

Marrying Up Regular Expressions with Neural Networks: A Case Study for Spoken Language Understanding

Bingfeng Luo, Yansong Feng, Zheng Wang, Songfang Huang, Rui Yan and Dongyan Zhao

2018/07/18

- Most of the popular models in NLP are data-driven
- ◆ We often need to operate in a specific scenario → Limited data

- Take spoken language understanding as an example
 - Understanding user query
 - Need to be implemented for many domains

Slot Filling

flights from <mark>Boston</mark> to Tokyo

- Take spoken language understanding as an example
 - ♦ Need to be implemented for many domains → Limited data
 - E.g., intelligent customer service robot
- What can we do with limited data?

Intent Detection flights from Boston to Tokyo **intent**: <u>flight</u>

Slot Filling

flights from **Boston** to **Tokyo**

- When data is limited \rightarrow Use rule-based system
- Regular expression is the most commonly used rule in NLP
 - Many regular expression rules in company

- However, regular expressions are hard to generalize
- Neural networks are potentially good at generalization
- Can we combine the advantages of two worlds?

- Regular expression (RE) output is useful
 - As feature
 - Fusion in output

Which Part of Regular Expression to Use?

- Regular expression (RE) output is useful
- RE contains clue words
 - NN should attend to these clue words for prediction
 - Guide attention module

Embed the REtag, append to input

Embed the REtag, append to input

Slot Filling

- $logit_k = \boxed{logit'_k} + \boxed{w_k z_k}$
 - *logit'* is the NN output score for class k (before softmax)
 - $z_k \in \{0, 1\}$, whether regular expression predict class k

- $logit_k = logit'_k + w_k \mathbf{Z}_k$
 - *logit'* is the NN output score for class k (before softmax)
 - $z_k \in \{0, 1\}$, whether regular expression predict class k

Attention should match clue words

Cross Entropy Loss

Attention should match clue words

Cross Entropy Loss

Slot Filling

- Positive Regular Expressions (REs) & Negative REs
 - REs can indicate the input belong to class k, or does not belong to class k
 - Correction of wrong predictions

/^how long/

How long does it take to fly from LA to NYC?

- Positive Regular Expressions (REs) & Negative REs
 - Corresponding to positive / negative REs
 - $logit_k = logit_{k; positive} logit_{k; negative}$

/^how long/

How long does it take to fly from LA to NYC?

Positive REs and Negative REs interconvertible

• A positive RE for one class can be negative RE for other classes

- ATIS Dataset
 - 18 intents, 63 slots
- Regular Expressions (RE)
 - Written by a paid annotator
 - Intent: 54 REs, 1.5 hours
 - Slot: 60 REs, 1 hour (feature & output); 115 REs, 5.5 hours (attention)

- We want to answer the following questions:
 - Can regular expressions (REs) improve the neural network (NN) when

data is limited (only use a small fraction of the training data)?

- Can REs still improve NN when using the full dataset?
- How does RE complexity influence the results?

Intent Detection

- Macro-F1 / Accuracy
- 5/10/20-shot: every intent have 5/10/20 sentences

		5-shot	10-shot	20-shot	
	base	45.28 / 60.02	60.62 / 64.61	63.60 / 80.52	
	feat	49.40 / 63.72	64.34 / 73.46	65.16 / 83.20	
C	ouput	46.01 / 58.68	63.51 / 77.83	69.22 / 89.25	
	att	54.86 / 75.36	71.23 / 85.44	75.58 / 88.80	

RE	70.31 / 68.98

Regular expressions help

Intent Detection

- Macro-F1 / Accuracy
- 5/10/20-shot: every intent have 5/10/20 sentences

	5-shot	10-shot	20-shot
base	45.28 / 60.02	60.62 / 64.61	63.60 / 80.52
feat	49.40 / 63.72	64.34 / 73.46	65.16 / 83.20
ouput	46.01 / 58.68	63.51 / 77.83	69.22 / 89.25
att	54.86 / 75.36	71.23 / 85.44	75.58 / 88.80
RE		70.31 / 68.98	

Using clue words to guide attention performs best for intent detection

Slot Filling

- Macro/Micro-F1
- 5/10/20-shot: every intent have 5/10/20 sentences

	5-shot	10-shot	20-shot
base	60.78/83.91	74.28/90.19	80.57/93.08
feat	66.84 / 88.96	79.67/93.64	84.95 / 95.00
ouput	63.68/86.18	76.12/91.64	83.71/94.43
att	59.47/83.35	73.55/89.54	79.02/92.22

Slot Filling

- Macro/Micro-F1
- 5/10/20-shot: every intent have 5/10/20 sentences

	5-shot	10-shot	20-shot	
base	base 60.78/83.91		80.57/93.08	
feat	66.84 / 88.96	79.67 / 93.64	84.95 / 95.00	
ouput	63.68/86.18	76.12/91.64	83.71/94.43	
att	59.47/83.35	73.55/89.54	79.02/92.22	
RE	·	42.33 / 70.79		

Using RE output as feature performs best for slot filling

Full Dataset Experiment

- Use all the training data
 - RE still works!

	Intent	Slot
base	92.50/98.77	85.01/95.47
feat	91.86/97.65	86.70 /95.55
ouput	92.48/98.77	86.94 /95.42
att	96.20/98.99	85.44/95.27
RE	70.31/68.98	42.33/70.79
SoA (Joint Model)	- / 98.43	-/ 95.98

Complex RE v.s. Simple RE

Complex RE: many semantically independent groups

Complex RE: /(_AIRCRAFT_CODE) that fly/

Simple RE: /(_AIRCRAFT_CODE)/

	Intent			Slot			
	Complex		Simple	Complex		ζ.	Simple
base	80.52		93.08				
feat	83.20		80.40		95.00		94.71
ouput	89.25		83.09		94.43		93.94
att	88.80		87.46		-		-

Complex REs yield better results

Complex RE v.s. Simple RE

Complex RE: many semantically independent groups

Complex RE: /(_AIRCRAFT_CODE) that fly/

Simple RE: /(_AIRCRAFT_CODE)/

	Inten	t	Slot		
	Complex	Simple	Complex	Simple	
base	80.52	2	93.08		
feat	83.20	80.40	95.00	94.71	
ouput	89.25	83.09	94.43	93.94	
att	88.80	87.46	-	-	

Simple REs also clearly improves the baseline

• Using REs can help to train of NN when data is limited

• Guiding attention is best for intent detection (sentence classification)

• RE output as feature is best for slot filling (sequence labeling)

• We can start with simple REs, and increase complexity gradually

