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aspect term in its context sen-
tence. e.g. in “‘great food but the ser-
vice is dreadful” the sentiments for
“food” and “‘service” are positive

pect-level classification perfor-
mance by transferring knowledge
from document-level examples,
since:

* Surprisedly, LSTM+ATT still makes

mistakes on instances with common
opinion words. One possible reason is

e Document-level: 2 datasets derived
from Yelp2014 and Amazon Electronics.
Each contains 30k instances with bal-

Ours: PRET+MULT  79.11 69.73* 71.15 67.46 81.30" 68.74" 85.58" 69.76"

Table 2. Average accuracies and macro-FI scores over 5 runs with random initialisa-
tion. The best results are in bold. * indicates that PRET+MULT is significantly better
than other baseline methods with p < 0.05 according to one-tailed unpaired t-test.

and negative, respectively.

- Document-level datasets are

anced labels.

that GloVe embeddings do not effec-
tively capture sentiment information,
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STM+ATT) serves as our aspect-lev-
el baseline model.We extend it with
pretraining (PRET) and multi-task
learning (MULT) for incorporating
document-level knowledge.

MULT: simultaneously train the
two tasks. The embedding layer
and LSTM layer are shared by
both tasks, and other parameters
are task-specific.

are quite unbalanced.

PRET with different layers (Fig. 1):

* Improvements over LSTM+ATT are

Fig |. PRET with different layers being transferred. e.g.“LSTM only” denotes the set-
ting where only the LSTM layer is transferred through weight initialisation. Averaged
results over 5 runs are reported.
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- “The smaller [size]nos was a bonus
because of space restrictions.”

- “The [price]pos is 200 dollars down.”
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