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- Introduction
Background

* Research on distributed word representations is focused on widely-used
languages such as English. Although the same methods can be used for
other languages, language-specific knowledge can enhance the accuracy
and richness of word vector representations.

* Despite their effectiveness in capturing syntactic features from subword
features of diverse languages, decomposing a word into a set of n-grams
and learning n-gram vectors does not consider the unique linguistic
structures of various languages.

Contribution

 Qur first contribution is the method to decompose the words into both
character-level units and jamo-level units and train the subword vectors
through the Skip-Gram model.

* Our second major contribution is the Korean evaluation datasets for word
similarity and analogy tasks, a translation of the WS-353 with annotations
by 14 Korean native speakers, and 10,000 items for semantic and syntactic
analogies, developed with Korean linguistic expertise.

* Using these datasets, we show that our model improves performance over

other baseline methods without relying on external resources for word
decomposition.

— Subword-level Word Vectors for Korean

Decomposition of Korean Words

 Decompose a word to jamo sequence
Jamos have names that reflect the position in a character:
1) chosung (syllable onset), 2) joongsung (syllable nucleus), 3) jongsung (syllable coda)

« Add empty jongsung symbol e such that a character always has 3 (jamos)

« Add start/end symbol </ > in the sequence

(ate) 9 <5 5 9 9 5 9 7 5 9 g >

Extracting n-grams for jamo sequence

* Character-level n-grams, Gct (o, 1, 1), (o, 1, M), (=, ,e), (0, 1, M, &, ,€)...

* Inter-character jamo-level n-grams, Gjt (<, @, 1), (77, ©, 1), (M, =, ), (I,e,>) ...

Subword Information Skip-Gram (SISG, a.k.a FastText)

|Gct| |G]t|
: 1
« Constructing word vector from subword vectors : z. = ( z zg + Z zg )
Gee + Grel "yt ™ gt

|Gct| |G]t|

1
s(We, Wiy ) = [Gor + G'tl( Z cht”tﬂ"' z Zgjtvt+j)
ct T Uj

gCtEGCt gthGjt

« Scoring Function :

- Experiments .
Dataset Developing Evaluations Sets
# of # of # of unique * We aggregate three o
words  sentences | words sources to make the Word Similarity (WS-353) for Korean
s corpus containin
Wikipedia 43.4M| 3.3M | 299,528 0_15 billion word g « 2 native speakers translated the original item pairs.
Online News | 47.1M | 3.2M 1 282,955 tokens with 0.6 million « 14 other native speakers annotated similarity scores of the pairs.
Sejong Corpus| 31.4M 2.2M 231,332 . . ..
unigue words. » Correlation between the original scores and the annotated scores of the translated
Total 121.9M 8.8M 638,708 bairs is 0.82

* Our model and all of the comparison models for training word vectors
are trained over the collected corpus.

Evaluation Tasks
1) Word Similarity & Analogy

* We develop the evaluation datasets.

« Similarity: Spearman’s correlation coefficient between the human judgment
and model’s cosine similarity for the similarity of word pairs are reported.

* Analogy: Rank-based measures may not be an appropriate measure since
the total number of unigue n-grams/words over the same corpus largely
differ from each other. For fair comparison, cosine distances between the
vector a+b-c and d of each categories are reported.

2) Sentiment Analysis

» Given a sequence of words, a trained classifier should predict the binary
sentiment from the inputs while maintaining the input word vectors fixed.

» Based on part of the Naver Sentiment Corpus, single layer RNN is trained
as a classifier for the task.

Word Analogy for Korean

« Semantic Features (5,000 items)

o Capital-Country :  OtH|4|Athens : 2| AGreece = HIZ1EF=Baghdad : O| 2f2Iraq

o Male-Female 2t Atprince: & =princess = 4! Afgentlemen: = L ladies

o Name-Nationality : ZtE|Gandhi: @l =India = @ZlLincoln : O/=USA

o Country-Language : OF2 3 E|LtArgentina : 2| 21 0{Spanish = O|=USA : @ O{English
o Miscellaneous : I +2|Frog : =*0ltadpole = Zhorse : &0} X|pony

« Syntactic Features (5,000 items)

o Case : 1l T=Professor : ul=7Professor+case’ft = = ttsoccer : 1 7tsoccer+case’t
oTense : MIRLCHight : M2 CHought = 2Ctcome : 2tCtcame

oVoice : ERULClsold : ElCtbe sold = H 7'M Clevaluated : & 7= Chwas evaluated
o Verb : 7tCtgo : 7t go+formil = A Chwrite : A dwrite+form 1

o Honorific : k= 2tCthelped : =% 4 Cthelped+honorificA| = S Ctdone : &[4 Ctdone+honorificA|

* Publicly available at : https://github.com/SungjoonPark/KoreanWordVectors

\_

-Results
Word Similarity

0.700

* Decomposing words into
0.670 jamo-level is helpful to learn
good Korean word vectors.

: 0.677
0.671 007/

0.658

0.640

« Spearman correlation with
human evaluation is
0.580 improved to 0.677.

0,550 ( 1-4 characters n-grams /
3-5 jamo n-grams included)

0.599 0-610

SG SISG SISG SISG SISG
(ch) (jm) (ch4+jm) (ch6+jm)

Word Analogy

Semantic Syntactic

Capt Gend Name Lang Misc | Case Tense Voice Form Honr
SG 0.460 0.551 0.537 0.435 0.574 | 0.521 0.597 0.594 0.685 0.634
SISG(ch) 0.469 0.584 0.608 0.439 0.614 | 0.422 0.559 0.550 0.656 0.489
SISG(jm) 0.442 0.515 0.574 0.362 0.565 | 0.228 0.421 0.434 0.537 0.367
SISG(ch4+jm) | 0.431 0.504 0.570 0.361 0.556 | 0.212 0.415 0.434 0.501 0.364
SISG(ch6+jm) | 0.425 0.498 0.561 0.354 0.554 | 0.210 0.414 0.426 0.507 0.367

» QOverall, decomposing words help to capture semantic/syntactic features.

Sentiment Analysis

Acc.(%) Prec. Rec. F1 * Decomposing a word to 1-6
SG 76.15 0.746 0.792 0.768  Ccharacter n-grams and 3-5
SISG(ch) 76.26 0.774 0.741 | 0.757 jamo n-grams show slightly
SISG(jm) 76.53 0.790 0.722 | 0.754 higher performance over
SlSG(Ch4+jm) 76.28 0.755 0.776 0.765 Comparable models.
SISG(ch6+m) | 76.54 0.750 0.795 | 0.772
Effect of n in n-grams * n of jamo-level n-grams,
iIncluding n=5,6 of n-grams
# of chars and excluding bigrams show
4 5 6 all higher performance.
2-4 | 0.660 0.655 0.659 0.651 * Including all of the character
# of 3-4 | 0.660 0.650 0.652 0.660 n-grams while decomposing
jamos | 3-5 | 0.677 0.672 0.677 0.675 a word does not guarantee
3-6 | 0.665 0.663 0.664 0.669 oerformance improvement.

-Conclusion and Discussion

 We demonstrated the effectiveness of the jamo- and character-level
Korean word vectors in capturing the semantic and syntactic information
by evaluating these vectors with newly developed word similarity and word
analogy tasks.

* We plan to apply these vectors for various neural network based NLP
models, and apply the same idea to other syntactic tasks such as POS

tagging and parsing.
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