
• Queries and documents often match based on knowledge
• Query: “Meituxiuxiu web version”
• Document: “Meituxiuxiu web version: An online picture
processing tools”

• Meituxiuxiu	web	version:	Meituxiuxiu	is	the	most	popular	
Chinese	image	processing	software,	launched	by	the	Meitu	
company

• Our motivation is to study the effectiveness of knowledge graph
semantics in state-of-the-art neural ranking models
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Overall Performance

Ranking contribution for EDRM-CKNRM

Performance	on	Different	Scenarios

Testing-SAME Testing-DIFF Testing-RAW
Method NDCG@1 NDCG@10 NDCG@1 NDCG@10 MRR
BM25 0.142 -46% 0.287 -32% 0.163 -46% 0.325 -23% 0.228 -34%

RankSVM 0.146 -45% 0.309 -26% 0.170 -43% 0.352 -17% 0.224 -35%
Coor-Ascent 0.159 -40% 0.355 -15% 0.209 -30% 0.378 -11% 0.242 -30%

DRMM 0.137 -48% 0.313 -25% 0.213 -29% 0.359 -15% 0.234 -32%
CDSSM 0.144 -46% 0.333 -21% 0.183 -39% 0.353 -16% 0.231 -33%
MP 0.218 -17% 0.379 -10% 0.197 -34% 0.345 -18% 0.240 -30%

K-NRM 0.265 – 0.420 – 0.300 – 0.423 – 0.345 –
Conv-KNRM 0.336 27% 0.481 15% 0.338 13% 0.432 2% 0.358 4%
EDRM-KNRM 0.310 17% 0.455 8% 0.333 11% 0.434 3% 0.362 5%
EDRM-CKNRM 0.340 28% 0.482 15% 0.371 24% 0.451 7% 0.389 13%

Motivation	and	Background

Conclusion
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• Knowledge	based	Neural	Ranking	Model:
• Integrate	knowledge	graph	semantics	in	state-of-

the-art	neural	ranking	models
• Entity	types	and	descriptions	are	external	

embeddings	to	match	entities	and	n-grams
• End-to-end Training with User Clicks:
• A data-driven	combination	of	entity-oriented	

search	and	neural	information	retrieval
• Effectiveness	and	Generalization	ability:
• Show	greater	advantage	on	hard	and	short	queries
• Improve	performances	on	more	difficult	testing	

scenarios

• Dataset:	
• Sogou	query	log
• About 100K	training	queries	and	1K	testing	queries

• Knowledge	Graph:
• CN-DBpedia,	a	Chinese	knowledge	graph
• Entities	in	both	queries	and	documents	are	linked	with	CMNS

• End-to-end	Training:
• Train	on	relevance	labels	estimated	by	a	click	model	(DCTR),	

about	8500k	training	pairs
• Test	on	two	click	model	labels	(DCTR->Testing-SAME	and	

TACM->Testing-DIFF)	and	raw	user	clicks	(Testing-RAW)

• Enriched-entity Embedding
• Integration	of	knowledge	graph	semantics

• Neural Entity-Duet Framework
• Multi-level soft matches in the embedding space

• Integration with Kernel based Neural Ranking (K-NRM)
• K-NRM	and	Conv-KNRM	are	state-of-the-arts,	which	calculate	

n-gram and entity cross matches with	Gaussian	Kernels
• K-NRM	->	EDRM-KNRM
• Conv-KNRM->EDRM-CKNRM

Entity-Duet	Neural	Ranking	Model	(EDRM)

Experimental	Results

Experimental Methodology

On Testing-SAME
• Significant	improvement	compared	to	K-NRM
• Little	improvement	compared	to	Conv-KNRM
• Conv-KNRM	is able	to	learn	phrases	matches (entity) from	data
On Testing-DIFF and Testing-RAW
• Significant improvement compared to K-NRM and Conv-KNRM
• EDRM shows generalization ability

Query Difficulty Scenario Query Length	Scenario
• Greatest	improvement	on	short	and	hard	queries	
• Knowledge	are	more	crucial	for	the	limited	query	text	
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Overall	kernel	weight
• Most	of	the	weight	goes	to	soft	match
• Entity	related	matches	play	an	
important	role	

• Cross-space	matches	are	more	
important	

Individual	kernel	weight	
• N-grams	and	entities	are	important	
components	which	share	almost	
uniformly	distributed	weight
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