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In this paper, we study surface realization, i.e. mapping meaning
representations to natural language sentences.



Meaning Representation

® | ogic form, e.g. lambda calculus
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Meaning Representation

® Logic form, e.g. lambda calculus

® [Feature structures

High Efficiency Realization for a
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! University of Sussex
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Meaning Representation

® Logic form, e.g. lambda calculus
® Feature structures

® This paper: Graphs!



Graph-Structured Meaning Representation

Different kinds of graph-structured semantic representations:
® Semantic Dependency Graphs (SDP)
e Abstract Meaning Representations (AMR)
¢ Dependency-based Minimal Recursion Semantics (DMRS)
¢ Elementary Dependency Structures (EDS)
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Graph-Structured Meaning Representation

Different kinds of graph-structured semantic representations:
¢ Semantic Dependency Graphs (SDP)
e Abstract Meaning Representations (AMR)
¢ Dependency-based Minimal Recursion Semantics (DMRS)
® Elementary Dependency Structures (EDS)
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Type-Logical Semantic Graph

EDS graphs are grounded under type-logical semantics. They are
usually very flat and multi-rooted graphs.

_the_q
\ BV ARG1 ARG2
_the_q _boy_n_1 _believe_v_1 pronoun_q
\K y/ ARR %
_girl n_1 pron

The boy wants the girl to believe him.
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Formalisms for Strings, Trees and Graphs

Chomsky hierarchy Grammar Abstract machines
Type-0 - Turing machine
Type-1 Context-sensitive Linear-bounded

- Tree-adjoining Embedded pushdown
Type-2 Context-free Nondeterministic pushdown
Type-3 Regular Finite

Manipulating Graphs: Graph Grammar and DAG Automata.



Existing System

David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez and
Giorgio Satta. Weighted DAG Automata for Semantic Graphs.

the longest NLP paper that I've ever read


https://www.cs.rochester.edu/u/gildea/pubs/chiang-cl18.pdf

DAG Automata

A weighted DAG automaton is a tuple
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DAG Automata

AN AN

® A run of Mon DAG D= (V, E,{) is an edge labeling function
p:E— Q.

® The weight of p is the product of all weight of local
transitions:

3(p) = @ otin(s)) “» plout(0)

veV



DAG Automata: Toy Example

States: ©©© O B Recognition Rules:
John wants to go. {} —want_v_1, {©,8}
{} == {9}
proper_q {.} _go vt {@}
_go_v_1 _go v_1
—\ {0} === (@}
named (John) {@7 @7 @} named(John) {}
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DAG Automata: Toy Example

States: ©©© O B Recognition Rules:
John wants to go. { —want_v_1, (6,8}

() E2S, (o)
{8y === (o)
(o) =% (@)

{@7 @7 ©} named(John)

{

Failed !
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DAG Automata: Toy Example

States: ©©© O B Recognition Rules:
John wants to go. {} —want_v_1, {©,8}
{} == {9}
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DAG Automata: Toy Example

States: ©©© O B Recognition Rules:
John wants to go. (y ===l 19, )
() TS (o)
o proper_gq {e == - {©}
T\ 8 © === (o)
named(John) { 0.8, @} named(John) {}

Accept !



Existing System

Daniel Quernheim and Kevin Knight. 2012. Towards probabilistic
acceptors and transducers for feature structures


https://dl.acm.org/citation.cfm?id=2392936.2392948
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DAG-to-Tree Transducer

WANT qnomb wants Qinfb qnomb wants IN
< | N
= =
;?EVE ;?EVE ‘Imx‘g to believe QGLﬂ?

lhebwy wants lheg to believe hlm
BOY GIRL BOY GIRL BOY GIRL

Challenges for DAG-to-tree transduction on EDS graphs:
e Cannot easily reverse the directions of edges

e Cannot easily handle multiple roots
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® Our DAG Transducer



Our DAG-to-program transducer

The basic idea:
e © Rewritting: directly generating a new data structure piece
by piece, during recognizing an input DAG.
® © Obtaining target structures based on side effects of the
DAG recognition.

