

- Language variation: An ideal model should be able to take
flexible natural language inputs.



Learning Commonsense Knowledge from Text?

Can we build an efficient commonsense comparison model with
word embedding inputs only ?

I carry a dog around. (/

| carry an elephant around. x



Method




Categorical Linear Regressions
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Figure 1: Creating a softmax regression model for each property.



Our PCE model
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Experiment




- VERB PHYSICS ( 5 physical properties) [Forbes and Choi 2017]
- PROPERTY COMMON SENSE ( 32 commonsense properties)



Results: Supervised Performance

Model : - TeSt, -
size weight stren rigid speed overall
Majority 0.51 0.55 0.52 0.49 0.50 0.51
F&C 0.75 0.76 072  0.65 0.61 0.70

PCE(LSTM) 0.80 0.79 0.76  0.71 0.71 0.76
PCE(GloVe) 0.76 0.75 0.71  0.68 0.68 0.72
PCE(Word2vec) | 0.76 0.76 0.73 0.68 0.66 0.72

Table 1: Supervised accuracy on the VERB PHYSICS data set. PCE
outperforms the F&C model from previous work.



Results: Zero-shot Prediction

Test
Model - - —
size  weight stren rigid speed
Random 0.33 0.33 033 033 0.33
Emb-Similarity | 0.37 0.53 0.48 0.43 0.35
PCE 0.74 0.73 0.70  0.62 0.58

Table 2: Accuracy of zero-shot learning on the VERB PHYSICS data set(using
LSTM embeddings).



Model Test
Random 0.25
Majority Class | 0.51
PCE(GloVe) 0.63
PCE(Word2vec) | 0.67
PCE(LSTM) 0.67

Table 3: Accuracy on the four-way task on the PROPERTY COMMON SENSE
data.
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Synthesis Active Learning

Want further reduce labeling effort?
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Demo




Demo

http://thor.cs.northwestern.edu:1959/
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