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Motivation and Background

* Queries and documents often match based on knowledge

Experimental Results

Entity-Duet Neural Ranking: Understanding the Role of Knowledge
Graph Semantics in Neural Information Retrieval

Overall Performance

* Query: “Meituxiuxiu web version” Testing-SAME Testing-DIFF Testing-RAW
T : : : hod NDCG@1 NDCG@10 NDCG@1 NDCG@10 MRR
* Document: “Meituxiuxiu web version: An online picture Met
, ) P BM25 0.142 -46% [0.287 -32% [0.163 -46% | 0.325 -23% [ 0.228 -34%
processing tools RanksVM | 0.146 -45% | 0.309 -26% | 0.170 -43% |0.352 -17% |0.224 -35%
o Meituxiuxiu Web Version: MEItUXIUXIU |S the most popular Coor-Ascent | 0.159 -400/0 0.355 -15% 0.209 '30% 0.378 -110/0 0.242 -30%
hi . . ¢ | hed by th . DRMM | 0.137 -48% | 0.313 -25% | 0.213 -29% [ 0.359 -15% [ 0.234 -32%
Chinese image processing software, launched by the Meitu cDSSM | 0.144 -46% | 0.333 -21% | 0.183 -39% | 0.353 -16% | 0.231 -33%
company MP 0.218 -17% [ 0.379 -10% | 0.197 -34% | 0.345 -18% | 0.240 -30%
C . : K-NRM |0265 - 0420 - |0300 - 0423 - |0345 -
Our mo.tlv:f\tlon is to study the effectlver.less of knowledge graph conv-kNRM 1 0336 27% lo.as1 15% loa3s 13% lo43e 2% losss 4o
semantics in state-of-the-art neural ranking models EDRM-KNRM | 0.310 17% [0.455 8% [0.333 11% [0.434 3% [0.362 5%
EDRM-CKNRMJ] 0.340 28% | 0.482 15% | 0.371 24% |0.451 7% ]0.389 13%
On Testing-SAME
O . * Significant improvement compared to K-NRM
Q. O (& g P P
G’Q@ — * Little improvement compared to Conv-KNRM
' O © * Conv-KNRM is able to learn phrases matches (entity) from data
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 Significant improvement compared to K-NRM and Conv-KNRM
* EDRM shows generalization ability

Ranking contribution for EDRM-CKNRM

Overall kernel weight
* Most of the weight goes to soft match

* Entity related matches play an
important role

Entity-Duet Neural Ranking Model (EDRM)

* Enriched-entity Embedding
* Integration of knowledge graph semantics
* Neural Entity-Duet Framework
* Multi-level soft matches in the embedding space
* Integration with Kernel based Neural Ranking (K-NRM)

e K-NRM and Conv-KNRM are state-of-the-arts, which calculate
n-gram and entity cross matches with Gaussian Kernels

* K-NRM -> EDRM-KNRM

Exact VS. Soft

Solo Word VS. Others

In-space VS. Cross-space e Cross-space matches are more

Important

Document
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* N-grams and entities are important
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* Knowledge are more crucial for the limited query text

Conclusion

______________________

Experimental Methodology

* Dataset: * Knowledge based Neural Ranking Model:
* Sogou query log * Integrate knowledge graph semantics in state-of-
 About 100K training queries and 1K testing queries the-art neural ranking models
* Knowledge Graph: * Entity types and descriptions are external
* CN-DBpedia, a Chinese knowledge graph embeddings to match entities and n-grams
* Entities in both queries and documents are linked with CMNS * End-to-end Training with User Clicks:
 End-to-end Training: A data-driven combination of entity-oriented
* Train on relevance labels estimated by a click model (DCTR), search and neural information retrieval
about 8500k training pairs * Effectiveness and Generalization ability:
* Test on two click model labels (DCTR->Testing-SAME and  Show greater advantage on hard and short queries
TACM->Testing-DIFF) and raw user clicks (Testing-RAW) * Improve performances on more difficult testing

scenarios
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