States: ©© © O The output of our transducer is a
program:

proper_q
_go_v_1 /
named (John)

John wants to go.
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Our DAG-to-program transducer

The basic idea:
e © Rewritting: directly generating a new data structure piece
by piece, during recognizing an input DAG.
® © Obtaining target structures based on side effects of the
DAG recognition.

States: ©© © O The output of our transducer is a
program:

S = 11 + want + x1
proper_q

_go_v_1 & ﬁ 11 = to+ go
\ T4l = €

named(John)
To1 = X471 + John
John wants to go.

— S = John want to go




Transducation Rules
Recognition Part Generation Part
A valid DAG Automata transition Statement template(s)
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Transducation Rules
Recognition Part Generation Part
A valid DAG Automata transition Statement template(s)
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We use parameterized states:
label (number,direction)

The range of direction: unchanged, empty, reversed.



Transducation Rules
Recognition Part Generation Part
A valid DAG Automata transition Statement template(s)

0 -want_v_1, {©,8} S=uve+L+uve

We use parameterized states:
label (number,direction)

The range of direction: unchanged, empty, reversed.

_want_v_1

{} ——=={vP(,w), NP1, W)} S=wpa,w+L+ weu,uw



Toy Example

@ = {DET(1,r),Empty(0,e),VP(1,u),NP(1,w)}

Rule | For Recognition For Generation
1 {} Proper-a, {DET(1,r)} ET(1,r) = €
2 | =L VP, W), NP1, WY | S = wpiw + L+ e
3 | (P, 0} Y (Enpty(0,e)} | weeiw =to+ L
4 {NP(l,u),DET(l,r)} m {} Up(1,0) = Yerd,n + L
° Recognition: To find an
_go_v_1 edge labeling function p. The

€2

A/{

named (John)

red dashed edges make up an
intermediate graph T(p).



Toy Example

Q= {DET(1,r),Empty(0,e),VP(1,u),NP(1,u)}

Rule | For Recognition For Generation

1 1 28 pET(1,1) ) WET(1,r) = €

2 {} Svent v.1, {VP(1,w),NP(1,w)} | S= wpc,0) + L+ wypc1,u)
3 | (P, 0} Y (Enpty(0,e)} | weeiw =to+ L

4 {NP(1,u),DET(1,r)} 2224 {} UP(1,w) = YET(1,r) + L

Recognition: To find an
ey NP (L,0) edge labeling function p. The

proper_q red dashed edges make up an
SN /'/4/ intermediate graph T(p).

named (John)



Toy Example

@ = {DET(1,1),Empty(0,e),VP(1,u),NP(1,u)}

Rule | For Recognition For Generation
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Toy Example

Q= {DET(1,r),Empty(0,e),VP(1,u),NP(1,u)}

Rule | For Recognition For Generation
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Toy Example

Q= {DET(1,r),Empty(0,e),VP(1,u),NP(1,u)}

Rule | For Recognition For Generation

1 1 28 pET(1,1) ) UpET(1,1) = €

2 (=2l yp (1, w) NP1, WY | S= wpcw + L+ tpc
3 | (P, 0} Y (Enpty(0,e)} | weeiw =to+ L

4 {NP(1,u),DET(1,r)} 2224, £} W1 = WET(1,r) + L

es NP(1,u)

Empty(0,e) ex_ | epera
. ‘A DET(1,r)

named (John)

Accept !

Recognition: To find an
edge labeling function p. The
red dashed edges make up an
intermediate graph T(p).



