Hearst Patterns Revisited: Automatic Hypernym Detection from Large Text Corpora Stephen Roller, Douwe Kiela, and Maximilian Nickel

facebook Artificial Intelligence Research

Hypernymy

• Hierarchical relations play a central role in knowledge representation (Miller, 1995)

cat is a feline is a mammal is an animal

All <u>animals</u> are living things -> <u>cats</u> are living things

- Automatic hypernymy detection approaches:
 - **Pattern based:** high-precision lexico-syntactic patterns (Hearst, 1992)
 - **Distributional Inclusion**: unconstrained word co-occurrences (Zhitomirsky-Geffet and Dagan, 2005)

/[NP] such as [NP] (and [NP])?/ animals such as cats and dogs animals including cats and dogs cats, dogs, and other animals

Objectives

• Are Hearst patterns more valuable than distributional information? • Do we learn more from using general semantic contexts, or exploiting highly targeted ones? • Are differences robust across multiple evaluation settings?

- Can we remedy some of Hearst patterns' weaknesses?
 - Scaling up data and extraction is cheaper and easier today
 - Do embedding methods help alleviate sparsity?

Tasks

- 10% Validation, 90% Test
- Detection
- Distinguish hypernymy pairs from other relations
- Average Precision (AP) across 5 datasets (Shwartz et al., 2017) Direction
- Identify the direction of entailment ($X \Rightarrow Y \text{ or } Y \Rightarrow X$?)
- Accuracy across 3 datasets (Kiela et al., 2015)
- 2 also contain non-entailments $(X \Leftrightarrow Y)$
- Graded Entailment
- Predict the *degree* of entailment
- Spearman's rho on 1 dataset (Vulić et al., 2017)

Detection

- BLESS (Baroni and Lenci, 2011)
- EVAL (Santus et al., 2015)
- LEDS (Baroni et al., 2012)
- Shwartz (Shwartz et al., 2016)
- WBLESS (Weeds et al., 2014)

Direction

- BLESS (Baroni and Lenci, 2011)
- WBLESS (Weeds et al., 2014)
- BiBless (Kiela et al., 2015)

Graded Entailment

• Hyperlex (Vulić et al., 2017)

Hearst Pattern Extraction

- Preprocessing
- 10 Hearst patterns
- Gigaword + Wikipedia
 - Lemmatized, POS tagged
- Matches were aggregated and filtered:
 - Pair must match 2 distinct patterns
- •431K distinct pairs covering 243K unique types

Pattern

- X which is a (example class kind ...) of Y
- X (and or) (any some) other Y
- X which is called Y
- X is JJS (most)? Y
- X a special case of Y
- X is an Y that
- X is a !(member|part|given) Y
- !(features properties) Y such as X_1, X_2, \ldots
- (Unlike|like) (most|all|any|other) Y, X

Y including X_1, X_2, \ldots

Hearst Pattern Models

- Count transformation
- •**PPMI**(x, y): transform counts using **Positive Pointwise Mutual Information**
- Simple embedding (Truncated SVD)
- •**SPMI**(x, y): apply truncated SVD to PPMI counts
- Select *k* using validation set
- Related to Cederberg and Widdows (2003)

$$\operatorname{spmi}(x,y) = \mathbf{u}_x^\top \Sigma_r \mathbf{v}_y$$

Distributional Methods

- Cosine baseline
- Selected 3 high performing, unsupervised methods based on Shwartz et al. (2017)
 - WeedsPrec (Weeds et al., 2004); invCL (Lenci and Benotto, 2012); SLQS (Santus et al., 2014)
- Use strong distributional space from Shwartz et al. (2017)
 - Wikipedia + UkWaC
 - POS tagged and lemmatized
 - Dependency contexts (Pado and Lapata, 2007; Levy and Goldberg, 2014)
- Tune hyperparameters on validation

Detection

- Distr. methods have trouble with global calibration (AP)
- Pattern has mixed performance
- SPMI model best on 4/5 datasets.
- Embedding Hearst patterns helps overcome sparsity
 - Fills in gaps
 - Downweights outliers

Average Precision	1.00	
	0.75	
	0.50	
	0.25	.19
	0.00	.12 RLF

Cosine

Best Distributional

PPMI

SPMI

Direction

- Detection + Direction difficult for distributional methods
- Patterns outperform distr. methods on 2/3
 - BLESS pathologically difficult for cosine and PPMI
- SPMI significantly better
- Embedding patterns overcomes sparsity

	1.00	
	0.75	
Accuracy	0.50	
	0.25	
	0.00	.00

Cosine 🛛 Best Distributional 🔄 PPMI 🔄 SPMI

Graded Entailment

 Pattern based methods 		
outperform distr.	0.75 ——	
 Embedding hurts 	0 L	
 Spearman's rho doesn't punish ties (many 0s) 	bearman's	
 Add small noise (10-6) to PPMI model to break ties randomly 	0.25 —	
 SPMI best after adjustment 	0.23	
	0.00	

1.00

Cosine Best Distributional PPMI SPMI

Hyperlex

Conclusions

• Pattern-based approaches outperform distributional methods

• Targeted Hearst contexts are more valuable than semantic similarity gains

• Embedding Hearst patterns works well

• Helps substantially with sparsity issues

• We open source our experiments and evaluation framework: https://github.com/facebookresearch/hypernymysuite

Thank you! Questions?

