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Introduction
• Sentence Embeddings:  


• Encode a variable-length input sentence into a constant size vector


• Examples:


• Based on Word Embeddings:  


(I) Glove Averaging (Wieting et al., 2015)


(II) Concatenated P-Mean Embeddings (R¨uckl´e et al. 2018)


(III) Sent2Vec (Pagliardini et al. 2018)


• Based on RNNs:


(I) SkipThought Vectors (Kiros et al. 2015)


(II) InferSent (Conneau et al., 2017)
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Goal

• Exploring what specific semantic properties are directly reflected by such 
embeddings.


• Focusing on a few select aspects of sentence semantics.


• Concurrent related work: Conneau et al. ACL 2018


(i) Their work studies what you can learn to predict using 100,000 training 
instances


(ii) Our goal: Directly study the embeddings (via cosine similarity)
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Approach: Contrastive Sentences

Minor alterations of a sentence may lead to notable shifts in meaning.


(i)  A rabbit is jumping over the fence (    )


(ii) A rabbit is hopping over the fence (      )


(iii) A rabbit is not jumping over the fence (      )
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Sentence Modification Schemes

• Not-Negation


• Quantifier-Negation


• Synonym Substitution


• Embedded Clause Extraction


• Passivization


• Argument Reordering


• Fixed Point Inversion
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Negation Detection

• Original Sentence:


• A person is slicing an onion.


• Synonym Substitution:


• A person is cutting an onion.


• Not Negation:


• A person is not slicing an onion.
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Negation Variant

• Not Negation:


• A man is not standing on his head under water.


• Quantifier Negation:


• There is no man standing on his head under water.


• Original Sentence:


• A man is standing on his head under water.
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Clause Relatedness

• Original Sentence:


• Octel said the purchase was expected.


• Extracted Clause:


• The purchase was expected.


• Not Negation:


• Octel said the purchase was not expected
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Argument Sensitivity

• Original Sentence:


• Francesca teaches Adam to adjust the microphone on his stage


• Passivization:


• Adam is taught to adjust the microphone on his stage


• Argument Reordering:


• Adam teaches Francesca to adjust the microphone on his stage
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Fixed Point Reordering

• Original Sentence:


• A black dog in the snow is jumping off the ground and catching a stick.


• Synonym Substitution:


• A black dog in the snow is leaping off the ground and catching a stick.


• Fixed Point Inversion(Corrupted Sentence):


• In the snow is jumping off the ground and catching a stick a black dog.
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Models and Dataset

Dataset Embedding Dim

Glove Avg Common Crawl 300

P Means Common Crawl 300

Sent2Vec English Wiki 600

SkipThought Book Corpus 600

InferSent SNLI 4096

# of Sentences From

Negation Detection 674 SICK, SNLI

Negation Variant 516 SICK, SNLI

Clause Relatedness 567 Penn Treebank
MSR Paraphrase

Argument Sensitivity 445 SICK, MS Paraphrase

Fixed Point Reordering 623 SICK 
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• Average of  Word Embeddings is more easier misled by 
negation.


• Both InferSent and SkipThought succeed in distinguishing 
unnegated sentences from negated ones.

Negation Detection
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Both averaging of word embeddings and SkipThought are dismal in 
terms of the accuracy.


InferSent appears to have acquired a better understanding of negation 
quantifiers, as these are commonplace in many NLI datasets.

Negation Variant
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• Both SkipThought vectors and InferSent works poorly when 
sub clause is much shorter than original one.


• Sent2vec best in distinguishing the embedded clause of a 
sentence from a negation of that sentence.

Clause Relatedness
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• None of the analyzed approaches prove adept at 
distinguishing the semantic information from structural 
information in this case.

Argument Sensitivity
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• Methods based on word embeddings do not encode sufficient 
word order information into the sentence embeddings.


• SkipThought and InferSent did well when the original sentence 
and its semantically equivalence share similar structure

Fixed Point Reordering
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Conclusion

• RNN based sentence embeddings better at identifying negation compared with 
word embedding based models


• Both SkipThought and InferSent distinguish negation of a sentence from 
synonymy.


• InferSent better at identifying semantic equivalence regardless of the order of 
words and copes better with quantifiers.


• SkipThoughts is more suitable for tasks in which the semantics of the sentence 
corresponds to its structure
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Thank you!

Questions?

Contact us at 

xunjie.zhu@rutgers.edu 
and gdm@demelo.org
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