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1. Introduction

We present a new architecture for named entity
recognition. Our model employs multiple
independent bidirectional LSTM units across the
same input and promotes diversity among them
by employing an inter-model regularization term.
By distributing computation across multiple
smaller LSTMs we find a reduction in the total
number of parameters. We find our architecture
achieves state-of-the-art performance on the
CoNLL 2003 NER dataset.
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4. Promoting Diversity Between LSTMs

We take the cell update recurrence parameters
W, across LSTMs (we omit the c in the subscript
for brevity; the index ¢ runs across the smaller
LSTMs) and for any pair we wish the following
to be true:

(vec(W D), vec(WUW))) ~ 0

To achieve this we pack the vectorized parame-
ters into a matrix:

(V@C(Wc(l))\

2. LSTM and complexity

it o(Wihi—1 + U;x)
ft = O'(tht—l + Uth)
Oy = O'(Woht_l + UOXt)

¢: = tanh(W h;—1 + U.xy)
cc = O 1+1iOC¢
ht = 0+© tanh(ct)

One way of measuring the complexity of a
model is through its total number of parameters.
Looking at the above, we note there are two pa-
rameter matrices, W and U, for each of the three
input gates and during cell update. If we let W &
R™* ™ and U € R™"*™ then the total number of pa-
rameters 1n the model (excluding the bias terms) 1s
4(nm-+n?) which grows quadratically as n grows.
Thus, increases in LSTM size can substantially in-
crease the number of parameters.

3. LSTM definition without biases:

To reduce the total number of parameters we split
a single LSTM into multiple equally-sized smaller
ones:

hit = LSTMy(hgt—1,%)

where k € {1,..., K}. This has the effect of
dividing the total number of parameters by a con-

stant factor. The final hidden state h; is then a
concatenation of the hidden states of the smaller

LSTMS:

he = [hit; hat; s hict]

6. Architecture Choices & Ablations

# RNN units | Unit size F
1 1024 87.54
2 512 91.25
4 256 91.29
8 128 91.31
16 64 91.48 +0.22
32 32 90.60
64 16 90.79
128 8 90.41
Table 3: Performance of our model with various
unit sizes resulting in a fixed final output size h.
Single runs apart from 16 unit.
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and apply the following regularization term to
our final loss:
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5. Results

Model F1
(Chieu and Ng, 2002) 88.31
(Florian et al., 2003) 88.76
(Ando and Zhang, 2005) 89.31
(Collobert et al., 2011)} 89.59
(Huang et al., 2015)} 90.10
(Chiu and Nichols, 2015)* 90.77
(Ratinov and Roth, 2009) 90.80
(Lin and Wu, 2009) 90.90
(Passos et al., 2014)¥* 90.90
(Lample et al., 2016)? 90.94
(Luo et al., 2015)* 91.20
(Ma and Hovy, 2016)} 91.21
(Sato et al., 2017) 91.28
(Chiu and Nichols, 2015)#* 91.62
(Peters et al., 2017)** 91.93
This paper? 91.48 +0.22

Table 4: Performance as a function of the unit size
for our best performing model (16 biLSTM units).
Single runs apart from with size 64.

Component Fy
No character embeddings | 90.39
No orthogonal regularization | 90.79
No Xavier initialization 91.09
No variational dropout 91.03
Mean pool instead of concat | 90.49

Table 5: Impact of various architectural decisions
on our best performing model (16 biLSTM units,
64 unit size). Single runs.




