1. Motivation and Setting 2. Experiments 3. Conclusions and Future Work

Do Neural Network Cross-Modal Mappings Really Bridge Modalities?

Guillem Collell & Marie-Francine Moens

Language Intelligence and Information Retrieval group (LIIR) Department of Computer Science

KU LEUVEN

・ロト ・四ト ・ヨト

Guillem Collell & Marie-Francine Moens

Story

Collell, G., Zhang, T., Moens, M.F. (2017) *Imagined Visual Representations as Multimodal Embeddings*. **AAAI**

- Learn mapping $f: text \longrightarrow vision$.
- Finding 1: Imagined vectors, *f(text)*, outperform original visual vectors in 7/7 word similarity tasks.
- So, why are mapped vectors **multimodal**? We conjecture:
 - **Continuity**. Output vector is nothing but the input vector transformed by a continuous map: $f(\vec{x}) = \vec{x}\theta$.
- Finding 2 (not in AAAI paper): Vectors imagined with an untrained network do even better.

・ロト ・四ト ・ヨト ・ヨト

크

Motivation and Setting
 Experiments
 Conclusions and Future Work

Motivation

- **Applications** (e.g., *zero-shot image tagging, zero-shot translation* or *cross-modal retrieval*):
 - Use linear or NN maps to bridge modalities / spaces.
 - Then, they tag / translate based on *neighborhood* structure of mapped vectors f(X).
- **Research question**: *Is the neighborhood structure of* f(X) *similar to that of* Y? *Or rather to* X?
- How to measure similarity of 2 sets of vectors from different spaces? Idea: mean nearest neighbor overlap (mNNO)

1. Motivation and Setting 2. Experiments 3. Conclusions and Future Work

General Setting

- **Mappings** $f : \mathcal{X} \to \mathcal{Y}$ to bridge modalities \mathcal{X} and \mathcal{Y} :
 - Linear (*lin*): $f(x) = W_0 x + b_0$
 - Feed-forward neural net (*nn*): $f(x) = W_1 \sigma (W_0 x + b_0) + b_1$

1. Motivation and Setting 2. Experiments 3. Conclusions and Future Work

Experiment 1

Definition

Nearest Neighbor Overlap (**NNO**^K(v_i, z_i)) = number of K nearest neighbors that two *paired* data points v_i, z_i share in their respective spaces.

The mean NNO is:

$$mNNO^{K}(V,Z) = \frac{1}{KN} \sum_{i=1}^{N} NNO^{K}(v_{i},z_{i})$$

$$\begin{cases} \mathsf{NN}^{3}(\mathbf{v}_{cat}) = \{\mathbf{v}_{dog}, \mathbf{v}_{tiger}, \mathbf{v}_{lion}\} \\ \mathsf{NN}^{3}(\mathbf{z}_{cat}) = \{\mathbf{z}_{mouse}, \mathbf{z}_{tiger}, \mathbf{z}_{lion}\} \end{cases} \Rightarrow \mathbf{NNO}^{3}(\mathbf{v}_{cat}, \mathbf{z}_{cat}) = 2 \end{cases}$$

▲口 > ▲圖 > ▲ 国 > ▲ 国 >

Motivation and Setting
 2. Experiments
 S. Conclusions and Future Work

Experiment 1

Goal: Learn map f : X → Y and calculate
 mNNO(Y, f(X)). Compare it with mNNO(X, f(X))

Experimental Setup

- Datasets: (i) ImageNet; (ii) IAPR TC-12; (iii) Wikipedia
- Visual features: VGG-128 and ResNet.
- Text features: *ImageNet* (GloVe and word2vec); *IAPR TC-12* & *Wikipedia* (biGRU).
- Loss: $MSE = \frac{1}{2} ||f(x) y||^2$. We also tried *max-margin* and *cosine*.

