

# CNN FOR TEXT-BASED MULTIPLE CHOICE QUESTION ANSWERING

<sup>1</sup>Indian Statistical Institute, Kolkata, India [🖂: akshay91.isi@gmail.com, utpal@isical.ac.in]

## TASK

Multiple choice question answering where the question is based on a particular text article.

## **O**VERVIEW

- The proposed CNN model outperforms several LSTM based baselines on two datasets: TQA and SciQ.
- Question-option tuple as input to generate a score for the concerned option.
- A simple but effective strategy to deal with questions having options like none of the above, two of the above, both (a) and (b) etc.
- Sentence level attention is used instead of word level attention to better capture the important sentences in the article.

## METHOD

- The most relevant paragraph is chosen from the text article using the question and options.
- The question option tuple is embedded using CNN consisting of three types of filters of size  $f_i \times d \; \forall j = 1, 2, 3$  with size of output channel as k followed by average pooling.

$$h_i = CNN([q; o_i]) \quad \forall i = 1, 2, ..., n_q$$

• The sentences in the paragraph are embedded using the same CNN.

$$d_j = CNN(s_j) \quad \forall j = 1, 2, ..., n_{sents}$$

• Using  $h_i$ , we perform sentence level attention as follows

## Akshay Chaturvedi<sup>1</sup>, Onkar Pandit<sup>2</sup> and Utpal Garain<sup>1</sup>



Figure 1: Architecture of our proposed model

$$a_{ij} = \frac{h_i \cdot d_j}{||h_i|| \cdot ||d_j||}$$

$$r_{ij} = \frac{exp(a_{ij})}{\sum_{j=1}^{n_{sents}} exp(a_{ij})}$$

$$j=1$$

$$m_{i} = \sum_{i=1}^{n_{sents}} r_{ij} d_{j}$$

$$m_i = \sum_{j=1} r_{ij} a_j$$

• To give a score to the  $i^{th}$  option, we take the cosine similarity between  $h_i$  and  $m_i$ 

$$score_i = \frac{h_i \cdot m_i}{||h_i|| \cdot ||m_i||}$$

 The scores are normalized to get the final probability distribution.

$$p_i = \frac{exp(score_i)}{\sum\limits_{i=1}^{n_q} exp(score_i)}$$

• We refer to options like none of the above, two of the above, all of the above, both (a) and (b) as forbidden options.

<sup>2</sup>INRIA, Lille, France  $\square$ : oapandit@gmail.com

Let  $S = [score_i \ \forall i \mid i^{th} \text{ option not in forbidden}]$ options] and |S| = k.

1. Questions with none of the above/ all of the above option: If

max(S) - min(S) < threshold then the final option is the concerned forbidden option.

2. Questions with two of the above option: If  $S_{(k)} - S_{(k-1)} < threshold$ , then the final option is the concerned forbidden option.

3. Questions with both (a) and (b) type **option**: For these type of questions, let the corresponding scores for the two options be  $score_{i_1}$  and  $score_{i_2}$ . If

 $|score_{i_1} - score_{i_2}| < threshold$  then the final option is the concerned forbidden option.

4. Questions with any of the above option: In this case, we always choose the concerned forbidden option.

• We tried different *threshold* values ranging from 0 to 1. The *threshold* was set to that value which gave the highest accuracy on the training set.

| RESULTS |                                                     |               |         |            |         |  |  |
|---------|-----------------------------------------------------|---------------|---------|------------|---------|--|--|
|         | Model                                               | True-Fa       | lse     | Multiple   | Choice  |  |  |
|         | $GRU_{bl}$                                          | 536/994       | (53.9%) | 529/1530   | (34.6%) |  |  |
|         | $CNN_{3,4,5}$                                       |               | •       | ,          |         |  |  |
|         | $CNN_{2,3,4}$                                       | 537/994       | (54.0%) | 543/1530   | (35.5%) |  |  |
|         | Table 1: Accuracy on validation set of TQA dataset. |               |         |            |         |  |  |
|         |                                                     |               |         |            |         |  |  |
|         | ſ                                                   | Model         | Accura  | су         |         |  |  |
|         | (                                                   | $GRU_{bl}$    | 68.2%   |            |         |  |  |
|         | (                                                   | $CNN_{3,4,5}$ | 87.1%   |            |         |  |  |
|         |                                                     | $CNN_{2,3,4}$ |         |            |         |  |  |
|         |                                                     |               |         | (test-set) |         |  |  |
|         | <b>T</b> I I 0                                      | Λ             |         |            |         |  |  |

The code is available at https://github.com/ akshay107/CNN-QA

[1] Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension. In Conference on Computer Vision and Pattern Recognition *(CVPR)*, 2017.

[2] Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 94–106, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.

Table 2: Accuracy of the models on SciQ dataset.

### Model | True-False | Multiple Choice

| Random        | 50.0 | 22.7 |
|---------------|------|------|
| Text-Only     | 50.2 | 32.9 |
| BIDAF         | 50.4 | 32.2 |
| $CNN_{2,3,4}$ | 53.7 | 35.8 |

Table 3: Accuracy of different models on TQA dataset.

| Model                    | w/o Threshold               | Threshold         |
|--------------------------|-----------------------------|-------------------|
| $\overline{CNN_{2,3,4}}$ | 109/433                     | 188/433           |
| ble 4: Thres             | hold strategy on validation | ation set of TQA. |

## REFERENCES