Toy Example

@ = {DET(1,r),Empty(0,e),VP(1,u),NP(1,w)}

Rule | For Recognition For Generation

1 {} Proper-a, {DET(1,r)} UDET(1,r) = €

2 (=2l yp (1, w) NP1, WY | S= wpcw + L+ tpc
3 | (P, 0} Y (Enpty(0,e)} | weeiw =to+ L

4 {NP(1,u),DET(1,r)} 2224 {} UP(1,w) = YET(1,r) + L

S= wp,0) + L+ wp,w

4

S = 11 + want + 1

Instantiation: replace vy 4)
of edge e; with variable z;
and L with the output string
in the statement templates.



DAG Transduction based-NLG

A general framework for DAG transduction based-NLG:

(O——| DAG Transducer (O—— Seq2seq Model O

Semantic Graph Sequential Lemmas Surface string
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Inducing Transduction Rules

_even_x_deg<16:20> focus_d
l "
comp _say_v_to<52:57>| pronoun_gq

€5
€13 er
g €6

_in_p_temp<34:36> proper_q _the_qg<0:4> _steep_a_1<21:28> pron<49:51>
&
mofy<37:48> _decline_n_1<5:12>

“the decline is even steeper than in September”, he said.

Finding Generating
intermediate Assigning spans Assigning labels statement
tree templates
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Inducing Transduction Rules
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{aDv(1,1)} = {PP(1,u),ADV_PP(2,1)}
UaDV_PP(1,r) = VADV(1,r)
Uapv_pP(2,r) = than + vpp(1,u)



Inducing Transduction Rules

_even_x_deg<16:20> focus_d
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{PP(1,u)} ————— {NP(1,wW)}
Upp(1,u) = 1D+ Uyp(1,uw)



NLG via DAG transduction

Experimental set-up

® Data: DeepBank + Wikiwoods
® Decoder: Beam search (beam size = 128)

® About 37,000 induced rules are directly obtained from
DeepBank training dataset by a group of heuristic rules.

® Disambiguation: global linear model

Transducer ‘Lemmas Sentences Coverage

induced rules ‘ 80.44 74.94 67%




Fine-to-coarse Transduction

To deal with data sparseness problem, we use some heuristic rules
to generate extened rules by slightly changing an induced rule.
Given a induced rule:

(P, a3} 5 () o = wmps + L

New rule generated by deleting:

P} S} wp=1



Fine-to-coarse Transduction

To deal with data sparseness problem, we use some heuristic rules
to generate extened rules by slightly changing an induced rule.
Given a induced rule:

(P, a3} 5 () o = wmps + L

New rule generated by copying:

{NP,ADJ;,ADJ2} B {3 owp = vapy, + vap, + L



NLG via DAG transduction

Experimental set-up

® Data: DeepBank + Wikiwoods
® Decoder: Beam search (beam size = 128)
® About 37,000 induced rules and 440,000 exteneded rules

® Disambiguation: global linear model

Transducer ‘Lemmas Sentences Coverage

induced rules 89.44 74.94 67%
induced and exteneded rules 88.41 74.03 7%




Fine-to-coarse transduction

N N

AN AN

During decoding, when neither induced nor extended rule is
applicable, we use markov model to create a dynamic rule
on-the-fly:

P({ry,--,m}|C) = P(r|C) [ ] P(ril OV P(rilri1, C)
=2

e C={aq, -, qn}, D) represents the context.

® r,---, 1, denotes the outgoing states.



NLG via DAG transduction

Experimental set-up

® Data: DeepBank + Wikiwoods
® Decoder: Beam search (beam size = 128)
® QOther tool: OpenNMT

Transducer Lemmas Sentences Coverage
induced rules 89.44 74.94 67%
induced and exteneded rules 88.41 74.03 77%
induced, exteneded and dynamic rules | 82.04 68.07 100%
DFS-NN 50.45 100%
AMR-NN 33.8 100%
AMR-NRG 25.62 100%




Conclusion and Future Work

English Resouce Semantics is fantastic!

Conclusion
® Formalism works for graph-to-string mapping, not surprisingly
or surprisingly
Future work
® |s the decoder perfect? No, not even close

® |s the disambiguation model a neural one? No, graph
embedding is non-trivial.
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