Motivation and Setting
 2. Experiments
 3. Conclusions and Future Work

Experiment 1: Results

			Res	Net	VGG-128		
			X, f(X)	Y, f(X)	X, f(X)	Y, f(X)	
ImageNet	$I \rightarrow T$	lin	0.681*	0.262	0.723*	0.236	
		nn	0.622*	0.273	0.682*	0.246	
	T ightarrow I	lin	0.379*	0.241	0.339*	0.229	
		nn	0.354*	0.27	0.326*	0.256	
IAPR TC-12	$I \rightarrow T$	lin	0.358*	0.214	0.382*	0.163	
		nn	0.336*	0.219	0.331*	0.18	
	$T \rightarrow I$	lin	0.48*	0.2	0.419*	0.167	
		nn	0.413*	0.225	0.372*	0.182	
Wikipedia	$I \rightarrow T$	lin	0.235*	0.156	0.235*	0.143	
		nn	0.269*	0.161	0.282*	0.148	
	$T \rightarrow I$	lin	0.574*	0.156	0.6*	0.148	
		nn	0.521*	0.156	0.511*	0.151	

<ロト <回 > < 回 > < 回 > .

크

Table: X, f(X) and Y, f(X) denote $mNNO^{10}(X, f(X))$ and $mNNO^{10}(Y, f(X))$, respectively.

Motivation and Setting
 2. Experiments
 S. Conclusions and Future Work

Experiment 2

- **Goal**: Map *X* with an *untrained net f* and compare performance of *X* with that of *f*(*X*).
- We "ablate" from Experiment 1 the *learning* part and the choices of *loss* and *output vectors*.

Experimental Setup

Evaluate vectors in:

• (i) Semantic similarity: SemSim, Simlex-999 and SimVerb-3500.

ヘロマ ヘビマ ヘビマ・

- (ii) Relatedness: MEN and WordSim-353.
- (iii) Visual similarity: VisSim.

Motivation and Setting
 Experiments
 Conclusions and Future Work

Experiment 2: Results

	WS-353		Men		SemSim	
	Cos	Eucl	Cos	Eucl	Cos	Eucl
fnn(GloVe)	0.632	0.634*	0.795	0.791*	0.75*	0.744*
f _{lin} (GloVe)	0.63	0.606	0.798	0.781	0.763	0.712
GloVe	0.632	0.601	0.801	0.782	0.768	0.716
fnn(ResNet)	0.402	0.408*	0.556	0.554*	0.512	0.513
f _{lin} (ResNet)	0.425	0.449	0.566	0.534	0.533	0.514
ResNet	0.423	0.457	0.567	0.535	0.534	0.516
	VisSim		SimLex		SimVerb	
	Cos	Eucl	Cos	Eucl	Cos	Eucl
fnn(GloVe)	0.594*	0.59*	0.369	0.363*	0.313	0.301*
f _{lin} (GloVe)	0.602*	0.576	0.369	0.341	0.326	0.23
GloVe	0.606	0.58	0.371	0.34	0.32	0.235
f _{nn} (ResNet)	0.527*	0.526*	0.405	0.406	0.178	0.169
flin(ResNet)	0.541	0.498	0.409	0.404	0.198	0.182
ResNet	0.543	0.501	0.409	0.403	0.211	0.199

Table: Spearman correlations between human ratings and similarities (cosine or Euclidean) predicted from embeddings.

・ロト ・四ト ・ヨト ・ヨト

2

Conclusions and Future Work

Conclusions:

- Neighborhood structure of f(X) more similar to X than Y.
- Neighborhood structure of embeddings not significantly disrupted by mapping them with an *untrained net*.

Future Work: How to mitigate the problem?

 Discriminator (adversarial) trying to guess whether the sample is from Y or f(X).

• Incorporate pairwise similarities into loss function.

Motivation and Setting
 Experiments
 Conclusions and Future Work

Thank you! Questions?

Guillem Collell & Marie-Francine Moens